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1. Foreword

Nonlinear Potential Theory (NPT) is essentially a part of regularity theory of par-
tial differential equations. Its aim is to study the fine properties of solutions to
nonlinear elliptic and parabolic differential equations and derive statements that
are as close as possible to those from the classical linear potential theory and
from the regularity theory for linear equations. The infancy of NPT dates back to
the beginning of the sixities, amid the first developments of the basic work of De
Giorgi, Nash and Moser [101, 124, 125]. A turning point is the fundamental paper
[75] by Maz’ya & Havin, where a systematic study of various types of potentials
is carried out in order to study fine properties of Sobolev Functions. Amongst the
other things, in [75] Wolff-Havin-Maz’ya potentials have been introduced. Later
fundamental contributions involve the basic work of Hedberg & Wolff [76]; for this
and other function theoretic aspects, we refer to the by now classical monograph of
Adams & Hedberg [3]. The last years have seen important developments in NPT,
with a deeper analysis of the interactions between fine properties of Sobolev func-
tions, regularity theory of nonlinear elliptic equations and nonlinear potentials. A
major impulse in this direction has been given by the Finnish school and a com-
prehensive account of its basic achievements can be found in the by now classical
monograph [77] of Heinonen & Kilpeläinen & Martio. On top of this approach
there lies the beautiful and foundational work of Kilpeläinen & Malý [82, 83], who
proved very fundamental nonlinear potential estimates opening the way to an entire
new theory; a different proof has been eventually provided by Trudinger & Wang
[129]. For instance, the necessary part of the Wiener criterion of the p-Laplacean
equations (whose sufficiency was proved by Maz’ya [107]) has been proved in [83]
by means of potential estimates of the type in Theorem 3.3 below (see also [100]
for the case p = n). Further consequences include for instance important existence
theorems for non-homogeneous problems [120, 121]. In all this, De Giorgi’s original
techniques [52] are pervasive and the reader wishing to have more information in
this respect might wish to consult [102]. A further impulse to this line of research
has arrived with the possibility of proving pointwise gradient estimates, first ob-
served in [112] for non-degenerate equations. Eventually, a rather comprehensive
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theory has been developed in the scalar case [90]. The proof of potential estimates
in the vectorial case is instead a more recent fact [93], both for solutions and their
gradients. NPT is also linked to another, more recent part of regularity theory,
that is, the so-called Nonlinear Calderón-Zygmund Theory (NCZT). This studies
the possibility of proving, for nonlinear equations, estimates that are a typical
consequence of the classical singular integrals theory [33, 34] in the case of linear
equations. Obviously, a common point with the pointwise potential estimates is
that the use of fundamental solutions is ruled out. The first papers in this direction
containing local estimates are [78, 54, 28, 30], where suitable Harmonic Analysis
tools such as various type of maximal operators have been used as a replacement
of the missing singular integrals. A different, purely PDE technique has been even-
tually introduced in [2], where a completely Harmonic Analysis free approach has
been developed, allowing to treat cases that were not approachable by other means.
The sharp gradient integrability of solutions of degenerate parabolic systems is an
instance (see (5.3) below). A different direction has been taken in [110], where
for the first time a Calderón-Zygmund theory for elliptic problems with measure
data has been formulated in terms of maximal fractional gradient differentiability.
This approach has been eventually pushed up the optimal level in [7], where a
connection with nonlinear potential estimates has been explained (see Section 7
below for details).

The aim of this note is now to give an account of the latest developments of
NPT and NCZT and to establish a framework in which the papers published in this
special issue of Nonlinear Analysis can be put. The reader will find several papers
contributing different results related to those exposed in the following pages, from
a rather wide perspective. The Calculus of Variations, the qualitative analysis of
partial differential equations are still themes related to those presented here.

2. The present setting

Here we mainly deal with elliptic equations of the type

−divA(Du) = H in Ω ⊂ Rn

with Ω being an open subset and n ≥ 2. Notice that, for the choice A(x,Du) ≡ Du
and p = 2, the last equation reduces to the standard Poisson equation. The right-
hand side H will be a distribution that in general will be either a finite mass
Borel measure or of the form H ≡ div (|F |p−2F ) for some F ∈ Lp, p > 1. The
assumptions we are going to work with on the vector field A : Rn → Rn is that this
is assumed to be in C0(Rn) ∩ C1(Rn \ {0})-regular and initially satisfies{

|A(z)|+ |∂A(z)||z| ≤ L|z|p−1

ν|z|p−2|ξ|2 ≤ 〈∂A(z)ξ, ξ〉
(2.1)

for every choice of z ∈ Rn \ {0}, ξ ∈ Rn, and for fixed ellipticity constants 0 < ν ≤
1 ≤ L. (We preliminary notice that several of the results presented in the following
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hold under assumptions that are more general than those in (2.1), but we adopt
the ones here for the sake of simplicity). Conditions (2.1) are classical since the
work of Ladyzhenskaya & Uraltseva [96] and they are modeled on the p-Laplacean
operator, i.e.,

A(x, z) = |z|p−2z .

As said above we shall consider two types of equations. The first one is

divA(Du) = div (|F |p−2F ) in Ω ⊂ Rn . (2.2)

In this case we consider F ∈ Lploc(Ω) and distributional solutions (and therefore

so-called energy solutions) that is, functions u ∈W 1,p
loc (Ω) such that∫

Ω

〈A(x,Du), Dϕ〉 dx =

∫
Ω

〈|F |p−2F,Dϕ〉 dx ∀ ϕ ∈ C∞0 (Ω) .

In the second case we shall consider right-hand sides that are not in divergence
forms, but that in the most general case are Borel measures µ with finite total
mass

− divA(Du) = µ . (2.3)

In this case the definition of solution we consider is a notion first used in [20].

Definition 2.1 (Local SOLA). A function u ∈ W 1,1
loc (Ω), with Ω ⊂ Rn being

an arbitrary open subset and p > 2 − 1/n, is a local SOLA to (2.3) under as-
sumptions (2.1), if and only if there exists a sequence of local energy solutions
{uk} ⊂W 1,p

loc (Ω) to the equations

−divA(x,Duk) = µk ∈ L∞loc(Ω) ,

such that uk ⇀ u weakly in W 1,1
loc (Ω). Here the sequence {µk} converges to µ

(locally) weakly∗ in the sense of measures and satisfies

lim sup
k
|µk|(B) ≤ |µ|(B)

for every ball B b Ω.

SOLA are still distributional solutions, and they are such that

Du ∈ Lqloc(Ω;Rn) for every q <
n(p− 1)

n− 1
, when p ≤ n .

To be more precise, the limiting integrability of SOLA can be described in terms
of weak-Lebesgue spaces, i.e., Marcinkiewicz spaces, that is (for p ≤ n)

Du ∈M
n(p−1)
n−1

loc (Ω;Rn)⇐⇒ sup
0<λ

λ
n(p−1)
n−1 |{x ∈ Ω′ : |Du(x)| > λ}| <∞ ,
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with the last inequality that holds for every open subset Ω′ b Ω. This integrability
range is optimal, as decan be seen by looking at the so-called nonlinear fundamental
solution

Gp(x) ≈

 |x|
p−n
p−1 if 1 < p 6= n

− log |x| if p = n ,
|x| 6= 0 , (2.4)

which locally solves (as a SOLA) the equation the equation −div (|Du|p−2Du) = δ,
and δ is the Dirac measure charging the origin. For an account of such results see for
instance [90] and references therein. Notice that the bound p > 2−1/n guarantees
that SOLA are Sobolev functions. The range 1 < p ≤ 2 − 1/n is more delicate
and different notions of solutions must be considered. See for instance [81] and
references therein. Finally, some basic notation. We denote by BR(x0) := {x ∈
Rn : |x − x0| < R}. When not important we shall omit denoting the center, i.e.,
BR ≡ BR(x0). With B ⊂ Rn being a measurable subset with positive measure,
and with f : B → Rk, k ≥ 1, being an integrable map, we shall denote by

(f)B ≡
∫
B
f dx :=

1

|B|

∫
B
f(x) dx ,

where |B| denotes the Lebesgue measure of B. We also identify L1
loc(Ω)-functions

µ with measures, thereby denoting

|µ|(B) =

∫
B
|µ| dx for every measurable subset B b Ω .

Let Ω ⊂ Rn. We denote by Mloc(Ω) the space of Borel (signed) measures with
locally finite total mass defined on Ω.

3. Estimates via linear and nonlinear potentials

Crucial developments in the last decades are concerned with potential estimates
for p-Laplacean type equations (see [131, 102, 103, 90] for basic regularity theory).
Two definitions are relevant for this. These have been first introduced in [75] and
are described in the following

Definition 3.1. Let µ ∈ Mloc(Ω), with Ω ⊂ Rn being an open subset; the non-
linear Wolff-Havin-Maz’ya potential Wµ

β,p is defined by

Wµ
β,p(x0, R) :=

∫ R

0

(
|µ|(B%(x0))

%n−βp

)1/(p−1)
d%

%
, β > 0

whenever BR(x0) b Ω.

Wolff-Havin-Maz’ya potentials are a nonlinear version of the more classical
(truncated) Riesz potentials, that is
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Definition 3.2 (Truncated Riesz potentials). Let µ ∈ Mloc(Ω), with Ω ⊂ Rn
being an open subset; the (truncated) Riesz potential Iµβ is defined by

Iµβ(x0, R) :=

∫ R

0

|µ|(B%(x0))

%n−β
d%

%
, 0 < β < n ,

whenever BR(x0) b Ω.

The relation between the truncated Riesz potentials defined above and the
classical ones

Iβ(µ)(x0) :=

∫
Rn

dµ(x)

|x− x0|n−β
,

is trivially given by

Iµβ(x0, R) ≤ c(n)Iβ(|µ|)(x0) for every R > 0 . (3.1)

When p = 2, Wolff and Riesz potentials coincide in the sense of

Wµ
1,2(x0, R) = Iµ2 (x0, R) and Wµ

1/2,2(x0, R) = Iµ1 (x0, R) ,

In the case of linear problems, Riesz potentials are known to pointwise bound
solutions of non-homogeneous equations via convolution with the fundamental so-
lutions. This results in

|u(x0)| . |I2(µ)(x0)| and |Du(x0)| . I1(|µ|)(x0) . (3.2)

It is a deep result of Kilpeläinen & Malý [82, 83] (with a later proof by Trudinger &
Wang [129]) the fact that this principle extends to the case of nonlinear equations
provided Wolff-Havin-Maz’ya potentials are used. A statement for general mea-
sures is the following, and includes a precise representative criterion in the spirit
of the classical linear potential theory:

Theorem 3.3 ([82, 83, 66, 90]). Let u ∈W 1,1
loc (Ω) be a local SOLA to (2.3) under

assumptions (2.1) with p > 2−1/n. Let BR(x0) b Ω be a ball. If Wµ
1,p(x0, R) <∞,

then x0 is Lebesgue point of u, in the sense that the limit

lim
%↘0

(u)B%(x0) =: u(x0) (3.3)

exists and thereby defines the precise representative of u at x0. Moreover, the
pointwise Wolff-Havin-Maz’ya potential estimate

|u(x0)| ≤ cWµ
1,p(x0, R) + c

∫
BR(x0)

|u| dx (3.4)

holds with a constant c depending only on n, p, ν, L.

Notice that, when p = 2, estimate (3.4) reduces to the classical one valid for
the Poisson equation

−4u = µ in Ω ⊂ Rn , (3.5)
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that is

|u(x0)| ≤ cIµ2 (x0, R) + c

∫
BR(x0)

|u| dx . (3.6)

We also notice that, by (3.3), estimate (3.4) makes sense at every possible point
x0 where the right-hand side is finite and therefore at each point where it does
not become trivial. Finally, when Ω ≡ Rn, and assuming suitable decay at infinity
of u, by letting R → ∞ in (3.6) and recalling (3.1), we get the first inequality in
(3.2).

The validity of a similar estimate for the gradient has been a debated open
problem for a while. The surprising outcome is that, on the contrary of what the
orthodoxy of NPT prescribes, Riesz potentials come back into the play. It indeed
holds the following:

Theorem 3.4 ([112, 65, 87]). Let u ∈ W 1,1
loc (Ω) be a local SOLA to (2.3) under

assumptions (2.1) with p > 2− 1/n. Let BR(x0) b Ω be a ball. If Iµ1 (x0, R) <∞,
then x0 is Lebesgue point of the gradient, in the sense that the limit

lim
%↘0

(Du)B%(x0) =: Du(x0)

exists and thereby defines the precise representative of Du at x0. Moreover, the
pointwise Riesz potential estimate

|Du(x0)|p−1 ≤ c [Iµ1 (x0, R)] + c

(∫
BR(x0)

|Du| dx

)p−1

(3.7)

holds with a constant c depending only on n, p, ν, L.

Again, when Ω ≡ Rn, and assuming a suitable decay at infinity, letting R→∞
in (3.7) yields

|Du(x0)|p−1 .
∫
Rn

d|µ|(x)

|x− x0|n−1
,

that, in turn, gives the second inequality in (3.2) when p = 2. Notice that using the
monotonicity properties of the vector field A(·), estimate (3.7) can be rephrased as

|A(Du(x0))| ≤ c [Iµ1 (x0, R)]
1/(p−1)

+ c

∫
BR(x0)

|A(Du)| dx , (3.8)

where the presence of p appears only via the dependence of the constants c. Let
us observe that potential estimates (3.7)-(3.8) allow to derive a priori gradient
bounds in essentially all possible function spaces or, at least in all those where
the mapping properties of Riesz potentials are known. An account of this can be
found for instance in [39, 90]. Essentially, the final outcome is that estimate (3.7)
allows to reduce the problem of finding gradient bounds for solutions to nonlinear,
possibly degenerate equations to the one of finding the same bounds for solutions to
the Poisson equation. This solution to this last problem is, of course, well-known.

Riesz potentials control the continuity properties of the gradient in the sense
of the following:
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Theorem 3.5 ([87, 90]). Let u ∈ W 1,1
loc (Ω) be a local SOLA to (2.3) under as-

sumptions (2.1) with p > 2− 1/n. If

lim
%↘0

Iµ1 (x, %) = 0 holds locally uniformly in Ω w.r.t. x , (3.9)

then Du is continuous in Ω.

The results above hold in the case of scalar equations, while they cannot be
true for general elliptic systems (see the counterexamples to regularity [109, 127]).
Instead, when restricting to quasi-diagonal structures of the type considered by
Uhlenbeck [130], both estimate (3.4) and (3.7) can be recovered. For instance,
they hold for SOLA to the p-Laplacean system

− div (|Du|p−2Du) = µ , (3.10)

where both u and µ are a vector valued function and a measure, respectively.
This result has been achieved in [93] and the proof is quite different from that
of the scalar case. It indeed employs regularization arguments that are typical
from Geometric Measure Theory and partial regularity theory; these are carefully
matched with nonlinear potential theoretic techniques. See also [23] for a related
result. We recall that the basic theory for elliptic systems as in (3.10) has been
originally established in [61, 62].

The first version of the pointwise gradient estimate (3.7) appears in [112] for the
nondegenerate case p = 2; the proof in [112] is built on the fractional Caccioppoli
type inequalities for measure data problems developed in [110]. An intermediate
version for p > 2, still using Wolff potentials, has been derived in [66] (where
a parabolic version of the gradient estimate has been derived too, but again for
the case p = 2). The final statement (3.7) has been then derived in [65, 87]. A
significant extension to a very general class of uniformly elliptic problems has been
proved by Baroni in [10]. A preliminary, level set version of the gradient estimate
has been proposed in [111], where the use of fractional maximal operators has been
introduced to prove estimates for measure data problems (see [14] for a related
parabolic problem); see also [36] for non-necessarily polynomial growth operators.
This last approach has been eventually developed by Phuc [118, 119] to get global
estimates for the Dirichlet problem. As also shown by Phuc, the approach of [111]
can be adapted to get delicate weighted estimates. An interesting global version
of a rearrangement baked inequality of the type in (3.7) has been given in [42].
A series of papers [88, 89, 91] proposes a sharp analog of the gradient potential
estimates in the case of degenerate parabolic equations, whose prototype is the
p-caloric equation with measure data

ut − div (|Du|p−2Du) = µ .

As for the values p ≤ 2 − 1/n some improvements have been made; in this case
one has to consider different, more general versions of solutions than SOLA. For
this we refer to the recent papers [113, 128].

Finally, let us also mention that potentials can be used to check whether solu-
tions have a given modulus of continuity. We present a model result (for simplicity
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stated in the non-degenerate case p = 2) that allows to check Hölder continuity of
solutions using suitable potentials (we refer to [90] for a comprehensive presenta-
tion of this kind of results).

Theorem 3.6 ([86]). Let u ∈ W 1,1
loc (Ω) be a local SOLA to (2.3) under assump-

tions (2.1) with p = 2. The inequality

|u(x1)− u(x2)| ≤ c
[
Iµ2−α(x1, R) + Iµ2−α(x2, R)

]
|x1 − x2|α

+c

∫
BR

|u| dx ·
(
|x1 − x2|

R

)α
(3.11)

holds uniformly in α ∈ [0, 1], whenever BR b Ω is a ball and x1, x2 ∈ BR/4,
provided the right-hand side is finite. The constant c depends only on n, p, ν, L.

Notice that, interestingly, estimate (3.11) interpolates between estimate (3.6)
(when α = 0) and estimate (3.7) (for α = 1).

4. Nonlinear Stein theorems

Amongst the other things, estimate (3.7) provides a sharp condition on the right-
hand side µ implying the local Lipschitz continuous, and this settles a longstanding
problem. Interestingly, the condition on µ is p-independent, as the right-hand side
(3.7) clearly implies (it is indeed sufficient to require that Iµ1 is locally bounded).
Here we briefly discuss a characterization in terms of a relevant function space. For
this let us recall a celebrated result of Stein [126] concerning the limiting Lorentz
space L(n, 1)(Ω). This is given by the measurable functions f such that∫ ∞

0

|{x ∈ Ω : |f(x)| > λ}|1/n dλ <∞ .

Now, if Dv ∈ L(n, 1), then Stein’s Theorem asserts that v is continuous. Stein’s
Theorem is, in a sense, the limiting case of the Sobolev-Morrey embedding theorem:

Dv ∈ Ln+ε =⇒ v ∈ C0, ε
n+ε for ε > 0 .

Letting ε → 0 would yield Dv ∈ Ln, which anyway only implies v ∈ VMO and it
is insufficient for continuity. An intermediate limiting space is therefore necessary
and L(n, 1) plays this role in the sense that, on finite measure spaces, it holds

Ln+ε ⊂ L(n, 1) ⊂ Ln for every ε > 0 .

All the inclusions in the display above are strict. An essentially equivalent way
to state Stein’s Theorem can be obtained when looking at the gradient regularity
of solutions u to the Poisson equation (3.5). Observing that standard CZ theory
gives

4u ∈ L(n, 1) =⇒ D2u ∈ L(n, 1)
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as Lorentz spaces are interpolation spaces, the continuity Du follows again by
Stein’s Theorem. For a discussion about the optimal role played by the space
L(n, 1) in the analysis of the Poisson equation we refer to [38].

Now, switching to the general nonlinear case, and observing that µ ∈ L(n, 1)
implies (3.9) (see for instance [87]), we have the following:

Theorem 4.1 ([87]). Let u ∈W 1,1
loc (Ω) be a local SOLA to (2.3) under assumptions

(2.1) with p > 2 − 1/n, and such that µ ∈ L(n, 1) locally in Ω. Then Du is
continuous in Ω.

By different means, Theorem 4.1 continues to hold in the whole range p > 1
when considering the p-Laplacean system [92, 93], and therefore vector-valued
solutions. A suitable parabolic version of Theorem 4.1 can be also proved as well
[88, 89]. We remark that the first result yielding the local boundedness of the
gradient when the right-hand side belongs to L(n, 1) have been proved, both for
equations and systems, in [64]. Global versions have been given, under optimal
boundary assumptions and also for systems, in [40, 41]. The space L(n, 1) plays
a role for more general operators in determining the gradient boundedness, and
in this respect recent results dealing with non-uniformly elliptic equations can be
found in [18].

5. Nonlinear Calderón-Zygmund theory

This is another part of regularity theory that essentially deals with optimal inte-
grability estimates. In the linear case, the prototype question, rephrased in the
way which is mostly close to our setting, is to determine the optimal gradient
integrability of solutions to the equation (system)

4u = divDu = divF (5.1)

in terms of the optimal integrability properties of the assigned datum F . The
classical Calderón-Zygmund theory [33, 34] then yields

F ∈ Lγloc =⇒ Du ∈ Lγloc (5.2)

for every γ > 1. The natural nonlinear analog of equation (5.1) is of course given
by (2.2), that has been indeed studied at length since the papers [78, 54, 30, 132].
In these papers (5.2) is still proved in the case of nonlinear equations of the type
(2.2) but only when q ≥ p, although a parallel with the linear case would suggest
that range of admissible parameters is q > p − 1. This remains as an important
open problem in the theory. The only progress is contained in the papers [97, 79],
where the range is extended to q > p− ε for some small ε ≡ ε(n, ν, L) > 0 which is
independent of the solution considered. The original local results in the aforemen-
tioned papers have been extended in several directions, including boundary value
problems and equations with rough coefficients [24, 25]. On a different direction,
very interesting results can be derived in Stochastic Homogenization [4].
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All these papers make use of basic Harmonic Analysis tools such as various
types of maximal operators. These approaches break down when applied to the
degenerate parabolic setting, i.e., they do not allow to get estimates in the case of
equations as

ut − divA(Du) = div (|F |p−2F ) in Ω ⊂ Rn . (5.3)

This problem has been settled by means of a new technique in [2], which is com-
pletely free from any Harmonic Analysis tool and which is directly based on direct
exit time argument that takes into account the gradient and the datum at different
heights. For a comprehensive account on the regularity of equations as in (5.3) we
refer to [53]. The techniques introduced in [2] are flexible enough to allow for more
general function spaces (see for instance [8, 9]) as well as for several further ex-
tensions (including non-uniformly elliptic operators [26, 43] and different function
spaces [74]).

6. CZ estimates and non-uniform ellipticity

Both the NPT and the NCZT are rather open fields for non-uniformly elliptic
operators. A few particular, yet significant cases have been treated. These relate
to non-autonomous energies of the type

V(w,Ω) :=

∫
Ω

|Dw|p(x) dx , 1 < γ1 ≤ p(x) ≤ γ2 <∞

Pp,q(w,Ω) :=

∫
Ω

(|Dw|p + a(x)|Dw|q) dx , 0 ≤ a(x) ≤ L , 1 < p < q .

(6.1)

These two functionals, originating in the work of Zhikov [134, 135, 136], also fall
in the realm of those with so-called (p, q)-functionals originally considered by Mar-
cellini [104, 105, 106]. This is a topic that has attracted a lot of attention in
the recent years. See also the survey paper [109]. The common point of the two
functionals in (6.1) is the fact that the growth and/or ellipticity properties of the
integrand with respect to the gradient variable depends on the point x. This is
at the origin of the non-uniformly elliptic nature of the Euler-Lagrange equations
associated to the functionals in (6.1). Indeed, as this is immediately clear for the
first functional, in the second case we have that the growth with respect to the
gradient variable is p when a(x) = 0 and it is q when a(x) > 0. By looking at their
associated Euler-Lagrange equations, the two equations that are relevant for the
corresponding Calderón-Zygmund estimates are

div (Du|p(x)−2Du) = div (|F |p(x)−2F ) in Ω ⊂ Rn , (6.2)

and
divA(x,Du) = divA(x, F ) in Ω ⊂ Rn (6.3)

where

A(z) := (|z|p−2 + a(x)|z|q−2)z =
H(x, z)

|z|2
z
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and
H(x, z) := |z|p + a(x)|z|q for x ∈ Ω and z ∈ Rn .

There is by now a large literature on the equation in (6.2). The first paper on the
subject is [1], while improvements can be found for instance in [58, 59, 27]. The
main common point in all the statements in such papers is the higher integrability
formulated in terms of the intrinsic vector field considered in the problem, that is

|F |p(·) ∈ Lγloc(Ω) =⇒ |Du|p(·) ∈ Lγloc(Ω) for every γ > 1 .

This last assertion holds under the sharp assumption of vanishing log-Hölder con-
tinuity on the variable exponent p(x):

lim
%→0

ω(%) log

(
1

%

)
= 0 , (6.4)

where ω(·) is the modulus of continuity of p(·)

|p(x)− p(y)| ≤ ω(|x− y|) ∀x, y .

This assumption essentially rules out too large oscillations of the exponent function
p(x) resulting in a strong difference between the largest and the smallest eigenvalue
of the variable exponent operator over a ball B ⊂ Ω

highest eigenvalue on B of |Du|p(x)−2

lowest eigenvalue on B of |Du|p(x)−2
≈ |Du|maxB p(x)−minB p(x) .

The last ratio provides a measure of non-uniform ellipticity on B of the operator
considered. Similarly, the non-uniform ellipticity of equation in display (6.3), when
evaluated on the specific solution u, is measured by the ratio

highest eigenvalue of ∂zA(x,Du)

lowest eigenvalue of ∂zA(x,Du)
≈ 1 + a(x)|Du|q−p . (6.5)

Around phase transition set {a(x) = 0}, the ratio in (6.5) exhibits blow-up with
respect to the gradient with exponent q−p; to rebalance, a(x) is required to decay
sufficiently fast. This is quantified in the optimal condition

a(·) ∈ C0,α(Ω) ,
q

p
≤ 1 +

α

n
(6.6)

and indeed we have

Theorem 6.1 ([43, 50]). Let u ∈W 1,1(Ω) be a distributional solution to equation
(6.3) such that H(x,Du), H(x, F ) ∈ L1(Ω), under the assumptions (6.6). Then

H(·, F ) ∈ Lγloc(Ω) =⇒ H(·, Du) ∈ Lγloc(Ω) holds for every γ ≥ 1 .

A boundary version of the last result has been obtained in [26]. Let us men-
tion that conditions (6.6) are also relevant for the regularity of minimizers of the
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functional Pp,q in (6.1); for this see [11, 12]. The field of non-uniformly elliptic
problems, especially in the setting of the Calculus of Variations, has seen a large
number of contributions over the last years, starting by the foundational papers
of Marcellini [104, 105]. Recent contributions on functionals with non-standard
growth conditions and non-uniformly elliptic problems, with special emphasis on
double phase and non-autonomous problems, include [11, 12, 18, 21, 19, 35, 46, 47,
45, 48, 49, 67, 68, 114, 115, 116, 133]. In particular, first steps towards a nonlinear
potential theory appear in [15, 71, 72, 37]. Moreover, in the papers [70, 73] a very
interesting, unified approach to the functionals in (6.1) is proposed, unifying con-
ditions (6.4) and (6.6) in a single one and therefore providing a unified proof for
the regularity of minima. We refer to the survey [109] for an overview presentation
of functionals with non-standard growth conditions, and to [106] for more recent
results. General information on non-autonomous problems, with special emphasis
on function spaces, can be found in the monographs [57, 122].

7. CZ theory in the limiting case

Let us recall the basic definition of fractional spaces in their Sobolev-Slobodeckij
version. With Ω ⊂ Rn being an open subset, α ∈ (0, 1), q ∈ [1,∞), k ∈ N,
the fractional Sobolev space Wα,q(Ω;Rk) is defined prescribing that f : Ω → Rk
belongs to Wα,q(Ω;Rk) if and only if the following Gagliardo-type norm is finite:

‖f‖Wα,q(Ω) :=

(∫
Ω

|f(x)|q dx
)1/q

+

(∫
Ω

∫
Ω

|f(x)− f(y)|q

|x− y|n+αq
dx dy

)1/q

=: ‖f‖Lq(Ω) + [f ]Wα,q(Ω)

The local variant Wα,q
loc (Ω;Rk) is defined by requiring that f ∈Wα,q

loc (Ω;Rk) if and
only if f ∈Wα,q

loc (Ω′;Rk) for every open subset Ω′ b Ω. For more we refer to [60].
Fractional Sobolev spaces are very popular these days due to the large interest

in studying nonlocal operators. But they have always been used in several different
issues from regularity theory. It is for instance worth pointing out their use in
establishing Hausdorff dimension estimates for the singular sets of elliptic systems
and minimizers of variational problems [109]. Moreover, fractional spaces can be
used to establish the existence of boundary regular points [63] for elliptic systems.
Here we are interested in a different direction, that is, in the case of equations with
measure data, fractional Sobolev spaces can be employed in order to get maximal
regularity solutions. This entails a limiting case of CZ estimates. This approach
has been initiated in [110] and has been further pursued in [7]. Let us summarize
the situation. As it is well-known, solutions to the Poisson equation (3.5) do
not possess second order Sobolev derivatives in the case the right-hand side is a
measure or just an L1-function. The same obviously applies to nonlinear equations.
Nevertheless, not everything is lost. Indeed, in [110], for the non-degenerate case
p = 2 is it is proved that SOLA are such that

Du ∈Wσ,1
loc (Ω;Rn) holds for every σ ∈ (0, 1) . (7.1)
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The corresponding parabolic version has been derived in [13]. Specifically, (7.1)
means that ∫

Ω′

∫
Ω′

|Du(x)−Du(y)|
|x− y|n+σ

dx dy <∞

holds for every σ ∈ (0, 1) and every bounded open subset Ω′ b Ω. In the case p > 2,
due to the degeneracy of the equation, a substantial amount of differentiability is
lost and indeed, again in [110], it is proved that

Du ∈W
σ
p−1 ,p−1

loc (Ω;Rn) for every σ ∈ (0, 1) . (7.2)

Both the results are optimal in this case and this follows by looking at the fun-
damental solution (2.4). The loss of derivatives present in (7.2) can be corrected
using an intrinsic approach, therefore passing to the vector field A(Du) which in-
corporates the degeneracy information of the equation. This has been done in [7],
where it is indeed proved that

A(Du) ∈Wσ,1
loc (Ω;Rn) holds for every σ ∈ (0, 1) . (7.3)

Notice that in the case of the purely p-Laplacean operator, when in fact it is
A(z) ≡ |z|p−2z, the result in the display above amounts to say that

|Du|p−2Du ∈Wσ,1
loc (Ω;Rn) holds for every σ ∈ (0, 1) . (7.4)

In turn, the result in (7.3) allows to recover the one in (7.2) as the endpoint case
of a family of interpolating embeddings as follows:

|Du|γDu ∈Wσ γ+1
p−1 ,

p−1
γ+1

loc (Ω;Rn) holds for every σ ∈ (0, 1) ,

and this holds for every γ such that 0 ≤ γ ≤ p − 2. Notice that, for the choice
γ = p − 2, we recover (7.4), while the case γ = 0 allows to get (7.2) back. We
refer to the paper [7] for more on this issue. The qualitative result in (7.3) comes
along with an a priori estimate in the sense that, for every σ ∈ (0, 1), there exists
a constant c ≡ c(n, p, ν, L, σ) such that the following fractional Caccioppoli type
inequality ∫

BR/2

∫
BR/2

|A(Du(x))−A(Du(y))|
|x− y|n+σ

dx dy

≤ c

Rσ

∫
BR

|A(Du)| dx+
c

Rσ

[
|µ|(BR)

Rn−1

]
holds for every ball BR b Ω. This last estimate can be considered as the singular in-
tegral counterpart of the intrinsic potential estimate in (3.8), which, dimensionally
speaking, corresponds to the case of fractional integral estimates. Both estimates
are formulated involving the direct quantity A(Du), which is consistent with the
linearization viewpoint of this approach.
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8. Nonlinear potential theory and nonlocal operators

As mentioned above, there has been a large and rapid development of the theory of
nonlocal operators. As for regularity, the first contributions towards a systematic
development of the theory can be found in the papers [16, 17, 31, 32]. The p-
Laplacean fractional theory, which is closely related to our interests here, has
instead started with the papers [55, 56], where a complete analog of the standard
De Giorgi-Nash-Moser theory has been derived, including Harnack inequalities
and local C0,α-estimates for solutions. See also [80, 44] for a related approach.
Extensions of these results to the case of non-uniformly elliptic operators have
been also carried out in [51, 98]. In the papers [55, 56], convolution kernels with
measurable coefficients are considered. The related non-linear potential theory has
instead started in the paper [94], where a sharp analog of the pointwise potential
estimate (3.4) has been proved. Moreover, optimal versions of the Wiener criterion
have been proved in [84, 85, 99]. Let us briefly recall the setting of [94] (which is
closely related to that of [55, 56]). There, general operators of the type

− LΦu = µ in Ω ⊂ Rn , (8.1)

are considered, where −LΦ is defined as a distribution via

〈−LΦu, ϕ〉 :=

∫
Rn

∫
Rn

Φ(u(x)−u(y))(ϕ(x)− ϕ(y))K(x, y) dx dy ,

for every smooth function ϕ with compact support. The function Φ : R 7→ R
is assumed to be continuous, satisfying Φ(0) = 0 together with the monotonicity
property

Λ−1|t|p ≤ Φ(t)t ≤ Λ|t|p , ∀ t ∈ R .

Finally, the kernel K : Rn × Rn → R is assumed to be measurable, and satisfying
the following ellipticity/coercivity properties:

1

Λ|x−y|n+sp
≤ K(x, y) ≤ Λ

|x−y|n+sp
∀ x, y ∈ Rn, x 6= y (8.2)

where Λ ≥ 1 and

s ∈ (0, 1) , p > 2− s

n
.

When in (8.2) it is Λ = 1 and Φ(t) ≡ |t|p−2t, i.e., when

K(x, y) =
1

|x−y|n+sp
(8.3)

holds, then we have the truly fractional p-Laplacean operator. This naturally
emerges by minimizing the Gagliardo norm

v 7→
∫
Rn

∫
Rn

|v(x)− v(y))|p

|x− y|n+sp
dx dy
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in suitable Dirichlet classes. For this we refer to the initial paper [55] and the
recent survey [117].

For suitably defined SOLA of such equations (with suitable Dirichlet boundary
values prescribed on the complement of Ω) a potential estimate of the type (3.4)
holds and involves an additional tail term

Tail(v;x0, r) :=

[
rsp
∫
Rn\Br(x0)

|v(x)|p−1

|x−x0|n+sp
dx

]1/(p−1)

.

in order to encode the nonlocal interactions of the problem. Specifically, it holds
that

|u(x0)| . Wµ
s,p(x0, r) +

(∫
Br(x0)

|u|q∗ dx

)1/q∗

+ Tail(u;x0, r) ,

where q∗ := max{1, p− 1} for every ball Br(x0). As in the local case, the precise
representative

u(x0) := lim
%→0

(u)B%(x0) = lim
%→0

∫
B%(x0)

u dx

exists as soon as Wµ
s,p(x0, r) is finite.

As for the higher order theory for operators with measurable coefficients, we
mention the results from [95]. By considering the equation (8.1) with p = 2 and
suitable integrability properties on µ, in [95] it is proved that

u ∈W s,2
loc =⇒ u ∈W s+δ,2+δ

loc for some δ > 0 . (8.4)

This surprising gain of differentiability has no local analog for equations with
measurable coefficients

−div (a(x)Du) = 0 , a(x) ≈ Id

for which it only holds that

u ∈W 1,2
loc =⇒ u ∈W 1,2+δ

loc for some δ > 0 .

The result in the last display is known as Meyers estimate. Modern proofs rely on
the use of the Gehring lemma and are based on so-called reverse Hölder inequalities.
These play an important in several aspects of modern analysis, and especially in
the Calculus of Variations [69]. In [95], an approach is presented which is based
on the suitable analog of reverse Hölder inequality in the nonlocal case, and this
involves a series of delicate off-diagonal estimates. Although the main result in [95]
is stated for solutions, the basic analysis only relies on the use of a suitable family
of fractional Caccioppoli type inequalities. As such, it allows to several extensions,
for instance to those variational problems when the Euler-Lagrange equation does
not exist, in the spirit of [69]. The ideas in [95] can be used to deal with new classes
of local reverse Hölder inequalities with tails, as shown in [5]. A shorter proof of
(8.4), valid only in the linear case (i.e., Φ(t) ≡ t), has been found in [6]. Yet
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another very interesting proof valid for solutions and so-called very weak solution
(as in the local case defined in [79]) has been found by Schikorra [123] and it is
based on a very delicate use of commutator estimates in fractional spaces.

When in (8.2) the dependence on the coefficients is smooth or when we are
considering the genuine fractional p-Laplacean operator (that is, we have (8.3)),
one expects higher regularity of solutions. This is still a largely open issue. In this
direction, a recent interesting result by Brasco & Lindgren & Schikorra [22] claims
the higher Hölder continuity of solutions.

9. Another bridge between nonlocal operators and NPT

We finally conclude recalling an approach, introduced in [112], proposing a bridge
between nonlocal techniques and nonlinear potential estimates. In particular, we
outline the conceptual similarities between the fractional De Giorgi technique first
pioneered in [32, 29] (and then widely developed in the following literature) and
the one used in [112] to prove estimate (3.7) in the non-degenerate case p = 2. The
proof in [112] breaks down in two different steps. The first one derives a fractional
Caccioppoli estimate and it is in the following:

Theorem 9.1 (Fractional Caccioppoli inequality, [110, 112]). Let u ∈W 1,1
loc (Ω) be

a local SOLA to (2.3) under assumptions (2.1) with p = 2. If. For every σ < 1/2
there exists a constant c ≡ c(n, ν, L, σ) such that the estimate

[(|Dmu| − k)+]Wσ,1(BR/2) ≤
c

Rσ

∫
BR

(|Dmu| − k)+ dx+
cR|µ|(BR)

Rσ
(9.1)

holds whenever m ∈ {1, . . . , n}, k ≥ 0 and BR b Ω.

The difficult point in the theorem above is that although the problem considered
is local, the estimate considered is nonlocal. Inequality (9.1) naturally lead to a
suitable definition of fractional De Giorgi’s classes which is similar to those used
when dealing with nonlocal problems [32, 29, 44]. The main difference is that
additional tail terms are involved when considering nonlocal equations. The second
step then follows the classical orthodoxy fixed by De Giorgi’s approach in that the
remaining regularity information is contained in (9.1). Indeed we have

Theorem 9.2 (Potential estimate [112]). Let w ∈ L1
loc(Ω) where Ω ⊂ Rn is an

open subset, µ is Borel measure with finite total mass, and x0 ∈ Ω. Let σ ∈ (0, 1),
and assume that for every radius r > 0 such that Br(x0) b Ω the inequality

[(|w| − k)+]Wσ,1(Br/2(x0)) ≤
L

rσ

∫
Br(x0)

(|w| − k)+ dx+
Lr|µ|(Br)

rσ

holds for a positive constant L and for every k ≥ 0; finally, assume that w is
continuous at the point x0. Then the estimate

|w(x0)| ≤ cIµ1 (x0, R) + c

∫
BR(x0)

(|w| − k)+ dx+ k
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holds with c ≡ c(n,L, σ), whenever BR(x0) b Ω is a ball and k is non-negative real
number.

Estimate (3.7) now follows from the last two theorems.
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tipli regolari. Mem. Accad. Sci. Torino Cl. Sci. Fis. Mat. Nat. (III) 125 3 (1957),
25–43.

[53] DiBenedetto E.: Degenerate parabolic equations. Universitext. Springer-Verlag, New
York, 1993.

[54] DiBenedetto E. & Manfredi J.J.: On the higher integrability of the gradient of weak
solutions of certain degenerate elliptic systems. Amer. J. Math. 115 (1993), 1107–1134.

[55] Di Castro A. & Kuusi T. & Palatucci G.: Local behavior of fractional p-minimizers.
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[82] Kilpeläinen T. & Malý J.: Degenerate elliptic equations with measure data and
nonlinear potentials. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (IV) 19 (1992), 591–613.
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[84] Korvenpää J. & Kuusi T. & Palatucci G.: The obstacle problem for nonlinear integro-
differential operators. Calc. Var. Partial Differential Equations 55 (2016), no. 3,
Art. 63, 29 pp.
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