
29 January 2025

University of Parma Research Repository

PPLite: Zero-overhead encoding of NNC polyhedra / Becchi, A.; Zaffanella, E.. - In: INFORMATION AND
COMPUTATION. - ISSN 0890-5401. - 276:(2020), pp. 104620.1-104620.36. [10.1016/j.ic.2020.104620]

Original

PPLite: Zero-overhead encoding of NNC polyhedra

Publisher:

Published
DOI:10.1016/j.ic.2020.104620

Terms of use:

Publisher copyright

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available

Availability:
This version is available at: 11381/2880186 since: 2021-12-20T17:26:59Z

Elsevier Inc.

This is the peer reviewd version of the followng article:

note finali coverpage

PPLite: Zero-Overhead Encoding of NNC Polyhedra

Anna Becchia,∗, Enea Zaffanellab,∗

aFondazione Bruno Kessler, Via Sommarive 18, Povo, 38123 Trento, Italy
bUniversità di Parma, Parco Area delle Scienze 53/a (Campus), 43124 Parma, Italy

Abstract

We present an alternative Double Description representation for the domain
of NNC (not necessarily closed) polyhedra, together with the corresponding
Chernikova-like conversion procedure. The representation uses no slack variable
at all and provides a solution to a few technical issues caused by the encoding
of an NNC polyhedron as a closed polyhedron in a higher dimension space.
We then reconstruct the abstract domain of NNC polyhedra, providing all the
operators needed to interface it with commonly available static analysis tools:
while doing this, we highlight the efficiency gains enabled by the new represen-
tation and we show how the canonicity of the new representation allows for the
specification of proper, semantic widening operators. A thorough experimental
evaluation shows that our new abstract domain achieves significant efficiency
improvements with respect to classical implementations for NNC polyhedra.

Keywords: convex polyhedra, double description, strict inequalities, static
analysis

1. Introduction

The Double Description (DD) method [47] allows for the representation and
manipulation of convex polyhedra by using two different geometric represen-
tations: one based on a finite collection of constraints, the other based on a
finite collection of generators. Starting from any one of these representations,
the other can be derived by application of a conversion procedure [21, 22, 23],
thereby obtaining a DD pair; the procedure allows for the identification and
removal of redundant elements from both representations, yielding a DD pair in
minimal form; moreover, it is incremental, allowing for capitalizing on the work
already done when new constraints and/or generators need to be added to an
input DD pair.

The DD method lies at the foundation of several software libraries and tools.
The following is an incomplete list of available implementations:

∗Corresponding author
Email addresses: abecchi@fbk.eu (Anna Becchi), enea.zaffanella@unipr.it (Enea

Zaffanella)

Preprint submitted to Elsevier August 5, 2020

• cdd (www.inf.ethz.ch/personal/fukudak/cdd_home);

• PolyLib (http://icps.u-strasbg.fr/PolyLib);

• NewPolka, part of Apron (http://apron.cri.ensmp.fr/library);

• Parma Polyhedra Library (http://bugseng.com/products/ppl);

• 4ti2 (www.4ti2.de);

• Skeleton (www.uic.unn.ru/~zny/skeleton);

• Addibit (www.informatik.uni-bremen.de/agbs/bgenov/addibit).

Despite the intrinsic exponential complexity of the conversion procedure,
these implementations turn out to be surprisingly effective in many contexts.
As a consequence, the range of applicability of the DD method keeps widening,
also due to several incremental improvements in the efficiency of the most critical
processing phases [36, 37, 45, 56]. Quoting from [36]:

The double description method is a simple and useful algorithm [. . .]
despite the fact that we can hardly state any interesting theorems
on its time and space complexities.

Implementations of the DD method are actively used, either directly or in-
directly, in several research fields, with applications as diverse as bioinformat-
ics [53, 54], computational geometry [1, 3], analysis of analog and hybrid systems
[19, 34, 40, 41], automatic parallelization [15, 50], scheduling [31], static analysis
of software [12, 24, 30, 32, 38, 42].

In the classical setting, the DD method is meant to compute geometric
representations for topologically closed polyhedra in an n-dimensional vector
space: these polyhedra can be represented by finite constraint systems where
all of the constraints are linear non-strict inequalities. There are applications
that, at least in principle, also require the ability to deal with linear strict
inequality constraints, leading to the definition of not necessarily closed (NNC)
polyhedra. For example, this is the case for some of the analysis tools developed
for the verification of hybrid systems [19, 34, 40, 41]; other examples of the
use of NNC polyhedra include static analysis tools such as PAGAI [42], where
strict inequalities are used to model the semantics of conditional tests acting on
program variables of floating point type; the direct use of strict inequalities has
also been proposed in [24] for the automatic discovery of ranking functions, so
as to prove the termination of program fragments.

Any strict inequality constraint β ≡ (aTx > b) can be transformed into
a non-strict inequality constraint β′ ≡ (aTx − ε ≥ b) by adding a fresh slack
variable ε satisfying the strict positivity constraint ε > 0. Hence, from a theo-
retical point of view, strict inequalities are not really needed: the construction
outlined in Section 3 will make clear that any application computing on the
domain of NNC polyhedra can be equivalently based on a library computing
on the domain of topologically closed polyhedra (in a higher dimension vector

2

www.inf.ethz.ch/personal/fukudak/cdd_home
http://icps.u-strasbg.fr/PolyLib
http://apron.cri.ensmp.fr/library
http://bugseng.com/products/ppl
www.4ti2.de
www.uic.unn.ru/~zny/skeleton
www.informatik.uni-bremen.de/agbs/bgenov/addibit

space). The few DD method implementations providing support for NNC poly-
hedra are all based on such an indirect representation of the strict inequalities,
implicitly using this supplementary space dimension. The advantage of such an
approach is the possibility of reusing, almost unchanged, all of the well-studied
algorithms and optimizations that have been developed for the classical case of
closed polyhedra [9, 14, 40, 41]. The obvious disadvantage is that the addition of
the slack variable carries with itself an overhead, as well as a few more technical
issues.

In this paper, we pursue a different approach for the handling of NNC poly-
hedra in the DD method. Namely, we specify a direct representation, dispensing
with the need of the slack variable and hence enabling corresponding gains in
terms of efficiency. The main insight of this new approach is the separation of
the (constraints or generators) geometric representation into two components,
the skeleton and the non-skeleton of the representation, playing quite different
roles: while keeping a geometric encoding for the skeleton component, we will
adopt a combinatorial encoding for the non-skeleton one. For this new repre-
sentation, we propose the corresponding variant of the Chernikova’s conversion
procedure, where both components are handled by respective processing phases,
so as to take advantage of their peculiarities. In particular, we develop ad hoc
functions and procedures for the combinatorial non-skeleton part.

The new representation and conversion procedure are then used to specify
all of the operators that are needed for the definition of a classical static analysis
based on Abstract Interpretation [30], leading to the implementation of PPLite,
a new library for convex polyhedra derived from the PPL (Parma Polyhedra
Library, [11, 12]). While describing the operators, we stress on the efficiency
gains that are triggered by the new representation, contrasting it with the more
classical approach based on the use of a slack variable. In particular, we propose
a more appropriate, semantics-based specification for the widening operator
on NNC polyhedra and then we further improve its precision by applying the
framework of [5, 6].

We conclude by showing an extensive experimental evaluation where the
PPLite library is integrated in a static analysis tool, so as to compare its per-
formance with more classical implementations. This experimental evaluation,
besides assessing the new implementation in terms of correctness and precision,
provides evidence for the significant speedups that are obtained by the new
representation on a wide range of benchmarks.

In applications such as static analysis, where the computed polyhedra are
often over-approximated to ensure the efficiency and the termination of the ab-
stract computation, the abstract domain of NNC polyhedra could be replaced
from the very beginning by the abstract domain of topologically closed polyhe-
dra, without incurring a significant precision penalty: in practice, each linear
strict inequality β ≡ (aTx > b) is relaxed to become a non-strict inequality
β′ ≡ (aTx ≥ b), without adding a slack variable. This is indeed a common
approach, mainly motivated by the fear that the traditional implementations of
the domain of NNC polyhedra will be affected by the corresponding overhead.
Thanks to our new representation, this worry is no longer justified: our experi-

3

mental evaluation confirms that the adoption of the domain of NNC polyhedra
incurs no intrinsic penalty. It should also be noted that there are contexts where
the analysis and verification tools have to perform exact computations, with no
over-approximation allowed:1 for instance, this happens when considering piece-
wise constant hybrid systems and performing reachability analysis in order to
disprove a candidate safety property [18, 35]. In this setting, any relaxation
of a strict inequality constraint into the corresponding non-strict version could
compromise the overall correctness of the result, so that the analysis tool needs
to compute on the domain of NNC polyhedra. Notice that strict inequality con-
straints could be present in the initial specification of the analyzed system; as
an example, the NAV m n hybrid systems used as benchmarks in the 2020 edi-
tion of the ARCH-COMP verification competition2 are characterized by discrete
transitions having the strict constraint β ≡ (time > 0) in the guard component,
so as to make sure that any two consecutive discrete transitions are separated by
some strictly positive amount of time. Strict inequalities can also arise during
the analysis, e.g., when the semantic construction needs to compute the exact,
possibly disjunctive complement of a topologically closed polyhedron.

The paper is structured as follows. Section 2, after introducing the required
notation and terminology, briefly describes the Double Description method for
the representation of closed polyhedra, also sketching the Chernikova’s conver-
sion algorithm. Section 3 summarizes the encoding of NNC polyhedra into
closed polyhedra based on the addition of a slack variable, highlighting a few
technical issues. Section 4, after recalling a few properties of the face lattices of
closed and NNC polyhedra, proposes the new representation for NNC polyhedra,
which uses no slack variable and distinguishes between a geometric and a com-
binatorial component. Section 5 is devoted to the extension of the Chernikova’s
conversion algorithm to the case of NNC polyhedra adopting this new repre-
sentation. Section 6 shows how, using the new representation and conversion
algorithm, we can implement all the abstract domain operators needed for the
development of a static analysis based on Abstract Interpretation. Section 7, af-
ter providing some details on the development of the PPLite library, summarizes
the results of a thorough experimental evaluation where the newly implemented
domain is compared with existing ones in order to asses its correctness, precision
and efficiency. We conclude in Section 8. The proofs for the stated results can
be found in Appendix A.

This paper is a combined, extended and improved version of [16], where
we were originally proposing the new representation for NNC polyhedra and
presenting the first part of the conversion algorithm, and [17], where we com-
pleted the specification of the conversion algorithm and we explained how the

1Exact computations can be obtained when considering specific subclasses of systems; also,
the exactness requirement often implies that the analysis procedure may fail to terminate.

2See https://cps-vo.org/group/ARCH/FriendlyCompetition; these benchmarks, derived
from the well-known navigation benchmarks [33], are part of the PCDB category (Piecewise
Constant Dynamics and Bounded model checking); they are meant to test the capabilities of
bounded model checking tools.

4

https://cps-vo.org/group/ARCH/FriendlyCompetition

operators needed for Abstract Interpretation can be implemented. We propose
here a more complete and uniform presentation, adopting consistent terminol-
ogy and notation and providing, in Appendix A, the proofs of all the stated
formal results. We also enriched the experimental evaluation to demonstrate
that the new representation is orthogonal to (i.e., can benefit from) generic
constructions aiming at improving the efficiency of the abstract domain, such
as Cartesian factoring. The specification of the improved widening operator in
Section 6.2 and the corresponding experimental evaluation in Section 7 are also
new to this paper.

2. Preliminaries

We assume some familiarity with the basic notions of lattice theory [20].
For a lattice 〈L,v,⊥,>,u,t〉, an element a ∈ L is an atom if ⊥ @ a and

there exists no element b ∈ L such that ⊥ @ b @ a. The lattice L is said to be
atomistic if every element of L can be obtained as the join of a set of atoms. For
S ⊆ L, the upward closure of S is defined as ↑S .

= {x ∈ L | ∃s ∈ S . s v x }.
The set S ⊆ L is upward closed if S = ↑S; we denote by ℘↑(L) the set of all
the upward closed subsets of L. For x ∈ L, ↑x is a shorthand for ↑{x}. The
notation for downward closure is similar.

Given two posets 〈L,v〉 and 〈L],v]〉 and two monotonic functions α : L→
L] and γ : L] → L, the pair (α, γ) is a Galois connection [28] (between L and
L]) if

∀x ∈ L, x] ∈ L] : α(x) v] x] ⇔ x v γ(x]).

We write Rn to denote the Euclidean topological space of dimension n > 0
and R+ for the set of non-negative reals; for S ⊆ Rn, cl(S) and relint(S) denote
the topological closure and the relative interior of S, respectively. The scalar
product of two vectors a1,a2 ∈ Rn is denoted by aT

1a2. For each vector a ∈ Rn,
where a 6= 0, and scalar b ∈ R, the linear non-strict inequality constraint
β ≡ (aTx ≥ b) defines a closed affine half-space of Rn; similarly, the linear
equality constraint β ≡ (aTx = b) defines an affine hyperplane of Rn.

2.1. Topologically closed convex polyhedra

A topologically closed convex polyhedron (for short, closed polyhedron) is
defined as the set of solutions of a finite system C of linear non-strict inequality
and linear equality constraints; namely, P = con(C) where

con(C) .
=
{
p ∈ Rn

∣∣ ∀β ≡ (aTx ./ b) ∈ C, ./ ∈ {=,≥} . aTp ./ b
}
.

The set CPn of all closed polyhedra on the vector space Rn, partially ordered
by set inclusion, is a lattice 〈CPn,⊆, ∅,Rn,∩,] 〉, where the empty set and Rn
are the bottom and top elements, the binary meet operator is set intersection
and the binary join operator ‘]’ is the convex polyhedral hull.

A vector r ∈ Rn such that r 6= 0 is a ray of a non-empty polyhedron
P ⊆ Rn if, for every point p ∈ P and every non-negative scalar ρ ∈ R+, it holds

5

x

y

β1

β2

β3

x

y

p1 p2

r1 r2

Figure 1: Constraint and generator representations of a closed polyhedron.

p + ρr ∈ P. The empty polyhedron has no rays. If both r and −r are rays of
P, then we say that r is a line of P. By Minkowski and Weyl theorems [52],
the set P ⊆ Rn is a closed polyhedron if and only if there exist finite sets
L,R, P ⊆ Rn of cardinality `, r and p, respectively, such that 0 /∈ (L ∪ R) and
P = gen

(
〈L,R, P 〉

)
, where

gen
(
〈L,R, P 〉

) .
=
{
Lλ+Rρ+Pπ ∈ Rn

∣∣ λ ∈ R`,ρ ∈ Rr+,π ∈ Rp+,
∑p
i=1 πi = 1

}
.

When P 6= ∅, we say that P is described by the generator system G = 〈L,R, P 〉.
In the following, we will abuse notation by adopting the usual set operator
and relation symbols to denote the corresponding component-wise extensions
on generator systems. For instance, for G = 〈L,R, P 〉 and G′ = 〈L′, R′, P ′〉, we
will write G ⊆ G′ to mean L ⊆ L′, R ⊆ R′ and P ⊆ P ′; similarly, we may write
℘(G) to denote the set of all generator systems G′ such that G′ ⊆ G.

Example 1. In Figure 1 we show the constraint and generator representations
of a polyhedron P ⊆ R2. On the left-hand side of the figure the polyhedron
is represented by constraint system C = {β1, β2, β3}, so that P = con(C) is
obtained by intersecting the three closed affine half-spaces defined by constraints
β1 ≡ (x ≥ 2), β2 ≡ (y ≥ 1) and β3 ≡ (y−x ≥ −4). On the right-hand side of the
figure, the same polyhedron is represented by generator system G = 〈L,R, P 〉,
where L = ∅, R = {r1, r2}, P = {p1, p2}, r1 = (0, 1), r2 = (1, 1), p1 = (2, 1)
and p2 = (5, 1); hence each point in P = gen(G) is obtained by adding a convex
combination of the points in P and a non-negative combination of the rays in
R. Note that, for intuition and readability, in the figure we “apply” scaled
versions of rays r1 and r2 to points p1 and p2. Also note that polyhedron P is
unbounded, but topologically closed.

2.2. The conversion procedure for closed polyhedra

A Double Description pair is formed by a constraint system C and a generator
system G describing the same polyhedron: we will write P ≡ (C,G) meaning
that P = con(C) = gen(G). The Double Description method due to Motzkin et
al. [47], by exploiting the duality principle, allows to combine the constraints and
the generators of a polyhedron P into a DD pair (C,G): a conversion procedure
is used to obtain each description starting from the other one, also removing the

6

x

y

β

p0 p1

p2p3

p4

x

y

p0
× p1

p2p3

p4

p5

p6

Figure 2: Incremental addition of a constraint.

redundant elements. For presentation purposes, we focus on the conversion from
constraints to generators; the conversion from generators to constraints works
in the same way, using duality to switch the roles of constraints and generators.

The conversion procedure starts from a DD pair (C0,G0) representing the
whole vector space and adds, one at a time, the elements of the input constraint
system C = {β0, . . . , βm}, producing a sequence of DD pairs

{
(Ck,Gk)

}
0≤k≤m+1

representing the polyhedra

Rn = P0
β0−→ . . .

βk−1−−−→ Pk βk−→ Pk+1
βk+1−−−→ . . .

βm−−→ Pm+1 = P.

At each iteration, when adding the constraint βk to polyhedron Pk = gen(Gk),
the generator system Gk is partitioned into the three components G+

k , G0
k, G−k ,

according to the sign of the scalar products of the generators with βk (those in
G0
k are the saturators of βk); the new generator system for polyhedron Pk+1 is

computed as Gk+1
.
= G+

k ∪ G0
k ∪ G?k , where

G?k = comb adjβk
(G+
k ,G−k)

.
=
{

combβk
(g+, g−)

∣∣ g+ ∈ G+
k , g

− ∈ G−k , adjPk
(g+, g−)

}
.

Function ‘combβk
’ computes a linear combination of its arguments, yielding a

generator that saturates the constraint βk; predicate ‘adjPk
’ is used to discard

those pairs of generators that are not adjacent in Pk (since these would only
produce redundant generators).

The conversion procedure is usually followed by a simplification step, where
the DD pair is modified, without affecting the represented polyhedron, so as
to achieve some form of minimality. In the following, we say that C (resp.,
G) is in minimal form if it contains a maximal set of equalities (resp., lines)
and no redundancies: constraint β ∈ C is redundant in C if con(C) = con(C \
{β}); similarly for generators. We will not provide a formalization of these
details, assuming anyway that these simplifications are implicitly taken into
proper account when needed.

Example 2. In Figure 2 we show an example of the incremental addition of a
constraint to a polyhedron, focusing on the effect of the conversion procedure
on the generator representation. The polyhedron P ⊆ R2 on the left-hand side
of the figure is described by generator system G = 〈L,R, P 〉, where L = R = ∅

7

x

y

β1

β2

β3

β4

p

x

y

β1

β2

β3

β4

β5

β6
p

Figure 3: Incremental addition of a point generator.

and P = {p0, p1, p2, p3, p4}. Having no lines or rays, P is a polytope; hence,
to simplify exposition and with no risk of ambiguity, in the following we will
systematically confuse the generator system G with its point component P .
When adding the new constraint β, the generator system is first partitioned in
G+ = {p0, p2, p3, p4}, G0 = ∅ and G− = {p1}. Then, we compute

G? = comb adjβ(G+,G−) = {p5, p6},

where p5 = combβ(p0, p1) and p6 = combβ(p2, p1) are shown in red on the
right-hand side of the figure. Note that there is no need to linearly combine p3

with p1 or p4 with p1, because these pairs of generators are not adjacent: their
combination would result in redundant points (shown in gray on the right-hand
side of the figure), which can be obtained as convex combinations of p5 and p6.
The new generator system is G′ = G+ ∪ G0 ∪ G? = {p0, p2, p3, p4, p5, p6}.

The previous can be seen as the computation of the set intersection of P
with the polyhedron con({β}) (the closed half-space): as a matter of fact, the
implementation of the meet P1 ∩ P2 on the lattice CPn is obtained by incre-
mentally adding to the DD representation of P1 the constraints defining P2;
the implementation of the join P1]P2 (the convex polyhedral hull) is obtained
similarly, exploiting duality, by incrementally adding to the DD representation
of P1 the generators defining P2.

Example 3. In Figure 3 we show an example of incremental addition of a
point to a polyhedron, focusing on the effect of the conversion procedure on
the constraint representation. The polyhedron P ⊆ R2 on the left-hand side of
the figure is obtained by intersecting the four closed affine half-spaces induced
by the constraint in C = {β1, β2, β3, β4}. When adding a new point p, the
constraint system C is partitioned into C+ = {β1, β3}, C0 = {β2} and C− = {β4}
according to the sign of the scalar product of each constraint with p. A new set
of constraints C? is obtained by combining pairs of adjacent constraints taken
from C+ and C−: namely, we obtain constraint β5 = combp(β1, β4), shown
in red on the right-hand side of the figure. Note that there is no need to
linearly combine the non-adjacent pair β3 and β4, since they would produce the
redundant constraint β6 = combp(β3, β4) (shown in gray on the right-hand side
of the figure). Therefore, the new constraint system is C = {β1, β2, β3, β5}.

8

As hinted by the previous examples, a key ingredient of any efficient imple-
mentation of the conversion procedure is the test for adjacency. The adjacency
relation can be efficiently computed by keeping track of saturation information.
For a constraint β and a generator system G, we write sat(β,G) to denote the
generator system composed by those elements of G saturating β (i.e., satisfying
the corresponding equality constraint). For a constraint system C, we define
sat(C,G) =

⋂{
sat(β,G)

∣∣ β ∈ C }. We define sat(g, C) and sat(G, C) similarly.
It is also worth noting that the one sketched above is just a high level de-

scription of a Chernikova-like conversion procedure. More technical observations
are required at the mere implementation level, where each closed polyhedron
P ⊆ Rn is mapped, by homogenization, into a (topologically closed) convex
polyhedral cone C ⊆ Rn+1. This process associates a new space dimension,
usually denoted as ξ, to the inhomogeneous term of constraints; the new space
dimension is constrained to only assume non-negative values, i.e., the positivity
constraint ξ ≥ 0 is added to the constraint representation of the polyhedral
cone. When reinterpreted in the n dimensional vector space, this constraint can
be read as the tautology 1 ≥ 0. The inverse map from a convex polyhedral cone
C to the represented convex polyhedron P is obtained by only considering the
points of the cone having a strictly positive coordinate for the ξ dimension:

P = [[C]]ξ
.
=
{
x ∈ Rn

∣∣ (xT, ξ)T ∈ C, ξ > 0
}
.

2.3. Not necessarily closed convex polyhedra

A linear strict inequality constraint β ≡ (aTx > 0) defines an open affine
half-space of Rn. When the constraint system C is extended to also allow for
strict inequalities, the convex polyhedron P = con(C), where

con(C) .
=
{
p ∈ Rn

∣∣ ∀β ≡ (aTx ./ b) ∈ C, ./ ∈ {=,≥, >} . aTp ./ b
}
,

is not necessarily (topologically) closed. The set Pn of all NNC polyhedra on
the vector space Rn is a lattice 〈Pn,⊆, ∅,Rn,∩,] 〉 and CPn is a sublattice of
Pn.

As shown in [9, 14], a description of an NNC polyhedron P ∈ Pn in terms
of generators can be obtained by also taking into account its closure points,
i.e., points that belong to the topological closure of the polyhedron, but are not
necessarily included in the polyhedron itself. Namely, the results by Minkowski
and Weyl can be generalized to the case of NNC polyhedra [9, Theorem 4.4]: we
can extend the generator system with a finite set C of closure points, obtaining
G = 〈L,R,C, P 〉 and P = gen(G), where

gen
(
〈L,R,C, P 〉

) .
=

Lλ+Rρ+ Cγ + Pπ ∈ Rn

∣∣∣∣∣∣∣
λ ∈ R`,ρ ∈ Rr+,
γ ∈ Rc+,π ∈ Rp+,π 6= 0,∑c
i=1 γi +

∑p
i=1 πi = 1

.
When needed for notational convenience, we will split a constraint system

into three components C = 〈C=, C≥, C>〉; even in this case, as done for the
generators, we will abuse the notation for set operator and relation symbols.

9

x

y

β1

β2

β3

x

y
p1

p2

r1 r2

c1 c2

Figure 4: Constraint and generator representations of an NNC polyhedron.

Example 4. In Figure 4 we show the constraint and generator representations
of an NNC polyhedron P ⊆ R2 which is not topologically closed. On the
left-hand side of the figure we show the constraint representation, which is a
simple variant of the constraints used in Example 1, where the second constraint
β2 ≡ (y > 1) is a strict inequality defining an open affine half-space (shown
by a dashed line boundary; solid boundaries represent non-strict inequalities as
before). On the right-hand side of the figure, the same polyhedron is represented
by generator system G = 〈L,R,C, P 〉, where L = ∅, R = {r1, r2}, C = {c1, c2},
P = {p1, p2}, r1 = (0, 1), r2 = (1, 1), c1 = (2, 1), c2 = (5, 1), p1 = (2, 4) and
p2 = (8, 4). As before, for intuition and readability, in the figure we “apply”
scaled versions of rays r1 and r2 to closure points c1 and c2. Note that closure
points are represented as unfilled circles, whereas filled circles represent proper
points as before. It is worth observing that, due to the presence of point p1 ∈ P
(resp., p2 ∈ P), all of the points lying on the boundary of β1 (resp., β3) which
are above the closure point c1 ∈ C (resp., c2 ∈ C) are included in the polyhedron
P = gen(G); in contrast, none of the points of the segment [c1, c2] are included
in P: the only way to obtain these points from the generators in G would be to
force π = 0 in the specification of function ‘gen’, which is not allowed. Hence,
we obtain P = con(C) = gen(G).

3. Representing NNC Polyhedra as Closed Polyhedra

The DD method provides a solid theoretical base for the representation and
manipulation of topologically closed convex polyhedra in CPn. As mentioned in
Section 2, at the implementation level the polyhedra are actually mapped into
polyhedral cones in CPn+1 by homogenization, but it is not difficult for software
libraries to make this detail completely invisible to the end user: in practice,
the library developers have to add some syntactic sugar to the input and output
routines for constraints and generators, also hiding the positivity constraint.

Things are less straightforward when considering the case of NNC polyhe-
dra. To start with, many implementations of the DD method do not support
NNC polyhedra at all. Also, the few supported implementations of the domain
of NNC polyhedra based on the DD method (that is, the NewPolka domain
embedded in the Apron library and the NNC Polyhedron domain in the Parma

10

Polyhedra Library) adopt an indirect representation: namely, each NNC poly-
hedron P ∈ Pn is mapped into a closed polyhedron R ∈ CPn+1. The map-
ping encodes the distinction between strict and non-strict inequality constraints
(resp, the distinction between points and closure points) by means of an addi-
tional space dimension, playing the role of a slack variable and usually denoted
as ε; the new space dimension is forced to be non-negative and bounded from
above,3 i.e., the constraints 0 ≤ ε ≤ 1 are added to the topologically closed
representation R (called ε-representation) of the NNC polyhedron P. When
translating the NNC constraint system, each strict inequality of P is encoded
as a non-strict inequality of R having a negative coefficient for ε; the non-strict
inequalities are instead encoded using a zero coefficient. When translating the
NNC generator system, each line, ray and closure point of P is translated as
a line, ray and point of R having a zero coordinate for ε; each point of P is
instead translated into a pair of points of R, one having a zero and one having
a positive coordinate for ε.

The inverse map [[·]]ε : CPn+1 → Pn from an ε-representation R to the rep-
resented NNC polyhedron P is obtained by only considering the points of R
having a strictly positive coordinate for the ε dimension:

P = [[R]]ε
.
=
{
x ∈ Rn

∣∣ (xT, ε)T ∈ R, ε > 0
}
.

This encoding of NNC polyhedra into closed polyhedra was initially pro-
posed in [40, 41] and later reconsidered and studied in more detail in [9, 14],
where a proper interpretation of the ε dimension for the (extended) generator
representation was provided.

Example 5. Consider the NNC polyhedron P = con({x ≥ 1,−x > −3}) ∈ P1,
i.e, the half-open segment [1, 3) ⊆ R; the same polyhedron can be described by
a generator system G = 〈L,R,C, P 〉, where L = R = ∅, C = {c}, P = {p},
for closure point c = (3) and point p = (1). On the left-hand side of Figure 5
we show an ε-representation R1 ∈ CP2 for P, obtained by translating the NNC
constraint system. InR1, the constraint β1 ≡ (x+0·ε ≥ 1), defining facet [p0, p3]
where p0 = (1, 0) and p3 = (1, 1), has a zero coefficient for the slack variable,
so that it encodes the non-strict inequality x ≥ 1 of the NNC polyhedron P.
In contrast, the constraint β2 ≡ (−x − ε ≥ −3), defining facet [p1, p2] where
p1 = (3, 0) and p2 = (2, 1), has a negative coefficient for the slack variable, so
that it encodes the strict inequality −x > −3 of the NNC polyhedron P. The
other two facets [p0, p1] and [p2, p3] correspond to the “technical” constraints
0 ≤ ε ≤ 1. Note that P = [[R1]]ε; in particular, point p3 ∈ R1, having a positive
coordinate for ε, represents the point p ∈ P and point p1 ∈ R1, having a zero
coordinate for ε, represents the closure point c ∈ C.

3An alternative representation can be adopted where the ε dimension is unbounded from
below [7, 9].

11

x

ǫ ǫ ≤ 1

β1 β2

p0 p1

p2p3

x

ǫ ǫ ≤ 1

β1 β2

β3

p0 p1

p′2

p3

Figure 5: Two ε-representations in CP2 for P = con(C) ∈ P1, where C = {1 ≤ x, x < 3}.

Besides showing its strengths, the work in [9, 14] highlighted the main weak-
ness of the approach: the DD pair in minimal form computed for an ε-repre-
sentation R, when reinterpreted as encoding the NNC polyhedron P = [[R]]ε,
typically includes many redundant constraints and/or generators, leading to
a possibly high computational overhead. To avoid this problem, strong mini-
mization procedures were defined in [9, 14] that are able to detect and remove
those redundancies; in practice, these procedures map the representation R
into a different representation R′ such that P = [[R′]]ε, where R′ encodes no
ε-redundancies.

Example 6. On the right-hand side of Figure 5 we show another ε-repre-
sentation R2 ∈ CP2 for the same polyhedron P ∈ P1 considered in Exam-
ple 5. Constraints β1 and β2 are the same as before; the new constraint
β3 ≡ (−x − 3 · ε ≥ −4), defining facet [p′2, p3] where p′2 = (2.5, 0.5), has a
negative coefficient for the slack variable, so that it encodes the strict inequality
−x > −4, which is redundant in any constraint system representing P (but it
is not redundant for representing R2): hence β3 is an ε-redundant constraint.
The strong minimization procedure for constraints [9, 14] is able to transform
representation R2 into representation R1. It is worth observing that both point
p2 ∈ R1 and point p′2 ∈ R2, having a positive coordinate for ε, are encoding
points that are redundant in any generator system representing P, i.e., they are
ε-redundant too. If the strong minimization procedure for generators is applied
to R1 (or R2) one would obtain the triangle defined by points {p0, p1, p3}, which
is another ε-representation for P.

When carefully applying strong minimization procedures, a large fraction of
the overhead of the ε-representation is avoided, leading to implementations that
easily meet the efficiency requirements of many application contexts.4 For the
users of the libraries, the addition of the ε dimension is almost unnoticed, to
the point that quite often the domain of NNC polyhedra is adopted even when
not really needed (i.e., when a domain of topologically closed polyhedra would
be enough). However, the approach still suffers from two main issues.

1. The ε-representation brings with itself an intrinsic overhead: in any gen-
erator system for an ε-polyhedron, most of the “proper” points (those

4After being initially implemented and tested in the Parma Polyhedra Library, these strong
minimization procedures have also been adopted in the Apron library.

12

having a positive ε coordinate, such as p3 in Figure 5) need to be paired
with the corresponding “closure” point (having a zero ε coordinate, such
as p0 in Figure 5). This systematically leads to almost doubling the size
of the generator system.

2. The strong minimization procedures, even though effective, interfere with
the incremental approach of the DD conversion procedures. After apply-
ing the strong minimization procedure on the constraint (resp., generator)
representation of a DD pair, the dual generator (resp., constraint) repre-
sentation is lost and, in order to recover it, the non-incremental conversion
procedure needs to be applied once again. This also implies that the strong
minimization procedures cannot be fully integrated into the DD conver-
sion procedures: they are applied after the conversions. As a consequence,
during the iterations of the conversion procedure, the redundancies caused
by the ε-representation are not removed, causing the computation of bigger
intermediate results. For the reasons above, the strong minimization pro-
cedures are not systematically used in the implementation of the Parma
Polyhedra Library; rather, they are applied only when strictly needed
for correctness. Therefore, the end user is left with the responsibility of
guessing whether or not the strong minimization procedures are going to
improve efficiency.

The two main problems above will be later recalled when discussing the
experimental evaluation in Section 7: in particular, we will provide an evidence
for the intrinsic overhead in Table 3. As far as the second problem is concerned,
incremental strong minimization procedures could be obtained by exploiting the
work in [2], where an algorithm for the removal of constraints/generators from
a DD pair is defined. However, the algorithm turns out to be effective mainly
when removing a small number of elements from a DD pair, which is seldom
the case in the considered context.

The adoption of the ε-representation approach also incurs another issue that,
while being less significant, is worth mentioning. At the implementation level,
more work is needed to make the ε dimension invisible to the end user and, as
a matter of fact, its adoption can sometimes become evident. For instance, a
strict constraint such as x > 30 may be encoded as 2x − ε ≥ 60, which is then
shown to the user as the (unsimplified) strict constraint 2x > 60.5 Apart from
being annoying, the growth in the magnitude of the (arbitrary precision) integer
coefficients may cause a significant computational overhead.

4. Direct Representations for NNC Polyhedra

The issues discussed in the previous section were known since [14]. As a
matter of fact, both [9] and [12] put forward the possibility of devising an
alternative approach regarding the representation and manipulation of NNC
polyhedra in the DD framework. Quoting from [12]:

5See https://www.cs.unipr.it/mantis/view.php?id=428.

13

https://www.cs.unipr.it/mantis/view.php?id=428

(a) x

y

c0
× c1

c2p0

c3

c4

p1

β

(b) x

y

c0 c1

c2×
p0 p3

p2

c5

c6

β

Figure 6: Examples of linear combinations for generators.

It would be interesting, from both a theoretical and practical point
of view, to provide a more direct encoding of NNC polyhedra, i.e.,
one that is not based on the use of slack variables [. . .]

The main obstacle on the road towards such a goal is the definition of a conver-
sion procedure that is not only correct, but also competitive with respect to the
highly tuned implementations available in software libraries such as Apron and
the Parma Polyhedra Library. It is worth stressing that several experimental
evaluations, including recent ones [3], confirm that the Parma Polyhedra Library
is a state-of-the-art implementation of the DD method for a wide spectrum of
application contexts.

4.1. A simple but inefficient approach

As briefly recalled in Section 2, an NNC polyhedron can be directly described
by using an extended constraint system C = 〈C=, C≥, C>〉, possibly contain-
ing strict inequalities, and/or an extended generator system G = 〈L,R,C, P 〉,
possibly containing closure points. These representations are said to be geomet-
ric, meaning that they provide a precise description of the position of all the
elements in the constraint/generator system.

A first attempt to the specification of a conversion procedure based on these
direct (i.e., with no additional ε-dimension) geometric encodings for NNC poly-
hedra was performed in [49] (see also [55]). The Chernikova-like conversion
algorithm proposed in [49] works like the classical one (presented informally in
Section 2.2), incrementally adding one strict or non-strict inequality constraint
at each iteration and partitioning the generators into the sets G+, G0, G−. When
linearly combining the generators, it performs a systematic case analysis on the
two input generators, so as to identify the kind of generator(s) resulting from
each combination.

In Figure 6 we show a few examples of the combinations of generators per-
formed when adding a new constraint to a polyhedron. As done in previous
figures, solid (resp., dashed) lines represent non-strict (resp., strict) inequal-
ity constraints; as for generators, unfilled (resp., filled) circles represent closure
(resp., proper) points; moreover, we denote by blue crosses those generators that
are being removed and we color in red those generators that are being added by
the incremental conversion procedure.

14

The input polyhedron is an NNC rectangle in R2 defined by point p0 and
closure points c0, c1, c2. In case (a), shown on the left-hand side of Figure 6, a
new non-strict inequality is added: the algorithm requires the linear combination
of generators lying on different sides of the constraint. Here, c0 ∈ G+ is combined
with c1 ∈ G−, yielding c3, and c2 ∈ G+ is combined with c1 ∈ G−, yielding c4.
Being obtained by combining a pair of closure points, these newly introduced
generators are closure points too. The combination of point p0 ∈ G+ with closure
point c1 ∈ G−, instead, leads to the creation of point p1, which is needed to keep
the facet (c3, c4) included in the resulting polyhedron (the dark shaded part of
the rectangle). The latter case shows the main drawback of the approach: also
the pairs of generators that are not adjacent in the input polyhedron need to be
combined. It is worth to consider that this combination is computed even in the
classical approach based on the addition of the slack variable: c1 and p0 would
be encoded as points (cT1 , 0)T and (pT

0 , ε)
T, with ε > 0, that are adjacent in the ε-

representation in CP3 (assuming that there are no ε-redundant generators) and
the classical conversion algorithm works as expected. Roughly speaking, the
ε-representation makes explicitly adjacent those pairs that, even if not adjacent
in the direct encoding, have to be combined. It follows that, when using a
plain direct approach, the conversion procedure cannot exploit the adjacency
test: all pairs of generators lying on different sides of the constraint have to be
combined and many redundant elements are produced, making the procedure
unusable from a practical perspective.

In case (b) of Figure 6, a strict constraint is added to the same original
polyhedron of case (a). Here, point p0 is combined with c0 and c2, yielding c5
and c6 respectively (the combination with c1 is later found to be redundant);
the new generators c5 and c6 are defined as closure points because they saturate
a strict constraint. But again, with respect to the original procedure, some
additional points have to be created: points p2 and p3 are introduced to “fill”
the segments (c0, c5) and (c2, c6) respectively.

As the examples show, the conversion procedure for the direct approach
differs from the classical one mainly in the additional creation of some points.
These insertions are not foreseen by the classical procedure in that, firstly, non
adjacent combinations are required, and secondly, the new points are not neces-
sarily collocated on the added constraint. The new representation described in
the following sections is based on the observation that the points added in these
“spurious” cases are created only to keep some faces included in the resulting
polyhedron; moreover, their geometric position can actually vary inside those
faces. Hence, we will now focus on the role of a point inside a face, aiming to
better characterize the problematic cases and recover an efficient procedure.

4.2. Towards a refined, efficient approach

For a closed polyhedron P ∈ CPn, the use of completely geometric represen-
tations is an adequate choice: it is possible to provide a DD pair (C,G) that is

15

x

y

β

p0

c0 c1

c2

p1

Figure 7: An NNC polyhedron having no “canonical” geometric representations.

“canonical”.6 In the case of an NNC polyhedron P ∈ Pn, the adoption of a com-
pletely geometric representation can be seen as an overkill, since the knowledge
of the precise geometric position of some of the elements is not really needed.

Example 7. As running example, consider the NNC polyhedron P ∈ P2 in
Figure 7. The polyhedron can be seen to be described by generator system
G = 〈L,R,C, P 〉, where L = R = ∅, C = {c0, c1, c2} and P = {p0, p1}. However,
there is no need to know the precise position of point p1, since it can be replaced
by any other point on the open segment (c0, c1). Similarly, when considering the
constraint representation, there is no need to know the exact slope of the strict
inequality constraint β, as it can be replaced by any other strict inequality that
is satisfied by all the points in P and saturated by closure point c0.

In other words, some of the elements in the geometric representations of NNC
polyhedra are better described by combinatorial information, rather than geo-
metric.7 The following section introduces the terminology and notation needed
to reason on this alternative.

4.3. The combinatorial structure of convex polyhedra

A linear inequality or equality constraint β ≡ (aTx ./ b) is said to be valid
for the polyhedron P ∈ CPn if all the points in P satisfy β; for each such β, the
subset F = {p ∈ P | aTp = b } is a face of P. We write cFacesP , omitting the
subscript when clear from context, to denote the finite set of faces of P ∈ CPn;
the set cFacesP is a meet sublattice of CPn, having the empty face as bottom
element and the whole polyhedron P as top element. Note that we have

P =
⋃{

relint(F)
∣∣ F ∈ cFacesP

}
.

The face lattice is also known as the combinatorial structure of the polyhedron.
If the polyhedron is bounded (i.e., it is a polytope, having no rays and lines),

6Strictly speaking, the canonical form for constraints (resp., generators) still depends on
the specific representation chosen for the non-redundant set of equality constraints (resp.,
generating lines). Even those can be made canonical and each software library typically
provides its own canonical form.

7Note that in Figure 6 point p1, which is obtained by combining non-adjacent generators,
and the additionally required points p2 and p3 are indeed points that do not need to be
described geometrically.

16

P

(c2, p0] (c0, p0] (c1, c2) (c0, c1)

{p0} {c2} {c0} {c1}

∅

Figure 8: The face lattice nncFacesP is a join sublattice of cFacescl(P).

then the lattice is atomistic, meaning that each face can be obtained as the
convex polyhedral hull of the vertices contained in the face.

Even in the case of an NNC polyhedron P ∈ Pn it is possible to define the
finite set nncFacesP of its faces, which is a meet sublattice of Pn; hence, each
face is an NNC polyhedron and, as before, we have

P =
⋃{

relint(F)
∣∣ F ∈ nncFacesP

}
.

In this case, however, the lattice may be non-atomistic even when the polyhe-
dron is bounded. Letting Q = cl(P), the operator cl : nncFacesP → cFacesQ
maps each NNC face of P into a corresponding (closed) face of Q. The image
cl(nncFacesP) is a join sublattice of cFacesQ; meets are generally not preserved,
since there may exist F1, F2 ∈ nncFacesP such that

F1 ∩ F2 = ∅ 6= cl(F1) ∩ cl(F2).

The image of the set of non-empty faces cl
(
nncFacesP \{∅}

)
is an upward closed

subset of cFacesQ; hence, it can be efficiently described by recording just the
set of its minimal elements. For each NNC face F ⊆ P corresponding to one
of these minimal elements (that is, for each atom of the nncFacesP lattice), we
have F = relint(F). As a consequence, the combinatorial structure of P ∈ Pn
can be described by integrating the combinatorial structure of its topological
closure Q ∈ CPn with the information identifying the atoms of nncFacesP .

Example 8. Figure 8 shows the face lattice for cl(P) and its join sublattice
nncFacesP (the shaded nodes) for the polyhedron P in Figure 7. The atoms
of nncFacesP are the 0-dimension face {p0} and the 1-dimension open segment
(c0, c1); note that both atoms are relatively open sets so that, for instance,
relint({p0}) = {p0}. Also note that, even if P is an NNC polytope, the lattice is
not atomistic: for instance, the half-open segment (c0, p0] is a 1-dimension face
that cannot be obtained by joining the atoms.

4.4. Skeleton and non-skeleton

Let P ∈ Pn be an NNC polyhedron and Q = cl(P) ∈ CPn be its topological
closure. As explained above, a description of P can be obtained by combining

17

a geometric representation of Q, which will be called the skeleton8 component,
with some combinatorial information related to nncFacesP (the non-skeleton
component). We now provide formal definitions that allow for splitting a fully
geometric representation for P into these two components. For exposition pur-
poses, here we will consider the generator system representation only; the def-
initions for the constraint system representation are similar and will be briefly
described in a later section.

Definition 1 (Skeleton of a generator system). Let G = 〈L,R,C, P 〉 be a
generator system in minimal form, P = gen(G) and Q = cl(P). The skeleton of
G is the generator system

SKQ .
= 〈L,R,C ∪ SP , ∅〉,

where SP ⊆ P is the set of points that cannot be obtained as a combination of
the other generators in G.

Note that the skeleton has no points at all, so that gen(SKQ) = ∅. However,
we can define a variant function ‘gen’, that reinterprets the closure points to be
points,

gen
(
〈L,R,C, P 〉

) .
= gen

(
〈L,R, ∅, C ∪ P 〉

)
,

so as to obtain the following result.

Proposition 1. Let P = gen(G) and Q = cl(P). Then

gen(G) = gen(SKQ) = Q.

Also, there does not exist G′ ⊂ SKQ such that gen(G′) = Q.

In other words, the skeleton of an NNC polyhedron can be seen to provide a
non-redundant representation of its topological closure. The elements of SP ⊆ P
are called skeleton points; the non-skeleton points in P \SP are redundant when
representing the topological closure, since they can be obtained by combining
the lines in L, the rays in R and the closure points in C; these non-skeleton
points are the elements in G that need not to be represented geometrically.

Example 9. For the polyhedron in Figure 7, SKQ =
〈
∅, ∅, {c0, c1, c2, p0}, ∅

〉
,

so that p0 is a skeleton point and p1 is a non-skeleton point (it can be generated
by combining c0 and c1). Therefore, gen(SKQ) = Q is the topologically closed
rectangle having vertices c0, c1, c2 and p0.

Having modeled the skeleton component for P = gen
(
〈L,R,C, P 〉

)
, we now

turn our attention to the non-skeleton component. As discussed in Section 4.3,
our goal is to provide a combinatorial representation for the set of points P .

8This term is unrelated to the concept of p-skeleton used in algebraic topology.

18

Reasoning slightly more generally, consider a point p ∈ Q = cl(P) (not neces-
sarily in P). There exists a single face F ∈ cFacesQ such that p ∈ relint(F).
By definition of function ‘gen’, point p behaves as a filler for relint(F), meaning
that, when combined with the skeleton, it generates relint(F). Note that p also
behaves as a filler for the relative interiors of all the faces in the set ↑F . The
choice of p ∈ relint(F) is actually arbitrary: any other point of relint(F) would
be equivalent as a filler.

Proposition 2. Consider a polyhedron P = gen(G), where G = 〈L,R,C, P 〉.
For p ∈ P , let F be the face of Q = cl(P) such that p ∈ relint(F); let p′ ∈
relint(F), and P ′ = P \ {p} ∪ {p′}. Then P = gen

(
〈L,R,C, P ′〉

)
.

Thus, a less arbitrary representation for relint(F) is provided by its own
skeleton, i.e., the system SKF ⊆ SKQ such that gen(SKF) = F : namely, each
(geometric) filler p ∈ P can be mapped into a more abstract (combinatorial)
representation, the subset of SKQ identifying the corresponding face. For each
face F ∈ cFacesQ, we say that SKF is the support for the points in relint(F)
and that any point p′ ∈ relint

(
gen(SKF)

)
= relint(F) is a materialization of

SKF .

Definition 2 (Support sets for a skeleton). Let SK be the skeleton of an
NNC polyhedron and let Q = gen(SK) ∈ CPn. Then the set NSSK of all
supports for SK is defined as

NSSK
.
= { SKF ⊆ SK | F ∈ cFacesQ }.

By definition, the set NSSK is a lattice isomorphic to cFacesQ; we will drop the
subscripts SK and Q when clear from context.

We now define a pair of abstraction and concretization functions mapping a
subset of the (geometric) points of an NNC polyhedron into the set of supports
that are filled by these points, and vice versa.

Definition 3 (Filled supports). Let SK be the skeleton of the polyhedron
P ∈ Pn, Q = cl(P) and NS be the corresponding set of supports. The abstrac-
tion function αSK : ℘(Q)→ ℘↑(NS) is defined, for each S ⊆ Q, as

αSK(S)
.
=
⋃{
↑ SKF

∣∣ ∃p ∈ S, F ∈ cFaces . p ∈ relint(F)
}
.

The concretization function γSK : ℘↑(NS) → ℘(Q), for each NS ∈ ℘↑(NS), is
defined as

γSK(NS)
.
=
⋃{

relint
(
gen(ns)

) ∣∣∣ ns ∈ NS
}
.

Proposition 3. The pair of functions (αSK, γSK) is a Galois connection.

By Proposition 3, the composition (γSK ◦αSK) is an upper closure operator
mapping each non-empty set of points S ⊆ Q into the smallest NNC polyhedron
containing S and having SK as the skeleton component. In particular, the
following result holds.

19

Proposition 4. Let P = gen
(
〈L,R,C, P 〉

)
∈ Pn and let SK be the correspond-

ing skeleton component. Then P = (γSK ◦ αSK)(P).

The non-skeleton component of a geometric generator system can be ab-
stracted by ‘αSK’ and described as a combination of skeleton generators.

Definition 4 (Non-skeleton of a generator system). Let P ∈ Pn be de-
fined by generator system G = 〈L,R,C, P 〉 and let SK be the corresponding
skeleton component. The non-skeleton component of G is defined as NSG

.
=

αSK(P).

Even in this case, we will drop the subscript when clear from context. Note that,
by definition of the abstraction function ‘αSK’, the non-skeleton component NS
contains an upward closed set of supports representing all the faces of the NNC
polyhedron.

Example 10. We now show the non-skeleton component for the polyhedron in
Figure 7. As seen in Example 9, SK = 〈∅, ∅, C, ∅〉, where C = {c0, c1, c2, p0};
since in this case we will have L = R = ∅ in all the skeletons we are going to
represent, we will adopt a simplified notation, identifying each support with the
C component only. By Definition 3, we have:

αSK
(
{p0}

)
=
{
{p0}, {c0, p0}, {c2, p0}, {c0, c1, c2, p0}

}
,

αSK
(
{p1}

)
=
{
{c0, c1}, {c0, c1, c2, p0}

}
;

hence, the non-skeleton component is computed as

NSG = αSK
(
{p0, p1}

)
=
{
{p0}, {c0, p0}, {c2, p0}, {c0, c1, c2, p0}, {c0, c1}

}
.

By combining Definition 4 with Proposition 4 we obtain the following re-
sult, stating that the new representation is semantically equivalent to the fully
geometric one.

Corollary 1. For a polyhedron P = gen(G) ∈ Pn, let 〈SK,NS 〉 be the skeleton
and non-skeleton components for G. Then P = γSK(NS).

4.5. An efficient encoding for the new representation

In the previous sections we have shown how the geometric generator system
G can be equivalently represented by the pair 〈SK,NS 〉, where SK = 〈L,R,C ∪
SP , ∅〉 is the skeleton component and NS ⊆ ℘↑(NS) is the non-skeleton compo-
nent. We now discuss a few minor adaptations to this representation that are
meant to result in efficiency improvements at the implementation level.

First, observe that every support ns ∈ NS always includes all of the lines
in the L skeleton component; hence, these lines can be left implicit in the
representation of the supports in NS . Note that, even after removing the lines,
each ns ∈ NS is still a non-empty set, since it includes at least one closure point.

20

When lines are implicit, those supports ns ∈ NS that happen to be single-
tons9 can be seen to play a special role: they correspond to the combinatorial
encoding of the skeleton points in SP (see Definition 1). These points are not
going to benefit from the combinatorial representation, since their geometric
position is uniquely identified (modulo the lines component). Therefore, we will
remove them from the non-skeleton NS and directly include them in the point
component of the skeleton SK; namely, the skeleton SK = 〈L,R,C ∪ SP , ∅〉
will be actually represented as SK = 〈L,R,C,SP〉.

Moreover, since NS is a finite upward closed set, the representation only
needs to record its minimal elements. At the implementation level, each sup-
port ns ∈ NS can be encoded by using a set of indices on the data structure
representing the skeleton component SK: hence, the non-minimal elements can
be efficiently identified (and removed) by performing appropriate inclusion tests
on these sets. When also considering the optimization for skeleton points men-
tioned before, we can adopt the following definition of redundancy.

Definition 5 (Redundant support). A support ns ∈ NS is said to be redun-
dant in 〈SK,NS 〉 if there exists ns ′ ∈ NS such that ns ′ ⊂ ns or if ns ∩ SP 6= ∅,
where SK = 〈L,R,C,SP〉.

In the following, we will write NS 1 ⊕ NS 2 to denote the non-redundant union
of the support sets NS 1,NS 2 ⊆ NSSK.

When adopting this more efficient encoding, a polyhedron P ∈ Pn can be
defined by a generator system G = 〈SK,NS 〉 as follows:

P = gen(〈SK,NS 〉) .
= gen(SK) ∪ γSK(↑NS).

We stress that this is just an optimization: the formalization presented in the
previous section is still valid.

Example 11. The polyhedron shown in Figure 7 is P = gen(〈SK,NS 〉) with
SK = 〈L,R,C,SP〉 = 〈∅, ∅, {c0, c1, c2}, {p0}〉, NS = {ns} and ns = {c0, c1}.

4.6. Representing constraints: duality

The definitions and observations given in the previous sections for a geomet-
ric generator system have their dual versions working on a geometric constraint
system. In the following we provide a brief overview of these correspondences,
which are also summarized in Table 1.

For a non-empty P = con(C) ∈ Pn, the skeleton component of the geometric
constraint system C = 〈C=, C≥, C>〉 includes the non-redundant constraints
defining the topological closure Q = cl(P). Denoting by SC> the set of skeleton
strict inequalities (i.e., those in C> whose corresponding non-strict inequality

9Since the support ns is a subset of the skeleton SK, by ‘singleton’ here we mean a system
ns =

〈
∅, ∅, {p}, ∅

〉
.

21

Generators Constraints

Geometric skeleton
singular line equality

non-singular ray or closure point non-strict inequality
semantics gen(SK) = ∅ con(SK) = cl(P)

Combinatorial non-skeleton
abstracts point strict inequality

element role face filler face cutter
represents upward closed set downward closed set
encoding minimal support minimal support
singleton skeleton point skeleton strict inequality

Table 1: Correspondences between generator and constraint concepts.

is not redundant for Q), we can define SKQ .
= 〈C=, C≥ ∪ SC>, ∅〉, so that

Q = con(SKQ).
The ghost faces of P are the faces of the topological closure Q that do not

intersect P:
gFacesP

.
= {F ∈ cFacesQ | F ∩ P = ∅ };

as a consequence, we obtain P = con(SKQ) \ ⋃ gFacesP .
With the only exception of the empty face, the elements in gFaces are exactly

those not occurring in cl(nncFaces). The set gFaces ′
.
= gFaces ∪ {Q} is a meet

sublattice of cFaces; moreover, gFaces is downward closed and thus can be
efficiently represented by its maximal elements (with respect to the set inclusion
relation on faces), which are the dual-atoms of gFaces ′.

We define function ‘con’ as a variant of function ‘con’ that reinterprets the
inequalities to be equalities. Hence, the skeleton support of a face F ∈ cFacesQ
is the system SKF ⊆ SKQ such that Q ∩ con(SKF) = F . Each face F ∈ gFaces
saturates a strict inequality β> ∈ C>: we can represent such a face using its
skeleton support SKF of which β> is a possible materialization. Thus, a con-
straint system non-skeleton component NS ⊆ NS is a combinatorial representa-
tion of the strict inequalities of the polyhedron.

Hence, the non-skeleton components for generators and constraints have a
complementary role: in the case of generators they are face fillers, marking the
minimal faces that are included in nncFaces; in the case of constraints they are
face cutters, marking the maximal faces that are excluded from nncFaces. Note
however that, when representing a cutter in gFaces using its skeleton support,
the non-redundant cutters are again those having a minimal skeleton support,
as is the case for the fillers.

As it happens with lines, all the equalities in C= are included in all the
supports ns ∈ NS so that, for efficiency, they are not represented explicitly.
After removing the equalities, a singleton ns = {β} ∈ NS stands for a skeleton
strict inequality constraint, which is better represented in the skeleton compo-

22

nent, thereby obtaining SK = 〈C=, C≥,SC>〉. Hence, a support ns ∈ NS is
redundant if there exists ns ′ ∈ NS such that ns ′ ⊂ ns or if ns ∩ SC> 6= ∅.

A polyhedron P ∈ Pn can be defined by a constraint system in the new
representation C = 〈SK,NS 〉 as follows:

P = con(〈SK,NS 〉) .
= con(SK) \

⋃
ns∈NS

con(ns).

Example 12. The polyhedron shown in Figure 7 is P = con(〈SK,NS 〉) with
SK = 〈C=, C≥,SC>〉 = 〈∅, {x ≥ 2, y ≥ 1, y ≤ 3}, {x < 7}〉, NS = {ns} and
ns = {x ≥ 2, y ≥ 1}; as a matter of fact, the geometric constraint β in Figure 7
is a possible materialization of ns, excluding point {(2, 1)} = con(ns).

The handling of the empty face deserves a technical observation (which can
be skipped when adopting a higher level point of view). The empty face is
always cut away from the polyhedron, hence it belongs to gFaces even when P
is topologically closed. The skeleton support for the empty face can be given
by a set of skeleton constraints whose hyperplanes have an empty intersection
or by a constraint that is saturated by no points or closure points: the latter
happens to be the case for the positivity constraint ‘1 ≥ 0’ (see Section 2), which
is saturated by the generators in R ∪ L. It follows that, when the positivity
constraint is not redundant, the empty face should be represented by the non-
skeleton support ns = {1 ≥ 0}; being a singleton, this will be promoted into
the skeleton component, thereby encoding the positivity constraint as a strict
inequality ‘1 > 0’. Otherwise, when the positivity constraint is redundant, the
empty face will be cut by the support ns = sat(R ∪ L,SK).

5. The New Conversion Algorithm

Having introduced the new representation for NNC polyhedra, we are now
ready to extend the Chernikova’s conversion algorithm to directly handle strict
inequalities and closure points. Building on the distinction between the skeleton
and non-skeleton components, we will pursue a corresponding separation in the
conversion procedure: while the skeleton component can be handled by following
a minor variant of the classical procedure for closed polyhedra (performing the
usual adjacency tests to avoid redundancies), for the non-skeleton component we
develop a few brand new procedures that can correctly deal with closure points
and strict inequalities without incurring into a significant overhead. As already
pointed out in Section 2, we will focus on the conversion from constraints to
generators. The conversion working the other way round will be obtained by
applying duality arguments.

When describing the algorithm we will proceed top-town, so that helper
functions and procedures will be explained only after their uses. Also note
that we will write in small capitals (e.g., ‘conversion’) the names of functions
for which we provide the pseudocode; in contrast, we will write in roman the
names of those functions that are provided with a mathematical specification

23

Pseudocode 1 Conversion from constraints to generators.

function conversion(Cin , G)
2: let Cin = 〈SKc

in ,NS c
in〉;

for all β ∈ SKc
in do

4: G ← skel conversion(β, G);
if G = 〈∅, ∅〉 then

6: return G; . P is empty

for all ns ∈ NS c
in do

8: G ← nonskel conversion(ns, G);

return G;

and no pseudocode (e.g., ‘points become closure points’) or even left unspecified
because they are trivial (e.g., ‘is strict ineq’).

The ‘conversion’ function in Pseudocode 1 works incrementally, adding the
constraints in Cin one at a time to the generator system G, keeping it up to date.
The function first processes all of the geometric constraints from the skeleton
component SKc

in of the constraint system, checking after each iteration if the
polyhedron has become empty (lines 5 to 6); then it processes the combinatorial
constraints from the non-skeleton component NS c

in in input.

5.1. Processing a geometric constraint

When modeling the incremental addition of the geometric constraint β ∈
SKc

in to the generator system G = 〈SK,NS 〉, function ‘skel conversion’
in Pseudocode 2 operates on the two components SK and NS separately, in-
tegrating the results at the end. We first focus on the skeleton component
SK = 〈L,R,C,SP〉.

Handling the skeleton component.

The first processing step (line 3) is the partitioning of the skeleton SK ac-
cording to the signs of the scalar products with constraint β. Since the skeleton
component is entirely geometric, it can be split into SK+, SK0 and SK− exactly
as done in the Chernikova’s algorithm. In the pseudocode, this partition info is
kept implicit inside the data structure encoding SK: we will use the superscripts
to refer to each component as needed.

Lines 5 to 6 of ‘skel conversion’ are meant to take care of a line violating
β, whereas lines 7 to 22 are meant to efficiently handle those special cases when
SK+ or SK− happens to be empty; these will be briefly discussed later on.

The second main processing step for the skeleton component occurs in lines
24 to 25, where function ‘comb adjβ ’ combines the generators in SK+ and SK−
to produce SK?, which is then merged into SK0. This step too is quite similar
to the one for closed polyhedra described in Section 2, except that we now
have to consider how the different generator kinds combine with each other,
according to the kind of constraint β: the systematic case analysis is presented
in Table 2 and it is restricted to the combinations of adjacent generators (which

24

Pseudocode 2 Adding a geometric constraint to a generator system.

function skel conversion(β, 〈SK,NS 〉)
2: let G = 〈SK,NS 〉;

skel partition(β, SK);
4: nonskel partition(〈SK,NS 〉);

if line l ∈ SK+ ∪ SK− then . β violates line l
6: violating line(β, l, 〈SK,NS 〉);

else if SK− = ∅ then
8: if is equality(β) then

if SK0 = ∅ then
10: return 〈∅, ∅〉; . P is empty

else
12: return 〈SK0,NS 0〉;

else if is strict ineq(β) then
14: if SK+ = ∅ then

return 〈∅, ∅〉; . P is empty
16: else if SK0 6= ∅ then

strict on eq points(β, 〈SK,NS 〉);
18: else if SK+ = ∅ then

if is strict ineq(β) or SK0 = ∅ then
20: return 〈∅, ∅〉; . P is empty

else
22: return 〈SK0,NS 0〉;

else . SK+ 6= ∅ and SK− 6= ∅
24: SK? ← comb adjβ(SK+,SK−);

SK0 ← SK0 ∪ SK?;
26: NS? ← move ns(β, 〈SK,NS 〉);

NS? ← NS? ∪ create ns(β, 〈SK,NS 〉);
28: if is equality(β) then

〈SK,NS 〉 ← 〈SK0,NS 0 ⊕NS?〉;
30: else if is nonstrict ineq(β) then

〈SK,NS 〉 ← 〈SK+ ∪ SK0, (NS+ ∪ NS 0)⊕NS?〉;
32: else . is strict ineq(β)

SK0 ← points become closure points(SK0);
34: 〈SK,NS 〉 ← 〈SK+ ∪ SK0,NS+ ⊕NS?〉;

promote singletons(〈SK,NS 〉);
36: return 〈SK,NS 〉;

25

SK+ R R R C C C SP SP SP
SK− R C SP R C SP R C SP

β= or β≥ SK? R C SP C C SP SP SP SP
β> R C C C C C C C C

Table 2: Case analysis for function ‘combβ ’ when adding an equality (β=), a non-strict (β≥)
or a strict (β>) inequality constraint to a pair of generators from SK+ and SK− (R = ray,
C = closure point, SP = skeleton point).

is crucial for efficiency). The inclusion of the skeleton points SP in SK (discussed
in Section 4.5), besides simplifying the non-skeleton representation, allows for
processing them using the adjacency tests; nonetheless, since the points in SP
behave as fillers, they will have to be properly reconsidered when processing the
non-skeleton component NS .

The final processing steps for the skeleton component, occurring in lines 28
to 34, are those meant to purge from the skeleton components those generators
that are violating the constraint β. An additional processing step (line 33) is
needed for the case of a strict inequality constraint: the helper function

points become closure points
(
〈L,R,C,SP〉

) .
= 〈L,R,C ∪ SP , ∅〉,

applied to SK0, makes sure that all of the skeleton points saturating β are
transformed into closure points having the same position.

Handling the non-skeleton component.

We now consider those parts of Pseudocode 2 that operate on the non-
skeleton component NS , which is clearly where the ‘skel conversion’ func-
tion significantly differs from the corresponding algorithm working on closed
polyhedra.

The first processing step (line 4) is the partitioning of the supports in NS ,
so as to detect their position with respect to the constraint β. To this end,
we can exploit the partition info already computed for the skeleton SK (line
3) to obtain the corresponding partition info for NS , without computing any
additional scalar product. Namely, each support ns ∈ NS is classified as follows:

ns ∈ NS+ ⇐⇒ ns ⊆ (SK+ ∪ SK0) ∧ ns ∩ SK+ 6= ∅;
ns ∈ NS 0 ⇐⇒ ns ⊆ SK0;

ns ∈ NS− ⇐⇒ ns ⊆ (SK− ∪ SK0) ∧ ns ∩ SK− 6= ∅;
ns ∈ NS± ⇐⇒ ns ∩ SK+ 6= ∅ ∧ ns ∩ SK− 6= ∅.

Note that the partitioning above is fully consistent with respect to the one com-
puted for skeleton elements. For instance, if ns ∈ NS+, then for every possible
materialization p ∈ relint(gen(ns)) the scalar product of p and β is strictly pos-
itive. Things are similar when ns ∈ NS 0 and ns ∈ NS−. The supports in NS±

26

are those whose materializations can indifferently satisfy, saturate or violate the
constraint β (i.e., the corresponding face crosses the hyperplane induced by
the constraint). As before, the partition info is kept implicit inside the data
structure encoding NS .

Pseudocode 3 Helper procedure for promoting singleton supports.

procedure promote singletons(〈SK,NS 〉)
let SK = 〈L,R,C,SP〉;
for all ns ∈ NS such that ns = 〈∅, ∅, {c}, ∅〉 do

NS ← NS \ {ns};
C ← C \ {c};
SP ← SP ∪ {c};

After partitioning, a set NS? of brand new supports is built using functions
‘move ns’ and ‘create ns’ (lines 26 and 27). This set will be non-redundantly
merged, using operator ‘⊕’, into the appropriate portions of the non-skeleton
component, chosen according to the constraint kind (lines 28 to 34). The fi-
nal processing step (line 35) calls helper procedure ‘promote singletons’,
shown in Pseudocode 3, making sure that all singleton supports get promoted
to skeleton points (so as to satisfy the new representation invariant).

Moving supports.

The ‘move ns’ function, shown in Pseudocode 4, processes the supports in
NS±. As hinted by its name, the goal of this function is to “move” the fillers of
the faces that are crossed by constraint β, making sure they lie on the correct
side.

Pseudocode 4 Helper function for moving supports.

function move ns(β, 〈SK,NS 〉)
2: NS? ← ∅;

for all ns ∈ NS± do
4: NS? ← NS? ∪ {projβ(supp cl(ns))};

return NS?;

Let ns ∈ NS± and consider the face F = relint(gen(ns)). Note that F is
a face of the polyhedron before the addition of the new constraint β; at this
point, the elements in SK? have been added to SK0, but this change still has
to be propagated to the non-skeleton component NS . Therefore, we compute
the support closure ‘supp cl(ns)’ of the support ns according to the updated
skeleton SK. Intuitively, supp cl(ns) ⊆ SK is the subset of all the skeleton
elements that are included in face F . At the implementation level, the support
closure operator can be efficiently computed by exploiting the same saturation
information that is needed to quickly perform the adjacency tests. If SKc and
SKg = 〈L,R,C,SP〉 are the currently computed skeleton components for the

27

x

y

y < 1

c0 c1

c2c3

ns

x

y

y < 1

c0 c1

×
c2×

c3

c4 c5

ns⋆

×ns

Figure 9: Application of ‘move ns’ to ns ∈ NS± when adding a strict inequality.

polyhedron, for each support ns ∈ NS g we compute its closure as follows [44]:

supp cl(ns)
.
= sat

(
sat(ns,SKc),SKg

)
\ L.

Face F is split by constraint β into the three subsets F+, F 0 and F−.
When β is a strict inequality, only F+ shall be kept in the polyhedron; when
β is a non-strict inequality, both F+ and F 0 shall be kept. When working
with the updated support, a non-skeleton representation for these subsets can
be obtained by projecting the support on the corresponding portions of the
skeleton. Namely, we can define the function

projβ(ns)
.
=

{
ns \ SK−, if β is a strict inequality;

ns ∩ SK0, otherwise.

Since the projection operator is applied after having computed the support
closure, when β is a non-strict inequality we have ns ∩ SK0 6= ∅; hence, the
support of F 0 is a subset of the support of F+ and projβ(ns) will be a filler for
F+ too.

To summarize, by composing support closure and projection in line 4 of
‘move ns’, each support in NS± is moved to the correct side of β.

Example 13. Consider the polyhedron P ∈ P2 on the left-hand side of Fig-
ure 9, described by the skeleton and non-skeleton components 〈SK,NS 〉. The
skeleton SK = 〈∅, ∅, C, ∅〉 is composed by the four closure points in C =
{c0, c1, c2, c3}; the non-skeleton NS = {ns} contains a single support ns =
{c0, c3}, which makes sure that the open segment (c0, c3) is included in P; in
the figure, we show just one of the many possible materializations for ns.

When processing the strict inequality constraint β ≡ (y < 1), we obtain the
polyhedron on the right-hand side of the figure. In the skeleton phase of the
‘skel conversion’ function the adjacent skeleton generators are combined:
c4 (combining c0 ∈ SK+ and c3 ∈ SK−) and c5 (combining c1 ∈ SK+ and
c2 ∈ SK−) are added to SK0. Since the non-skeleton support ns belongs to
NS±, it is processed in the ‘move ns’ function:

ns∗ = projβ
(
supp cl(ns)

)
= supp cl

(
{c0, c3}

)
\ SK−

= {c0, c3, c4} \ {c2, c3}
= {c0, c4}.

28

x

y

y ≤ 1

c0 c1

c2c3

ns

x

y

y ≤ 1

c0 c1

×
c2×

c3

c4 c5

×ns

Figure 10: Application of ‘move ns’ to ns ∈ NS±, adding a non-strict inequality.

Intuitively, we have moved ns to ns?: again, for the new support we show only
one of its many possible materializations, but it is clear that now they all satisfy
constraint β.

Example 14. On the left-hand side of Figure 10, we reconsider the same poly-
hedron of Example 13, but we now add the non-strict inequality β′ ≡ (y ≤ 1).
The skeleton phase of the ‘skel conversion’ procedure behaves exactly as
shown before, producing closure points c4 and c5. We then process ns ∈ NS±

in the ‘move ns’ function:

ns∗ = projβ
′(

supp cl(ns)
)

= supp cl
(
{c0, c3}

)
∩ SK0

= {c0, c3, c4} ∩ {c4, c5}
= {c4}.

Since ns? is a singleton, it will be upgraded to become a skeleton point by
procedure ‘promote singletons’, thereby obtaining the new skeleton com-
ponent SK = 〈∅, ∅, C,SP〉, where C = {c0, c1, c5} and SP = {c4}, and the
new non-skeleton component NS = ∅. Hence, we obtain the polyhedron on the
right-hand side of the figure; note that the skeleton point c4 is responsible for
the inclusion of the facets (c0, c4] and [c4, c5) in the polyhedron.

Creating new supports.

On the one hand, the choice of representing only the minimal elements of the
upward closed set NS enables many efficiency improvements; on the other hand,
it also means that some care has to be taken before removing these minimal
elements.

As an example, consider the case of a support ns ∈ NS− when dealing with
a non-strict inequality constraint β: this support is going to be removed from
NS in line 31 of the ‘skel conversion’ function. However, by doing so, we are
also implicitly removing other supports from the set ↑ns, here included some
supports that do not belong to NS− and therefore should be kept in NS . Thus,
at each iteration, we have to explore the set of filled faces and detect the ones
that are going to lose their filler: the corresponding minimal supports will be
added to NS?. Moreover, when processing a non-strict inequality constraint,

29

we also need to consider the new faces introduced by the constraint: the cor-
responding supports can be found by projecting on the constraint hyperplane
those faces that are possibly filled by an element in SP+ or NS+.

Pseudocode 5 Helper functions for creating new supports.

function create-ns(β, 〈SK,NS 〉)
2: NS? ← ∅;

let SK = 〈L,R,C,SP〉;
4: for all ns ∈ NS− ∪ {{p} | p ∈ SP−} do

NS? ← NS? ∪ enumerate-faces(β, ns, SK+, SK);

6: if is strict ineq(β) then
for all ns ∈ NS 0 ∪ {{p} | p ∈ SP0} do

8: NS? ← NS? ∪ enumerate-faces(β, ns, SK+, SK);

else
10: for all ns ∈ NS+ ∪ {{p} | p ∈ SP+} do

NS? ← NS? ∪ enumerate-faces(β, ns, SK−, SK);

12: return NS?;

function enumerate faces(β, ns, SK′, SK)
2: NS? ← ∅;

let SK′ = 〈L′, R′, C ′,SP ′〉;
4: for all g ∈ (R′ ∪ C ′) do

NS? ← NS? ∪ {projβ(supp cl(ns ∪ {g}))};
6: return NS?;

This is the task of the ‘create ns’ function, shown in Pseudocode 5. This
function uses ‘enumerate faces’ as a helper:10 the latter provides an enu-
meration of all the (higher dimensional) faces that contain the initial support
ns. The new faces are obtained by adding to ns a new generator g and then
composing the projection and support closure functions, as done in function
‘move ns’.

For efficiency purposes, in function ‘create ns’ a case analysis is performed
so as to suitably restrict the search area of the enumeration phase. Since the
faces we are going to compute have to be projected, it is enough to consider
those that can cross the constraint: hence, when adding a new generator g to a
non-skeleton support ns, we consider only those coming from the opposite side
of the constraint (for instance, when processing ns ∈ NS− in lines 5 we consider
g ∈ SK+, disregarding the generators in SK− and SK0). We also avoid adding
a point to ns, since this would definitely yield a redundant support.

Example 15. Consider the polyhedron P ∈ P2 on the left-hand side of Fig-
ure 11. The skeleton SK = 〈∅, ∅, C, ∅〉 is composed by the four closure points
in C = {c0, c1, c2, c3}; the non-skeleton NS = {ns} contains a single support

10This enumeration phase is inspired by the algorithm in [44].

30

x

y

y < 1

c0 c1

c2c3 ns

x

y

y < 1

c0 c1

×
c2×

c3

c4 c5

ns⋆

×
ns

Figure 11: Application of ‘create ns’ when adding a strict inequality.

ns = {c2, c3}, which makes sure that the open segment (c2, c3) is included in
P. By upward closure, this non-skeleton point is also the filler for the whole
polyhedron; in particular, it fills relint(P).

The strict inequality makes ns ∈ NS−, since all the generators in the support
are in SK−; hence, support ns is processed by line 5 of function ‘create ns’.
The call to function ‘enumerate faces’ will produce new supports by adding
to ns a generator from SK+ and then computing the corresponding support
closure and projection. Namely, it will compute

projβ
(
supp cl(ns ∪ {c0})

)
= supp cl

(
ns ∪ {c0}

)
\ SK−

= {c0, c1, c2, c3, c4, c5} \ {c2, c3}
= {c0, c1, c4, c5},

projβ
(
supp cl(ns ∪ {c1})

)
= supp cl

(
ns ∪ {c1}

)
\ SK−

= {c0, c1, c2, c3, c4, c5} \ {c2, c3}
= {c0, c1, c4, c5}.

Hence, the new (minimal) support ns? = {c0, c1, c4, c5} will be added to NS?.
The resulting polyhedron, shown on the right-hand side of the figure, is described
by the skeleton SK = 〈∅, ∅, {c0, c1, c4, c5}, ∅〉 and the non-skeleton NS = {ns?}.

At the implementation level, the face enumeration phase can be further
optimized by exploiting saturation information: the search space for generator
g (line 4 of function ‘enumerate faces’) can be dynamically pruned so as to
avoid the recomputation of those faces that have already been discovered. For
instance, in Example 15, it is possible to skip the addition of closure point c1
to ns, since this would lead to the same support obtained from c0.

In the following examples we show how function ‘create ns’ tackles both
the problems identified in Figure 6 of Section 4.1 when applying the naive ap-
proach: it takes care of the introduction of the points that were either coming
from combinations of non-adjacent generators (case (a) of Figure 6, analyzed in
Example 16), or completely additional to the usual combination phase (case (b)
of Figure 6, analyzed in Example 17).

Example 16. Consider polyhedron P ∈ P2 on the left-hand side of Figure 12,
described by skeleton SK = 〈∅, ∅, {c0, c1, c2}, {p}〉 and non-skeleton NS = ∅.
When a new non-strict inequality β is added, function ‘comb adjβ ’ combines

31

x

y

c0 c1

c2p
β

x

y

c0
× c1

c2p

c3

c4

ns⋆

β

Figure 12: Application of ‘create ns’ when adding a non-strict inequality.

only the adjacent generators in SK+ and SK− to produce SK? = {c3, c4} =
SK0. The processing of the non-skeleton component has to take care that the
new facet introduced (c3, c4) is filled, since β is a non-strict inequality. The
skeleton point in SP+ is considered in line 11 of function ‘create ns’: the
corresponding call to function ‘enumerate faces’ produces new supports by
first adding to {p} each generator in SK− and then computing the corresponding
support closure and projection. Namely, it will compute

ns? = projβ
(
supp cl({c1} ∪ {p})

)
= supp cl

(
{c1, p}

)
∩ SK0

= {c0, c1, c2, c3, c4, p} ∩ {c3, c4}
= {c3, c4},

thereby producing the filler for the open segment (c3, c4). The resulting poly-
hedron, shown on the right-hand side of Figure 12, is described by the skeleton
SK = 〈∅, ∅, {c0, c2, c3, c4}, {p}〉 and the non-skeleton NS = {ns?}.
Example 17. On the left-hand side of Figure 13 we show the insertion of a
strict constraint β′ to the same polyhedron of the previous example; closure
points c3 and c4 are created as usual by combining adjacent skeleton generators.
The face enumeration phase induced by line 5 of function ‘create ns’ explores
the faces that are filled by point p ∈ SP−, adding the generators in SK+ =
{c0, c1, c2}:

ns?0 = projβ
′(

supp cl({c0} ∪ {p})
)

= supp cl
(
{c0, p}

)
\ SK−

= {c0, c3, p} \ {p} = {c0, c3},
ns?1 = projβ

′(
supp cl({c1} ∪ {p})

)
= supp cl

(
{c1, p}

)
\ SK−

= {c0, c1, c2, c3, c4, p} \ {p} = {c0, c1, c2, c3, c4},
ns?2 = projβ

′(
supp cl({c2} ∪ {p})

)
= supp cl

(
{c2, p}

)
\ SK−

= {c2, c4, p} \ {p} = {c2, c4}.
Keeping only the minimal supports, we obtain that the resulting polyhedron,
shown on the right-hand side of Figure 13, has NS = {ns?0,ns?2}.

Distinguishing between the skeleton and non-skeleton components, the over-
all conversion procedure obtains a twofold benefit: first, the combinations of

32

x

y

c0 c1

c2p

β′

x

y

c0 c1

c2×
p

ns⋆2

ns⋆0

c3

c4

β′

Figure 13: Application of ‘create ns’ when adding a strict inequality.

non-adjacent generators is limited to the non-skeleton processing phase, thereby
recovering the corresponding optimizations on the skeleton part; second, by ex-
ploiting the combinatorial representation, the non-skeleton component can be
processed by using set index operations only, i.e., computing no linear combi-
nation at all.

Handling the special cases.

We now briefly discuss those portions of Pseudocode 2 that are meant to effi-
ciently handle special cases. Note that, being just optimizations, these portions
could be removed without compromising correctness.

Pseudocode 6 Processing a line violating constraint β.

procedure violating line(β, l, 〈SK,NS 〉)
2: split l into rays r+ satisfying β and r− violating β;

l← r+;
4: for all g ∈ SK do

g ← combβ(g, l);
. now l ∈ SK+ and all other g ∈ SK0

6: if is equality(β) then
SK ← SK0;

8: else if is strict ineq(β) then
strict on eq points(β, 〈SK,NS 〉);

Pseudocode 7 Processing points saturating a strict inequality.

procedure strict on eq points(β, 〈SK,NS 〉)
2: NS? ← ∅;

let SK0 = 〈L0, R0, C0,SP0〉;
4: for all ns ∈ NS 0 ∪ {{p} | p ∈ SP0} do

NS? ← NS? ∪ enumerate-faces(β, ns, SK+, SK);

6: SK0 ← points become closure points(SK0);
〈SK,NS 〉 ← 〈SK+ ∪ SK0,NS+ ⊕NS?〉;

In lines 5 to 6 of ‘skel conversion’ we consider the case when constraint β
is violated by a line. This special case is handled in procedure ‘violating line’

33

in Pseudocode 6. The pseudocode is similar to the corresponding special case for
topologically closed polyhedra except that, when processing a strict inequality
constraint, the helper procedure ‘strict on eq points’ gets called: this can
be seen as a tailored version of the ‘create ns’ function, also including the
final updating of SK and NS .

In lines 7 to 22 of ‘skel conversion’ we consider instead the cases when
SK+ or SK− (or both) are empty. Here we perform a few additional checks to
see if an inconsistency has been detected, making the polyhedron empty and
thereby allowing for an early exit from the overall conversion procedure. If
this is not the case, we efficiently update the SK and NS components, possibly
calling helper procedure ‘strict on eq points’.

5.2. Processing a combinatorial constraint

After having processed all of the geometric constraints in SKc
in , the ‘con-

version’ function in Pseudocode 1 continues by incrementally processing the
combinatorial constraints in the non-skeleton component NS c

in . In principle, it
would be possible to materialize each support nsc ∈ NS c

in to obtain a geometric
constraint β and keep calling function ‘skel conversion’. However, such an
approach would incur an obvious overhead, which is avoided by calling function
‘nonskel conversion’ in Pseudocode 8.

Pseudocode 8 Adding a combinatorial constraint to a generator system.

function nonskel conversion(nsc, G)
2: let G = 〈SK,NS 〉;

SK− ← ∅; SK0 ← sat(nsc,SK); SK+ ← SK \ SK0;
4: nonskel partition(〈SK,NS 〉);

strict on eq points(nsc, 〈SK,NS 〉);
6: return 〈SK,NS 〉;

When processing the combinatorial constraint nsc ∈ NS c, we exploit the
knowledge that all of the geometric constraints in the support have already
been processed, so that nsc represents a valid constraint for P. Therefore, in
lines 3 to 4 of Pseudocode 8 we know that nsc always partitions the generators
so that SK− = NS− = NS± = ∅ and we can avoid all the scalar products that
would have been computed in the case of a geometric input. In particular, SK0

(and consequently NS 0) is easily obtained as the intersection of the generators
saturating all the constraints in nsc, namely, by reusing the saturation infor-
mation computed before. As a consequence, the function can directly call the
helper ‘strict on eq points’.11

11The first parameter β of ‘strict on eq points’ in Pseudocode 7 seems to require a ge-
ometric constraint, but this is not really the case. The parameter is only used to check the
constraint kind (equality, non-strict inequality or strict inequality): in the special case of a
non-skeleton element nsc, we always have a strict inequality.

34

x

y

p0

c0

c1

P
x

y

β1

β2p0

c0

c2

P ′

x

y

P ′′

nsc

c0

c2c3

Figure 14: Incremental addition of geometric and combinatorial constraints to a polyhedron
P ⊆ R2.

Example 18. Consider the constraint system Cin = 〈SKc
in ,NS c

in〉, with SKc
in =

{β1, β2}, NS c
in = {nsc}, nsc = {β1, β2}, where β1 ≡ (x ≥ 0), β2 ≡ (y ≥ 0).

These constraints define the first quadrant of R2, without the origin. Consider
now the polyhedron P ∈ P2 shown on the left-hand side of Figure 14, defined by
constraints {x − 2y ≥ 0, x + 2y ≥ 0, x < 2} and described by G = 〈SKg,NS g〉,
where SKg = 〈∅, ∅, {c0, c1}, {p0}〉 and NS g is empty. We want to add to P
the constraints in Cin , i.e., compute conversion(G, Cin). As shown in Pseu-
docode 1, first we have to add to G the geometric constraints in SKc

in , namely
β1 and β2: the result P ′ of this intermediate step is shown in the middle of
Figure 14. Note that constraint β1 is redundant for P, because it is satisfied
by all the generators in SKg, while with the insertion of β2 closure point c1 is
removed and closure point c2 is added to SKg.

Then we process the combinatorial constraint nsc = {β1, β2}: firstly, we
exploit the saturation information already computed (line 3 of Pseudocode 8),
finding that nsc is saturated by

sat({β1, β2},SKg) = sat(β1,SKg) ∩ sat(β2,SKg) = {p0} ∩ {p0, c2} = {p0};

next, with function ‘strict on eq points’, point p0 is substituted by the
closure point c3 and new non-skeleton points are created to fill the segments
(c3, c0) and (c3, c2) with the usual step for the enumeration of faces. On
the right-hand side of Figure 14 we show the resulting polyhedron P ′′, for
which the described conversion procedure has computed the generator system:
SKg = 〈∅, ∅, {c0, c2, c3}, ∅〉 and NS g = {{c0, c3}, {c2, c3}}.

As mentioned in Section 2, the constraint system of P ′′ can be put in minimal
form in a further simplification step: without entering in the details of this
phase, we briefly show how the saturation information can be exploited once
more. Firstly, constraint (x+ 2y ≥ 0) is removed from the skeleton component
since it is made redundant by the insertion of β2, obtaining

SKc = 〈C=, C≥, C>〉 = 〈∅, {x− 2y ≥ 0, y ≥ 0}, {x < 2}〉.

Note that, in order to correctly add the newly introduced non-skeleton constraint
nsc in NS c, we have to recompute its support on the updated skeleton SKc.

35

This can be done considering the closure of its old support; namely,

nsc ← supp cl(nsc) = supp cl({β1, β2}) = sat({p0},SKc) = {x−2y ≥ 0, y ≥ 0}.

Example 18 shows that, at the implementation level, a little additional care
has to be taken when processing the skeleton component: if a geometric con-
straint β ∈ SKc

in is detected to be redundant, it cannot be eagerly dropped,
because it might occur in a support ns ∈ NS c

in and therefore be needed to com-
pute the corresponding saturation information; thus, the removal of β is delayed
till completion of the whole procedure.

5.3. Duality: converting from generators to constraints

By building on the correspondences established in Section 4.6, it is possible
to define a minor variant of the conversion procedure that maps a generator
representation into a constraint representation.

One of the few differences, only occurring when performing a non-incremental
conversion, is in the initialization phase preceding the actual call to the conver-
sion procedure. When converting from constraints to generators, we start from a
generator system representing the universe polyhedron (obtained by preprocess-
ing the positivity constraint only). In contrast, when converting from generators
to constraints, we look for a point in the input generator system: if such a point
does not exists, the polyhedron is empty; otherwise, we preprocess it to obtain
a skeleton constraint system being made of n linear equality constraints (plus
the strict positivity constraint).

Another minor difference is in the handling of the special cases in lines 7 to 22
of skel conversion (as well as lines 5 and 6 of conversion). When converting
from generators to constraints, since we incrementally add new generators to a
non-empty polyhedron, there is no way we can obtain an inconsistency, so that
the checks corresponding to the comments ‘P is empty’ can be omitted.

6. Operators on the New Representation

In principle, when adopting the new representation recalled in the previous
section, each operator on the abstract domain of NNC polyhedra could be im-
plemented indirectly, by first materializing the non-skeleton elements and then
applying the operator on the fully geometric descriptions obtained. In this sec-
tion we show that such a materialization step (and its computational overhead)
is not really needed: all of the classical operators required for static analysis
can be directly computed on the new representation, by distinguishing their ef-
fects on the geometric and the combinatorial components, also exploiting this
division to simplify some of the procedures.

Emptiness, inclusion and equality.

P = gen(〈SKg,NS g〉) is empty if and only if it has no point, i.e., SKg

contains no point and NS g = ∅.

36

The inclusion P1 ⊆ P2 holds if and only if each generator of P1 satisfies
all of the constraints of P2. Note that the lines, rays and closure points of
P1 need to be checked only against the skeleton constraints of P2; only the
points of P1 need to be checked against the non-skeleton strict inequalities of
P2. Also, when checking a non-skeleton element, no additional scalar product
needs to be computed: the result of the check is derived from the saturation
information already computed (and cached) for skeleton elements. For instance,
a skeleton point p1 ∈ SKg

1 violates a non-skeleton constraint ns2 ∈ NS c
2 when

p1 ∈ sat(ns2,SKg
1).

Equivalence P1 = P2 can be checked by performing two inclusion tests. Since
the new representations satisfy a stronger form of normalization,12 optimizations
are possible: for instance, the test can be quickly answered negatively when the
cardinalities of the minimized representations do not match.

Conditional and “forget”.

A conditional test checking an affine predicate on program variables is mod-
eled by adding the corresponding constraint to the polyhedron defining the
program state. Similarly, a non-deterministic (or non-linear) assignment can be
modeled by “forgetting” all the constraints mentioning the variable assigned to,
i.e., by adding the corresponding line as a generator.13 Hence, these two oper-
ators can be directly implemented by a call to the incremental ‘conversion’
procedure presented in Section 5.

Meet and join.

When a conversion procedure is available, the computation of meets (i.e., set
intersections) and joins (i.e., convex polyhedral hulls) on the domain of convex
polyhedra is straightforward. Namely, if P1 ≡ (C1,G1) and P2 ≡ (C2,G2), then
the DD pair for P = P1 ∩ P2 is obtained by incrementally adding to (C1,G1)
the constraints in C2; similarly, the DD pair for P = P1] P2 is obtained by
adding to (C1,G1) the generators in G2.

Note that the incremental conversion described in Example 18 is in fact com-
puting the intersection between the polyhedron P and the polyhedron defined
by Cin .

Assignment of an affine expression.

The assignment xi := aTx + b is modeled by computing the image of the
polyhedron under the affine map f : Rn → Rn, where q = f(p) is such that
qi = aTp + b and qj = pj , when i 6= j. If f is invertible (i.e., ai 6= 0), then
the image and its inverse f−1 can be easily applied to the skeleton components
of the generator and constraint representations, respectively; the non-skeleton
components are not affected at all. If f is not invertible (i.e., ai = 0), then it is

12It is meant, with respect to those available for ε-representations.
13Another application of the “forget” operator will be shown later, in Example 19 and

Figure 15, when discussing the implementation of non-invertible affine assignments.

37

x

y

P1 P2 P3

Figure 15: Application of affine images to polyhedra in R2.

computed by first “forgetting” the constraints on xi, adding the corresponding
line, and then adding constraint β ≡ (xi = aTx+b). In both cases, the minimal
form of the input DD pair is incrementally maintained (i.e., there is no need to
invoke the full conversion procedure).

Example 19. Consider polyhedron P1 = con(C1) ⊆ R2 shown on the left-hand
side of Figure 15, where C1 = {x > 1, y > 1, x + y ≤ 5}; the corresponding
generator system includes, in the skeleton component, the three closure points
C1 = {(1, 1), (4, 1), (1, 4)}, as well as a single point in the non-skeleton com-
ponent. Polyhedron P2 = con(C2) in the middle of the figure results from the
application to P1 of the invertible affine map

f

((
x
y

))
=

(
2x+ 5
y

)
.

Its constraint system C2 = {x > 7, y > 1, x+ 2y ≤ 15} is obtained by applying
the inverse map

f−1

((
x
y

))
=

(
x−5

2
y

)
.

to the constraints in C1 so that, for instance, x > 1 is mapped to constraint
(x−5

2 > 1) ≡ (x > 7). Its three closure points C2 = {(7, 1), (13, 1), (7, 4)} are
obtained by applying the direct map f to the closure points in C1.

Thanks to the combinatorial representation, there is no need to apply the
map to the non-skeleton point, since it simply inherits the transformation from
its support. In general, the same observation holds for the non-skeleton con-
straints, which do not need to be translated using the inverse map (the consid-
ered example has no non-skeleton constraints). In contrast, an implementation
using a completely geometric representation would require the mapping of the
(materialized) non-skeleton points, incurring a corresponding overhead. Clearly,
the overhead is even higher for implementations adopting the ε-representation
approach, due to the inherent doubling of the number of points as well as the
potential presence of ε-redundant constraints and generators.

Polyhedron P3 = con(C3), shown on the right-hand side of the figure, where
C3 = {y > 1, y < 4, x = y − 15}, is obtained from P2 with the (non-invertible)
affine map

g

((
x
y

))
=

(
y − 15
y

)
.

38

Its computation is in two steps: we first forget all the constraints on x, adding
line generator ` = (1, 0), thereby obtaining the infinite open stripe described by
C′3 = {y > 1, y < 4} (whose boundaries are outlined in gray on the right hand
side of the figure); then, we add the new equality constraint x = y − 15. Both
computational steps rely on the incremental conversion procedure.

6.1. A semantic widening for NNC polyhedra

The design of appropriate widening operators is considered both a key com-
ponent and a main challenge in the development of abstract domains [8, 10,
25, 26, 29], in particular when targeting numerical properties [5, 6, 48], because
their accuracy mostly depends on the particular context of application.

For ease of exposition, in the specifications of the widening operators we will
only consider the case when the polyhedra arguments are non-empty, leaving
implicit the common requirement that ∅ ∇ P2 = P2. We start by considering
the well known standard widening [39].

Definition 6 (Standard widening on CPn). Let P1,P2 ∈ CPn be such that
Pi = con(Ci), where P1 6= ∅ and C1 is in minimal form. Let also Ii = ineqs(Ci);14

then P1∇CP2
.
= con(I ′1 ∪ I ′2), where

I ′1 =
{
β1 ∈ I1

∣∣ P2 ⊆ con({β1})
}
,

I ′2 =
{
β2 ∈ I2

∣∣ ∃β1 ∈ I1 . P1 = con(I1 \ {β1} ∪ {β2})
}
.

When P1 ⊆ P2, the following is an equivalent specification (see [5, Theo-
rem 5]), more appropriate for implementations based on the DD method.

Definition 7. Let P1,P2 ∈ CPn be such that P1 ≡ (C1,G1), P2 = con(C2),
∅ 6= P1 ⊆ P2 and C1 is in minimal form. Then P1∇CP2

.
= con(C), where

C =
{
β2 ∈ C2

∣∣ ∃β1 ∈ C1 . sat(β1,G1) = sat(β2,G1)
}
.

A “semantic” operator op on abstract domain A is a well-defined function
op : Ak → A; in contrast, a “syntactic” operator is not well-defined on A: its
result depends on the specific, non-canonical syntax adopted to represent the
elements of A used as arguments (e.g., a constraint representation C). More of-
ten than desired, the specification of widening operators relies on the syntactic
representations of the abstract domain elements, rather than their semantics.
This was the case for the original proposal of widening on closed polyhedra [30],
which was refined into a semantic widening in [39]. Similarly, the widenings
defined in [46] for the graph-based representations of bounded differences and
octagons were refined into semantic widenings in [4, 13]. Available implementa-
tions of the domain of NNC polyhedra Pn based on the DD method are affected

14We write ineqs(C) to denote the constraint system obtained by splitting each equality in
C into a pair of non-strict inequalities.

39

x

ǫ ǫ ≤ 1

R1

x

ǫ ǫ ≤ 1

R2

x

ǫ ǫ ≤ 1

R3

Figure 16: Widening NNC polyhedra delegating to widening on ε-representations.

by the same issue, because they compute the widening on the underlying ε-
representations in CPn+1, which are not canonical (hence, syntactic). This
happens for all of the widening variants defined on polyhedra, including the one
proposed in [5, 6], as well as the improved versions that can be obtained by
applying generic techniques, such as the widening up-to [41].

Example 20. Consider the ε-representation polyhedra in Figure 16. The two
polyhedra R1,R2 ∈ CP2 on the left-hand side and the middle of the figure are
encoding the same NNC polyhedron P = con(C) ∈ P1, where C = {1 ≤ x, x <
4}. Both representations encode no redundant constraint; they only differ in the
slope of the facet representing the strict inequality constraint. As a consequence,
when computing R3 = R1∇CR2, shown on the right-hand side of the figure, the
standard widening operator on the ε-representations fails to detect the stability
of the strict inequality constraint, which is dropped. R3 represents the NNC
polyhedron P ′ = con({1 ≤ x}): even though correct from a theoretical point
of view, the widening depends on the syntactic encoding of strict inequalities.
As a side note, the user of the abstract domain might reasonably expect that a
property such as P∇CP = P always holds, but this is not the case.

When implementing the widening on NNC polyhedra by delegating to the
underlying widening on closed polyhedra, some precautions are required too:

• Definition 7 assumes that P1 ⊆ P2; note however that, for NNC polyhedra,
P1 ⊆ P2 does not automatically imply that property R1 ⊆ R2 holds for
the corresponding ε-representations;

• the implementation has to make sure that the result of the widening is
still a valid ε-representation, i.e., the bounds for ε cannot be dropped;

• in order to ensure the finite convergence guarantee, the first argument
P1 should be described by a constraint system encoding no redundant
elements; however, a non-redundant description for the ε-representation
R1 can still encode many redundant constraints; these have to be removed
by applying the strong minimization procedures defined in [9, 14].

As a consequence, the overall approach may also incur a significant overhead.
In contrast, when using the direct encoding of Section 4, we can adopt a

variant of Definition 7 to obtain a semantic widening on NNC polyhedra, because
all of the materializations of a non-skeleton strict inequality constraint share the
same saturation information, no matter for the variation in their slopes.

40

P1

ns1

β1

x

y

P2ns2
β2

x

y

Pns2
β2

x

y

Figure 17: From left to right: P1, P2 and P = P1∇NP2.

Definition 8 (Widening on Pn). Let P1,P2 ∈ Pn be such that P1 ≡ (C1,G1),
P2 = con(C2), ∅ 6= P1 ⊆ P2, each Ci = 〈SKc

i ,NS c
i 〉 is in minimal form and

G1 = 〈SKg
1,NS g

1〉. Then P1∇NP2
.
= con(〈SKc,NS c〉), where

SKc =
{
β2 ∈ SKc

2

∣∣ ∃β1 ∈ SKc
1 . sat(β1,SKg

1) = sat(β2,SKg
1)
}

;

NS c = {ns2 ∈ NS c
2 | ns2 ⊆ SKc }.

The next proposition states that ‘∇N’ is a semantic widening and it is indeed
an extension on the domain Pn of the standard widening ‘∇C’ defined on CPn.

Proposition 5. Definition 8 specifies a well-defined widening operator on Pn;
moreover, for all P1,P2 ∈ Pn such that P1 ⊆ P2, we have

cl(P1)∇N cl(P2) = cl(P1)∇C cl(P2). (1)

The new widening satisfies both P∇NP = P and P∇N cl(P) = cl(P), which
is not the case for the widening based on the ε-dimension approach.

Example 21. Reconsider polyhedron P = con({1 ≤ x, x < 4}), for which
a couple of possible ε-representations were shown in Figure 16. When directly
encoding the strict inequalities and applying Definition 8, constraint β ≡ (x < 4)
is detected to be stable, so that P∇NP = P. Moreover, letting β′ ≡ (x ≤ 4),
we also have P∇N cl(P) = cl(P), because sat(β,SKg

1) = sat(β′,SKg
1).

In Definition 8, the non-skeleton constraints and generators in NS c
1 and NS g

1

play no role in the computation of the widening, simplifying its implementation.
As shown in Example 21, a non-strict inequality in β2 ∈ SKc

2 can be detected
as stable (i.e., enter the result SKc) even when it weakens a corresponding strict
inequality in SKc

1; this is not the case when blindly extending Definition 6. Also
note that a non-skeleton constraint ns ∈ NS c is stable only if it is supported by
a set of skeleton constraints that are all stable.

Example 22. Consider P1 = con({0 ≤ x < 4, 0 ≤ y, 0 < x + 4y ≤ 8}) and
P2 = con({0 ≤ x ≤ 4, 0 ≤ y ≤ 2, 0 < 2x + y}), shown on the left and middle
of Figure 17, respectively. Constraint β2 ≡ (x ≤ 4) is stable, as it shares on P1

the same saturation information of β1 ≡ (x < 4). Support ns2 = {x ≥ 0, y ≥
0} ≡ (0 < 2x+ y) is stable, no matter if the shown materialization differs from
the one chosen for ns1 ≡ (0 < x+ 4y), because the skeleton constraints defining
it are both stable. Thus, P1∇NP2 = con({0 ≤ x ≤ 4, 0 ≤ y, 0 < 2x+ y}), shown

41

P1

ns1

β1

x

y

P2

ns2

β2 β3

x

y

P

x

y

Figure 18: An increasing chain in P2 where Definition 7 is not stabilizing; P = P1∇NP2 is
the result obtained when using Definition 8.

on the right-hand side of the figure. An implementation based on Definition 6
would drop β2 and, depending on the chosen materializations, maybe also ns2,
thereby computing a less precise result.

In the next example we show that a blind extension of Definition 7 to the
case of NNC polyhedra, where the non-skeleton component NS c

2 is treated the
same as the skeleton component SKc

2, would not result in a proper widening,
since the finite convergence guarantee is compromised.

Example 23. For each i ∈ N \ {0}, let βi ≡ (x+ iy ≤ i), Ci = {0 ≤ x, 0 ≤ y <
1, βi} and Pi = con(Ci); note that Pi ⊂ Pi+1. Polyhedra P1 and P2 are shown
on the left-hand side and middle of Figure 18. Note that Ci = 〈SKc

i ,NS c
i 〉,

where SKc
i = {0 ≤ x, 0 ≤ y, βi}, NS c

i = {nsi} and nsi = {0 ≤ x, βi} (in the
figure we show constraint y < 1 as one of the possible materializations of the
supports nsi). By using Definition 7 as is, we would obtain Pi∇CPi+1 = Pi+1;
namely, the skeleton constraint βi+1 and the non-skeleton constraint nsi+1 are
detected to be stable, since in Pi they share the same saturation information of
nsi (they are only saturated by closure point (0, 1)). Hence, {Pi}i∈N would form
an infinite increasing chain. In contrast, when using Definition 8 to compute
P1∇NP2, shown on the right of the figure, constraints β2 and ns2 are both
dropped.

6.2. Improving the new widening operator

The precision of ‘∇N’ can be further enhanced leveraging on the general
framework proposed in [5, 6]. This schema allows to obtain the convergence
requirement by focusing on a class of preorders: a limited growth order (lgo) on
a join semi-lattice 〈L,⊥,v,t〉 is the strict version of any finitely computable
preorder on L that satisfies the ascending chain condition; given a widening
operator ‘∇’ on L, a lgo y ⊆ L × L is ∇-compatible if ∀x, y ∈ L : x @ y =⇒
x y x∇y. For any upper bound operator h : L × L → L, we can define a new
widening at least as precise as ‘∇’ [6, Theorem 9]: for all x, y ∈ L such that
x v y,

x∇̃y .
=

{
h(x, y), if xy h(x, y) @ x∇y;

x∇y otherwise.

In other words, by defining a compatible lgo it is possible to combine any fi-
nite set of upper bound operators, called heuristics, with an existing widening:

42

when an upper bound h(x, y) happens to follow the (finitely) increasing chain
defined by the lgo, we can choose this heuristic result instead of x∇y, preserving
convergence and possibly improving precision.

By following this approach, we now apply the framework of [6] to the ‘∇N’
widening of NNC polyhedra, enhancing it using a similar set of heuristics. Since
‘∇N’ is a proper extension of ‘∇C’, the lgo relation defined in [6] on CPn only
needs a minor adaptation to be applicable to lattice Pn.

For each finite multiset M over N, let #(n,M) denote the number of occur-
rences of n ∈ N in M ; then, the multiset partial order M vms N holds when
either M = N or there exists j ∈ N such that #(j,M) > #(j,N) and, for
each k ∈ N with k > j, #(k,M) = #(k,N). The relation ‘vms’ satisfies the
ascending chain condition.

Definition 9 (yN ⊆ Pn × Pn). For i = 1, 2, let Pi = con(Ci) = gen(Gi) be
non-empty polyhedra, where the systems are in minimal form and Ci = 〈SKc

i ,NS c
i 〉,

Gi = 〈SKg
i ,NS g

i 〉, SKc
i = 〈C=

i , C
≥
i , C

>
i 〉 and SKg

i = 〈Li, Ri, Ci,SP i〉.
Let Si

.
=
{
{β} | β ∈ C>i

}
∪ NS c

i denote the supports of all (skeleton
and non-skeleton) strict inequality constraints in Ci and consider the multiset
ζ(Si)

.
= { |SKc

i | − |s| ∈ N | s ∈ Si }. Let also κ(Ri) denote the multiset
of the numbers of non-null coordinates of all the rays in Ri. The preorders
�d,�`,�c,�s ,�p,�r ⊆ Pn × Pn are defined respectively as the ∅-lifting of the
following relations:

P1 �d P2
.⇐⇒ |C=

1 | ≥ |C=
2 |

P1 �` P2
.⇐⇒ |L1| ≤ |L2|

P1 �c P2
.⇐⇒ |SKc

1| ≥ |SKc
2|

P1 �s P2
.⇐⇒ ζ(S1) vms ζ(S2)

P1 �p P2
.⇐⇒ |SP1 ∪ C1| ≥ |SP2 ∪ C2|

P1 �r P2
.⇐⇒ κ(R1) vms κ(R2)

The relation yN ⊆ Pn × Pn is the strict version of the lexicographic product
�N

.
= �d`cspr ⊆ Pn×Pn of the six relations ‘�d’, ‘�`’, ‘�c’, ‘�s ’, ‘�p’ and ‘�r’,

taken in this order.

Note that, at the implementation level, when computing ζ(Si) we have to
exclude from Si the redundant constraints introduced for technical reasons only,
such as the positivity constraint or the cutter of the empty face.

Proposition 6. The relation ‘yN’ is a ∇N-compatible lgo on Pn.

We now define a “bhrz03” improvement of the ‘∇N’ operator by leveraging on
the same set of heuristics ‘hc’, ‘hp’ and ‘hr’ (“combining constraints”, “evolving
(closure) points” and “evolving rays”) proposed in [5, 6].

43

P1

P2

y

x

P2

P3

y

x

hp(P2,P3)

P2∇NP3

y

x

Figure 19: Improvements of the widening operator ‘∇N’ exploiting the ascending chain P1 yN

P2 yN hp(P2,P3) yN P1∇NP2 = P2∇NP3.

Definition 10 (The ‘∇̃N’ widening.). Let P1,P2 ∈ Pn where ∅ 6= P1 ⊂ P2.
Then

P1∇̃NP2
.
=

P2 if P1 yN P2

hc(P1,P2) if P1 yN hc(P1,P2) ⊂ P1∇NP2

hp(P1,P2) if P1 yN hp(P1,P2) ⊂ P1∇NP2

hr(P1,P2) if P1 yN hr(P1,P2) ⊂ P1∇NP2

P1∇NP2 otherwise.

Example 24. Consider the polyhedra P1 ⊂ P2 ∈ P2 on the left-hand side of
Figure 19. Note that polyhedron P1 is defined by a skeleton constraint system
SKc

1 having 2 non-strict and 2 strict inequality constraints, whereas P2 has
4 non-strict inequalities in SKc

2 and a non-skeleton strict inequality in NS c
2.

When computing the widening P1∇̃NP2, we check if a heuristic upper bound
happens to follow the lgo relation ‘yN’: in particular, we note that P1 yN P2,
because P1 ≡d`c P2 and P1 ≺s P2. To see this, observe that the 2 skeleton
strict constraints in S1 (cutting two facets) both have a support of cardinality
1, whereas the only non-skeleton strict constraint in S2 (cutting a 0-dimension
face) has a support of cardinality 2; hence, ζ(S1) = {4− 1, 4− 1} = {3, 3} @ms

{2} = {4− 2} = ζ(S2). Thus we obtain P1∇̃NP2 = P2, improving the precision
of P1∇NP2 = con({x ≥ 0, y ≥ 0}).

Consider now the polyhedra P2 ⊂ P3 ∈ P2 in the middle of Figure 19.
In this case we have P2 ≡d`cspr P3, so that P2 6yN P3. The upper bound
P4 = hp(P2,P3), shown on the right-hand side of Figure 19, is obtained by
applying the “evolving (closure) point” heuristics (i.e., the obvious extension
of the “evolving point” heuristics defined in [5]). The heuristics detects that
the closure point of P3 is “moving”, defining evolving directions with respect
to the generators of P2; namely, three rays are added to P2 (one of them being
redundant), yielding polyhedron P4. The latter is defined by 4 skeleton non-
strict inequalities and, being topologically closed, is such that S4 = ∅. Therefore
we obtain P2 yN P4, because P2 ≡d`c P4 and P2 ≺s P4, as we have ζ(S2) =
{2} @ms ∅ = ζ(S4). Hence, we can use this heuristics and improve the precision
of the widening: P2∇̃NP3 = P4 = hp(P2,P3) ⊂ P2∇NP3.

44

7. Experimental Evaluation

The new representation for NNC polyhedra, the conversion algorithms and
the operators presented in the previous sections are implemented in the PPLite
library (http://www.cs.unipr.it/~zaffanella/PPLite/). Derived from the
Parma Polyhedra Library, PPLite has a different goal: it provides a simpler
framework for experimenting with new ideas and algorithms in the context of
polyhedral computations. Its main characteristics are:

• both closed and NNC (rational) convex polyhedra are supported;

• exact computations are based on FLINT (http://www.flintlib.org/),
which improves on GMP (https://gmplib.org/) by adopting a special-
ized representation for those integer values having small magnitude;

• encapsulation is not fully enforced: a knowledgeable user can directly
change the contents of data structures, e.g., to experiment with alternative
implementations of domain operators;

• preconditions on operators are not systematically checked at runtime: a
user error typically leads to undefined behavior, rather than throwing an
exception;

• performance and portability, even though deemed important, are not the
main concern: ease of implementation and readability are given priority.

Evaluating the efficiency of the new conversion algorithm.

A preliminary experimental evaluation of the new representation and conver-
sion algorithms for (closed and NNC) polyhedra was reported in [16], showing
impressive efficiency gains with respect to the PPL. Those results were obtained
when using a version of the algorithm implemented inside the PPL framework.
Here we repeat those experiments using PPLite’s implementation.15

The first experiment considers all the 98 test benchmarks distributed with
the ppl lcdd demo application of the PPL, which solves the vertex/facet enu-
meration problem. In Table 3 we report the timing results obtained on a selection
of these tests when using: the PPL conversion algorithm for closed polyhedra
(column ‘cl’); the PPL conversion algorithm for the ε-representation of NNC
polyhedra (column ‘ε’); and the PPLite conversion algorithm for the new repre-
sentation of NNC polyhedra (column ‘new’). The tests shown in the table are
those where the time in column ‘cl’ is above 0.02 seconds. The results show that
the ε-representation incurs a significant overhead when compared to the closed
representation (see the time ratio in column ‘ε/cl’); this provides an evidence
for the first main issue affecting ε-representations mentioned in Section 3. The

15All experiments have been performed on a laptop with an Intel Core i7-3632QM CPU, 16
GB of RAM and running GNU/Linux 4.13.0-36.

45

http://www.cs.unipr.it/~zaffanella/PPLite/
http://www.flintlib.org/
https://gmplib.org/

PPL PPLite
test cl ε ε/cl new cl/new
cross12.ine 0.16 0.22 1.38 0.14 1.14
in7.ine 0.04 0.14 3.50 0.03 1.33
kkd38 6.ine 0.46 1.72 3.74 0.19 2.42
kq20 11 m.ine 0.04 0.14 3.50 0.03 1.33
metric80 16.ine 0.04 0.07 1.75 0.01 4.00
mit31-20.ine 1.03 33.60 32.62 0.48 2.15
mp6.ine 0.08 0.20 2.50 0.11 0.73
reg600-5 m.ext 0.86 3.11 3.62 0.74 1.16
sampleh8.ine 5.14 38.00 7.39 2.76 1.86
trunc10.ine 1.18 4.88 4.14 0.01 118.00

Table 3: Conversion times (in seconds) and speedup ratios for closed polyhedra

results also confirm that such an overhead is absent when using the new rep-
resentation adopted in PPLite: for all the tests, the PPLite version compares
favorably with respect to the PPL implementation working on ε-representations
and, more importantly, on most tests it even compares favorably with respect
to the PPL implementation working on closed polyhedra (see the time ratio in
column ‘cl/new’).

The second experiment is meant to evaluate the efficiency gains obtained
when processing polyhedra that are not topologically closed. This is based
on a PPL’s synthetic benchmark which was originally proposed in [9], show-
ing that an enhanced evaluation strategy (where a knowledgeable user carefully
applies the strong minimization procedures to eliminate ε-redundancies) easily
outperforms the standard evaluation strategy. In Table 4 we compare these two
PPL scenarios with the PPLite implementation, which is similar to the stan-
dard evaluation approach since it requires no clever guess from the user of the
library. The new representations and conversion procedures achieve impressive
efficiency improvements (column ‘time’). In the next two columns we report the
number of non-incremental (‘full’) and incremental (‘incr’) calls to the conver-
sion procedures: these show that the strong minimization procedures adopted
in the enhanced computation strategy interfere with the incrementality of the
computation, as discussed at the end of Section 3. Moreover, the comparisons
of the total number of iterations of the conversion procedures (‘# iter’) and of
the sizes of the intermediate results (‘iter size’) provide further evidence that
the new approach is able to maintain a non-redundant description even during
the iterations of a conversion.

Evaluating the efficiency of PPLite in a static analysis context.

In Table 5 we summarize the results of a more thorough experimental eval-
uation, where the PPLite implementation of the abstract domain of NNC poly-
hedra is used in a program analysis based on Abstract Interpretation. To this
end, we have interfaced the PPLite library to the Apron library [43], so as to

46

repr, strategy time
conv

iter
iter size

full incr median max
ε-repr, standard 28.385 4 3 1142 3706 7259
ε-repr, enhanced 0.227 7 0 525 109 1661

new repr, standard 0.011 4 3 355 33 154

Table 4: Comparing ε-representation based (standard and enhanced) computations for NNC
polyhedra with the new conversion procedures.

make it available to PAGAI [42], a static analyzer for invariant generation built
on top of the LLVM infrastructure. PAGAI is a highly configurable tool: be-
sides selecting a specific abstract domain among those made available by the
Apron library, the user can also choose among different static analysis tech-
niques, such as path focusing [42], which improves the precision by exploiting
SMT model-checking techniques. Since the more sophisticated techniques add
a corresponding overhead which is not directly related to the abstract domain
implementation, in our experimental evaluation we opted for the simple abstract
interpretation analysis technique. Moreover, to better focus on the efficiency of
the abstract domains themselves, we report the time spent during the calls to
the abstract operators made available via Apron (rather than the total time of
the analysis, which would also include, for instance, the time spent in the LLVM
framework to implement bitcode transformations such as function inlining).

The experimental evaluation considers 38 C source files distributed with PA-
GAI: most of these are variants of benchmarks taken from the SNU real-time
benchmark suite for worst-case execution time analysis. Note that we show the
results for a selection of the tests, those for which the time reported in column
‘pplite’ is above 0.5 seconds; column ‘size’ shows the size of the corresponding
LLVM bitcode file. When using PAGAI, it is possible to choose between sev-
eral abstract domains. In columns ‘box’ and ‘oct’ we report the times obtained
when selecting the abstract domain of boxes [27] and octagons [46], respectively.
The next three columns report the times obtained when selecting different im-
plementations of the domain of NNC polyhedra: the domain which is natively
distributed with Apron (column ‘pk’), the Apron layer for the Parma Polyhe-
dra Library domain (column ‘ppl’) and the newly developed Apron layer for the
PPLite domain (column ‘pplite’).

All domains use the default implementation of the widening operator, which
in the case of the polyhedra domains is the standard widening [39]. For the
domains ‘pk’ and ‘ppl’, the standard widening applies the specification in Def-
inition 6 (equivalently, Definition 7) to the ε-representations of the NNC poly-
hedra: since these representations are not canonical, the result of the widening
could be nondeterministic. For the domain ‘pplite’, the standard widening ap-
plies the specification in Definition 8 to the new representation of the NNC
polyhedra, so that the result is deterministic (as stated in Proposition 5).

It can be seen that the PPLite library performs significantly better than the
other NNC polyhedra domains, being also competitive with respect to the do-

47

size Apron’s time (seconds)
test KB box oct pk ppl pplite U
decompress 549 7.01 41.88 203.73 93.07 38.61 10.31
filter 15 1.18 5.90 77.89 83.85 18.96 13.70
adpcm 67 0.75 3.17 20.63 13.27 4.76 1.82
decompress-opt 71 0.60 9.99 12.90 7.40 2.80 1.56
nsichneu 527 0.62 0.64 2.32 2.99 1.60 1.45
cover 33 0.42 0.45 1.56 2.12 1.22 1.14
fft1 20 0.19 0.53 1.99 1.67 0.76 0.58
compress 30 0.16 0.69 2.57 1.72 0.73 0.37
ndes 45 0.21 0.30 1.17 1.30 0.72 0.54
edn 57 0.20 0.35 1.64 1.48 0.72 0.66
minver 30 0.14 0.27 1.03 1.01 0.51 0.42

Table 5: Efficiency comparison for PAGAI’s domains.

main of octagons on the biggest benchmarks. These efficiency gains have been
obtained even if the only use of strict inequalities in PAGAI is when model-
ing floating point values: among the tests reported in Table 5, only ‘fft1’ and
‘minver’ declare floating point variables.

It should be stressed that the static analysis implemented in PAGAI applies
no variable packing technique at all: hence, all the relational domains incur
avoidable overheads [51]. In principle, these overheads are orthogonal with
respect to the chosen implementation of NNC polyhedra. In order to test this
hypothesis, we enriched our experimental evaluation by also considering the ‘U’
wrapper proposed in [55], which provides a restricted form of Cartesian factoring.
The ‘U’ wrapper enhances the underlying abstract domain by keeping track of
the unconstrained space dimensions (which are dynamically recorded in the
“shell” of the wrapper), therefore avoiding the need to represent them in the
“kernel” (i.e., the wrapped polyhedron). In addition to reducing the size of the
polyhedra, a fast access to the unconstrained dimensions allows to optimize the
implementation of some abstract operators, such as the convex polyhedral hull
and the invertible affine images. The results obtained when applying the ‘U’
wrapper to the NNC polyhedra of PPLite (column ‘U’ in Table 5) show that
significant efficiency improvements are possible. We conjecture that the PPLite
domain could equally benefit from the adoption of more sophisticated variable
packing techniques.

Evaluating the correctness and precision of the implementation.

PAGAI can be configured to perform a precision comparison among two dif-
ferent abstract domains: in this case, the analyzer records the invariant proper-
ties computed by the two domains for each of the relevant program points; then
it compares them and provides a final report made of four numbers, counting
the program points on which the invariant computed by the first domain is,
respectively, equivalent, stronger, weaker and uncomparable with respect to the
invariant computed by the second domain. When using this precision compari-
son mode on the experimental evaluation discussed in the previous section, the

48

polyhedra domains ‘pk’, ‘ppl’, ‘pplite’ and ‘U’ are shown to compute equivalent
invariants for all benchmarks and all program points, thereby providing a first
assessment of the correctness and precision of the integration of PPLite with
Apron and PAGAI.

In order to further increase the confidence on the correctness and precision
comparison, we developed in PAGAI a new static analysis technique where,
after each and every invocation of an abstract operator, the result computed
by the PPLite domain is systematically compared with the result computed
by PPL: this allows to highlight all differences, even those only occurring on
the intermediate values computed during the analysis process, which cannot be
detected by the previous approach. When using this new analysis technique,
no difference is observed on all the abstract operators used in PAGAI, with
the only exception of the widening operator, for which a very limited number
of differences are detected on just a few tests. Note that, on the considered
benchmarks, these precision differences affect neither the number of iterations
of the analysis process nor the final invariant property computed, which are
exactly the same for all the considered polyhedra domains.

A further investigation on the few differences on widenings shows that the
standard widening ‘∇N’ of PPLite is sometimes more precise than the standard
widening of PPL (which is computed on the ε-representation). Moreover, the
same experiments show that, when using the ε-representations of PPL and its
corresponding syntactic widening operator, the PAGAI analyzer indeed exhibits
a nondeterministic behavior, computing different (correct) results at each run;
such a nondeterminism of the analysis is not observable when using the PPLite
domain, which is based on the semantic widening ‘∇N’. This provides a practical
evidence for the theoretical observations made in Section 6.1.

The PPLite library also borrows from the PPL library a wide set of syn-
thetic benchmarks, which are systematically used for regression testing: once
again, the abstract operators for NNC polyhedra implemented in PPLite obtain
the same results as PPL on all tests (modulo the already observed increase in
precision for the widening operator).

Evaluating the improved widening operator.

Table 6 shows a comparison of the efficiency of the PPLite polyhedra domain
when using the standard widening presented in Section 6.1 and the improved
widening presented in Section 6.2. In the column labeled ‘h79/bhrz03’ we report
the time ratio of the two analyses: values above 1.0 mean that, for the considered
test, the analysis using the improved widening operator ‘bhrz03’ is faster than
the analysis using the standard widening ‘h79’. Note that the absolute time for
the ‘h79’ analysis has already been reported in column ‘pplite’ of Table 5.16

The results suggest that the computation of the lgo relation on the NNC

16We do not report a comparison for ‘filter’, as in this test the analysis never applies the
widening operator; apparently, the code of the test has been obtained by completely unrolling
sixty iterations of a given loop.

49

time ratio ∇ calls asc iters desc iters
test h79/bhrz03 h79 bhrz03 h79 bhrz03 h79 bhrz03
adpcm 1.99 126 127 4744 5056 20148 1679
compress 3.65 33 33 1053 1051 6589 1198
cover 4.31 6 6 2398 2280 32316 5386
decompress 1.74 149 176 13032 14409 135528 67764
decompress-opt 1.00 180 218 2507 2714 17728 17728
edn 3.55 36 40 2047 2620 9696 808
fft1 0.92 126 156 1681 1967 8652 8652
minver 2.99 59 62 1402 1724 7092 591
ndes 4.03 34 34 1795 2076 10860 905
nsichneu 1.91 2 2 13230 13230 39681 13227

Table 6: Comparing the efficiency of the improved widening operator.

polyhedra in PPLite incurs no significant overhead; rather, the adoption of a
more precise widening operator quite often results in an efficiency gain. Note
that similar time ratios are obtained when comparing the ‘h79’ and the ‘bhrz03’
widenings on the ε-representation of the PPL implementation.

The remaining pairs of columns in Table 6 provide a justification for the
observed speedup. In the pair of columns labeled ‘∇ calls’ we report the total
number of calls to the widening operator: this increases when using the ‘bhrz03’
widening. In the next two pairs of columns (labeled ‘asc iters’ and ‘desc iters’)
we show the number of node iterations reported by PAGAI, i.e., the number of
times a node (i.e., a basic block of LLVM bitcode) is processed by the analyzer.
These are divided into the ascending and the descending iteration phases: in
the ascending phase the analyzer is still trying to over-approximate the fixpoint
computation (i.e., computing a post-fixpoint), possibly using the widening oper-
ator to enforce convergence; in the descending phase, having already computed
a post-fixpoint, the analyzer is trying to improve its precision possibly using a
narrowing operator. When using the ‘bhrz03’ widening we observe an increase
in the number of ascending iterations, which intuitively matches the increased
number of calls of the widening operator. As a consequence of the improved pre-
cision obtained by using the ‘bhrz03’ widening, the descending phase stabilizes
more quickly: for most of the benchmarks, we record a significant reduction in
column ‘desc iters’. Hence, the speedup in the descending iteration phase masks
the slowdown, if any, incurred during the ascending iteration phase.

Regarding precision, the PPLite and PPL polyhedra domains obtain the
same results on all benchmarks when both using the ‘bhrz03’ widening opera-
tor (a comparison with domain ‘pk’ is not possible, as it does not implement
the improved widening operator). Finally, we briefly summarize the precision
comparison results obtained when replacing the ‘h79’ with the ‘bhrz03’ widen-
ing operator (no matter if using PPLite or PPL). No difference was recorded
for 21 of the 38 benchmarks; for the remaining 17 benchmarks all differences
are improvements (i.e., the new widening never causes a degradation in preci-
sion). When focusing on these 17 tests, a precision improvement is observed
on 60% (97 on 161) of the invariant properties computed by the analyzer (one

50

invariant for each widening point). A more thorough analysis of the precision
improvements of ‘bhrz03’ is beyond the scope of this paper: for all what we said
before, it would just confirm the observations already made in previous work
based on the PPL implementation. Hence, we refer the interested reader to the
evaluations presented in [6, Table 1] and [42, Table 4].

8. Conclusion

We have proposed a new approach for the representation of NNC polyhedra
in the Double Description framework, dispensing with the use of slack variables
and distinguishing between a geometric and a combinatorial component. We
have defined a corresponding variant of the Chernikova conversion algorithm,
which exploits the peculiarities of the new representation to avoid the overheads
incurred by the more classical approaches. Based on these new proposals, we
have then presented an implementation of the abstract domain of NNC polyhe-
dra, focusing our work on the specification of the operators needed for defining
static analyses based on Abstract Interpretation; in particular, we have provided
new, semantics-based widening operators for NNC polyhedra. The experimen-
tal evaluation conducted shows that the new representation allows for efficiently
computing on the domain of NNC polyhedra; moreover, no overhead is observed
when the computed polyhedra happen to be topologically closed, thereby sys-
tematically outperforming more classical implementations based on the addition
of a slack variable.

In [18] the implementation described in this paper has been further extended
providing support for semantic operators needed in different application contexts
(such as the time elapse operator for the analysis and verification of hybrid
systems [35]) as well as optimizations and new specifications for more general
purpose functions (such as the constraint hull, the parallel affine image and the
split operators), once again achieving noteworthy efficiency improvements.

References

[1] 4ti2 team, 2018. 4ti2—a software package for algebraic, geometric and com-
binatorial problems on linear spaces. Available at www.4ti2.de.

[2] Amato, G., Scozzari, F., Zaffanella, E., 2014. Efficient constraint/generator
removal from double description of polyhedra. Electr. Notes Theor. Com-
put. Sci. 307, 3–15.

[3] Assarf, B., Gawrilow, E., Herr, K., Joswig, M., Lorenz, B., Paffenholz, A.,
Rehn, T., 2017. Computing convex hulls and counting integer points with
polymake. Math. Program. Comput. 9 (1), 1–38.

[4] Bagnara, R., Hill, P. M., Mazzi, E., Zaffanella, E., 2005. Widening opera-
tors for weakly-relational numeric abstractions. In: Hankin, C., Siveroni, I.
(Eds.), Static Analysis: Proceedings of the 12th International Symposium.

51

Vol. 3672 of Lecture Notes in Computer Science. Springer-Verlag, Berlin,
London, UK, pp. 3–18.

[5] Bagnara, R., Hill, P. M., Ricci, E., Zaffanella, E., 2003. Precise widening
operators for convex polyhedra. In: Cousot, R. (Ed.), Static Analysis: Pro-
ceedings of the 10th International Symposium. Vol. 2694 of Lecture Notes
in Computer Science. Springer-Verlag, Berlin, San Diego, California, USA,
pp. 337–354.

[6] Bagnara, R., Hill, P. M., Ricci, E., Zaffanella, E., 2005. Precise widening
operators for convex polyhedra. Science of Computer Programming 58 (1–
2), 28–56.

[7] Bagnara, R., Hill, P. M., Zaffanella, E., 2002. A new encoding of not nec-
essarily closed convex polyhedra. In: Carro, M., Vacheret, C., Lau, K.-K.
(Eds.), Proceedings of the 1st CoLogNet Workshop on Component-based
Software Development and Implementation Technology for Computational
Logic Systems. Madrid, Spain, pp. 147–153, published as TR Number
CLIP4/02.0, Universidad Politécnica de Madrid, Facultad de Informática.

[8] Bagnara, R., Hill, P. M., Zaffanella, E., 2003. Widening operators for pow-
erset domains. In: Steffen, B., Levi, G. (Eds.), Verification, Model Checking
and Abstract Interpretation: Proceedings of the 5th International Con-
ference (VMCAI 2004). Vol. 2937 of Lecture Notes in Computer Science.
Springer-Verlag, Berlin, Venice, Italy, pp. 135–148.

[9] Bagnara, R., Hill, P. M., Zaffanella, E., 2005. Not necessarily closed convex
polyhedra and the double description method. Formal Aspects of Comput-
ing 17 (2), 222–257.

[10] Bagnara, R., Hill, P. M., Zaffanella, E., 2006. Widening operators for pow-
erset domains. Software Tools for Technology Transfer 8 (4/5), 449–466.

[11] Bagnara, R., Hill, P. M., Zaffanella, E., 2008. The Parma Polyhedra Li-
brary: Toward a complete set of numerical abstractions for the analysis
and verification of hardware and software systems. Science of Computer
Programming 72 (1–2), 3–21.

[12] Bagnara, R., Hill, P. M., Zaffanella, E., 2009. Applications of polyhedral
computations to the analysis and verification of hardware and software
systems. Theoretical Computer Science 410 (46), 4672–4691.

[13] Bagnara, R., Hill, P. M., Zaffanella, E., 2009. Weakly-relational shapes
for numeric abstractions: Improved algorithms and proofs of correctness.
Formal Methods in System Design 35 (3), 279–323.

[14] Bagnara, R., Ricci, E., Zaffanella, E., Hill, P. M., 2002. Possibly not closed
convex polyhedra and the Parma Polyhedra Library. In: Hermenegildo,

52

M. V., Puebla, G. (Eds.), Static Analysis: Proceedings of the 9th In-
ternational Symposium. Vol. 2477 of Lecture Notes in Computer Science.
Springer-Verlag, Berlin, Madrid, Spain, pp. 213–229.

[15] Bastoul, C., 2004. Code generation in the polyhedral model is easier than
you think. In: Proceedings of the 13th International Conference on Parallel
Architectures and Compilation Techniques (PACT 2004). IEEE Computer
Society, Antibes Juan-les-Pins, France, pp. 7–16.

[16] Becchi, A., Zaffanella, E., 2018. A direct encoding for NNC polyhedra. In:
Computer Aided Verification - 30th International Conference, CAV 2018,
Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK,
July 14-17, 2018, Proceedings, Part I. pp. 230–248.

[17] Becchi, A., Zaffanella, E., 2018. An efficient abstract domain for not neces-
sarily closed polyhedra. In: Podelski, A. (Ed.), Static Analysis - 25th Inter-
national Symposium, SAS 2018, Freiburg, Germany, August 29-31, 2018,
Proceedings. Vol. 11002 of Lecture Notes in Computer Science. Springer,
pp. 146–165.

[18] Becchi, A., Zaffanella, E., 2019. Revisiting polyhedral analysis for hybrid
systems. In: Chang, B. E. (Ed.), Static Analysis - 26th International Sym-
posium, SAS 2019, Porto, Portugal, October 8-11, 2019, Proceedings. Vol.
11822 of Lecture Notes in Computer Science. Springer, pp. 183–202.

[19] Benerecetti, M., Faella, M., Minopoli, S., 2013. Automatic synthesis of
switching controllers for linear hybrid systems: Safety control. Theor. Com-
put. Sci. 493, 116–138.

[20] Birkhoff, G., 1967. Lattice Theory, 3rd Edition. Vol. XXV of Colloquium
Publications. American Mathematical Society, Providence, Rhode Island,
USA.

[21] Chernikova, N. V., 1964. Algorithm for finding a general formula for the
non-negative solutions of system of linear equations. U.S.S.R. Computa-
tional Mathematics and Mathematical Physics 4 (4), 151–158.

[22] Chernikova, N. V., 1965. Algorithm for finding a general formula for the
non-negative solutions of system of linear inequalities. U.S.S.R. Computa-
tional Mathematics and Mathematical Physics 5 (2), 228–233.

[23] Chernikova, N. V., 1968. Algorithm for discovering the set of all solutions
of a linear programming problem. U.S.S.R. Computational Mathematics
and Mathematical Physics 8 (6), 282–293.

[24] Colón, M. A., Sipma, H. B., 2001. Synthesis of linear ranking functions. In:
Margaria, T., Yi, W. (Eds.), Tools and Algorithms for Construction and
Analysis of Systems, 7th International Conference, TACAS 2001. Vol. 2031
of Lecture Notes in Computer Science. Springer-Verlag, Berlin, Genova,
Italy, pp. 67–81.

53

[25] Cortesi, A., 2008. Widening operators for abstract interpretation. In: Sixth
IEEE International Conference on Software Engineering and Formal Meth-
ods, SEFM 2008, Cape Town, South Africa. pp. 31–40.

[26] Cortesi, A., Zanioli, M., 2011. Widening and narrowing operators for ab-
stract interpretation. Computer Languages, Systems & Structures 37 (1),
24–42.

[27] Cousot, P., Cousot, R., 1977. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation
of fixpoints. In: Proceedings of the Fourth Annual ACM Symposium on
Principles of Programming Languages. ACM Press, Los Angeles, CA, USA,
pp. 238–252.

[28] Cousot, P., Cousot, R., 1979. Systematic design of program analysis frame-
works. In: Proceedings of the Sixth Annual ACM Symposium on Principles
of Programming Languages. ACM Press, San Antonio, TX, USA, pp. 269–
282.

[29] Cousot, P., Cousot, R., 1992. Comparing the Galois connection and widen-
ing/narrowing approaches to abstract interpretation. In: Bruynooghe, M.,
Wirsing, M. (Eds.), Proceedings of the 4th International Symposium on
Programming Language Implementation and Logic Programming. Vol. 631
of Lecture Notes in Computer Science. Springer-Verlag, Berlin, Leuven,
Belgium, pp. 269–295.

[30] Cousot, P., Halbwachs, N., 1978. Automatic discovery of linear restraints
among variables of a program. In: Conference Record of the Fifth Annual
ACM Symposium on Principles of Programming Languages. ACM Press,
Tucson, Arizona, pp. 84–96.

[31] Doose, D., Mammeri, Z., 2005. Polyhedra-based approach for incremental
validation of real-time systems. In: Yang, L. T., Amamiya, M., Liu, Z.,
Guo, M., Rammig, F. J. (Eds.), Proceedings of the International Conference
on Embedded and Ubiquitous Computing (EUC 2005). Vol. 3824 of Lecture
Notes in Computer Science. Springer-Verlag, Berlin, Nagasaki, Japan, pp.
184–193.

[32] Ellenbogen, R., Dec. 2004. Fully automatic verification of absence of errors
via interprocedural integer analysis. Master’s thesis, School of Computer
Science, Tel-Aviv University, Tel-Aviv, Israel.

[33] Fehnker, A., Ivancic, F., 2004. Benchmarks for hybrid systems verifica-
tion. In: Alur, R., Pappas, G. (Eds.), Hybrid Systems: Computation and
Control, 7th International Workshop, HSCC 2004, Philadelphia, PA, USA,
March 25-27, 2004, Proceedings. Vol. 2993 of Lecture Notes in Computer
Science. Springer, pp. 326–341.

54

[34] Frehse, G., 2008. PHAVer: Algorithmic verification of hybrid systems past
HyTech. Software Tools for Technology Transfer 10 (3), 263–279.

[35] Frehse, G., Abate, A., Adzkiya, D., Becchi, A., Bu, L., Cimatti, A., Gia-
cobbe, M., Griggio, A., Mover, S., Mufid, M., Riouak, I., Tonetta, S., Zaf-
fanella, E., 2019. ARCH-COMP19 category report: Hybrid systems with
piecewise constant dynamics. In: Frehse, G., Althoff, M. (Eds.), ARCH19.
6th International Workshop on Applied Verification of Continuous and Hy-
brid Systems. Vol. 61 of EPiC Series in Computing. EasyChair, pp. 1–13.

[36] Fukuda, K., Prodon, A., 1996. Double description method revisited. In:
Deza, M., Euler, R., Manoussakis, Y. (Eds.), Combinatorics and Computer
Science, 8th Franco-Japanese and 4th Franco-Chinese Conference, Brest,
France, July 3-5, 1995, Selected Papers. Vol. 1120 of Lecture Notes in
Computer Science. Springer-Verlag, Berlin, pp. 91–111.

[37] Genov, B., 2014. The convex hull problem in practice: Improving the run-
ning time of the double description method. Ph.D. thesis, University of
Bremen, Germany.

[38] Gopan, D., Aug. 2007. Numeric program analysis techniques with applica-
tions to array analysis and library summarization. Ph.D. thesis, University
of Wisconsin, Madison, Wisconsin, USA.

[39] Halbwachs, N., Mar. 1979. Détermination automatique de relations
linéaires vérifiées par les variables d’un programme. Thèse de 3ème cycle
d’informatique, Université scientifique et médicale de Grenoble, Grenoble,
France.

[40] Halbwachs, N., Proy, Y.-E., Raymond, P., 1994. Verification of linear hybrid
systems by means of convex approximations. In: Le Charlier, B. (Ed.),
Static Analysis: Proceedings of the 1st International Symposium. Vol. 864
of Lecture Notes in Computer Science. Springer-Verlag, Berlin, Namur,
Belgium, pp. 223–237.

[41] Halbwachs, N., Proy, Y.-E., Roumanoff, P., 1997. Verification of real-time
systems using linear relation analysis. Formal Methods in System Design
11 (2), 157–185.

[42] Henry, J., Monniaux, D., Moy, M., 2012. PAGAI: A path sensitive static
analyser. Electr. Notes Theor. Comput. Sci. 289, 15–25.

[43] Jeannet, B., Miné, A., 2009. Apron: A library of numerical abstract do-
mains for static analysis. In: Bouajjani, A., Maler, O. (Eds.), Computer
Aided Verification, Proceedings of the 21st International Conference (CAV
2009). Vol. 5643 of Lecture Notes in Computer Science. Springer, Grenoble,
France, pp. 661–667.

[44] Kaibel, V., Pfetsch, M. E., 2002. Computing the face lattice of a polytope
from its vertex-facet incidences. Computational Geometry 23 (3), 281–290.

55

[45] Le Verge, H., 1992. A note on Chernikova’s algorithm. Publication interne
635, IRISA, Campus de Beaulieu, Rennes, France.

[46] Miné, A., Mar. 2005. Weakly relational numerical abstract domains. Ph.D.
thesis, École Polytechnique, Paris, France.

[47] Motzkin, T. S., Raiffa, H., Thompson, G. L., Thrall, R. M., 1953. The dou-
ble description method. In: Kuhn, H. W., Tucker, A. W. (Eds.), Contribu-
tions to the Theory of Games – Volume II. No. 28 in Annals of Mathematics
Studies. Princeton University Press, Princeton, New Jersey, pp. 51–73.

[48] Notani, V., Giacobazzi, R., 2017. Learning based widening. Contribution to
the 8th Workshop on Tools for Automatic Program Analysis (TAPAS’17),
New York.

[49] Perri, S., December 2012. Un algoritmo stile Chernikova per poliedri NNC
(A Chernikova-style Algorithm for NNC Polyhedra). Undergraduate thesis,
Department of Mathematics and Computer Science, University of Parma,
Italy, in Italian.

[50] Pop, S., Silber, G.-A., Cohen, A., Bastoul, C., Girbal, S., Vasilache, N.,
2006. GRAPHITE: Polyhedral analyses and optimizations for GCC. Tech.
Rep. A/378/CRI, Centre de Recherche en Informatique, École des Mines
de Paris, Fontainebleau, France, contribution to the GNU Compilers Col-
lection Developers Summit 2006 (GCC Summit 06), Ottawa, Canada, June
28–30, 2006.

[51] Singh, G., Püschel, M., Vechev, M. T., 2017. Fast polyhedra abstract do-
main. In: Proceedings of the 44th ACM SIGPLAN Symposium on Princi-
ples of Programming Languages, POPL 2017, Paris, France, January 18-20,
2017. pp. 46–59.

[52] Stoer, J., Witzgall, C., 1970. Convexity and Optimization in Finite Dimen-
sions I. Springer-Verlag, Berlin.

[53] Terzer, M., Stelling, J., 2008. Large-scale computation of elementary flux
modes with bit pattern trees. Bioinformatics 24 (19), 2229–2235.

[54] Terzer, M., Stelling, J., 2009. Parallel extreme ray and pathway computa-
tion. In: Parallel Processing and Applied Mathematics, 8th International
Conference, PPAM 2009, Wroclaw, Poland, 2009, Revised Selected Papers,
Part II. pp. 300–309.

[55] Zaffanella, E., 2018. On the efficiency of convex polyhedra. Electr. Notes
Theor. Comput. Sci. 334, 31–44.

[56] Zolotykh, N. Y., 2012. New modification of the double description method
for constructing the skeleton of a polyhedral cone. Computational Mathe-
matics and Mathematical Physics 52 (1), 146–156.

56

Appendix A. Proofs of the Results Stated in the Paper

Appendix A.1. Proofs of results stated in Section 4

Proof of Proposition 1. Let G = 〈L,R,C, P 〉 and consider a generator sys-
tem Gm = 〈Lm, Rm, Cm, Pm〉 in minimal form such that gen(Gm) = gen(G) = P.
By Definition 1, we obtain SKQ = 〈Lm, Rm, Cm ∪ SPm, ∅〉, where SPm ⊆ Pm
is the set of skeleton points in Pm. Since each point p ∈ Pm \ SPm can be
obtained by a combination of the generators in Lm, Rm and Cm ∪ SPm, we
have the following chain of equivalences:

gen(G) = gen(Gm)

= gen
(
〈Lm, Rm, ∅, Cm ∪ Pm〉

)
= gen

(
〈Lm, Rm, ∅, Cm ∪ SPm〉

)
= gen

(
〈Lm, Rm, Cm ∪ SPm, ∅〉

)
= gen(SKQ).

Since function ‘gen’ interprets closure points as points, it computes a topologi-
cally closed polyhedron, so that gen(SKQ) = Q = cl(P). Moreover, since SKQ
has been built from the generator system Gm in minimal form, by construction
it only keeps in Cm ∪ SPm the non-redundant points of Q = cl(P); hence, it is
the minimal system such that gen(SKQ) = Q. �

Proof of Proposition 2. Let SKF = 〈LF , RF , CF , ∅〉 ⊆ SKQ be the skeleton
of the face F ⊆ Q, so that gen(SKF) = F . By definition of ‘gen’, the points
p,p′ ∈ relint(F) can be obtained by combining the generators in SKF :

p = LFλ+RFρ+ CFγ,

p′ = LFλ
′ +RFρ

′ + CFγ
′,

where λ,λ′ ∈ R`, ρ,ρ′ ∈ Rr+, for each i ∈ {1, . . . , r}, ρi, ρ′i > 0, γ,γ′ ∈ Rc+,∑c
i=1 γi =

∑c
i=1 γ

′
i = 1 and, for each i ∈ {1, . . . , c}, both γi, γ

′
i > 0. Therefore,

relint(F) = gen
(
〈LF , RF , CF , {p}〉

)
= gen

(
〈LF , RF , CF , {p′}〉

)
.

Hence we have shown that, in order to generate relint(F) ⊆ P, point p ∈ P can
be replaced by any other point p′ ∈ relint(F).

By definition of ‘gen’, the contribution of p ∈ P is to generate the sets
relint(F ′) ⊆ P, where F ′ ∈ nncFaces is such that relint(F) ⊆ F ′ (i.e., all the
faces of P containing relint(F)). It follows that p ∈ P can be substituted by
any other point p′ ∈ relint(F), obtaining the same polyhedron. �

Proof of Proposition 3. Let SK be the skeleton of the polyhedron P ∈ Pn,
Q = cl(P) and NS be the corresponding set of supports. In order to prove
that (αSK, γSK) is a Galois connection between ℘(Q) and ℘↑(NS), we will show
that ‘αSK’ and ‘γSK’ are monotonic, ‘αSK ◦ γSK’ is reductive and ‘γSK ◦ αSK’
is extensive; the result will thus follow from [28, Theorem 5.3.0.4].

57

The monotonicity of both ‘αSK’ and ‘γSK’ follows trivially from Definition 3.
Consider NS ∈ ℘↑(NS). Note that, for each ns ∈ NS , there exists a face

F ∈ cFaces such that ns = SKF , so that gen(ns) = F . Therefore,

αSK
(
γSK(NS)

)
[by definition of γSK]

= αSK
(⋃{

relint(gen(ns))
∣∣ ns ∈ NS

})
= αSK

(⋃{
relint(F)

∣∣ F = gen(ns) ∈ cFaces,ns ∈ NS
})

[by definition of αSK]

=
⋃{
↑ns

∣∣ ∃p ∈ relint(F), F = gen(ns) ∈ cFaces,ns ∈ NS
}

=
⋃
{ ↑ns | ns ∈ NS }

[since NS is an upward closed set]

= NS .

Hence, ‘αSK ◦ γSK’ is the identity function, which implies that it is reductive.
In order to show that ‘γSK ◦αSK’ is extensive, let S ⊆ Q. Note that for each

point p ∈ S, there exists a face F ∈ cFaces such that p ∈ relint(F). Hence:

γSK
(
αSK(S)

)
[by definition of αSK]

= γSK
(⋃{

↑ SKF
∣∣ ∃p ∈ S, F ∈ cFaces . p ∈ relint(F)

})
= γSK

(⋃{
ns
∣∣ ∃p ∈ S, F ∈ cFaces . p ∈ relint(F),ns ∈ ↑SKF

})
[by definition of γSK]

=
⋃{

relint
(
gen(ns)

) ∣∣∣∣∣ ∃p ∈ S, F ∈ cFaces . p ∈ relint(F),

ns ∈ ↑SKF

}
⊇
⋃{

relint(F)
∣∣ ∃p ∈ S, F ∈ cFaces . p ∈ relint(F)

}
⊇
⋃{

p ∈ S
∣∣ ∃F ∈ cFaces . p ∈ relint(F)

}
= S.

�

Proof of Proposition 4. Applying ‘γSK ◦ αSK’ to the set of points P we ob-
tain:

γSK
(
αSK(P)

)
=
⋃ relint

(
gen(SKF)

) ∣∣∣∣∣∣∣
∃p′ ∈ P, F ′ ∈ cFaces .

p′ ∈ relint(F ′),

SKF ∈ ↑SKF ′

. (A.1)

58

By definition of function ‘gen’, a face is included in the polyhedron P if and
only if it contains a point in P . In particular, letting nncFaces ′ = nncFaces \
{∅}, this holds for the minimal faces in nncFaces ′; these are the atoms of the
lattice cl(nncFaces), which is a sublattice of cFaces. For these atoms A ∈
cl(nncFaces), we have A = relint(A); hence

∀A atom of cl(nncFaces) : ∃p ∈ P . p ∈ relint(A). (A.2)

Moreover, since cl(nncFaces ′) is an upward closed set, we have:

∀F ′ ∈ cl(nncFaces ′) : ∃A atom of cl(nncFaces) . SKA ⊆ SKF ′ . (A.3)

Therefore, we have the following chain of equations:

P =
⋃{

relint(F)
∣∣ F ∈ nncFaces ′

}
=
⋃{

relint
(
gen(SKF)

) ∣∣ F ∈ cl(nncFaces ′)
}

[by property (A.3)]

=
⋃{

relint
(
gen(SKF)

) ∣∣ ∃A atom of cl(nncFaces) . SKA ⊆ SKF
}

[by property (A.2)]

=
⋃{

relint
(
gen(SKF)

) ∣∣∣∣∣∃p ∈ P,A atom of cl(nncFaces) .

p ∈ relint(A),SKF ∈ ↑SKA

}
. (A.4)

We now show that (A.4) is equivalent to (A.1). The inclusion (A.4) ⊆ (A.1)
follows by simply taking F ′ = A; the other inclusion (A.4) ⊇ (A.1) follows by
applying property (A.3) while also observing that, since p′ ∈ relint(F ′), then
F ′ ∈ cl(nncFaces). �

Appendix A.2. Proofs of results stated in Section 6

The proof of Proposition 5 is based on a couple of auxiliary lemmas.

Lemma 1. Definition 8 specifies a binary operator on Pn.

Proof. We need to show that the result computed by ‘∇N’ is not affected by
a change of representation for the two input arguments.

For P1,P2 ∈ Pn, where P1 6= ∅ and P1 ⊆ P2, let P1∇NP2 be computed
according to Definition 8; in particular, let P1 ≡ (C1,G1) and P2 = con(C2),
where Ci = 〈SKc

i ,NS c
i 〉 are arbitrary constraint representations for Pi satisfying

the minimality hypothesis and G1 = 〈SKg
1,NS g

1〉.
Note that, due to the inclusion hypothesis P1 ⊆ P2, all of the equality con-

straints in SKc
2 are detected as stable. Let β1 ∈ SKc

1 be a skeleton (strict or non-
strict) inequality constraint and β2 ∈ SKc

2 be a skeleton inequality constraint
such that sat(β1,SKg

1) = sat(β2,SKg
1) holds; that is, β2 ∈ SKc

2 is detected to be
stable due to β1 ∈ SKc

1. Being a skeleton constraint and due to the minimality
assumption, β1 identifies a facet F1 of cl(P1); thus, any other constraint system

59

representation for P1 will always contain a constraint β′1 (identifying the same
facet F1) such that sat(β1,SKg

1) = sat(β′1,SKg
1). The same reasoning can be

repeated for β2 and F2. Hence, the computed skeleton component SKc does
not depend on the chosen representations for P1 and P2. As a side note, if
P1 = cl(P1) then no strict inequality in SKc

2 can be detected as stable. When
working on closed polyhedra, Definition 8 becomes equivalent to Definition 7
and we have:

cl(P1)∇N cl(P2) = cl(P1)∇C cl(P2), (A.5)

where ‘∇C’ is known to be well-defined on CPn [5, Theorem 5].
Finally, consider the non-skeleton component and let ns2 ∈ NS c, so that

ns2 ∈ NS c
2 and ns2 ⊆ SKc. Support ns2 identifies a face (not a facet) F2 of

cl(P2) which is cut from P2, i.e., F2 ∩ P2 = ∅. Let F = {Fβ | β ∈ ns2 }
be the set of facets identified by the constraints in ns2, so that F2 =

⋂F .
Note that, since ns2 is non-redundant, all the facets in F have a non-empty
intersection with P2 (i.e., they correspond to non-strict inequalities); moreover,
all the facets in F are stable and, as observed in the previous paragraph, the
set of stable facets does not depend on the chosen constraint representations.
Therefore, in any other minimal representation for P2, there will be a set ns ′2
(i.e., a support) of non-strict skeleton constraints that identifies the same set
of stable facets F ; namely, ns ′2 identifies the same cut face F2 identified by
ns2. Hence, the computed non-skeleton component NS c does not depend on
the chosen representations for P1 and P2. �

Lemma 2. ∇N : Pn × Pn → Pn is a widening operator.

Proof. For P1,P2 ∈ Pn, where P1 6= ∅ and P1 ⊆ P2, let P ′ = P1∇NP2 be
computed according to Definition 8.

First we show that ‘∇N’ is an upper bound operator, i.e., it satisfies both
P1 ⊆ P ′ and P2 ⊆ P ′. By Definition 8, it can be seen that P ′ = con(SKc,NS c),
P2 = con(SKc

2,NS c
2) and both SKc ⊆ SKc

2 and NS c ⊆ NS c
2 hold; hence, the

inclusion P2 ⊆ P ′ follows from the anti-monotonicity of function ‘con’; the other
inclusion P1 ⊆ P ′ follows from the hypothesis P1 ⊆ P2.

Next we show that the systematic application of ‘∇N’ forces the upward
iteration sequence to stabilize after a finite number of iterates. To this end,
we define a ranking function rank: Pn → N2+n, mapping a polyhedron into the
well-founded set (N2+n,�), where ‘�’ denotes the strict lexicographic ordering.
For each P = con(C) ∈ Pn such that P 6= ∅ and C = 〈SKc,NS c〉 is in minimal
form, we define rank(P)

.
= (e, s, fn−1, . . . , fj , . . . , f0), where e is the number of

equality constraints in SKc, s is the total number of constraints in SKc and,
for each j ∈ {0, . . . , n − 1}, fj is the number of strict inequality constraints
in C cutting a face of cl(P) having affine dimension j.17 Note that ‘rank’ is
well-defined, because C is in minimal form.

17As an example, f0 is the number of strict inequality constraints cutting only a vertex from
the topological closure of the polyhedron.

60

To complete the proof we have to show that, whenever P1 ⊂ P ′ = P1∇NP2,
i.e., when the increasing sequence has not stabilized yet, the ranking function
is decreasing, i.e., rank(P ′)� rank(P1).

Let rank(P1) = (e, s, fn−1, . . . , f0) and rank(P ′) = (e′, s′, f ′n−1, . . . , f
′
0).

Since the constraint systems are in minimal form and ‘∇N’ is an upper bound
operator on Pn, for the equality constraints we always have e′ ≤ e. If e′ < e,
then the ranking function is decreasing; thus, in the rest of the proof, we assume
that e′ = e. Namely, we assume that P1, P2 and P ′ all have the same affine
dimension k = n− e.

Observe now that, by Definition 8, for the skeleton constraints we have s′ ≤
s. Namely, each skeleton (strict or non-strict) inequality constraint β2 ∈ SKc

2

that is selected to enter SKc has a unique corresponding skeleton constraint β1 ∈
SKc

1, which identifies the same facet of cl(P ′) (recall that P1 and P ′ both have
affine dimension k). Again, if s′ < s, then the ranking function is decreasing;
thus, in the rest of the proof, we assume both e′ = e and s′ = s. Under such
an assumption, by Definition 8, we obtain a one-to-one correspondence between
the facets of cl(P1) and those of cl(P ′): this implies

cl(P1) = cl(P2) = cl(P ′). (A.6)

Consider now the tuples t = (fk−1, . . . , f0) and t′ = (f ′k−1, . . . , f
′
0), where as

said above k = n− e is the affine dimension of the polyhedra.18 By hypothesis,
cl(P) = cl(P ′) but P1 ⊂ P ′; hence we obtain t 6= t′. Moreover, we cannot have
t� t′, since this would mean that there exists a strict inequality in P ′ cutting
a face which is not cut from P1, contradicting P1 ⊂ P ′. Therefore t′ � t, which
implies rank(P ′)� rank(P1). �

It is interesting to note that the ranking function defined in the proof of
Lemma 2 may be decreasing even though the number of non-redundant con-
straints is increasing.

Example 25. For i = 1, 2, consider Pi = con(Ci) ∈ P2, where

C1 = {0 < x < 1, 0 < y < 1},
C2 = {0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 < x+ y < 2,−1 < x− y < 1},

so that P1 is a topologically open square and P2 (which is neither closed nor
open) is obtained from cl(P1) by cutting away its four vertices. It is easy to
observe that P1∇NP2 = P2, because all of the skeleton constraints are stable.
Note that both constraint systems are in minimal form and their cardinalities are
increasing: |C2| = 8 > 4 = |C1|. Nonetheless, the ranking function is decreasing:

rank(P2) = (e′, s′, f ′1, f
′
0) = (0, 4, 0, 4)� (0, 4, 4, 0) = (e, s, f1, f0) = rank(P1).

18Note that for all k ≤ j ≤ n− 1, we have fj = f ′j = 0.

61

Proof of Proposition 5. The proof follows by combining Lemmas 1 and 2.
Note that in the proof of Lemma 2 we also proved equation (A.5), thereby
proving property (1). �

Proof of Proposition 6. A complete proof would follow for the most part the
corresponding one provided in [6, Theorem 12] for closed polyhedra. Therefore,
we only provide a proof sketch, focusing on the relation ‘�s ’, as its introduction
is the main difference with respect to the lgo of [6].

We first show that relation ‘yN’ is an lgo on Pn. Since SKc
i is a finite set,

the multisets computed by function ζ are finite and computable. Hence the
preorder ‘�s ’ is finitely computable and, by definition of the multiset ordering,
it satisfies the ascending chain condition. The lexicographic product of a finite
number of finitely computable relations satisfying the ascending chain condition
is finitely computable and satisfies the ascending chain condition too.

We now prove that ‘yN’ is ∇N-compatible. Namely, for every P1,P2 ∈ Pn
such that ∅ 6= P1 ⊂ P2, we show that P1 yN P1∇NP2. In the following we
define P3 = P1∇NP2 and use the subscript 3 for its components (SKc

3, NS c
3, S3,

. . .).
Since the widening is an upper bound operator, we know that P1 ⊂ P2 ⊆ P3.

By following the reasoning in the proof of [6, Theorem 12], we can observe that,
in the lexicographic ordering, whenever the ‘�s ’ relation comes into play we
necessarily have that P1 ≡d P3 and P1 ≡c P3, so that P1 and P3 have the same
affine dimension and |SKc

1| = |SKc
3|; therefore, by repeating the reasoning in

the proof of Lemma 2 leading to equation (A.6), we obtain cl(P1) = cl(P3).
Let F1 = gFacesP1

and F3 = gFacesP3
be the downward closed sets of

cut faces of P1 and P3, respectively (see Section 4.6). From cl(P1) = cl(P3)
and the strict inclusion P1 ⊂ P3, we obtain that F3 ⊂ F1. If F3 = {∅}
then P3 is topologically closed: hence S3 = ∅ ⊂ S1 and the strict ordering
ζ(S1) @ms ζ(S3) holds trivially, so that P1 yN P3. Therefore in the following
we assume that F3 6= {∅}. Each maximal face F3 ∈ F3 is included in a maximal
face F1 ∈ F1; moreover, since the inclusion F3 ⊂ F1 is strict, there exists a
maximal face F1 ∈ F1 \ F3. Having a fixed topological closure cl(P1) = cl(P3),
these subset relations among the maximal cut faces are in direct correspondence
with superset relations among their supports. Hence we obtain:

(∀s3 ∈ S3 : ∃s1 ∈ S1 . s3 ⊇ s1) ∧ (∃s1 ∈ S1 \ S3).

The left-hand side property above implies ζ(S1) vms ζ(S3); then, due to the
right-hand side property, we also obtain ζ(S1) 6= ζ(S3). These imply ζ(S1) @ms

ζ(S3), so that P1 yN P3. �

62

	Introduction
	Preliminaries
	Topologically closed convex polyhedra
	The conversion procedure for closed polyhedra
	Not necessarily closed convex polyhedra

	Representing NNC Polyhedra as Closed Polyhedra
	Direct Representations for NNC Polyhedra
	A simple but inefficient approach
	Towards a refined, efficient approach
	The combinatorial structure of convex polyhedra
	Skeleton and non-skeleton
	An efficient encoding for the new representation
	Representing constraints: duality

	The New Conversion Algorithm
	Processing a geometric constraint
	Processing a combinatorial constraint
	Duality: converting from generators to constraints

	Operators on the New Representation
	A semantic widening for NNC polyhedra
	Improving the new widening operator

	Experimental Evaluation
	Conclusion
	Proofs of the Results Stated in the Paper
	Proofs of results stated in Section 4
	Proofs of results stated in Section 6

