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Counteracting dephasing in Molecular Nanomagnets by
optimized qudit encodings
F. Petiziol1,2, A. Chiesa1,2, S. Wimberger 1,3, P. Santini1,2 and S. Carretta 1,2✉

Molecular Nanomagnets may enable the implementation of qudit-based quantum error-correction codes which exploit the many
spin levels naturally embedded in a single molecule, a promising step towards scalable quantum processors. To fully realize the
potential of this approach, a microscopic understanding of the errors corrupting the quantum information encoded in a molecular
qudit is essential, together with the development of tailor-made quantum error correction strategies. We address these central
points by first studying dephasing effects on the molecular spin qudit produced by the interaction with surrounding nuclear spins,
which are the dominant source of errors at low temperatures. Numerical quantum error correction codes are then constructed, by
means of a systematic optimization procedure based on simulations of the coupled system-bath dynamics, that provide a striking
enhancement of the coherence time of the molecular computational unit. The sequence of pulses needed for the experimental
implementation of the codes is finally proposed.
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INTRODUCTION
Reliable quantum computation demands the adoption of
strategies to protect the information being processed from
external noise, i.e., of quantum error correction (QEC) schemes1.
At the same time, while the ultimate quantum computer is
expected to host QEC routines based on abstract, system-
independent error models, the modern pioneering era of noisy
intermediate-scale quantum devices2,3 calls for strategies tailored
for the specific physical hardware utilized.
In their essence, QEC algorithms achieve information protection

by suitably encoding an elementary two-state computational unit,
a logical qubit, into a larger Hilbert space. This permits one to
distinguish, and thus detect, different error occurrences without
corrupting the information so that it is then possible to retrieve it4.
While traditional QEC approaches realize the extra space by

exploiting registers of many physical two-level systems, alternative
routes to QEC have emerged wherein a logical qubit is hosted by a
single many-level system (multi-level or qudit encodings)5–16. The
first advantage of the latter strategy is to prevent an overhead of
physical units necessary to implement the code. Also, the
manipulation of single or of pairs of logical qubits can be much
easier, since they do not require controlling multiple physical
objects at once17. Moreover, the same multi-level object can
provide protection against different types of errors12,15.
A very promising architecture for the implementation of multi-

level encodings is given by molecular nanomagnets13,16,18. Indeed,
these highly coherent systems19–27 offer many accessible spin
levels28–31, which can be manipulated with high accuracy through
electromagnetic pulses, and they can be chemically engineered to
meet desired requirements32–44.
The most important error in molecular spin systems at low

temperature is given by pure dephasing, that is, the suppression
of coherence between different spin states. Such a decoherence
mechanism originates principally from the hyperfine interaction of
the central (electronic or nuclear) molecular spin with the bath of
surrounding nuclear spins45–47. Except from specific situations48,

decoherence of a central spin induced by a nuclear spin bath is
known to produce non-exponential decay behaviour19,45,47,49–53.
This is due to many factors, such as non-negligible entanglement
building up between the spin and an evolving bath, the limited
number of nuclear spins (~102) usually surrounding the molecular
spin S, the slow relaxation timescales of the bath relative to the
motion of the central spin. Although mandatory to design
targeted codes, a QEC framework that takes into account both
the multi-level nature of a spin S larger than 1/2 and the explicit
structure and dynamics of the nuclear spin bath is still missing.
In this work, we develop a class of numerical spin qudit codes

which are designed based on a detailed microscopic structure of
the environment responsible for errors and which provide a
strongly enhanced correction efficiency. Moreover, the sequence
of control pulses and measurements needed for an experimental
implementation of such codes is discussed. While the advantage
of these codes as compared to a simple spin 1/2 is evident already
using small S, the performance strikingly improves as qudits with
larger spin are used, thus positively exploiting more and more
available levels in the molecular spectrum.
The codes are derived by first analyzing the decoherence effects

experienced by a qudit spin S > 1/2 embedded into a realistic
nuclear spin bath, by means of numerical simulations of the
coupled qudit-bath dynamics through a cluster-correlation
expansion (CCE)54. A systematic procedure is then put forward
to capture the spin-dephasing process by means of error
operators acting on the system, which is then used to derive
optimized codewords for QEC. Thanks to the flexibility of the
procedure, the numerical codes can be optimized taking into
account the specific timescale of free evolution admitted between
two subsequent QEC cycles, thus allowing one to largely reduce
the number of correction steps sufficient to ensure a desired
fidelity. As such, they are an optimal candidate for realizations in
near-term devices, in which the implementation of the QEC can be
noisy and can take relatively long times.
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RESULTS
Physical system and decoherence mechanisms
The system analyzed in the following is a molecular electronic spin
S (sketched in Fig. 1), described by the Hamiltonian

ĤS ¼ DŜ
2
z þ ΩŜz . Here, fŜx ; Ŝy ; Ŝzg are spin S > 1 operators, with

eigenstates of Ŝz being defined by Ŝz mj i ¼ m mj i. The parameter
D indicates the zero-field splitting (assumed to be axial, for
simplicity) and Ω= gzμBBz, with gz the longitudinal g-factor and μB
the Bohr magneton, characterizes the Zeeman interaction with a
static magnetic field along the z-direction. The analysis developed
here can apply both to a qudit given by a single spin-S ion and to
a giant spin originating from the strong exchange interactions
between different ions55. Also, while we focus here on the case of
an electronic qudit, the same treatment can also be applied to a
nuclear qudit with small adaptations commented in “Methods”.
For a molecular electronic spin S at low temperature, the

hyperfine coupling with the surrounding nuclear spin bath is the
dominant source of decoherence. Indeed, as typically done in
quantum computing platforms, we assume to work at tempera-
tures much smaller than the relevant energy scales of the qudit
(Ω;Dk�1

B � K), such that the thermal population of the excited
states is negligible. In these conditions, phonon absorption is very
unlikely. At the same time, the qudit energy gaps are much
smaller than the Debye energy (typically in the ≳50 K range), thus
making also resonant phonon emission (whose probability scales
as the third power of the gap) negligible56. In general, the effect of
spin-phonon coupling on the system dynamics can be calculated
from diagonalization of the rate matrix56, yielding a decay of both
diagonal and off-diagonal elements of the system density matrix
(associated to relaxation and dephasing, respectively) on related
time-scales. In particular, phonon-induced dephasing is limited by
the relaxation time T1. A body of experiments on molecular spin
qubits and qudits29,40,57 demonstrate that this is not the case at
low temperature, where T1 increases exponentially and becomes
several orders of magnitude longer than the dephasing time.
Hence, at low temperature phonons are not responsible for pure
dephasing on the spin system and other mechanisms come
into play.
Spin dipole−dipole interactions between electronic spins can

have an important effect in concentrated samples, but this is
strongly reduced if the magnetic centres are diluted in a
diamagnetic matrix21 and are not relevant here because we

consider a perspective architecture consisting of a single (or a few)
molecular unit46,58.
We, therefore, focus on the bath B of nuclear spins surrounding

S. The number of nuclear spins in the bath may range from a few
tens to a few hundreds in realistic molecular complexes, thus
being rather far from the infinite-bath limit underpinning typical
Markovianity approximations. By working in the so-called ‘coher-
ence window’59, in which the system energy gaps are much larger
than the gaps of the nuclear spin bath, off-diagonal operators
inducing population transfer on the system can be neglected. The
system-bath dynamics can be described in this regime by effective
spin Hamiltonians featuring only a diagonal coupling between S
and the bath, which are derived via perturbation theory. This type
of Hamiltonians has been studied in the context of a (pseudo)spin
S= 1/2 interacting with a nuclear spin bath6,45,60. In “Methods”, we
deduce an effective Hamiltonian for the dynamics of a generic
spin S > 1/2. In interaction picture with respect to ĤS and to first
order in Ω−1, this Hamiltonian is of the form

Ĥ ¼ Ĥ
ð0Þ
B þ ŜzĤ

ð1Þ
B þ ðŜ2 � Ŝ

2
z ÞĤ

ð2Þ
B : (1)

Both the intrinsic and the qudit-conditioned Hamiltonians HðkÞ
B of

the bath can be written in the general form

HðkÞ
B ¼

XN
n¼1

aðkÞn Î
z
n þ bðkÞn ð̂IznÞ

2� �
þ

XN
n;m¼1

m≠n

cðkÞn;mÎ
þ
n Î

�
m þ dðkÞn;mÎ

z
nÎ
z
m

� �
;

(2)

where f̂Ixk ; Î
y
k ; Î

z
kg are spin operators for the k-th nuclear spin of the

bath and Î
±
k ¼ Î

x
k ± îI

y
k . The coefficients aðkÞn;m; b

ðkÞ
n;m; c

ðkÞ
n;m; d

ðkÞ
n;m are a

function of the hyperfine couplings between S and B, the nuclear
spin−spin dipolar couplings, and Ω. In the following, nuclear spins
are assumed to be protons (I= 1/2), since hydrogen nuclei
typically represent the major decoherence source. Other relevant
parameters and details on the simulations are given in “Methods”.
System-bath entanglement, generated by the Hamiltonian of Eq.

(1), can be interpreted in terms of ‘which-way information’
accumulated in the state of the nuclear spins: depending on the
state mj i of S, the bath undergoes different interacting evolutions
described by Hamiltonians ĤB;m ¼ mh jĤ mj i. These conditioned bath
evolutions result in a decay of coherences in the system density
matrix ρSðtÞ, according to nh jρSðtÞ mj i ¼ LnmðtÞ nh jρSð0Þ mj i. The
function LnmðtÞ ¼ trB e�iĤB;ntρBð0ÞeiĤB;mt

h i
, with ρBð0Þ the initial bath

state, is computed numerically in the following through a CCE54,61.
In a free-decay experiment, the main decoherence process is

given by inhomogeneous broadening49. The system-bath diag-
onal coupling að1Þn Ŝẑ I

z
k has the effect of a classical random

magnetic field—the Overhauser field—on S. Uncertainty in the
actual bath state then produces, for the density matrix ρSðtÞ of the
qudit, a Gaussian decay for the single transition coherence,

mh jρSðtÞ nj i � e� n�mð Þ2Γ2t2 mh jρSð0Þ nj i; (3)

with Γ2 ¼ P
kðað1Þn Þ2=4 (see “Methods”), over timescales much

faster than those set by the nuclear spin−spin interaction. This is
shown in Fig. 2, where the squared fidelity F 2

SðtÞ with respect to

the initial state, with F SðtÞ ¼ trS
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρSðtÞ

p
ρSð0Þ

ffiffiffiffiffiffiffiffiffiffiffi
ρSðtÞ

pq
4, is

depicted for different spin S. The fidelity decays over timescales
of hundreds of nanoseconds.
The dramatic effect of inhomogeneous broadening on the spin

coherence is routinely compensated for in experiments by means
of spin-echo/refocusing schemes, whose basic example is the
Hahn echo. For different qudit spins, the echo dynamics is shown
in Fig. 2b. The realization of the echo transformations is further
described in ‘Practical Implementation’. The coherence decays

Fig. 1 Model system. A spin S larger than 1/2, whose many-level
structure is exploited for performing multi-level encodings, interacts
with the bath B of surrounding nuclear spins. Entanglement
between S and B induces spin dephasing, which is counteracted
through quantum error correction. Nuclear spins are plotted from a
sample configuration of 100 nuclear spins used in the simulations,
generated randomly within a sphere of radius 15Å and with a
minimal distance of 3Å between spins (see “Methods”).
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over timescales of tens-to-hundreds of microseconds, signalling
that the effect of inhomogeneous broadening is removed to a
large extent. The decay is now due to the quantum dynamics of
the bath, and is mainly determined by the contribution given by

intra-bath interactions in Hð0Þ
B , of the form cð0Þn;mÎ

þ
n Î

�
m. If the latter

were absent, the echo would recover unit fidelity independently
from S over timescales of hundreds of microseconds, until virtual

flip-flops described by the terms of type cð1Þn;mŜẑ I
þ
n Î

�
m set in. This

effect is still partially visible in Fig. 2b in the fact that for short
timescales with respect to interactions in Hð0Þ

B , the fidelity exhibits
almost overlapping decay for different S.

Optimized qudit encoding
While increasingly sophisticated echo pulse sequences can
recover the effect of inhomogeneous broadening to a better
and better degree, the spin coherence remains irremediably
affected by the interacting quantum dynamics of the bath. We
derive in the following qudit QEC codes as a means to protect the
system from these effects. In particular, we develop a framework
for designing optimal numerical codes, which are based on the
detailed description of the system-bath dynamics adopted in
this work.
A QEC code can be defined by following two fundamental

steps. The first step is to identify error operators Êk which describe
the effect of the noise source on the system, i.e., such that the
state of S at time t can be related to the initial state through

ρ̂SðtÞ ¼
X
k

Êk ρ̂Sð0ÞÊ
y
k : (4)

The second step is the derivation of computational states 0Lj i and
1Lj i that satisfy Knill−Laflamme conditions for QEC62, namely, for
all k and j,

0Lh jÊyk Êj 0Lj i ¼ 1Lh jÊyk Êj 1Lj i; (5)

0Lh jÊyk Êj 1Lj i ¼ 0: (6)

These conditions demand that, when errors Êk affect an initial
state ψLj i ¼ α 0Lj i þ β 1Lj i, the codewords are modified but the
corresponding coefficients α and β are not, and the information
they carry is thus preserved. Moreover, errors do not create
ambiguity between 0Lj i and 1Lj i: error words Êk wLj i span
subspaces that are orthogonal to each other for different w= 0, 1.
If these conditions are fulfilled, then different errors Êk can be

distinguished, detected, and corrected. In practice, a

measurement is devised whose outcome discriminates the error
occurrence and a recovery operation restores the initial state.
Importantly, the 2S+ 1 levels of a spin S offer enough state space
to detect and correct a number Ncorr= ⌊S⌋ of error operators Êk13,
where ⌊S⌋ indicates the largest integer smaller or equal than S.
Given that a decomposition of the form (4) involves, in general, a
larger number of Êk , it is essential to identify the Ncorr error
operators which have a stronger effect, such that the code can be
tailored for them ensuring optimal correction.
For the spin-dephasing scenario considered here, a decom-

position of the form (4) with exact error operators is not known,
thus preventing a derivation of adequate codewords for this type
of noise. In order to overcome this limitation, we introduce an
iterative numerical optimization procedure which, given ρ̂Sð0Þ and
ρ̂SðtÞ computed through CCE, aims at determining a number Ncorr

of operators Êk by decreasing contribution to ρ̂SðtÞ. Starting from

ρ̂
ð0Þ
S � Ê0ρ̂Sð0ÞÊ

y
0, the n-step estimate ρ̂

ðnÞ
S to ρ̂SðtÞ of the iteration

is defined according to

ρ̂
ðnÞ
S ¼ ρ̂

ðn�1Þ
S þ Ênρ̂Sð0ÞÊ

y
n: (7)

At the n-th step, the distance kρSðtÞ � ρ
ðn�1Þ
S k (here, ∥ ⋅ ∥ is the

Hilbert−Schmidt norm) is numerically minimized in order to find
optimal parameters for a parametrized form or Ên (specified in the
following), and the outcome is used for the subsequent step of the
iteration. If a hierarchy of Êk exists, a successful optimization will
return error operators which give less and less contribution, in the
norm, to the density matrix. In this sense, the numerical procedure
then leads to an optimal decomposition of ρ̂SðtÞ in the form (4).
From the structure of the system-bath Hamiltonian Ĥ of Eq. (1),

it follows that ρSðtÞ can be generically written in the form (4) with
error operators that are diagonal in the basis of states mj i. Given
that the Hilbert space of S is finite with dimension 2S+ 1, the
error operators Êk can be expanded onto a basis fD̂mg of 2S+ 1
diagonal operators. Indeed, a diagonal matrix in this space can
have at most 2S+ 1 linearly independent entries. This justifies an
expansion for the error operators of the form

Êk ¼
X2S
m¼0

Ek;mD̂m: (8)

The coefficients Ek,m are the free parameters for the numerical
optimization. The basis fD̂mg is chosen in the following to be
given by the projectors D̂m ¼ mj i mh j over the mj i states. Once
the error operators are found, the codewords enabling their QEC
are determined by imposing Knill−Laflamme’s conditions (5)
numerically, as detailed in “Methods”. The codewords obtained
from this procedure are depicted in Fig. 3a for values of spin from
S= 3/2 to S= 9/2. By construction, 0Lj i and 1Lj i have support on
different subsets of mj i states in an alternate fashion. This
automatically guarantees the fulfilment of Knill−Laflamme’s
condition (6), reducing the number of free parameters for the
numerical search required to impose the condition (5).
The performance of the optimized qudit codes is remarkable, as

shown in Fig. 3, where the fidelity after the QEC is reported, for a set
of codewords corresponding to different qudit spin S. In particular,
for each time t, Fig. 3b represents the squared fidelity of the
recovered state with respect to the encoded state, achieved by
performing an instantaneous QEC at time t. In panel 3c, we report
instead the infidelity 1� F 2

SðtÞ in log−log scale for an inset of panel
(b). One can observe that, while a squared fidelity above 0.9 is
maintained for a spin 1/2 only up to ~30 μs, the recovered fidelity is
above that value for as long as ~40, 65, 240, and 300 μs for qudit
spin S= 3/2, 5/2, 7/2 and 9/2, respectively. Similarly, the same spin
values guarantee a recovered fidelity above 0.99 for up to ~15, 20,
29, and 37 μs, well longer than the spin 1/2, ~10 μs. The possibility to
recover high fidelity even after rather long evolution times is a

Fig. 2 Inhomogeneous broadening and spin echo. a Decay of the
squared fidelity with respect to the initial state under inhomogeneous
broadening for different spins S initialized in a state ψLj i ¼ ð 0Lj i
þi 1Lj iÞ= ffiffiffiffiffiffiffið2Þp

, where 0Lj i and 1Lj i are spin-binomial codewords
corresponding to spin S13 (see also “Methods”); the results have been
averaged over 26 initial spatial configurations of the nuclear spins, as
explained in “Methods”. b Decay of the echo squared fidelity for the
same initialization of (a). For each time point t, a generalized echo
transformation of the form e�iπŜx at t/2 is understood.
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crucial resource for near-term implementations. Indeed, if the rate at
which subsequent QEC cycles need to be done is too large, the
advantage of the correction may get lost in a realistic implementa-
tion because of the non-negligible time necessary to implement all
the measurements and recovery operations of the QEC step.
The substantial advantage in increasing the spin of the qudit is

further emphasized in Fig. 4, where the gain with respect to the
spin 1/2,

GSðtÞ ¼
1� F 2

1=2ðtÞ
1� F 2

SðtÞ
; (9)

is reported as a function of time, for different values of the spin S.
A remarkable maximal gain, larger than 10, is attained, e.g., for a
spin 7/2 at around 60 μs, and a maximal gain around 15 is attained
for S= 9/2.
Depending on the time at which the optimization is performed,

rather different numerical codewords can be obtained, reflecting
the interplay of different interaction scales in the system-bath
Hamiltonian. However, broad temporal windows can be recog-
nized, in which the codewords maintain essentially the same
structure, while being quite different in two different regimes.
Therefore, a given set of codewords maintains a stable
performance if the QEC is implemented in a rather broad time
interval around the optimization time. These features can be
observed in Fig. 5a, where the gain as a function of time is shown
for three different codeword pairs obtained by optimizing at times
topt= 10, 50, 100 μs for S= 3/2. As expected, while a unique pair
giving the largest gain at all times cannot be found, codewords
optimized at a given time provide very good performance in a
rather large region around that time. We have finally checked that
the performance of the numerically optimized codewords does
not critically depend on the initial state chosen for our procedure,
as demonstrated in Fig. 5b for the exemplary case of S= 3/2. The
squared fidelity (colour scale) as a function of time (radial scale) is
reported for different values of the angle θ (angular scale)
characterizing an initial state of the form cosðθÞ 0Lj i þ i sinðθÞ 1Lj i.
Large fidelities are attained for all initial states, with fidelity
increasing as one departs from the state with equal weights [θ=
π/4], that is, the most decoherence-prone state, used in the other
reported simulations.

Practical implementation
Having analyzed the ideal efficiency of the optimized qudit codes,
we now turn to a discussion of how to implement in practice all
the steps of the QEC procedure, namely encoding, detection, and
recovery, whose formal description is given in “Methods”. The
manipulation of a spin S > 1/2 system requires of course more
complex control sequences compared to a spin S= 1/2. None-
theless, it can be realized in a total time sufficiently short so that it
does not significantly impact the efficiency of the ideal QEC, as
detailed in the following.
The population transfers required among spin states can be

realized using sequences of resonant microwave/radiofrequency
pulses. These are described in the Hamiltonian by time-dependent
control fields of the form gyμBByðtÞ cosðωtÞŜy where the envelope
By(t) is typically rectangular or Gaussian. These pulses induce
transitions from a spin state mj i to m± 1j i when ω is set at the
corresponding transition frequency, implementing a two-state
unitary rotation YmðθÞ ¼ exp½θ=2ð mþ 1j i mh j � mj i mþ 1h jÞ�
between states mj i and mþ 1j i of an arbitrary angle θ. All the

Fig. 3 Numerically optimized qudit codes. a Absolute value of the
overlap of the optimized code-words 0Lj i (blue) and 1Lj i (orange)
with each state mj i for different spins S. b Squared average fidelity
(over nuclear configurations) for different qudit spins S, for initial
state ψLj i ¼ ½ 0Lj i þ i 1Lj i� ffiffiffi

2
p

and numerical codewords 0Lj i and 1Lj i
optimized at t= 5 μs. c Infidelity 1� F 2

S for an inset of panel (b)
representing the region of F 2

S � 0:9.

Fig. 4 Gain, defined in Eq. (9), with respect to non-corrected spin
1/2 for the data in Fig. 3. The curves indicate the average of GSðtÞ
over the different nuclear spin spatial configurations (generated as
explained in “Methods”), while the shaded areas mark the region

included between GSðtÞ± σSðtÞ, where σSðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hG2

SðtÞi � hGSðtÞi2
q

is
the standard deviation and 〈 ⋅ 〉 denotes averaging. The shaded
areas show that a large gain is obtained for all spatial configurations
at given spin S. The standard deviation σS(t) increases with S since
the denominators in Eq. (9) become smaller and smaller for
increasing S. A comparison with spin-binomial codes is further
given in “Methods”.

Fig. 5 Optimization time and initial states. a Gain as a function of
time for a logical state ψLj i ¼ ð 0Lj i þ i 1Lj iÞ= ffiffiffi

2
p

for numerical
codewords optimized at three different times topt= 10, 50, 100 μs
and S= 3/2. b Fidelity (colour scale) as a function of time (radial
scale) for different initial superposition states cos θ 0Lj i þ i sin θ 1Lj i (θ
depicted in angular scale) of a set of optimized numerical
codewords for S= 3/2.
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steps of the QEC are illustrated in the following, and the explicit
realization for a S= 5/2 qudit code is depicted in Fig. 6. The
implementation proposed here generalizes the one proposed for
spin-binomial codes13.

Encoding. We assume that the information, i.e., the coefficients α
and β, is initially encoded in a simple state such as
α �1=2j i þ β 1=2j i. The preparation of the logical state α 0Lj i þ
β 1Lj i for arbitrary α and β is then realized by alternating pulses
Ym(θ) distributing population among the different mj i states and
π-pulses Ym( ± π) which rearrange the different populations in the
correct order. The angles θ of the two-level rotations are fully
determined by the components of the code-words on each mj i
state. The explicit sequence for S= 5/2 is given in panel ‘encoding’
of Fig. 6a with the angles given in Table 1. Once the state has been
codified, the system is left to decay freely for a time t/2, then a
spin-echo pulse sequence is performed, and the QEC finally takes
place at time t starting with the error detection. These pulse
sequences can also be used to perform single-qubit gates
between the code-words, for instance by first re-mapping the
code-words to, e.g., ± 1=2j i states, performing the desired two-
state operation, and re-encoding.

Spin echo. The Hahn echo for a spin 1/2 can be understood as a
magnetic pulse along x or y which effectively flips the spin. Then,
the spin can be viewed as effectively evolving with Ĥ for a time t/2
and with the same Hamiltonian but with Ŝz changed to �Ŝz for an
equal time t/2, where t is the time at which the QEC is performed.
Similarly, the echo scheme is extended here to a larger spin S > 1/2
by considering a ‘generalized-pulse’ transformation of the form
Uecho ¼ e�iπŜx at time t/2 which inverts the spin, sending state mj i
to �mj i. This transformation can be realized with a sequence of
S+ 1/2 (for half-integer S) resonant π-rotations along x or y,
coupling pairs of mj i $ �mj i states, followed by Ym(±π) pulses to
rearrange populations. For instance, in the case of a spin 5/2, Uecho

is obtained by three independent rotations 5=2j i $ �5=2j i,
3=2j i $ �3=2j i and 1=2j i $ �1=2j i. Due to the lack of a direct
matrix element between mj i and �mj i in the architecture
considered here, each of these Δm > 1 transformations needs to
be decomposed into Δm= ±1 transitions. This is done, for
instance, using the strategy discussed in “Methods-Pulse
sequences”.

Detection. To realize the error detection, two additional ingre-
dients are introduced in the system considered until now. The first
one is a weak coupling of the qudit to a spin sA= 1/2 ancilla. The
ancilla is described by adding to the Hamiltonian of Eq. (12) the
terms

ΩAŝ
z
A þ

X
k¼x;y;z

Jk ŝ
k
AŜ

k
; (10)

where fŝxA; ŝyA; ŝzAg are spin-1/2 operators for the ancilla. The first
term in Eq. (10) describes the Zeeman coupling of the ancilla to
the static magnetic field whilst the second one describes the
ancilla-qubit coupling parametrized by the tensor J. For
Jx;y � jΩ� ΩAj, such that states of qudit and ancilla remain

essentially factorized, the excitation energies of the ancilla Δ
ðmÞ
A

depend on the state mj i of the qudit via the diagonal coupling

Fig. 6 Pulse sequence for S= 5/2. a Explicit sequence of pulses to implement the QEC for a spin S= 5/2. Each horizontal line represents a
spin state mj i with time flowing from left to right. Each grey box indicates a pulse implementing a rotation Ym(θ) as described in the text, with
the values of the angles θk and ϕk given in Table 1. b Time evolution of the absolute value of the amplitude j mjψðtÞjh ij of the qudit state ψðtÞj i
over each mj i state at different stages of the control sequence, corresponding to the control pulses depicted in (a). The sequence holds for
any choice of α and β, though panel (b) shows an example with α ¼ 1=

ffiffiffi
2

p
, β ¼ i=

ffiffiffi
2

p
. Blue and orange colours represent amplitudes associated

to α and β (i.e., 0Lj i and 1Lj i), respectively. To exemplify the effect of the basis rotation and the outcome of the measurement during the
detection, the first-error case (related to the error operator Ê1 of Eq. (8)) is shown in (b).

Table 1. Angles for the pulse sequence realizing the QEC for S= 5/2
as depicted in Fig. 6.

Angles for the pulses in Fig. 6

θ angles ϕ angles

θ1 0.342 π ϕ2 0.339 π

θ2 0.560 π ϕ2 0.562 π

θ3 0.552 π ϕ3 0.888 π

θ4 −0.085 π ϕ4 −0.440 π

θ5 1.531 π ϕ5 1.538 π
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Jz ŝ
z
AŜz only, i.e.,

Δ
ðmÞ
A ¼ gAμBBz þ Jzm: (11)

By irradiating the ancilla with a resonant magnetic pulse at
angular frequency Δ

ðmÞ
A it is thus possible to selectively excite the

ancilla only if the qudit is in state mj i. A subsequent measurement
of the state of the ancilla then reveals whether the qudit state has
support on mj i or not. This mechanism will be exploited in the
following to detect the different possible errors without corrupt-
ing α and β. Apart from this selective excitation immediately
followed by a measurement, the ancilla is always in its ground
state, and thus it does not affect the previously developed
treatment of the qudit incoherent dynamics. For this reason, its
coupling to the nuclear spins is also irrelevant for the present
discussion.
The second ingredient is a coupling of the magnetic molecule to a

microwave resonator. Crucial steps towards achieving the strong
coupling between magnetic molecules and a resonator have been
experimentally demonstrated recently63. This coupling can then be
exploited to measure the ancilla, building on techniques well
developed in the field of circuit quantum-electrodynamics64–66 and
adapted to Molecular Nanomagnets67,68. The coupling of the
molecule to the resonator induces a shift of the resonance frequency
of the resonator which depends on the ancilla-qudit state. As
explained below, this can be exploited to measure the state of the
ancilla without collapsing the qudit state.
The error detection is described in an abstract setting by a

projective measurement with the projector operators given in Eq.
(25) of “Methods”. Given the difficulty to implement similar operators,
that project into complex superpositions of system eigenstates, the
detection is divided into two steps. In the first step, a sequence of
pulses is performed which rotates the full basis of error words into
the basis of mj i states in both error spaces corresponding to 0Lj i and
1Lj i (see panel ‘basis rotation’ of Fig. 6 for S= 5/2)13. This operation
thus converts the detection of the projectors (25) into an easier-to-
implement measurement in the mj i basis, and the unitarity of the
transformation ensures that α and β are preserved. At this point,
every possible post-error state is of the form α mj i þ β m0j i for
different pairs of states ð mj i; m0j iÞ.
We now aim to induce an excitation of the ancilla only for a

superposition state of the qudit with components on ð mj i; m0j iÞ,
without collapsing the superposition. We achieve this by applying a

two-tone two-photon drive at frequencies ΔðmÞ
A , Δðm0Þ

A (panel ‘ancilla
measurement’ of Fig. 6)69. Then, in the dispersive limit, the coupling
G between resonator and ancilla induces a shift of the cavity angular
frequency ωc of ±G2/δm, with δm ¼ Δ

ðmÞ
A � ωc and the sign of the

shift depending on the state of the ancilla64. Since here we need to
measure the ancilla irrespective of the state of the qudit in the
subspace ð mj i; m0j iÞ, a frequency-independent measurement of the
state of the ancilla must be performed. Two different approaches to
solve this same issue, by detecting the amplitude (but not the
frequency) of the output field, are described in69. The ancilla is then
measured by exploiting its coupling to the resonator and the qudit
wavefunction is projected onto such states. The sequence of
measurements is then repeated probing each (mutually exclusive)
pair of ð mj i; m0j iÞ states sequentially, returning a yes/no answer at
each step if the system is found in the corresponding error state, and
stopping if a positive outcome is obtained. Hence, there will be at
most ⌊S⌋measurements given that the number of possible errors for
a qudit of spin S is ⌈S⌉, where ⌈S⌉ (⌊S⌋) indicates the smallest integer
larger (largest integer smaller) or equal than S.

Recovery. After detection, the system has been projected into a
superposition state of the form α mj i þ β m0j i with known m and
m0. The simplest way to restore the encoded state α 0Lj i þ β 1Lj i is
then to first use a few π-pulses to send mj i ! 1=2j i and

m0j i ! �1=2j i, and then to repeat the pulse sequence which
implements the encoding (panel ‘recovery’ in Fig. 6). Alternatively,
one can save a few pulses by redesigning the encoding sequence
starting from each possible pair mj i, m0j i resulting from detection.

Impact on performance. The non-instantaneous duration of the
QEC procedure in a realistic implementation (during which
information is not protected), together with related potential
imperfections, may cause a loss of efficiency in the correction. We
thus here discuss to what extent such effects can reduce the
expected performance.
The operations described to implement the QEC involve

sequences of resonant pulses (and ancilla measurements) only.
In electronic spin systems, a single π-pulse requires less than 10 ns
for achieving a state transfer with high fidelity, and this time could
be further reduced by pulse-shaping techniques70–72. The
measurement time for the ancilla readout through a microwave
resonator can be roughly estimated from the field of circuit QED
to be of 40−100 ns with fidelity above 0.9865,73. Then, for the spins
S ≤ 9/2 considered here the QEC procedure requires a total time
ranging from a few hundreds of nanoseconds to few micro-
seconds at most, and is hence much shorter than the decay time
that can be allowed by the optimized code-words while ensuring
a recovery fidelity above 0.99. Indeed, the latter can be of tens of
microseconds, as visible from Figs. 3 and 5.
The practical implementation of the QEC is thus expected not to

significantly reduce the correction performance for the qudits
studied here. However, one could also predict that the growth of
the complexity of the implementation for very large spins will
eventually set a tradeoff between gain and duration of the QEC
favouring the use of moderately large spins, similarly to what was
observed for spin-binomial codes13. Importantly, this limitation
can be mitigated in the present scheme by optimizing the
codewords at larger times. Moreover, it should be noted that the
bottleneck in the specific experimental implementation proposed
here for large spins is related to the rapid scaling of the number of
pulses required with S. This, in turn, is due to the low connectivity
of the 2S+ 1 spin levels that permits resonant state transfers only
between states with Δm= ±1. A possible way around this problem
is to consider magnetic molecules with competing interac-
tions46,74–77, for which the multi-level structure used for the qudit
encoding is given by low-energy states belonging to different
multiplets that can provide larger state connectivity.

DISCUSSION
We have investigated decoherence effects produced by a realistic
nuclear spin bath on a spin qudit S > 1/2 in Molecular Nano-
magnets, by simulating the coupled system-bath dynamics via a
CCE. Building on this analysis, we have developed a versatile
numerical strategy to construct optimal QEC codes tailored for the
specific spin-dephasing errors induced by the bath, thus bridging
the gap between traditional general-purpose correction algo-
rithms and the necessity of hardware-specific strategies meeting
current experimental capabilities. The resulting qudit codes
achieve a remarkable performance, and can be optimized by
taking into account constraints on the time interval between
subsequent QECs. Moreover, the increase in performance with the
increase of the qudit spin is striking, signalling that the codes
exploit the available levels of the molecular system as a resource
very efficiently. The proposed codes can be implemented
experimentally using standard sequences of resonant control
pulses. Such sequences are explicitly designed and discussed, and
their practical realization is predicted not to set important limits
on the efficiency of the codes. Given these results, the proposed
codes are a promising candidate for realizing error-protected
quantum computational units embedded at the single-molecule
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level, a central building block for implementing reliable quantum
information processing on short-term molecular devices.
Recent works47 point out that the CCE method used here

correctly reproduces the phenomenology of coherence enhance-
ment due to the existence of a nuclear diffusion barrier53. An
interesting perspective is the integration of the framework
developed in this work with chemical engineering techniques for
achieving an even longer lifetime of the error-corrected logical qubit
through this mechanism. The synergy of tailored QEC codes as
investigated here with engineered nuclear spin distributions may
pave the way towards a class of highly coherent molecular qubits.
The framework developed in this work is general, and can be

applied to a wide landscape of molecular systems and also to
other individual spin systems such as impurities in semiconduc-
tors, in order to design a proof-of-principle experiment to
demonstrate the effectiveness of the QEC code. In addition, it
can be extended, in the future, to investigate decoherence effects
affecting superpositions of spin states belonging to different spin
multiplets74,75. This would be interesting since, on the one hand,
the use of many low-m spin states belonging to different
multiplets may allow one to increase the number of levels
available for error correction without exasperating dephasing
effects given by large m�m0 transitions. On the other hand, it
would enable a thorough study of standard block encodings
embedded in a single molecule, wherein a register of qubits is
achieved through many effective spin-1/2 systems selected from
different spin multiplets.

METHODS
Derivation of the effective Hamiltonian
The spin Hamiltonian describing the interacting evolution of the molecular
spin S and the bath B of N nuclear spins is

ĤSB ¼ ĤS þ
XN
n¼1

ωn̂I
z
n þ

XN
n¼1

Ŝ 	Dn 	 În þ
X
n≠m

În 	En;m 	 Îm; (12)

where ĤS ¼ DŜ
2
z þ ΩŜz , Ŝ ¼ fŜz ; Ŝþ; Ŝ�g, În ¼ f̂Izn; Î

þ
n ; Î

�
n g. The tensors Dn

contain dipole−dipole couplings between S and B, while the tensors En;m
contain nuclear−nuclear dipolar couplings. The elements of Dn satisfy

Dþþ
n ¼ D��

n

� �

; Dþ�

n ¼ Dþ�
n

� �
 ¼ D�þ
n ;Dþz

n ¼ D�z
n

� �

; (13)

and the same holds for the corresponding elements of En;m. A canonical
perturbative (Schrieffer-Wolff) transformation generated by

G ¼
X
β¼±;z

½Gþβ
k Ŝ

þ
Î
β

n � h.c. �; (14)

with h.c. indicating the hermitian conjugate, is constructed such that
ĤG ¼ eGĤe�G , within first order in Ω−1, does not contain off-diagonal
couplings between S and B with respect to the states mj i45,48,60,78. As
detailed in the following, G is proportional to Ω−1 and leading orders in ĤG
can thus be computed from the Baker−Campbell−Hausdorf expansion

ĤG ¼ Ĥ þ ½G; Ĥ� þ 1
2!
½G; ½G; Ĥ�� þ ¼ : (15)

The coefficients Gαβ
k are determined explicitly by imposing the cancellation

of the off-diagonal couplings between S and B to first order. This results in
the relation

G; ĤS þ
XN
n¼1

ωn̂I
z
n

" #
¼ �

X
α¼ ±;

β¼ ±; z

XN
n¼1

Dαβ
n Ŝ

α
Î
β

n:
(16)

The coefficients Gαβ
k then read

Gþþ
k ¼ Dþþ

k
ΩþDþωk

; Gþ�
k ¼ Dþ�

k
ΩþD�ωk

;

Gþz
k ¼ Dþz

k
ΩþD :

(17)

These expressions are indeed of order Ω−1 and the transformation
generated by G is thus perturbative, such that its effect on the initial
factorized qudit-nuclei state is neglected. By keeping terms in Eq. (15) to

first order in Ω−1 only and neglecting energy-non-conserving terms, the
effective Hamiltonian of Eqs. (1) and (2) is obtained with coefficients

að0Þn ¼ ωn; bð0Þn ¼ 0; cð0Þn;m ¼ Eþ�
n;m;

dð0Þn;m ¼ Ezz
n;m=2; að1Þn ¼ Dzz

n ;

bð1Þn ¼ 2
Ω jDþz

n j2 � jDþþ
n j2 � Dþ�

n

� �2h i
;

cð1Þn;m ¼ 2
Ω ðDþþ

n D��
m þD�þ

n Dþ�
m Þ;

dð1Þn;m ¼ 2
ΩD

þz
n D�z

m ;

að2Þn ¼ 2
Ω jDþþ

n j2 � ðDþ�
n Þ2

h i
;

(18)

and bð2Þn ¼ cð2Þn ¼ dð2Þn ¼ 0. The energy of S is also renormalized according
to

~Ω ¼ Ωþ 2IðI þ 1Þ
Ω

XN
n¼1

jDþþ
n j2 þ ðDþ�

n Þ2
h i

; (19)

but this is absorbed into the interaction picture in Eq. (1).

Simulations and dephasing timescales
The configuration of nuclear spins in space is generated randomly within a
sphere of radius 15Å from the spin S, as sketched in Fig. 1. Further, a
minimal distance of 3Å is considered between nuclear spins and between
each nuclear spin and S. In all the simulations presented in this work,
configurations of N= 100 nuclear spins are considered, whose initial state
is taken to be thermal at temperature T= 2 K. Moreover, a static magnetic
field Bz= 1 T along z is assumed, for achieving the regime of large Zeeman
energy of S. The decoherence function,

LnmðtÞ ¼ trB e�iĤB;ntρBð0ÞeiĤB;mt
h i

; (20)

is computed by means of a CCE54,61. This expansion decomposes Lnm(t) as
a product of contributions originating from clusters involving an increasing
number of nuclear spins, and is formally equivalent to a perturbative
expansion in small intra-bath effective couplings. Clusters involving more
and more spins contribute smaller and smaller corrections to Lnm(t),
justifying a truncation of the expansion to few-spin clusters for practical
applications. For inclusion up to n-size clusters, we call this truncation CCE-
n, which yields the truncated function LðnÞnmðtÞ.
The effect of inhomogeneous broadening is well captured by CCE-161,79.

Given that nuclear gaps are of the order of millikelvin in magnitude, an
initial thermal state of the nuclear spin-bath at temperatures T of a few
kelvins is to a good approximation a fully unpolarized state

ρBð0Þ ¼
e�Hð0Þ

B =kBT

trB½e�Hð0Þ
B =kBT �

’ 1B=2N: (21)

Under this approximation, the CCE-1 can be solved analytically also for S >
1/2 giving

Lð1ÞnmðtÞ ¼
YN
k¼1

cos
ðn�mÞDzz

k

2
t

� �
: (22)

Here, Dzz
k is the hyperfine coupling / Ŝz Î

z
k between S and the k-th nuclear

spin. For small Dzz
k t, this is well approximated by e�ðn�mÞ2Γ2t2 with Γ2 ¼P

kðDzz
k Þ2=4 as given in the main text.

For the echo dynamics, we find that CCE-2 gives essentially converged
results, as tested by including also larger clusters. For this reason, the
numerical results reported here are obtained using CCE-2. This conver-
gence confirms that intrinsic nuclear flip-flop processes give the dominant
contribution to spin dephasing after echo. Indeed, an inspection of the

magnitude of the coefficients aðkÞn;m , bðkÞn;m , cðkÞn;m, dðkÞn;m reveals three
fundamental interaction scales at play, which ordered by decreasing
strength, are associated to (i) the diagonal coupling between S and
nuclear spins (terms/ Ŝz Î

z
k which are compensated for by the echo), (ii) the

intrinsic interacting evolution (terms / Î
α

nÎ
β

m), (iii) the S-conditioned
interacting evolution (terms / Ŝz Î

α

mÎ
β

n). These different energy scales are
responsible for contributions to decoherence over different timescales,
with (ii) being dominant in the echo decay.
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Nuclear spin qudit
The quantitative analyses presented in this work are focused on the case of
an electronic spin qudit. Nevertheless, the theoretical framework applies
also to the case of a nuclear spin qudit. The crucial approximation
underlying the physical model studied here is that the qudit energy gaps
are much larger than the gaps of surrounding nuclear spins of the bath.
For an electronic qudit, these energy differences can be made intrinsically
large by using a sufficiently large static magnetic field. For a nuclear spin
qudit of a magnetic ion (coupled to an electronic spin), whose interaction
with surrounding nuclear spins is mediated by virtual excitations of the
electronic spin, the necessary energy difference mainly originates from
contact hyperfine interaction between the nuclear and electronic spin. The
construction of the effective Hamiltonian, and the hierarchy of the
interaction scales at play, then follows as discussed above.

Derivation of numerical qudit codes
The iteration defined by Eq. (7) is first used to determine the error
operators given in Eq. (8). The numerical codewords 0Lj i and 1Lj i are found
by starting from the following ansatz, inspired by spin-binomial codes13,

0L=1Lj i ¼
XSþ1=2

ℓ¼0

ℓ odd=even

γ
ð0Þ=ð1Þ
ℓ �Sþ ℓj i:

(23)

This ansatz permits one to impose Eq. (6) by construction and hence to
reduce the number of free parameters, thanks to 0Lj i and 1Lj i having non-
zero components on different sets of mj i states.
Knill−Laflamme conditions (5) are finally enforced on the coefficients

γ
ð0Þ=ð1Þ
ℓ by numerically minimizing the function

X2S
k;j¼0

0Lh jÊyk Êj 0Lj i � 1Lh jÊyk Êj 1Lj i
			 			: (24)

Detection and recovery
The abstract detection and recovery operations follow the general QEC
theory of ref. 62. Once a set of operators fÊkgk¼0;¼ ;bSc to be corrected with
a spin S is identified, the two error subspaces corresponding to 0Lj i and
1Lj i are first determined. These two subspaces are defined as the linear
span of the states Êk 0Lj i and Êk 1Lj i for all k, respectively. For each of these

subspaces, a basis f eð0Þk

			 E
g (f eð1Þk

			 E
g) is selected. This is chosen here to be

given by a Gram−Schmidt orthonormalization of states Êk 0Lj i (Êk 1Lj i). The
detection measurement is then described by the projectors

P̂k ¼ eð0Þk

			 E
eð0Þk

D 			þ eð1Þk

			 E
eð1Þk

D 			; (25)

with k= 0,…, ⌊S⌋. Finally, the recovery operation, given an outcome j of

the measurement, maps back the states eð0Þj

			 E
and eð1Þj

			 E
corresponding to

that outcome to the computational states 0Lj i and 1Lj i, respectively. Since
the coefficients α and β of the encoded state have been preserved, this
operation then fully restores the logical state ψLj i. The recovery is
formalized by a set of transformations fR̂kg such that

R̂k eðcÞk

			 E
¼ cLj i; (26)

for c= 0, 1. Here, each transformation R̂k is constructed as a rotation in the

two-dimensional space spanned by eðcÞk

			 E
and cLj i.

Pulse sequences
To systematically convert a generic transformation U acting on the state
space of a spin S > 1/2 into a sequence of resonant Ym(θ) pulses, one can
exploit known decomposition strategies from quantum control theory13,80.
In a first step, the unitary U can be decomposed into a sequence of two-
state planar rotations using the algorithm given in ref. 80. This gives a
sequence of two-state transfers which involve states mj i and m0j i also with
jm�m0j>1. To further convert such two-state rotations into rotations
Ym(θ), i.e., with jm�m0j ¼ 1, one finally exploits π-pulses to bring the
population of m0 close to m and back. For instance, defining

Ym;m0 ðθÞ ¼ exp θ=2 � mj i m0h jð þ m0j i mh j½ � (27)

for m0 >m, one can iteratively exploit the properties

Ym;mþ2ðθÞ ¼ Ym;mþ1ðπÞYmþ1;mþ2ð�θÞYm;mþ1ð�πÞ: (28)

¼ Ym;mþ1ð�πÞYmþ1;mþ2ðθÞYm;mþ1ðπÞ: (29)

As an example, the pulse sequence depicted in panel ‘basis rotation’ of Fig.

6a, which realizes a transformation mapping the basis of error words eðcÞk

			 E
to the basis of mj i states, is obtained with the procedure sketched here.
The resulting angles are given in Table 1.

Spin-binomial codes
In order to compare the numerical codes with other qudit approaches to
spin dephasing, we test recently-proposed spin-binomial codes13. These
codes are based on a description of spin dephasing as produced by a
Markovian bath which couples to the system via operator

ffiffiffi
γ

p
Ŝz . The latter

model can only describe an exponential decay of coherence with rate γ
and contributions of order (γt)n to the density matrix can be computed
exactly and are determined by powers up to Ŝ

n
z . We find that, while spin-

binomial codes still give an interesting performance, they are largely
overwhelmed by the numerical codes. This can be appreciated by
comparing Figs. 3 and 4 with Fig. 7, both in terms of fidelity and gain.
The fact that spin-binomial codes still give an increasing gain for increasing
qudit spin despite being designed for a simpler dephasing mechanism,
suggests that small powers of the coupling operators Ŝz play a
fundamental role in the decoherence process also in the present scenario,
over short timescales with respect to the intra-bath interaction strength.
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