

University of Parma Research Repository

A Sequential Algorithm for Jerk Limited Speed Planning

This is the peer reviewd version of the followng article:

Original

A Sequential Algorithm for Jerk Limited Speed Planning / Consolini, L.; Locatelli, M.; Minari, A.. - In: IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING. - ISSN 1545-5955. - (2021), pp. 1-18. [10.1109/TASE.2021.3111758]

Availability: This version is available at: 11381/2905629 since: 2021-12-16T12:45:02Z

Publisher: Institute of Electrical and Electronics Engineers Inc.

Published DOI:10.1109/TASE.2021.3111758

Terms of use:

Anyone can freely access the full text of works made available as "Open Access". Works made available

Publisher copyright

note finali coverpage

(Article begins on next page)

AUTHOR QUERIES

AUTHOR PLEASE ANSWER ALL QUERIES

PLEASE NOTE: We cannot accept new source files as corrections for your article. If possible, please annotate the PDF proof we have sent you with your corrections and upload it via the Author Gateway. Alternatively, you may send us your corrections in list format. You may also upload revised graphics via the Author Gateway.

The moot we have seen manufactorized to the constraints and unitarity and the matter of the state constraints and unitarity decision in this formula with the state of the state of the state of the state properties and the **Carefully check the page proofs (and coordinate with all authors); additional changes or updates WILL NOT be accepted after the article is published online/print in its final form. Please check author names and affiliations, funding, as well as the overall article for any errors prior to sending in your author proof corrections.**

- AQ:1 = Please confirm or add details for any funding or financial support for the research of this article.
- AQ:2 = Please confirm the postal code for Università di Parma.

AQ:3 = Please specify the section numbers for the phrase "next sections."

A Sequential Algorithm for Jerk Limited Speed Planning

Luca Consolini[®], *Member, IEEE*, Marco Locatelli[®], and Andrea Minari[®]

Luca Consolicit⁶, Member, *DEE*, Marco Locatelli⁶, and Andrea Mirari²

Abtenct--In this article, we discuss a sequential aborthum
 \bullet We the computation o[f](https://orcid.org/0000-0001-7375-1890) a number velocity, receleration, and pric constraints.

T *Abstract***— In this article, we discuss a sequential algorithm for the computation of a minimum-time speed profile over a given path, under velocity, acceleration, and jerk constraints. Such a problem arises in industrial contexts, such as automated warehouses, where LGVs need to perform assigned tasks as fast as possible in order to increase productivity. It can be reformulated as an optimization problem with a convex objective function, linear velocity and acceleration constraints, and non- convex jerk constraints, which, thus, represents the main source of the difficulty. While existing nonlinear programming (NLP) solvers can be employed for the solution of this problem, it turns out that the performance and robustness of such solvers can be enhanced by the sequential line-search algorithm proposed in this article. At each iteration, a feasible direction, with respect to the current feasible solution, is computed, and a step along such direction is taken in order to compute the next iterate. The computation of the feasible direction is based on the solution of a linearized version of the problem, and the solution of the linearized problem, through an approach that strongly exploits its special structure, represents the main contribution of this work. The efficiency of the proposed approach with respect to existing NLP solvers is proven through different computational experiments.**

 *Note to Practitioners***—This article was motivated by the needs of LGV manufacturers. In particular, it presents an algorithm for computing the minimum-time speed law for an LGV along a pre- assigned path, respecting assigned velocity, acceleration, and jerk constraints. The solution algorithm should be: 1)** *fast***, since speed planning is made continuously throughout the workday, not only when an LGV receives a new task but also during the execution of the task itself, since conditions may change, e.g., if the LGV has to be halted for security reasons and 2)** *reliable***, i.e., it should return solutions of high quality, because a better speed profile allows to save time and even small percentage improvements, say a 5% improvement, has a considerable impact on the productivity of the warehouse, and, thus, determines a significant economic gain. The algorithm that we propose meets these two requirements, and we believe that it can be a useful tool for LGV manufacturers and users. It is obvious that the proposed method also applies to the speed planning problem for vehicles other than LGVs, e.g., road vehicles.**

AQ:1 Manuscript received June 29, 2021; accepted August 24, 2021. This article was recommended for publication by Associate Editor M. Robba and Editor C. Seatzu upon evaluation of the reviewers' comments. This work was supported in part by the Programme "FIL-Quota Incentivante" of the University of Parma and in part by the Fondazione Cariparma. *(Corresponding author: Marco Locatelli.)*

AQ:2 The authors are with the Dipartimento di Ingegneria e Architettura, Università di Parma, 43121 Parma, Italy (e-mail: luca.consolini@unipr.it; marco.locatelli@unipr.it; andrea.minari2@studenti.unipr.it).

This article has supplementary material provided by the thors and color versions of one or more figures available at authors and color versions of one https://doi.org/10.1109/TASE.2021.3111758.

Digital Object Identifier 10.1109/TASE.2021.3111758

*Index Terms***— Optimization, sequential line-search method,** ⁴² **speed planning.** 43

I. INTRODUCTION 44

AN IMPORTANT problem in motion planning is the 45
computation of the minimum-time motion of a car-like vehicle from a start configuration to a target one while avoid- ⁴⁷ ing collisions (obstacle avoidance) and satisfying kinematic, ⁴⁸ dynamic, and mechanical constraints (for instance, on veloci- ⁴⁹ ties, accelerations, and maximal steering angle). This problem 50 can be approached in two ways. $\frac{51}{20}$

- 1) As a minimum-time trajectory planning, where both the 52 path to be followed by the vehicle and the timing law 53 on this path (i.e., the vehicle's velocity) are simultane- ⁵⁴ ously designed. For instance, one could use the RRT* ⁵⁵ algorithm (see [1]). $\frac{56}{56}$
- 2) As a (geometric) path planning followed by a minimum- $\frac{57}{2}$ time speed planning on the planned path (see $[2]$). \qquad 58

In this article, following the second paradigm, we assume 59 that the path that joins the initial and the final configuration θ is assigned, and we aim at finding the time-optimal speed 61 law that satisfies some kinematic and dynamic constraints. 62 The problem can be reformulated as an optimization problem, $\overline{63}$ and it is quite relevant from the practical point of view. 64 In particular, in automated warehouses, the speed of LGVs 65 needs to be planned under acceleration and jerk constraints. 66 As previously mentioned, the solution algorithm should be 67 both *fast* and *reliable*. In our previous work [3], we proposed 68 an optimal time-complexity algorithm for finding the time- 69 optimal speed law that satisfies constraints on maximum veloc- ⁷⁰ ity and tangential and normal acceleration. In the subsequent $₇₁$ </sub> work $[4]$, we included a bound on the derivative of the $\frac{72}{2}$ acceleration with respect to the arc length. In this article, $\frac{1}{73}$ we consider the presence of jerk constraints (constraints on the $\frac{74}{6}$ time derivative of the acceleration). The resulting optimization 75 problem is nonconvex and, for this reason, is significantly $\frac{76}{6}$ more complex than the ones that we discussed in [3] and [4]. π The main contribution of this work is the development of a $\frac{78}{9}$ line-search algorithm for this problem based on the sequential $\frac{79}{9}$ solution of convex problems. The proposed algorithm meets $\frac{80}{20}$ both requirements of being fast and reliable. The former 81 is met by heavily exploiting the special structure of the 82 optimization problem, the latter by the theoretical guarantee 83 that the returned solution is a first-order stationary point (in 84 practice, a local minimizer) of the optimization problem. $\frac{1}{100}$ as

1545-5955 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

⁸⁶ *A. Problem Statement*

⁸⁷ Here, we introduce the problem at hand more formally. ⁸⁸ Let γ :[0, *s*_{*f*}] → \mathbb{R}^2 be a smooth function. The image set 89 *γ* ([0, s_f]) is the path to be followed, *γ* (0) the initial configu-⁹⁰ ration, and $\gamma(s_f)$ the final one. Function γ has arc-length paraon meterization, such that $(\forall \lambda \in [0, s_f])$, $||\mathbf{y}'(\lambda)|| = 1$. In this $\frac{1}{2}$ way, s_f is the path length. We want to compute the speed-law ⁹³ that minimizes the overall transfer time (i.e., the time needed to go from γ (0) to γ (s_f)). To this end, let λ :[0, t_f] \rightarrow [0, s_f] be ⁹⁵ a differentiable monotone increasing function that represents ⁹⁶ the vehicle's arc-length position along the curve as a function 97 of time, and let $v:[0, s_f] \rightarrow [0, +\infty[$ be such that $(\forall t \in$ $[0, t_f]$) $\lambda(t) = v(\lambda(t))$. In this way, $v(s)$ is the derivative of the ⁹⁹ vehicle arc-length position, which corresponds to the norm of ¹⁰⁰ its velocity vector at position *s*. The position of the vehicle as a function of time is given by $\mathbf{x}:[0,t_f] \to \mathbb{R}^2$, $\mathbf{x}(t) = \gamma(\lambda(t))$. ¹⁰² The velocity and acceleration are given, respectively, by

$$
\dot{\mathbf{x}}(t) = \boldsymbol{\gamma}'(\lambda(t)) v(\lambda(t))
$$

$$
\ddot{\mathbf{x}}(t) = a_T(t)\mathbf{y}'(\lambda(t)) + a_N(t)\mathbf{y}'^{\perp}(\lambda(t))
$$

where $a_T(t) = v'(\lambda(t))v(\lambda(t))$ and $a_N(t) = k(\lambda(t))v(\lambda(t))^2$ ¹⁰⁶ are, respectively, the tangential and normal components of the ¹⁰⁷ acceleration (i.e., the projections of the acceleration vector 108 **x** on the tangent and the normal to the curve). Moreover ¹⁰⁹ $\gamma'^{\perp}(\lambda)$ is the normal to vector $\gamma'(\lambda)$ and the tangent of γ' 110 at λ . Here, $k:[0, s_f] \to \mathbb{R}$ is the scalar curvature, defined as *k*(*s*) = < $\gamma''(s), \gamma'(s)^{\perp} >$. Note that $|k(s)| = ||\gamma''(s)||$. In the following, we assume that $k(s) \in C^1([0, s_f], \mathbb{R})$. The total maneuver time, for a given velocity profile $v \in C^1([0, s_f], \mathbb{R})$, ¹¹⁴ is returned by the functional

$$
\mathcal{F}: C^1([0, s_f], \mathbb{R}) \to \mathbb{R}, \quad \mathcal{F}(v) = \int_0^{s_f} v^{-1}(s)ds. \quad (1)
$$

¹¹⁶ In our previous work [3], we considered the problem

$$
\min_{v \in \mathcal{V}} \mathcal{F}(v) \tag{2}
$$

where the feasible region $V \subset C^1([0, s_f], \mathbb{R})$ is defined by the ¹¹⁹ following set of constraints:

$$
v(0) = 0, \quad v(s_f) = 0 \tag{3a}
$$

$$
0 \le v(s) \le v_{\max}, \quad s \in [0, s_f] \tag{3b}
$$

$$
|v'(s)v(s)| \le A, \quad s \in [0, s_f]
$$
 (3c)

$$
[0, 0, 0, 0, 1] = 11, 0 \in [0, 0, 1]
$$
 (21)

$$
|k(s)|v(s)^{2} \leq A_{N}, \quad s \in [0, s_{f}]
$$
 (3d)

124 where v_{max} , *A*, and A_N are upper bounds for the velocity, the tangential acceleration, and the normal acceleration, respec- tively. Constraints (3a) are the initial and final interpolation conditions, while constraints (3b)–(3d) limit velocity and the tangential and normal components of acceleration. In [3], we presented an algorithm, with linear-time computational complexity with respect to the number of variables, which provides an optimal solution of (2) after spatial discretiza- tion. One limitation of this algorithm is that the obtained velocity profile is Lipschitz¹ but not differentiable so that the vehicle's acceleration is discontinuous. With the aim

¹A function $f:\mathbb{R} \to \mathbb{R}$ is *Lipschitz* if there exists a real positive constant *L* such that $(\forall x, y \in \mathbb{R})$ $|f(x) - f(y)| \le L|x - y|$.

of obtaining a smoother velocity profile, in the subsequent ¹³⁵ work [4], we required that the velocity be differentiable, and 136 we imposed a Lipschitz condition (with constant J) on its 137 derivative. In this way, after setting $w = v^2$, the feasible region 138 of the problem $W \subset C^1([0, s_f], \mathbb{R})$ is defined by the set of 139 functions $w \in C^1([0, s_f], \mathbb{R})$ that satisfy the following set of 140 constraints: 141

$$
w(0) = 0, \quad w(s_f) = 0 \tag{4a}
$$

$$
0 \le w(s) \le v_{\text{max}}^2, \quad s \in [0, s_f] \qquad (4b) \quad \text{143}
$$

$$
\frac{1}{2}|w'(s)| \le A, \quad s \in [0, s_f]
$$
 (4c) 144

$$
|k(s)|w(s) \le A_N, \quad s \in [0, s_f]
$$
\n(4d) 145

$$
|w'(s_1) - w'(s_2)| \leq J|s_1 - s_2|, \quad s_1, s_2 \in [0, s_f]. \quad (4e)
$$

Then, we end up with the problem 147

$$
\min_{w \in \mathcal{W}} G(w) \tag{5}
$$

where the objective function is 149

$$
G: C^1([0, s_f], \mathbb{R}) \to \mathbb{R}, \quad G(w) = \int_0^{s_f} w^{-1/2}(s)ds. \quad (6) \quad \text{is}
$$

s matterialist, such that be for both the content of the problem $W \subseteq C^1([0,s_f], 1)$ is the land by the content of the such stars of the problem of the such stars in the such stars of the problem of the proposition of the pr The objective function (6) and constraints $(4a)$ – $(4d)$ correspond to the ones in problem (2) after the substitution 152 $w = v²$. Note that this change of variable is well known in 153 the literature. It has been first proposed in $[5]$, while, in $[6]$, 154 it is observed that Problem (2) becomes convex after this ¹⁵⁵ change of variable. The added set of constraints (4e) is a ¹⁵⁶ Lipschitz condition on the derivative of the squared velocity w . 157 It is used to enforce a smoother velocity profile by bounding 158 the second derivative of the squared velocity with respect ¹⁵⁹ to arc length. Note that constraints (4) are linear, and the ¹⁶⁰ objective function (6) is convex. In [4], we proposed an 161 algorithm for solving a finite-dimensional approximation of 162 Problem (4). The algorithm exploited the particular structure 163 of the resulting convex finite-dimensional problem. This article ¹⁶⁴ extends the results of [4]. It considers a nonconvex varia- ¹⁶⁵ tion of Problem (4) , in which constraint $(4e)$ is substituted 166 with a constraint on the time derivative of the acceleration 167 $|\dot{a}(t)| \leq J$, where $a(t) = (d/dt)v(\lambda(t)) = v'(\lambda(t))v(\lambda(t)) =$ 168 $(1/2)w'(\lambda(t))$. Then, we set 169

$$
j_L(t) = \dot{a}(t) = \frac{1}{2} w''(s(t)) \sqrt{(w(s(t)))}.
$$

This quantity is commonly called "jerk." Bounding the ¹⁷¹ absolute value of jerk allows to avoid sudden changes of 172 acceleration and obtain a smoother motion. Then, we end up 173 with the following minimum-time problem.

Problem 1 (Smooth Minimum-Time Velocity Planning ¹⁷⁵ *Problem: Continuous Version)*: ¹⁷⁶

$$
\min_{w \in C^2} \int_0^{s_f} w(s)^{-1/2} ds \tag{17}
$$

$$
w(0) = 0, \quad w(s_f) = 0
$$

$$
0 \le w(s) \le \mu^+(s), \quad s \in [0, s_f]
$$
\n
$$
\frac{1}{1 + \sqrt{(s)}} \le \mu^+(s), \quad s \in [0, 1]
$$

$$
\frac{1}{2}|w'(s)| \le A, \quad s \in [0, s_f]
$$
 (7) 180

$$
\frac{1}{2}|w''(s)\sqrt{w(s)}| \le J \quad s \in [0, s_f]
$$
 (8) 181

 μ ⁺ is the square velocity upper bound depending on ¹⁸³ the shape of the path, i.e.,

$$
\mu^{+}(s) = \min \left\{ v_{\max}^{2}, \frac{A_{N}}{|k(s)|} \right\}
$$

w where G_{max} , A, and I are the matinar which velocity conditions the matinary wide in the simulation of the intervention of the control particle is a properties). The matinary and it are expected by the control parti 185 where v_{max} , A_N , and k are the maximum vehicle velocity, the maximum normal acceleration, and the path curvature, respectively. Parameters *A* and *J* are the bounds represent- ing the limitations on the (tangential) acceleration and the jerk, respectively. For the sake of simplicity, we consider constraints (7) and (8) symmetric and constant. However, the following development could be easily extended to the non- symmetric and nonconstant case. Note that the jerk con- straint (8) is nonconvex. The continuous problem is discretized 194 as follows. We subdivide the path into $n - 1$ intervals of 195 equal length, i.e., we evaluate function w at points s_i $((i-1)s_f)/(n-1), i = 1,...,n$, so that we have the fol-lowing *n*-dimensional vector of variables:

198
$$
\mathbf{w} = (w_1, w_2, \dots, w_n) = (w(s_1), w(s_2), \dots, w(s_n)).
$$

¹⁹⁹ Then, the finite dimensional version of the problem is given ²⁰⁰ as follows.

²⁰¹ *Problem 2 (Smooth Minimum-Time Velocity Planning* ²⁰² *Problem: Discretized Version)*:

203
$$
\min_{\mathbf{w} \in \mathbb{R}^n} \sum_{i=1}^{n-1} \frac{2h}{\sqrt{w_{i+1}} + \sqrt{w_i}}
$$
(9)

$$
0 \le \mathbf{w} \le \mathbf{u} \tag{10}
$$

$$
w_{i+1} - w_i \le 2hA, \quad i = 1, ..., n-1 \tag{11}
$$
\n
$$
w_{i+1} - w_{i+1} < 2hA, \quad i = 1, ..., n-1 \tag{12}
$$

$$
w_i - w_{i+1} \le 2hA, \quad i = 1, ..., n-1 \tag{12}
$$

$$
(w_{i-1} - 2w_i + w_{i+1})\sqrt{\frac{\ell_i(\mathbf{w})}{4}} \le 2h^2 J
$$

$$
i = 2, \dots, n-1
$$

 $i = 2, \ldots, n - 1$ (13) $-(w_{i-1} - 2w_i + w_{i+1})\sqrt{\frac{\ell_i(\mathbf{w})}{4}} \leq 2h^2 J$

$$
i = 2, \dots, n - 1 \tag{14}
$$

²¹¹ where

$$
e_i(\mathbf{w}) = w_{i+1} + w_{i-1} + 2w_i \tag{15}
$$

²¹³ while $u_i = \mu^+(s_i)$, for $i = 1, \ldots, n$, and, in particular, $u_1 = 0$ and $u_n = 0$ since we are assuming that the initial ²¹⁵ and final velocities are equal to 0. The objective function (9) ²¹⁶ is an approximation of (6) given by the Riemann sum of ²¹⁷ the intervals obtained by dividing each interval $[s_i, s_{i+1}]$, for $i = 1, \ldots, n - 1$, in two subintervals of the same size. ²¹⁹ Constraints (11) and (12) are obtained by a finite difference approximation of w' . Constraints (13) and (14) are obtained by ²²¹ using a second-order central finite difference to approximate vw'' , while w is approximated by a weighted arithmetic mean ²²³ of three consecutive samples. Due to jerk constraints (13) 224 and (14), Problem 2 is nonconvex and cannot be solved with ²²⁵ the algorithm presented in [4].

²²⁶ *B. Main Result*

²²⁷ The main contribution of this article is the development of ²²⁸ a new solution algorithm for finding a local minimum of the nonconvex Problem 2. As detailed in next sections, we propose $_{229}$ to solve Problem 2 by a line-search algorithm based on the ²³⁰ sequential solution of convex problems. The algorithm is an 231 iterative one where the following operations are performed at 232 each iteration. 233

1) Constraint Linearization: We first define a convex prob- ²³⁴ lem by linearizing constraints (13) and (14) through a first- ²³⁵ order Taylor approximation around the current point $\mathbf{w}^{(k)}$. . ²³⁶ Different from other sequential algorithms for nonlinear pro-
237 gramming (NLP) problems, we keep the original convex ²³⁸ objective function. The linearized problem is introduced in ²³⁹ Section II. 240

2) Computation of a Feasible Descent Direction: The con- ²⁴¹ vex problem (actually, a relaxation of such problem) is solved 242 in order to compute a feasible descent direction $\delta \mathbf{w}^{(k)}$. The 243 main contribution of this article lies in this part. The compu- ²⁴⁴ tation requires the minimization of a suitably defined objective ²⁴⁵ function through a further iterative algorithm. At each iteration ²⁴⁶ of this algorithm, the following operations are performed: ²⁴⁷

C. Objective Function Evaluation ²⁴⁸

Such evaluation requires the solution of a problem with 249 the same objective function but subject to a subset of the ²⁵⁰ constraints. The special structure of the resulting subproblem ²⁵¹ is heavily exploited in order to solve it efficiently. This is the 252 topic of Section III. 253

D. Computation of a Descent Step ²⁵⁴

Some Lagrange multipliers of the subproblem define a 255 subgradient for the objective function. This can be employed 256 to define a linear programming (LP) problem that returns a 257 descent step for the objective function. This is the topic of 258 Section IV. 259

Line Search: Finally, a standard line search along the half-
z60 line $\mathbf{w}^{(k)} + \alpha \delta \mathbf{w}^{(k)}$, $\alpha \ge 0$, is performed.

Sections II–IV detail all what we discussed above. Next, 262 in Section V, we present different computational experiments. 263

E. Comparison With Existing Literature ²⁶⁴

Although many works consider the problem of ²⁶⁵ minimum-time speed planning with acceleration constraints 266 (see [7]–[9]), relatively few consider jerk constraints. Perhaps, ²⁶⁷ this is also due to the fact that the jerk constraint is nonconvex ²⁶⁸ so that its presence significantly increases the complexity of 269 the optimization task. One can use a general-purpose NLP 270 solver (such as SNOPT or IPOPT) for finding a local solution 271 of Problem 2, but the required time is, in general, too large for 272 the speed planning application. As outlined in Section I-D, ²⁷³ in this work, we tackle this problem through an approach ²⁷⁴ based on the solution of a sequence of convex subproblems. 275 There are different approaches in the literature based on the 276 sequential solution of convex subproblems. In [10], it is first 277 observed that the problem with acceleration constraints but no ²⁷⁸ jerk constraints for robotic manipulators can be reformulated 279 as a convex one with linear constraints, and it is solved ²⁸⁰ by a sequence of LP problems obtained by linearizing the ²⁸¹

 $AO:3$

ss problem can be solely alwards through the solid capital solution of a method of the solely problem in the solely capital solely provides an any problem capital solely and solely provides an any method is not be a start objective function at the current point, i.e., the objective function is replaced by its supporting hyperplane at the current point, and by introducing a trust region centered at the current point. In $[11]$ and $[12]$, it is further observed that this problem can be solved very efficiently through the solution of a sequence of 2-D LP problems. In [13], an interior point barrier method is used to solve the same problem based on Newton's method. Each Newton step requires the solution of a KKT system, and an efficient way to solve such systems is proposed in that work. Moving to approaches also dealing with jerk constraints, we mention [14]. In this work, it is observed that jerk constraints are nonconvex but can be written as the difference between two convex functions. Based on this observation, the authors solve the problem by a sequence of convex subproblems obtained by linearizing at the current point the concave part of the jerk constraints and by adding a proximal term in the objective function that plays the same role as a trust region, preventing from taking too large steps. In [15] a slightly different objective function is considered. Rather than minimizing the traveling time along the given path, the integral of the squared difference between the maximum velocity profile and the computed velocity profile is minimized. After representing time-varying control inputs as products of parametric exponential and polynomial functions, the authors reformulate the problem in such a way that its objective function is convex quadratic, while nonconvexity lies in difference-of-convex functions. The resulting problem is tackled through the solution of a sequence of convex subproblems obtained by linearizing the concave part of the nonconvex constraints. In [16], the problem of speed planning for robotic manipulators with jerk constraints is reformulated in such a way that nonconvexity lies in simple bilinear terms. Such bilinear terms are replaced 315 by the corresponding convex and concave envelopes, obtaining the so-called McCormick relaxation, which is the tightest 317 possible convex relaxation of the nonconvex problem. Other approaches dealing with jerk constraints do not rely on 319 the solution of convex subproblems. For instance, in [17], a concatenation of fifth-order polynomials is employed to provide smooth trajectories, which results in quadratic jerk profiles, while, in [18], cubic polynomials are employed, resulting in piecewise constant jerk profiles. The decision process involves the choice of the phase durations, i.e., of the intervals over which a given polynomial applies. A very recent and interesting approach to the problem with jerk constraints is [19]. In this work, an approach based on numerical integration is discussed. Numerical integration has been first applied under acceleration constraints in [20] and [21]. In [19], jerk constraints are taken into account. The algorithm detects a position *s* along the trajectory where the jerk constraint is singular, that is, the jerk term disappears from one of the constraints. Then, it computes the speed profile up to *s* by computing two maximum jerk profiles and then connecting them by a minimum jerk profile, found by a shooting method. In general, the overall solution is composed of a sequence of various maximum and minimum jerk profiles. This approach does not guarantee reaching a local minimum of the traversal time. Moreover, since Problem 4

has velocity and acceleration constraints, the jerk constraint 340 is singular for all values of *s* so that the algorithm presented 341 in $[19]$ cannot be directly applied to Problem 4. $\frac{342}{2}$

Some algorithms use heuristics to quickly find sub- 343 optimal solutions of acceptable quality. For instance, ³⁴⁴ Villagra *et al.* [22] propose an algorithm that applies to curves 345 composed of clothoids, circles, and straight lines. The algo- ³⁴⁶ rithm does not guarantee the local optimality of the solution. ³⁴⁷ Raineri and Guarino Lo Bianco [23] present an efficient 348 heuristic algorithm. Also, this method does not guarantee 349 global nor local optimality. Various works in the literature 350 consider jerk bounds in the speed optimization problem for ³⁵¹ robotic manipulators instead of mobile vehicles. This is a 352 slightly different problem but mathematically equivalent to 353 Problem (1). In particular, paper [24] presents a method based 354 on the solution of a large number of nonlinear and nonconvex 355 subproblems. The resulting algorithm is slow due to a large 356 number of subproblems; moreover, the authors do not prove its 357 convergence. Zhang *et al.* [25] propose a similar method that 358 gives a continuous-time solution. Again, the method is com- ³⁵⁹ putationally slow since it is based on the numerical solution of 360 a large number of differential equations; moreover, this article 361 does not contain proof of convergence or local optimality. 362 Some other works replace the jerk constraint with *pseudo-* 363 *jerk*, that is, the derivative of the acceleration with respect 364 to arc length, obtaining a constraint analogous to (4e) and ³⁶⁵ ending up with a convex optimization problem. For instance, 366 Zhang *et al.* [26] add to the objective function a pseudo-jerk 367 penalizing term. This approach is computationally convenient, ³⁶⁸ but substituting (8) with $(4e)$ may be overly restrictive at low $\frac{1}{369}$ speeds. 370

F. Statement of Contribution 371

The method presented in this article is a sequential convex 372 one that aims at finding a local optimizer of Problem 2. ³⁷³ To be more precise, as usual with nonconvex problems, only 374 convergence to a stationary point can usually be proved. ³⁷⁵ However, the fact that the sequence of generated feasible 376 points is decreasing with respect to the objective function 377 values usually guarantees that the stationary point is a local 378 minimizer, except in rather pathological cases (see [27, p. 19]). 379 Moreover, in our experiments, even after running a local solver 380 from different starting points, we have never been able to 381 detect local minimizers better than the one returned by the 382 method we propose. Thus, a possible, nontrivial, topic for 383 future research could be that of proving the global optimality 384 of the solution. To the best of our knowledge and as detailed 385 in the following, this algorithm is more efficient than the ones 386 existing in the literature since it leverages the special struc- 387 ture of the subproblems obtained as local approximations of 388 Problem 2. We discussed this class of problems in our previous 389 work [28]. This structure allows computing very efficiently a 390 feasible descent direction for the main line-search algorithm; ³⁹¹ it is one of the key elements that allow us to outperform 392 generic NLP solvers. In summary, the main contributions of 393 this work are: 1) on the theoretical side, the development of an $_{394}$ approach for which a rigorous mathematical analysis has been ³⁹⁵

Fig. 1. Flowchart of algorithm SCA. The dashed block corresponds to a call of the procedure ComputeUpdate, proposed to solve Problem 3, which represents the main contribution of this article.

 performed, proving a convergence result to a stationary point (see Section II) and 2) on the computational side, to exploit heavily the structure of the problem in order to implement the approach in a fairly efficient way (see Sections III and IV) so that its computing times outperform those of nonlinear solvers and are competitive with heuristic approaches that are only able to return suboptimal solutions of lower quality (see Section V).

⁴⁰⁴ II. SEQUENTIAL ALGORITHM BASED ON CONSTRAINT ⁴⁰⁵ LINEARIZATION

⁴⁰⁶ To account for the nonconvexity of Problem 2, we propose ⁴⁰⁷ a line-search method based on the solution of a sequence of ⁴⁰⁸ special structured convex problems. Throughout this article, ⁴⁰⁹ we call this algorithm Sequential Convex Algorithm (SCA), ⁴¹⁰ and its flowchart is shown in Fig. 1. It belongs to the class of ⁴¹¹ Sequential Convex Programming algorithms, where, at each ⁴¹² iteration, a convex subproblem is solved. In what follows, 413 we denote by Ω the feasible region of Problem 2. At each iteration *k*, we replace the current point $\mathbf{w}^{(k)} \in \Omega$ with a $\alpha^{(k)}$ new point $\mathbf{w}^{(k)} + \alpha^{(k)}\delta\mathbf{w}^{(k)} \in \Omega$, where the step size $\alpha^{(k)}$ ∈ ⁴¹⁶ [0, 1] is obtained by a *line search* along the descent direction $\delta \mathbf{w}^{(k)}$, which, in turn, is obtained through the solution of a ⁴¹⁸ convex problem. The constraints of the convex problem are linear approximations of (10)–(14) around $\mathbf{w}^{(k)}$, while the ⁴²⁰ objective function is the original one. Then, the problem that we consider to compute the direction $\delta \mathbf{w}^{(k)}$ is given in the following (superscript *k* of $w^{(k)}$ is omitted):

⁴²³ *Problem 3:*

$$
\lim_{\delta w \in \mathbb{R}^n} \sum_{i=1}^{n-1} \frac{2h}{\sqrt{w_{i+1} + \delta w_{i+1}} + \sqrt{w_i + \delta w_i}} \tag{16}
$$

$$
I_B \le \delta w \le u_B \tag{17}
$$

$$
a_{26} \t\t \delta w_{i+1} - \delta w_i \le b_{A_i}, \quad i = 1, \dots, n-1 \t\t (18)
$$

$$
\delta w_i - \delta w_{i+1} \le b_{Di}, \quad i = 1, \dots, n-1 \tag{19}
$$

$$
\delta w_i - \eta_i \delta w_{i-1} - \eta_i \delta w_{i+1} \le b_{N_i}, \quad i = 2, ..., n-1
$$

$$
(20) \qquad \text{429}
$$

$$
\eta_i \delta w_{i-1} + \eta_i \delta w_{i+1} - \delta w_i \le b_{P_i}, \quad i = 2, \dots, n-1
$$

$$
(21) \quad \text{431}
$$

where $\mathbf{l}_B = -\mathbf{w}$ and $\mathbf{u}_B = \mathbf{u} - \mathbf{w}$ (recall that **u** has been 432 introduced in (10), and its components have been defined 433 immediately in Problem 2), while parameters η , \mathbf{b}_A , \mathbf{b}_D , η , η **b_N**, and **b_P** depend on the point **w** around which the constraints (10) – (14) are linearized. More precisely, we have 436

$$
b_{A_i} = 2hA - w_{i+1} + w_i
$$

$$
b_{Di} = 2hA - w_i + w_{i+1}
$$

$$
\eta_i = \frac{3w_{i+1} + 3w_{i-1} + 2w_i}{2(w_{i+1} + w_{i-1} + 6w_i)}
$$
\n⁴³⁹

$$
b_{P_i} = \sqrt{\ell_i(\mathbf{w})} \frac{8h^2 J + (w_{i-1} - 2w_i + w_{i+1})\sqrt{\ell_i(\mathbf{w})}}{2(w_{i+1} + w_{i-1} + 6w_i)}
$$

$$
b_{N_i} = \sqrt{\ell_i(\mathbf{w})} \frac{8h^2 J - (w_{i-1} - 2w_i + w_{i+1})\sqrt{\ell_i(\mathbf{w})}}{2(w_{i+1} + w_{i-1} + 6w_i)}
$$
 (22)

where ℓ_i is defined in (15). The following proposition is an 442 immediate consequence of the feasibility of **w**. ⁴⁴³

Proposition 1: All parameters η , \mathbf{b}_A , \mathbf{b}_D , \mathbf{b}_N , and \mathbf{b}_P are 444 nonnegative. 445

 $\frac{\log n \times \sqrt[n]{\log n} + \frac{1}{n} \log n \times \sqrt[n$ The proposed approach follows some standard ideas of 446 sequential quadratic approaches employed in the literature 447 about nonlinearly constrained problems. However, a quite ⁴⁴⁸ relevant difference is that the true objective function (9) is 449 employed in the problem to compute the direction, rather 450 than a quadratic approximation of such function. This choice 451 comes from the fact that the objective function (9) has some 452 features (in particular, convexity and being decreasing), which, ⁴⁵³ combined with the structure of the linearized constraints, ⁴⁵⁴ allows for an efficient solution of Problem 3. Problem 3 is ⁴⁵⁵ a convex problem with a nonempty feasible region ($\delta \mathbf{w} = \mathbf{0}$ is ϵ_{456} always a feasible solution) and, consequently, can be solved by 457 existing NLP solvers. However, such solvers tend to increase 458 computing times since they need to be called many times ⁴⁵⁹ within the iterative algorithm SCA. The main contribution of 460 this article lies in the routine computeUpdate (see dashed ⁴⁶¹ block in Fig. 1), which is able to solve Problem 3 and effi- ⁴⁶² ciently returns a descent direction $\delta \mathbf{w}^{(k)}$. To be more precise, 463 we solve a *relaxation* of Problem 3. Such relaxation, as well 464 as the routine to solve it, is detailed in Sections III and IV. ⁴⁶⁵ In Section III, we present efficient approaches to solve some 466 subproblems, including proper subsets of the constraints. Then, 467 in Section IV, we address the solution of the relaxation of ⁴⁶⁸ Problem 3. 469

> *Remark 1:* It is possible to see that, if one of the constraints (13) and (14) is active at $w^{(k)}$, then, along the direction $\delta \mathbf{w}^{(k)}$ computed through the solution of the linearized Problem 3, it holds that $\mathbf{w}^{(k)} + \alpha \delta \mathbf{w}^{(k)} \in \Omega$ for any sufficiently 473 small $\alpha > 0$. In other words, small perturbations of the current solution $\mathbf{w}^{(k)}$ along direction $\delta \mathbf{w}^{(k)}$ do not lead outside the feasible region Ω . This fact is illustrated in Fig. 2. Let us

Fig. 2. Constraints (13) and (14) and their linearization ($C = 4h^2J$).

⁴⁷⁷ rewrite constraints (13) and (14) as follows:

$$
\left| (x - 2y)\sqrt{x} \right| \le C \tag{23}
$$

A the computer of the spin of the spin of the spin of the computer of the spin of the spi where $x = \ell_i(\mathbf{w})$, $y = 2w_i$, and $C = 4h^2 J$ is a constant. The ⁴⁸⁰ feasible region associated with constraint (23) is reported in 481 Fig. 2. In particular, it is the region between the blue and red ⁴⁸² curves. Suppose that constraint $y \leq (x/2) + (C/2\sqrt{x})$ is active as at $\mathbf{w}^{(k)}$ (the case when $y \ge (x/2) - (C/2\sqrt{x})$ is active can ⁴⁸⁴ be dealt with in a completely analogous way). If we linearize ⁴⁸⁵ such constraint around $\mathbf{w}^{(k)}$, then we obtain a linear constraint ⁴⁸⁶ (black line in Fig. 2), which defines a region completely ⁴⁸⁷ contained into the one defined by the nonlinear constraint *y* ≤ ($x/2$)+($C/2\sqrt{x}$). Hence, for each direction δ **w**^(*k*) feasible ⁴⁸⁹ with respect to the linearized constraint, we are always able to ⁴⁹⁰ perform sufficiently small steps, without violating the original 491 nonlinear constraints, i.e., for $\alpha > 0$ small enough, it holds t_{492} that $\mathbf{w}^{(k)} + \alpha \delta \mathbf{w}^{(k)} \in \Omega$.

⁴⁹³ Constraints (13) and (14) can also be rewritten as follows:

$$
w_{i-1} + w_{i+1} - 2w_i - 4h^2 J(\ell_i(\mathbf{w}))^{-\frac{1}{2}} \le 0 \qquad (24)
$$

$$
2w_i - w_{i-1} - w_{i+1} - 4h^2 J(\ell_i(\mathbf{w}))^{-\frac{1}{2}} \le 0. \tag{25}
$$

 Note that the functions on the left-hand side of these constraints are concave. Now, we can define a variant of Problem 3 where constraints (20) and (21) are replaced by the following linearizations of constraints (24) and (25):

$$
-\beta_i \delta w_{i-1} - \beta_i \delta w_{i+1} + \delta w_i \le b'_{N_i}
$$
 (26)

$$
\theta_i \delta w_{i-1} + \theta_i \delta w_{i+1} - \delta w_i \le b'_{P_i} \tag{27}
$$

⁵⁰² where

503

504

505

$$
\theta_i = \frac{1 + 2h^2 J(\ell_i(\mathbf{w}))^{-\frac{3}{2}}}{2 - 4h^2 J(\ell_i(\mathbf{w}))^{-\frac{3}{2}}}
$$

$$
\beta_i = \frac{1 - 2h^2 J(\ell_i(\mathbf{w}))^{-\frac{3}{2}}}{2 + 4h^2 J(\ell_i(\mathbf{w}))^{-\frac{3}{2}}}
$$

$$
b'_{N_i} = \frac{6h^2 J(\ell_i(\mathbf{w}))^{-\frac{1}{2}}}{2 + 4h^2 J(\ell_i(\mathbf{w}))^{-\frac{3}{2}}}
$$

$$
b'_{P_i} = \frac{6h^2 J(\ell_i(\mathbf{w}))^{-\frac{1}{2}}}{2 - 4h^2 J(\ell_i(\mathbf{w}))^{-\frac{3}{2}}}.
$$
 (28)

⁵⁰⁷ The following proposition states that constraints (26) ⁵⁰⁸ and (27) are tighter than constraints (20) and (21).

Proposition 2: For all $i = 2, \ldots, n - 1$, it holds that $\beta_i \leq 509$ $\eta_i \leq \theta_i$. Equality $\eta_i = \theta_i$ holds if the corresponding nonlinear 510 constraint (24) is active at the current point **w**. Similarly, $\eta_i = 511$ β_i holds if the corresponding nonlinear constraint (25) is active σ_1 at the current point **w**. 513

Proof: We only prove the results about θ_i and η_i . Those 514 about β_i and η_i are proved in a completely analogous way. ϵ_{15} By definition of η_i and θ_i , we need to prove that 516

$$
\frac{3w_{i+1} + 3w_{i-1} + 2w_i}{w_{i+1} + 6w_i + w_{i-1}} \le \frac{1 + 2h^2 J(\ell_i(\mathbf{w}))^{-\frac{3}{2}}}{2 - 4h^2 J(\ell_i(\mathbf{w}))^{-\frac{3}{2}}}.
$$

After few simple computations, this inequality can be 518 rewritten as 519

$$
4h^2 J(\ell_i(\mathbf{w}))^{-\frac{1}{2}} \ge (w_{i-1} - 2w_i + w_{i+1})
$$

which holds in view of feasibility of **w** and, moreover, holds 521 as an equality if constraint (24) is active at the current point 522 **w**, as we wanted to prove. 523

In view of this result, by replacing constraints (20) and (21) 524 with (26) and (27) , we reduce the search space of the new 525 displacement δw . On the other hand, the following proposition $\frac{526}{2}$ states that, with constraints (26) and (27) , no line search is 527 needed along the direction **δw**, i.e., we can always choose the 528 step length $\alpha = 1$.

Proposition 3: If constraints (26) and (27) are employed as $\frac{1}{5}$ a replacement of constraints (20) and (21) in the definition of $\overline{531}$ Problem 3, then, for each feasible solution δw of this problem, $\frac{1}{5}$ it holds that $\mathbf{w} + \delta \mathbf{w} \in \Omega$.

Proof: For the sake of convenience, let us rewrite 534 Problem 2 in the following more compact form: 535

$$
\min f(\mathbf{w} + \boldsymbol{\delta}\mathbf{w}) \tag{536}
$$

$$
\mathbf{c}(\mathbf{w} + \delta \mathbf{w}) \le 0 \tag{29}
$$

where the vector function **c** contains all constraints 538 of Problem 2 and the nonlinear ones are given as ⁵³⁹ in (24) and (25) (recall that, in that case, vector **c** is a vector of $\overline{540}$ concave functions). Then, Problem 3 can be written as follows: ⁵⁴¹

$$
\min f(\mathbf{w} + \delta \mathbf{w}) \mathbf{c}(\mathbf{w}) + \nabla \mathbf{c}(\mathbf{w}) \delta \mathbf{w} \le 0. \tag{30} \quad \text{542}
$$

Now, it is enough to observe that, by concavity, $_{543}$

$$
\mathbf{c}(\mathbf{w} + \delta \mathbf{w}) \leq \mathbf{c}(\mathbf{w}) + \nabla \mathbf{c}(\mathbf{w}) \delta \mathbf{w} \qquad \qquad \text{544}
$$

so that each feasible solution of (30) is also feasible for (29). 545 \Box 546

The above proposition states that the feasible region of 547 Problem 3, when constraints (26) and (27) are employed 548 in its definition, is a subset of the feasible region Ω of 549 the original Problem 2. As a final result of this section, ⁵⁵⁰ we state the following theorem, which establishes convergence 551 of algorithm SCA to a stationary (KKT) point of Problem 2. ⁵⁵²

Theorem 1: If algorithm SCA is run for an infinite number 553 of iterations and there exists some positive integer value *K* ⁵⁵⁴ such that for all iterations $k \geq K$, constraints (26) and (27) are 555 always employed in the definition of Problem 3, and then, the 556 sequence of points $\{w^{(k)}\}$ generated by the algorithm converges $\frac{557}{2}$ to a KKT point of Problem 2. 558 ⁵⁵⁹ In order to prove the theorem, we first need to prove some ⁵⁶⁰ lemmas.

Lemma 1: The sequence $\{f(\mathbf{w}^{(k)})\}$ of the function values ⁵⁶² at points generated by algorithm SCA converges to a finite ⁵⁶³ value.

 Proof: The sequence is nonincreasing and bounded from 565 below, e.g., by the value $f(\mathbf{u}_B)$, in view of the fact that the objective function f is monotonic decreasing. Thus, it con-verges to a finite value.

⁵⁶⁸ Next, we need the following result based on strict convexity ⁵⁶⁹ of the objective function *f* .

 570 *Lemma 2:* For each $\delta > 0$ sufficiently small, it holds that

$$
\min\left\{\max\{f(\mathbf{x}), f(\mathbf{y})\} - f\left(\frac{\mathbf{x} + \mathbf{y}}{2}\right)\right\}
$$

$$
\vdots \mathbf{x}, \mathbf{y} \in \Omega, \ \|\mathbf{x} - \mathbf{y}\| \ge \delta\right\} \ge \varepsilon_{\delta} > 0. \quad (31)
$$

 $\frac{1}{573}$ *Proof:* Due to strict convexity, it holds that, $\forall x \neq y$,

$$
\max\{f(\mathbf{x}), f(\mathbf{y})\} - f\left(\frac{\mathbf{x} + \mathbf{y}}{2}\right) > 0.
$$

⁵⁷⁵ Moreover, the function is a continuous one. Next, ⁵⁷⁶ we observe that the region

$$
\{x, y \in \Omega: \|x - y\| \ge \delta\}
$$

⁵⁷⁸ is a compact set. Thus, by the Weierstrass theorem, the ⁵⁷⁹ minimum in (31) is attained, and it must be strictly positive, ⁵⁸⁰ as we wanted to prove. -

⁵⁸¹ Finally, we prove that also the sequence of points generated ⁵⁸² by algorithm SCA converges to some point, feasible for ⁵⁸³ Problem 2.

⁵⁸⁴ *Lemma 3:* It holds that

$$
\|\delta \mathbf{w}^{(k)}\| \to 0.
$$

⁵⁸⁶ *Proof:* Let us assume, by contradiction, that, over some δ ₅₈₇ infinite subsequence with index set *K*, it holds that $\|\delta \mathbf{w}^{(k)}\|$ \geq 588 $2\rho > 0$ for all $k \in \mathcal{K}$, i.e.,

$$
\|\mathbf{w}^{(k+1)} - \mathbf{w}^{(k)}\| \ge 2\rho > 0
$$
 (32)

where $\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} + \delta \mathbf{w}^{(k)}$. Over this subsequence, it holds, ⁵⁹¹ by strict convexity, that

$$
f(\mathbf{w}^{(k+1)}) \le f(\mathbf{w}^{(k)}) - \xi \quad \forall k \in \mathcal{K} \tag{33}
$$

for some $\xi > 0$. Indeed, it follows by optimality of $w^{(k)}$ + $\delta w^{(k)}$ for Problem 3 and convexity of f that

$$
f(\mathbf{w}^{(k+1)}) \le f\left(\frac{\mathbf{w}^{(k+1)} + \mathbf{w}^{(k)}}{2}\right) \le f(\mathbf{w}^{(k)})
$$

⁵⁹⁶ so that

$$
\max\{f(\mathbf{w}^{(k)}), f(\mathbf{w}^{(k+1)})\} = f(\mathbf{w}^{(k)}).
$$

⁵⁹⁸ Then, it follows from (32) and Lemma 2 that we can choose 599 $\zeta = \varepsilon_{\rho} > 0$. Thus, since (33) holds infinitely often, we should ₆₀₀ have $f(\mathbf{w}^{(k)})$ → −∞, which, however, is not possible in view ⁶⁰¹ of Lemma 1. - \Box

⁶⁰² Now, we are ready to prove Theorem 1.

Proof: As a consequence of Lemma 3, it also holds that ⁶⁰³

$$
\mathbf{w}^{(k)} \to \bar{\mathbf{w}} \in \Omega. \tag{34}
$$

Indeed, all points $\mathbf{w}^{(k)}$ belong to the compact feasible region 605 Ω so that the sequence $\{w^{(k)}\}\$ admits accumulation points. ∞ However, due to Lemma 3, the sequence cannot have distinct $\frac{607}{607}$ accumulation points.

Now, let us consider the compact reformulation (29) of 609 Problem 2 and the related linearization (30) , equivalent to 610 Problem 3 with the linearized constraints (26) and (27) . Since $\overline{611}$ the latter is a convex problem with linear constraints, its local 612 minimizer $\delta \mathbf{w}^{(k)}$ (unique in view of strict convexity of the 613 objective function) fulfills the following KKT conditions: ⁶¹⁴

$$
\nabla f(\mathbf{w}^{(k)} + \delta \mathbf{w}^{(k)}) + \boldsymbol{\mu}_k^{\top} \nabla \mathbf{c}(\mathbf{w}^{(k)}) = \mathbf{0}
$$

$$
\mathbf{c}(\mathbf{w}^{(k)}) + \nabla \mathbf{c}(\mathbf{w}^{(k)}) \delta \mathbf{w}^{(k)} \leq 0 \qquad \qquad \text{as}
$$

$$
\boldsymbol{\mu}_k^{\top}(\mathbf{c}(\mathbf{w}^{(k)}) + \nabla \mathbf{c}(\mathbf{w}^{(k)}) \delta \mathbf{w}^{(k)}) = 0 \tag{67}
$$

$$
\mu_k \ge 0 \tag{35} \tag{35}
$$

where μ_k is the vector of Lagrange multipliers. Now, by taking 619 the limit of system (35) , possibly over a subsequence, in order 620 to guarantee convergence of the multiplier vectors μ_k to a 621 vector $\bar{\mu}$, in view of Lemma 3 and (34), we have that 622

$$
\nabla f(\bar{\mathbf{w}}) + \bar{\boldsymbol{\mu}}^{\top} \nabla \mathbf{c}(\bar{\mathbf{w}}) = \mathbf{0}
$$

$$
\mathbf{c}(\bar{\mathbf{w}}) \leq 0 \tag{624}
$$

$$
\bar{\boldsymbol{\mu}}^{\top} \mathbf{c}(\bar{\mathbf{w}}) = 0 \tag{625}
$$

$$
\bar{\mu}\geq 0 \hspace{8cm} \text{{\tiny 626}}
$$

or, equivalently, the limit point \bar{w} is a KKT point of Problem 2, 627 as we wanted to prove. \Box 628

Remark 2: In algorithm SCA at each iteration, we solve to 629 optimality Problem 3. This is indeed necessary for the final ⁶³⁰ iterations to prove the convergence result stated in Theorem 1. 631 However, during the first iterations, it is not necessary to solve $\frac{632}{2}$ the problem to optimality: finding a feasible descent direction 633 is enough. This does not alter the theoretical properties of the 634 algorithm and allows to reduce the computing times.

ss $\frac{1}{2}$ as $\frac{1}{2}$ In the rest of this article, we refer to constraints (18) and 636 (19) as acceleration constraints, while constraints (20) and (21) $\epsilon_{0.0}$ [or (26) and (27)] are called (linearized) negative acceleration 638 rate (NAR) and positive acceleration rate (PAR) constraints, 639 respectively. Also, note that, in the different subproblems ⁶⁴⁰ discussed in the following, we always refer to the linearization 641 with constraints (20) and (21) and, thus, with parameters ϵ_{42} η_i , but the same results also hold for the linearization with 643 constraints (26) and (27) and, thus, with parameters θ_i and β_i . 644

III. SUBPROBLEM WITH ACCELERATION AND NAR 645 CONSTRAINTS ⁶⁴⁶

In this section, we propose an efficient method to solve 647 Problem 3 when PAR constraints are removed. The solution 648 of this subproblem becomes part of an approach to solve ⁶⁴⁹ a suitable relaxation of Problem 3 and, in fact, under very 650 mild assumptions, to solve Problem 3 itself. This is clarified 651 in Section IV. We discuss: 1) the subproblem including 652 only (17) and the acceleration constraints (18) and (19); 2) the ϵ_{653} subproblem including only (17) and the NAR constraints (20) ; 654

 ϵ_{655} and 2) the subproblem including all constraints (17)–(20). ⁶⁵⁶ Throughout the section, we need the results stated in the ⁶⁵⁷ following two propositions. Let us consider problems with the 658 following form, where $N = \{1, ..., n\}$ and $M_i = \{1, ..., m_j\}$, ⁶⁵⁹ *j* ∈ *N*:

$$
\begin{array}{ll}\n\text{min} & g(x_1, \dots, x_n) \\
& x_j \le a_{i,j} x_{j-1} + b_{i,j} x_{j+1} + c_{i,j}, \quad i \in M_j, \ j \in N \\
& \text{662} & \ell_j \le x_j \le u_j, \quad j \in N\n\end{array} \tag{36}
$$

663 where *g* is a monotonic decreasing function; $a_{i,j}$, $b_{i,j}$, $c_{i,j} \geq 0$, 664 for $i \in M_j$ and $j \in N$; $a_{i,1} = 0$ for $i \in M_1$; and $b_{i,n} = 0$ 665 for $i \in M_n$. The following result is proven in [28]. Here, ⁶⁶⁶ we report the proof in order to make this article self-contained. 667 We denote by *P* the feasible polytope of problem (36). ⁶⁶⁸ Moreover, we denote by **z** the componentwise maximum of all fies feasible solutions in *P*, i.e., for each $j \in N$, $z_j = \max_{x \in P} x_j$ ⁶⁷⁰ (note that the above maximum value is attained since *P* is a ⁶⁷¹ polytope).

⁶⁷² *Proposition 4:* The unique optimal solution of (36) is the ⁶⁷³ componentwise maximum **z** of all its feasible solutions.

 Proof: If we are able to prove that the componentwise maximum **z** of all feasible solutions is itself a feasible solution, by monotonicity of *g*, it must also be the unique optimal solution. In order to prove that **z** is feasible, we proceed ϵ_{78} as follows. For $j \in N$, let \mathbf{x}^{*j} be the optimal solution of $\max_{\mathbf{x} \in P} x_j$ so that $z_j = x_j^{*j}$. Since $\mathbf{x}^{*j} \in P$, then it must 680 hold that $\ell_i \leq z_i \leq u_i$. Moreover, let us consider the generic constraint

$$
x_j \le a_{i,j} x_{j-1} + b_{i,j} x_{j+1} + c_{i,j}
$$

for $i \in M_i$. It holds that

$$
z_j = x_j^{*j} \le a_{i,j} x_{j-1}^{*j} + b_{i,j} x_{j+1}^{*j} + c_{i,j}
$$

$$
\le a_{i,j} z_{i-1} + b_{i,j} z_{i+1} + c_{i,j}
$$

686 where the first inequality follows from feasibility of \mathbf{x}^{*j} , while 687 the second follows from nonnegativity of a_{ij} and b_{ij} and the 688 definition of **z**. Since this holds for all $j \in N$, the result is \Box

 $\leq a_{i,i}z_{i-1} + b_{i,i}z_{i+1} + c_{i,i}$

⁶⁹⁰ Now, consider the problem obtained from (36) by removing some constraints, i.e., by taking $M'_i \subseteq M_j$ for each $j \in N$

$$
\min_{\theta \in \mathcal{S}^2} g(x_1, \dots, x_n)
$$
\n
$$
x_j \le a_{i,j} x_{j-1} + b_{i,j} x_{j+1} + c_{i,j}, \quad i \in M'_j, \ j \in N
$$
\n
$$
\ell_j \le x_j \le u_j, \quad j \in N.
$$
\n(37)

⁶⁹⁵ Later, we also need the result stated in the following ⁶⁹⁶ proposition.

 P *Proposition 5:* The optimal solution $\bar{\mathbf{x}}^*$ of problem (37) is as an upper bound for the optimal solution x^* of problem (36), 699 i.e., $\bar{x}^* \geq x^*$.

Proof: It holds that x^* is a feasible solution of prob- τ_{01} lem (37) so that, in view of Proposition 4, $\bar{\mathbf{x}}^* \geq \mathbf{x}^*$ 702 holds. \Box

⁷⁰³ *A. Acceleration Constraints*

⁷⁰⁴ The simplest case is the one where we only consider the ⁷⁰⁵ acceleration constraints (18) and (19), besides constraints (17) with a generic upper bound vector $y > 0$. The problem to be τ_{06} solved is 707

Problem 4: ⁷⁰⁸

$$
\min_{\delta w \in \mathbb{R}^n} \sum_{i=1}^{n-1} \frac{2h}{\sqrt{w_{i+1} + \delta w_{i+1}} + \sqrt{w_i + \delta w_i}}
$$

$$
I_B \leq \delta w \leq y \tag{710}
$$

$$
\delta w_{i+1} - \delta w_i \le b_{A_i}, \quad i = 1, \dots, n-1 \tag{71}
$$

$$
\delta w_i - \delta w_{i+1} \le b_{Di}, \quad i = 1, \dots, n-1.
$$

It can be seen that such a problem belongs to the class 713 of problems (36). Therefore, in view of Proposition 4, the ⁷¹⁴ optimal solution of Problem 4 is the componentwise maximum 715 of its feasible region. Moreover, in [3], it has been proven that $_{716}$ Algorithm 1, based on a forward and a backward iteration 717 and with $O(n)$ computational complexity, returns an optimal 718 solution of Problem 4.

B. NAR Constraints ⁷²⁰

Now, we consider the problem only including NAR con- ⁷²¹ straints (20) and constraints (17) with upper bound vector y $_{722}$ *Problem 5:* 723

$$
\min_{\delta \mathbf{w} \in \mathbb{R}^n} \sum_{i=1}^{n-1} \frac{2h}{\sqrt{w_{i+1} + \delta w_{i+1}} + \sqrt{w_i + \delta w_i}} \tag{38}
$$

$$
\delta w_i \leq \eta_i(\delta w_{i-1} + \delta w_{i+1}) + b_{N_i}, \quad i = 2, \ldots, n-1 \qquad \qquad \text{and}
$$

$$
(39) \qquad \qquad 72
$$

where $y_1 = y_n = 0$ because of the boundary conditions. τ_{28} Also, this problem belongs to the class of problems (36) 729 so that Proposition 4 states that its optimal solution is the π ₃₀ componentwise maximum of its feasible region. Problem 5 can 731 be solved by using the graph-based approach presented in $[4]$ 732 and [28]. However, Cabassi et al. [4] show that, by exploiting 733 the structure of a simpler version of the NAR constraints, it is $_{734}$ possible to develop an algorithm more efficient than the graph- ⁷³⁵ based one. Our purpose is to extend the results presented in [4] $\frac{736}{ }$ to a case with different and more challenging NAR constraints 737 in order to develop an efficient algorithm outperforming the 738 graph-based one. The same state of the s

Now, let us consider the restriction of Problem 5 between $_{740}$ two generic indexes *s* and *t* such that $1 \leq s \leq t \leq n$, obtained $\frac{741}{2}$ by fixing $\delta w_s = y_s$ and $\delta w_t = y_t$ and by considering only the τ_{42}

719

NAR and upper bound constraints at $s + 1, \ldots, t - 1$. Let δw^* ⁷⁴⁴ be the optimal solution of the restriction. We first prove the ⁷⁴⁵ following lemma.

Lemma 4: The optimal solution δw^* of the restriction of 747 Problem 5 between two indexes *s* and *t*, $1 \leq s \leq t \leq n$, $\int \cos t \, dt$ is such that, for each $j \in \{s+1, \ldots, t-1\}$, either $\delta w_j^* \leq y_j$ ⁷⁴⁹ or $\delta w_j^* \leq \eta_j (\delta w_{j+1}^* + \delta w_{j-1}^*) + b_{N_j}$ holds as an equality.

 Proof: It is enough to observe that, in case both inequali- ties were strict for some j , then, in view of the monotonicity of the objective function, we could decrease the objective func- τ ₇₅₃ tion value by increasing the value of δw_j^* , thus contradicting σ ₇₅₄ optimality of δw^* . Note that the above result also applies to the full Problem 5,

756 which corresponds to the special case $s = 1$, $t = n$ with $y_1 = y_n = 0$. In view of Lemma 4, we have that there exists an index *j*, with $s < j \le t$, such that: 1) $\delta w_j^* = y_j$; 2) the 759 upper bound constraint is not active at $s + 1, \ldots, j - 1$; and 3) all NAR constraints $s + 1, \ldots, j - 1$ are active. Then, *j* is the lowest index in $\{s + 1, \ldots, t - 1\}$ where the upper bound constraint is active If index *j* were known, then the following observation allows returning the components of the optimal solution between *s* and *j*. Let us first introduce the following definitions of matrix **A** and vector **q**:

$$
\mathbf{A} = \begin{bmatrix} 1 & -\eta_{s+1} & 0 & \cdots & 0 \\ -\eta_{s+2} & 1 & -\eta_{s+2} & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & -\eta_{j-1} & 1 \end{bmatrix}
$$

$$
\mathbf{q} = \begin{bmatrix} b_{N_{s+1}} + \eta_{s+1}y_s \\ b_{N_{s+2}} \\ \vdots \\ b_{N_{j-2}} \\ b_{N_{j-1}} + \eta_{j-1}y_j \end{bmatrix}
$$
(40)

⁷⁶⁸ Note that **A** is the square submatrix of the NAR constraints 769 restricted to rows $s + 1$ up to $j - 1$ and the related columns. *T*₇₇₀ *Observation 1:* Let δw^* be the optimal solution of the ⁷⁷¹ restriction of Problem 5 between *s* and *t* and let *s* < *j*. *If* constraints $\delta w_s^* \leq y_s$, $\delta w_j^* \leq y_j$, and $\delta w_i^* \leq \eta_i (\delta w_{i+1}^* + \delta w_j^*)$ δw_{i-1}^*) + b_{N_i} , for $i = s + 1, ..., j - 1$, are all active, then δw_{s+1}^* ,..., δw_{j-1}^* are obtained by the solution of the following ⁷⁷⁵ tridiagonal system:

$$
\begin{aligned}\n\frac{\partial w_s}{\partial r} &= y_s \\
& \delta w_r - \eta_r \delta w_{r+1} - \eta_r \delta w_{r-1} = b_{Nr}, \quad r = s+1, \dots, j-1 \\
& \delta w_j &= y_j\n\end{aligned}
$$

⁷⁷⁹ or, equivalently, as

$$
\begin{aligned}\n\delta w_{s+1} - \eta_{s+1} \bar{x}_{s+2} \\
&= b_{Ns+1} + \eta_{s+1} y_s \\
\delta w_r - \eta_r \delta w_{r+1} - \eta_r \delta w_{r-1} = b_{Nr}, \quad r = s+2, \dots, j-2 \\
\delta w_{s+1} - \eta_{s+1} \bar{x}_{s+2} = b_{Ns+1} + \eta_{s+1} y_s.\n\end{aligned} \tag{41}
$$

⁷⁸⁴ In the matrix form, the above tridiagonal linear system can ⁷⁸⁵ be written as

$$
\mathbf{A}\boldsymbol{\delta}\mathbf{w}_{s+1,j-1}^{*} = \mathbf{q} \tag{42}
$$

where matrix **A** and vector **q** are defined in (40) and $\delta \mathbf{w}_{s+1,j-1}^{*}$ 787 is the restriction of vector $\delta \mathbf{w}$ to its components between $s + 1$ 788 and $j - 1$. 789

Tridiagonal systems 790

$$
a_i x_{i-1} + b_i x_i + c_i x_{i+1} = d_i, \quad i = 1, ..., m
$$

so Theodores IV (and the same for $\frac{1}{2}$ (b) $\frac{1}{2}$ (a) $\frac{1}{2}$ (a) $\frac{1}{2}$ (a) $\frac{1}{2}$ (a) $\frac{1}{2}$ (a) $\frac{1}{2}$ (b) $\frac{1}{2}$ (a) $\frac{1}{2}$ (b) $\frac{1}{2}$ (a) $\frac{1}{2}$ (a) $\frac{1}{2}$ (b) $\frac{1}{2}$ (a) $\frac{1$ with $a_1 = c_m = 0$ can be solved through so-called Thomas τ_{92} algorithm [29] with $O(m)$ operations. In order to detect the τ_{93} lowest index $j \in \{s+1,\ldots,t-1\}$ such that the upper bound τ_{94} constraint is active at j , we propose Algorithm 2, also called $\frac{795}{200}$ SolveNAR and described in what follows. We initially set 796 $j = t$. Then, at each iteration, we solve the linear system (42). $\frac{797}{200}$ Let $\bar{\mathbf{x}} = (\bar{x}_{s+1}, \dots, \bar{x}_{j-1})$ be its solution. We check whether 798 it is feasible and optimal or not. Namely, if there exists $k \in \mathbb{Z}^9$ ${s + 1, \ldots, j - 1}$ such that either $\bar{x}_k < 0$ or $\bar{x}_k > y_k$, then 800 \bar{x} is unfeasible, and consequently, we need to reduce *j* by 1. 801 If $\bar{x}_k = y_k$ for some $k \in \{s+1,\ldots,j-1\}$, then we also 802 reduce *j* by 1 since *j* is not in any case the lowest index $\frac{1}{803}$ of the optimal solution where the upper bound constraint is 804 active. Finally, if $0 \le \bar{x}_k < y_k$, for $k = s + 1, \ldots, j - 1$, then 805 we need to verify if \bar{x} is the best possible solution over the 806 interval $\{s + 1, \ldots, j - 1\}$. We are able to check that after 807 proving the following result.

Proposition 6: Let matrix **A** and vector **q** be defined as 809 in (40). The optimal solution *δ***w**[∗] of the restriction of ⁸¹⁰ Problem 5 between *s* and *t* satisfies 811

$$
\delta w_s^* = y_s
$$
, $\delta w_r^* = \bar{x}_r$, $r = s + 1, ..., j - 1$, $\delta w_j^* = y_j$ (43)

if and only if the optimal value of the LP problem 813

$$
\max_{\epsilon} \mathbf{1}^T \epsilon
$$

$$
A\epsilon\leq 0 \hspace{8.7cm} \hspace{8.2cm} \epsilon
$$

$$
\epsilon \le \bar{\mathbf{y}} - \bar{\mathbf{x}} \tag{44}
$$

is strictly positive or, equivalently, if the following system 817 admits no solution: 818

$$
\mathbf{A}^T \mathbf{\lambda} = \mathbf{1}, \quad \mathbf{\lambda} \ge \mathbf{0}.\tag{45}
$$

Proof: Let us first assume that *δ***w**[∗] does not fulfill (43). ⁸²⁰ Then, in view of Lemma 4, j is not the lowest index such 821 that the upper bound is active at the optimal solution, and 822 consequently, $\delta w_k^* = y_k > \bar{x}_k$ for some $k \in \{s+1, \ldots, j-1\}$. 823 Such optimal solution must be feasible, and in particular, 824 it must satisfy all NAR constraints between $s + 1$ and $j - 1$ 825 and the upper bound constraints between $s + 1$ and *j*, i.e., \qquad 826

$$
\delta w_{s+1}^* - \eta_{s+1} \delta w_{s+2}^* \tag{827}
$$

$$
\leq b_{Ns+1} + \eta_{s+1} y_s \tag{828}
$$

$$
\delta w_r^* - \eta_r \delta w_{r+1}^* - \eta_r \delta w_{r-1}^* \le b_{Nr}, \quad r = s+2, \ldots, j-2 \quad \text{as}
$$

$$
\delta w_{j-1}^* - \eta_{j-1} \delta w_{j-2}^* - \eta_{j-1} \delta w_j^* \le b_{N,j-1}
$$

$$
\delta w_r^* \leq y_r, \quad r = s+1, \ldots, j.
$$

In view of $\delta w_j^* \leq y_j$ and $\eta_{j-1} \geq 0$, $\delta \mathbf{w}^*$ also satisfies the 832 following system of inequalities: 833

$$
\delta w_{s+1}^* - \eta_{s+1} \delta w_{s+2}^* \tag{834}
$$

$$
\leq b_{N_s+1} + \eta_{s+1} y_s \tag{835}
$$

$$
\delta w_r^* - \eta_r \delta w_{r+1}^* - \eta_r \delta w_{r-1}^* \le b_{Nr}, \quad r = s+2, \ldots, j-2 \quad \text{as}
$$

$$
\delta w_{j-1}^* - \eta_{j-1} \delta w_{j-2}^* \le b_{N,j-1} + \eta_{j-1} y_j
$$

$$
838 \t\t \delta w_r^* \leq y_r, \quad r = s + 1, \ldots, j - 1
$$

After making the change of variables $\delta w_r^* = \bar{x}_r + \epsilon_r$ for 840 $r = s + 1, \ldots, j - 1$, and recalling that \bar{x} solves system (41), 841 the system of inequalities can be further rewritten as

842
$$
\epsilon_{s+1} - \eta_{s+1} \epsilon_{s+2} \le 0
$$

843 $\epsilon_r - \eta_r \epsilon_{r+1} - \eta_r \epsilon_{r-1} \le 0, \quad r = s+2, \ldots, j-2$

844 *i* $\epsilon_{i-1} - \eta_{i-1} \epsilon_{i-2} < 0$

845 *c_r* $\leq y_r - \bar{x}_r$, $r = s + 1, \ldots, j - 1$.

⁸⁴⁶ Finally, recalling the definition of matrix **A** and vector **q** 847 given in (40), this can also be written in a more compact form ⁸⁴⁸ as

849 **A** $\epsilon \leq 0$

$$
\epsilon \leq \bar{y} - \bar{x}.
$$

IEEE Proof δx_1 If $\delta w_k^* = y_k > \bar{x}_k$ for some $k \in \{s+1, \ldots, j-1\}$, then the 852 system must admit a solution with $\epsilon_k > 0$. This is equivalent ⁸⁵³ to prove that problem (44) has an optimal solution with at ⁸⁵⁴ least one strictly positive component, and the optimal value ⁸⁵⁵ is strictly positive. Indeed, in view of the definition of matrix ⁸⁵⁶ **A**, problem (44) has the structure of the problems discussed 857 in Proposition 4. More precisely, to see that, we need to ⁸⁵⁸ remark that maximizing $\mathbf{1}^T \boldsymbol{\epsilon}$ is equivalent to minimizing the decreasing function $-\mathbf{1}^T \boldsymbol{\epsilon}$. Then, observing that $\boldsymbol{\epsilon} = \mathbf{0}$ is a 860 feasible solution of problem (44), by Proposition 4, the optimal ssi solution ϵ^* must be a nonnegative vector, and since at least 862 one component, namely, component k , is strictly positive, then 863 the optimal value must also be strictly positive.

⁸⁶⁴ Conversely, let us assume that the optimal value is strictly $_{865}$ positive, and ϵ^* is an optimal solution with at least one strictly ⁸⁶⁶ positive component. Then, there are two possible alternatives. 867 Either the optimal solution δw^* of the restriction of Problem 5 between *s* and *t* is such that $\delta w_j^* < y_j$, in which case (43) ⁸⁶⁹ obviously does not hold, or $\delta w_j^* = y_j$. In the latter case, let 870 us assume by contradiction that (43) holds. We observe that 871 the solution that is defined as follows:

$$
x'_s = y_s
$$

873
\n874
\n
$$
x'_r = \bar{x}_r + \epsilon^*_r = \delta w^*_r + \epsilon^*_r, \quad r = s + 1, ..., j - 1
$$

\n874
\n874
\n875
\n876
\n877
\n879
\n889
\n899
\n890
\n891
\n892
\n893
\n894
\n895
\n896
\n897
\n899
\n

875
$$
x'_r = \delta w^*_r, \quad r = j + 1, ..., t
$$

⁸⁷⁶ is feasible for the restriction of Problem 5 between *s* and *t*. $\frac{1}{877}$ Indeed, by feasibility of ϵ^* in problem (44), all upper bound 878 and NAR constraints between *s* and $j - 1$ are fulfilled. Those 879 **between,** $j + 1$ **and** *t***, are also fulfilled by the feasibility of** δ **w**^{*}. Then, we only need to prove that the NAR constraint at *j* ass is satisfied. By feasibility of δ **w**[∗] and in view of ϵ_{j-1}^* , $\eta_j ≥ 0$, ⁸⁸² we have that

$$
x'_{j} = \delta w_{j}^{*} \leq \eta_{j} \delta w_{j-1}^{*} + \eta_{j} \delta w_{j+1}^{*} + b_{N j}
$$

\n
$$
\leq \eta_{j} (\delta w_{j-1}^{*} + \epsilon_{j-1}) + \eta_{j} \delta w_{j+1}^{*} + b_{N j}
$$

$$
= \eta_j x'_{j-1} + \eta_j x'_{j+1} + b_{Nj}.
$$

Thus, **x**' is feasible such that $\mathbf{x}' > \delta \mathbf{w}^*$ with at least one strict 886 inequality (recall that at least one component of ϵ^* is strictly 887 positive), which contradicts the optimality of δw^* (recall that 888 the optimal solution must be the componentwise maximum of 889 all feasible solutions).

In order to prove the last part, i.e., problem (44) has a 891 positive optimal value if and only if (45) admits no solution, $\frac{892}{2}$ and we notice that the optimal value is positive if and 893 only if the feasible point $\epsilon = 0$ is not an optimal solution, 894 or equivalently, the null vector is not a KKT point. Since, ⁸⁹⁵ at $\epsilon = 0$, constraints $\epsilon \leq \bar{y} - \bar{x}$ cannot be active, then the 896 KKT conditions for problem (44) at this point are exactly those 897 established in (45), where vector λ is the vector of Lagrange 898 mutlpliers for constraints $A \epsilon \leq 0$. This concludes the 899 proof. 900

Then, if (45) admits no solution, (43) does not hold, and 901 again, we need to reduce j by 1. Otherwise, we can fix the 902 optimal solution between *s* and *j* according to (43). After that, ⁹⁰³ we recursively call the routine SolveNAR on the remaining 904 subinterval $\{j, \ldots, t\}$ in order to obtain the solution over the 905 full interval.

Remark 3: In Algorithm 2, routine isFeasible is the 907 routine used to verify if, for $k = s+1, \ldots, j-1, 0 \le \bar{x}_k < y_k$, 908 while isOptimal is the procedure to check optimality of \bar{x} = 909 over the interval $\{s+1,\ldots,j-1\}$, i.e., (43) holds. $\qquad \qquad \text{910}$

Now, we are ready to prove that Algorithm 2 solves 911 Problem 5. 912

Proposition 7: The call solveNAR(y , 1, *n*) of 913 Algorithm 2 returns the optimal solution of Problem $5.$ 914

Proof: After the call solveNAR(y , 1, *n*), we are able 915 to identify the portion of the optimal solution between 1 and 916 some index j_1 , $1 < j_1 \le n$. If $j_1 = n$, then we are done. Otherwise, we make the recursive call solveNAR(y , j_1 , n), 918 which enables to identify also the portion of the optimal 919 solution between j_1 and some index j_2 , $j_1 < j_2 \le n$. If $j_2 = n$, 920 then we are done. Otherwise, we make the recursive call 921 solveNAR(y , j_2 , n) and so on. After at most *n* recursive 922 calls, we are able to return the full optimal solution. \Box 923

⁹²⁴ *Remark 4:* Note that Algorithm 2 involves solving a signifi-925 cant amount of linear systems, both to compute \bar{x} and verify its 926 optimality [see (42) and (45)]. Some tricks can be employed to 927 reduce the number of operations. Some of these are discussed ⁹²⁸ in [30].

⁹²⁹ The following proposition states the worst case complexity ⁹³⁰ of solveNAR(**y**,1,*n*).

Proposition 8: Problem 5 can be solved with $O(n^3)$ oper-932 ations by running the procedure $SolveNAR(y, 1, n)$ and by ⁹³³ using the Thomas algorithm for the solution of each linear ⁹³⁴ system.

 $\frac{935}{1}$ *Proof:* In the worst case, at the first call, we have $j_1 = 2$ $\frac{1}{936}$ since we need to go all the way from $j = n$ down to $j = 2$. 937 Since, for each *j*, we need to solve a tridiagonal system, which 938 requires at most $O(n)$ operations, the first call of SolveNAR requires $O(n^2)$ operations. This is similar for all successive 940 calls, and since the number of recursive calls is at most $O(n)$, $\begin{bmatrix} 941 \end{bmatrix}$ the overall effort is at most of $O(n^3)$ operations.

942 In fact, what we observed is that the practical complexity ⁹⁴³ of the algorithm is much better, namely, $\Theta(n^2)$.

⁹⁴⁴ *C. Acceleration and NAR Constraints*

⁹⁴⁵ Now, we discuss the problem with acceleration and NAR ⁹⁴⁶ constraints, with upper bound vector **y**, i.e.,

⁹⁴⁷ *Problem 6:*

$$
\min_{\delta w \in \mathbb{R}^n} \sum_{i=1}^{n-1} \frac{2h}{\sqrt{w_{i+1} + \delta w_{i+1}} + \sqrt{w_i + \delta w_i}}
$$

949 **l**_B $\leq \delta w \leq y$

950 $\delta w_{i+1} - \delta w_i \leq b_{A_i}, \quad i = 1, \ldots, n-1$

951 $\delta w_i - \delta w_{i+1} \le b_{Di}, \quad i = 1, \ldots, n-1$

 $\delta w_i - \eta_i \delta w_{i-1} - \eta_i \delta w_{i+1} \le b_N, \quad i = 2, ..., n-1.$

The Hollowing proposition states the worst case complexity solution of Phothern 6 when $e = 0$ and state and an alternative state of an alternative state of an alternative state of an alternative state of an alternative st We first remark that Problem 6 has the structure of problem (36) so that, by Proposition 4, its unique optimal solution is the componentwise maximum of its feasible region. As for Problem 5, we can solve Problem 6 by using the graph- based approach proposed in [28]. However, Cabassi *et al.* [4] show that, if we adopt a very efficient procedure to solve Prob- lems 4 and 5, then it is worth splitting the full problem into two separated ones and use an iterative approach (see Algorithm 3). 961 Indeed, Problems 4–6 share the common property that their optimal solution is also the componentwise maximum of the corresponding feasible region. Moreover, according to Proposition 5, the optimal solutions of Problems 4 and 5 are valid upper bounds for the optimal solution (actually, also for any feasible solution) of the full Problem 6. In Algorithm 3, 967 we first call the procedure SolveACC with input the upper bound vector **y**. Then, the output of this procedure, which, according to what we have just stated, is an upper bound for 970 the solution of the full Problem 6, satisfies $\delta w_{\text{Acc}} \leq y$, and 971 becomes the input for a call of the procedure SolveNAR. 972 The output δw_{NAR} of this call is again an upper bound for 973 the solution of the full Problem 6, and it satisfies $\delta w_{\text{NAR}} \leq$ *δ***w**Acc. This output becomes the input of a further call to the procedure SolveACC, and we proceed in this way until the distance between two consecutive output vectors falls below a

prescribed tolerance value ε . The following proposition states $\frac{977}{2}$ that the sequence of output vectors generated by the alternate 978 calls to the procedures SolveACC and SolveNAR converges 979 to the optimal solution of the full Problem 6.

Proposition 9: Algorithm 3 converges to the the optimal 981 solution of Problem 6 when $\varepsilon = 0$ and stops after a finite 982 number of iterations if $\varepsilon > 0$.

Proof: We have observed that the sequence of alternate 984 solutions of Problems 4 and 5, here denoted by $\{y_t\}$, is: 1) a 985 sequence of valid upper bounds for the optimal solution of 986 Problem 6; 2) componentwise monotonic nonincreasing; and 987 3) componentwise bounded from below by the null vector. 988 Thus, if $\varepsilon = 0$, an infinite sequence is generated, which 989 converges to some point \bar{y} , which is also an upper bound $\frac{990}{2}$ for the optimal solution of Problem 6 but, more precisely, ⁹⁹¹ by continuity, is also a feasible point of the problem and, 992 is thus, also the optimal solution of the problem. If $\varepsilon > 0$, due 993 to the convergence to some point \bar{y} , at some finite iteration, $\frac{994}{994}$ the exit condition of the while loop must be satisfied. \Box 995

IV. DESCENT METHOD FOR THE CASE OF ACCELERATION, 996 PAR, AND NAR CONSTRAINTS 997

Unfortunately, PAR constraints (21) do not satisfy the 998 assumptions requested in Proposition 4 in order to guarantee 999 that the componentwise maximum of the feasible region is ¹⁰⁰⁰ the optimal solution of Problem 3. However, in Section III, 100 we have shown that Problem 6, i.e., Problem 3 without the ¹⁰⁰² PAR constraints, can be efficiently solved by Algorithm 3. 1003 Our purpose then is to separate the acceleration and NAR ¹⁰⁰⁴ constraints from the PAR constraints.

Definition 1: Let $f: \mathbb{R}^n \to \mathbb{R}$ be the objective function of 1006 Problem 3, and let D be the region defined by the acceleration 1007 and NAR constraints (the feasible region of Problem 6). ¹⁰⁰⁸ We define the function $F: \mathbb{R}^n \to \mathbb{R}$ as follows: 1009

$$
F(\mathbf{y}) = \min\{f(\mathbf{x}) \, | \, \mathbf{x} \in \mathcal{D}, \mathbf{x} \leq \mathbf{y}\}.
$$

Namely, *F* is the optimal value function of Problem 6 when 1011 the upper bound vector is **y**. 1012

Proposition 10: Function *F* is a convex function. *Proof:* Since Problem 6 is convex, then the optimal value 1014 function *F* is convex (see [31, Sec. 5.6.1]). 1015

Now, let us introduce the following problem:

$$
1017 \t\t Problem 7:
$$

\n
$$
\begin{array}{ll}\n\text{min} & F(\mathbf{y}) \\
\mathbf{y} \in \mathbb{R}^n\n\end{array} \tag{46}
$$

$$
\eta_i(y_{i-1} + y_{i+1}) - y_i \le b_{P_i}, \quad i = 2, \dots, n-1 \quad (47)
$$

$$
l_B \le y \le u_B. \tag{48}
$$

1021 Such a problem is a relaxation of Problem 3. Indeed, each feasible solution of Problem 3 is also feasible for Problem 7, and the value of *F* at such solution is equal to the value of the objective function of Problem 3 at the same solution. We solve Problem 7 rather than Problem 3 to compute the new displacement δw . More precisely, if y^* is the optimal solution of Problem 7, then we set

$$
\delta \mathbf{w} = \arg \min_{\mathbf{x} \in \mathcal{D}, \mathbf{x} \le \mathbf{y}^*} f(\mathbf{x}). \tag{49}
$$

 In the following proposition, we prove that, under a very mild condition, the optimal solution of Problem 7 computed in (49) is feasible and, thus, optimal for Problem 3 so that, although we solve a relaxation of the latter problem, we return an optimal solution for it.

Proposition 11: Let $w^{(k)}$ be the current point. If

$$
\mathcal{E}_{j}(\delta \mathbf{w}) \leq \mathcal{E}_{j}(\mathbf{w}^{(k)}) \big(3 + \min\big\{0, \xi(\mathbf{w}^{(k)})\big\}\big), \quad j = 2, \ldots, n - 1
$$
\n¹⁰³⁶

¹⁰³⁷ where *δ***w** is computed through (49) and

$$
\zeta(\mathbf{w}^{(k)}) = \frac{\sqrt{\ell_j(\mathbf{w}^{(k)})}\left(w_{j-1}^{(k)} + w_{j+1}^{(k)} - 2w_j^{(k)}\right)}{2h^2J} \ge -2
$$

(the inequality follows from feasibility of $w^{(k)}$), then δw is feasible for Problem 3, both if the nonlinear constraints are linearized as in (20) and (21), and if they are linearized as in (26) and (27).

 Proof: First, we notice that, if we prove the result for the tighter constraints (26) and (27), then it must also hold for constraints (20) and (21). Thus, we prove the result only for the former. By definition (49), *δ***w** satisfies the acceleration and NAR constraints so that

$\delta w_j \leq \delta w_{j+1} + b_{D_j}$
$\delta w_j \leq \delta w_{j-1} + b_{A_{j-1}}$
$\delta w_j \leq \beta y_{j-1} + b_{A_{j-1}}$
$\delta w_j \leq \beta_j (\delta w_{j+1} + \delta w_{j-1}) + b'_{N_j}$
$\delta w_j \leq y_j^*$

 At least one of these constraints must be active; otherwise, δw_i could be increased, thus contradicting optimality. If the active constraint is $\delta w_j \leq \beta_j(\delta w_{j+1} + \delta w_{j-1}) + b'_{N_j}$, then constraint (27) can be rewritten as follows:

$$
1056 \quad 4h^2 J\big(\ell_j(\mathbf{w}^{(k)})\big)^{-\frac{3}{2}} \big(\delta w_{j+1} + 2\delta w_j + \delta w_{j-1}\big) \\
 \leq 12h^2 J\big(\ell_j(\mathbf{w}^{(k)})\big)^{-\frac{1}{2}}
$$

¹⁰⁵⁸ or, equivalently,

$$
\ell_j(\delta \mathbf{w}) \leq 3\ell_j(\mathbf{w}^{(k)})
$$

¹⁰⁶⁰ implied by (50), and thus, the constraint is satisfied under the ¹⁰⁶¹ given assumption. If $\delta w_j = y_j^*$, then

$$
\log \theta_j \left(\delta w_{j-1} + \delta w_{j+1} \right) \leq \theta_j \left(y_{j-1}^* + y_{j+1}^* \right) \leq y_j^* + b'_{P_j} = \delta w_j + b'_{P_j}
$$

where the second inequality follows from the fact that **y**[∗] ¹⁰⁶³ satisfies the PAR constraints. Now, let $\delta w_j = \delta w_{j+1} + b_{D_j}$ 1064 (the case when $\delta w_j \leq \delta w_{j-1} + b_{A_{j-1}}$ is active can be dealt 1065 with in a completely analogous way). First, we observe that 1066 $\delta w_j \ge \delta w_{j-1} - b_{D_{j-1}}$. Then, 1067

$$
2\delta w_j \ge \delta w_{j+1} + \delta w_{j-1} + b_{D_j} - b_{D_{j-1}}.
$$

In view of the definitions of b_{D_i} and $b_{D_{i-1}}$, this can also be 1069 written as 1070

$$
2\delta w_j \ge \delta w_{j+1} + \delta w_{j-1} + w_{j+1}^{(k)} - 2w_j^{(k)} + w_{j-1}^{(k)}.
$$
 (51) 1071

Now, after recalling the definitions of θ_j and b'_{P_j} given 1072 in (28), and setting $\Delta = h^2 J$, (27) can be rewritten as 1073

$$
2\delta w_j \ge \delta w_{j+1} + \delta w_{j-1} + 2\Delta \big(\ell_j(\mathbf{w}^{(k)})\big)^{-\frac{3}{2}} \ell_j(\delta \mathbf{w})
$$
\n⁽¹⁰⁷⁴⁾

$$
-6\Delta\big(\ell_j\big(\mathbf{w}^{(k)}\big)\big)^{-\frac{1}{2}}.\t(1075)
$$

1081

Taking into account (51) , such inequality certainly holds if 1076

$$
w_{j+1}^{(k)} - 2w_j^{(k)} + w_{j-1}^{(k)} \ge 2\Delta \big(\ell_j(\mathbf{w}^{(k)})\big)^{-\frac{3}{2}} \ell_j(\delta \mathbf{w})
$$

-6\Delta \big(\ell_j(\mathbf{w}^{(k)})\big)^{-\frac{1}{2}}

which is equivalent to 1079

$$
\ell_j(\delta \mathbf{w}) \leq \ell_j(\mathbf{w}^{(k)}) \big(3 + \xi(\mathbf{w}^{(k)}) \big).
$$

This is also implied by (50) .

Assumption (50) is mild. In order to fulfill it, one can 1082 impose restrictions on δw_{i-1} , δw_i and δw_{i+1} . In fact, in the 1083 computational experiments, we did not impose such restric- ¹⁰⁸⁴ tions unless a positive step-length along the computed direc- ¹⁰⁸⁵ tion **δw** could not be taken (which, however, never occurred 1086 in our experiments).

vs. Such a problem is a relation of Problem 3, both in the set of $\frac{1}{2}$ and $\frac{1}{2}$ and Now, let us turn our attention toward the solution of 1088 Problem 7. In order to solve it, we propose a descent method. 1089 We can exploit the information provided by the dual optimal 1090 solution $v \in \mathbb{R}^n_+$ associated with the upper bound constraints 1091 of Problem 6. Indeed, from the sensitivity theory, we know ¹⁰⁹² that the dual solution is related to the gradient of the optimal 1093 value function F (see Definition 1) and provides information 1094 about how it changes its value for small perturbations of the ¹⁰⁹⁵ upper bound values (for further details, see [31, Secs. $5.6.2$ and $_{1096}$ 5.6.5]). Let $\mathbf{y}^{(t)}$ be a feasible solution of Problem 7 and $\mathbf{v} \in \mathbb{R}^n_+$ 1097 be the Lagrange multipliers of the upper bound constraints of 1098 Problem 6 when the upper bound is $y^{(t)}$. Let $_{1099}$

$$
\varphi_i = b_{P_i} - \eta_i \left(y_{i-1}^{(t)} + y_{i+1}^{(t)} \right) + y_i^{(t)}, \quad i = 2, \dots, n-1.
$$

Then, a *feasible descent direction* $\mathbf{d}^{(t)}$ can be obtained by 1101 solving the following LP problem: 1102 *Problem 8:* 1103

$$
\min_{\mathbf{d}\in\mathbb{R}^n} -\mathbf{v}^T \mathbf{d} \tag{52}
$$

$$
\eta_i(d_{i-1}+d_{i+1})-d_i\leq \varphi_i, \quad i=2,\ldots,n-1 \qquad (53)
$$

$$
\mathbf{l}_{\mathbf{B}} \leq \mathbf{y}^{(t)} + \mathbf{d} \leq \mathbf{u}_{\mathbf{B}} \tag{54}
$$

where the objective function (52) imposes that $\mathbf{d}^{(t)}$ is a 1107 descent direction, while constraints (53) and (54) guarantee 1108 feasibility with respect to Problem 7. Problem 8 is an LP ¹¹⁰⁹

 problem, and consequently, it can easily be solved through a standard LP solver. In particular, we employed GUROBI [32]. Unfortunately, since the information provided by the dual optimal solution *ν* is local and related to small perturbations of the upper bounds, it might happen that $F(\mathbf{y}^{(t)} + \mathbf{d}^{(t)}) \geq F(\mathbf{y}^{(t)})$. To overcome this issue, we introduce a trust-region constraint ¹¹¹⁶ in Problem 8. Thus, let $\sigma^{(t)} \in \mathbb{R}_+$ be the radius of the trust 1117 region at iteration t ; then, we have

¹¹¹⁸ *Problem 9:*

$$
\min_{\mathbf{d}\in\mathbb{R}^n} -\mathbf{v}^T \mathbf{d} \tag{55}
$$

1120 $\eta_i(d_{i-1} + d_{i+1}) - d_i \leq \varphi_i, \quad i = 2, \ldots, n-1$ (56)

 $\bar{\mathbf{I}}_{\mathbf{B}} < \mathbf{d} < \bar{\mathbf{u}}_{\mathbf{B}}$ (57)

 $\sum_{i=1}^{n}$ where $\bar{l}_{B_i} = \max\{l_{B_i} - y_i^{(t)}, -\sigma^{(t)}\}$ and $\bar{u}_{B_i} = \min\{u_{B_i} - v_i^{(t)}\}$ ^{*t*123} $y_i^{(t)}$, $\sigma^{(t)}$ } for $i = 1, ..., n$. After each iteration of the descent algorithm, we change the radius $\sigma^{(t)}$ according to the following ¹¹²⁵ rules.

- 1126 1) If $F(\mathbf{y}^{(t)} + \mathbf{d}^{(t)}) \geq F(\mathbf{y}^{(t)})$, then we set $\mathbf{y}^{(t+1)} = \mathbf{y}^{(t)}$, and we tight the trust region by decreasing $\sigma^{(t)}$ by a factor 1128 $\tau \in (0, 1)$.
- 1129 2) If $F(\mathbf{y}^{(t)} + \mathbf{d}^{(t)}) < F(\mathbf{y}^{(t)})$, then we set $\mathbf{y}^{(t+1)} = \mathbf{y}^{(t)} + \mathbf{d}^{(t)}$ and enlarge the radius $\sigma^{(t)}$ by a factor $\rho > 1$.

so the upper boundary in the Hotel strain in the third in the strain in the strain in the boundary of the strain in Frobenius Strain in the boundary of the strain in Frobenius Strain in the strain in Frobenius (1997). The ¹¹³¹ The proposed descent algorithm is sketched in Fig. 3, which ¹¹³² reports the flowchart of the procedure ComputeUpdate used in algorithm SCA. We initially set $\mathbf{v}^{(0)} = \mathbf{0}$. At each iteration *t*, we evaluate the objective function $F(y^t)$ by solving Problem 6 with upper bound vector $y^{(t)}$ through a call of the routine ¹¹³⁶ solveACCNAR (see Algorithm 3). Then, we compute the $_{1137}$ Lagrange multipliers *associated with the upper bound con-*¹¹³⁸ straints. After that, we compute a candidate descent direction ¹¹³⁹ **d**^(*t*) by solving Problem 9. If **d**^(*t*) is a descent step, then we set ¹¹⁴⁰ $\mathbf{y}^{(t+1)} = \mathbf{y}^{(t)} + \mathbf{d}^{(t)}$ and enlarge the radius of the trust region; ¹¹⁴¹ otherwise, we do not move to a new point, and we tight the ¹¹⁴² trust region and solve again Problem 9. The descent algorithm ¹¹⁴³ stops as soon as the radius of the trust region becomes smaller 1144 than a fixed tolerance ε_1 .

Remark 5: Note that we initially set $y^{(0)} = 0$. However, any feasible solution of Problem 9 does the job, and actually, start- ing with a good initial solution may enhance the performance of the algorithm.

 Remark 6: Problem 9 is an LP and can be solved by any existing LP solver. However, a suboptimal solution to Problem 9, obtained by a heuristic approach, is also accept- able. Indeed, we observe that: 1) an *optimal* descent direction is not strictly required and 2) a heuristic approach allows to reduce the time needed to get a descent direction. In this article, we employed a possible heuristic, whose description can be found in [30], but the development of further heuristic approaches is a possible topic for future research.

¹¹⁵⁸ V. COMPUTATIONAL EXPERIMENTS

¹¹⁵⁹ In this section, we present various computational experi-¹¹⁶⁰ ments performed in order to evaluate the approaches proposed ¹¹⁶¹ in Sections III and IV.

¹¹⁶² In particular, we compared solutions of Problem 2 computed ¹¹⁶³ by algorithm SCA to solutions obtained with commercial NLP solvers. Note that, with a single exception, we did not carry out 1164 a direct comparison with other methods specifically tailored to 1165 Problem 2 for the following reasons.

- 1) Some algorithms (such as $[22]$ and $[23]$) use heuristics to 1167 quickly find suboptimal solutions of acceptable quality ¹¹⁶⁸ but do not achieve local optimality. Hence, comparing 1169 their solution times with SCA would not be fair. How- ¹¹⁷⁰ ever, in one of our experiments (see Experiment 4), 1171 we made a comparison between the most recent heuristic $_{1172}$ proposed in [23] and algorithm SCA, both in terms 1173 of computing times and in terms of the quality of the ¹¹⁷⁴ returned solution.
- 2) The method presented in [26] does not consider the ¹¹⁷⁶ (nonconvex) jerk constraint but solves a convex problem 1177 whose objective function has a penalization term that 1178 includes pseudojerk. Due to this difference, a direct ¹¹⁷⁹ comparison with SCA is not possible. 1180
- 3) The method presented in [24] is based on the numerical 1181 solution of a large number of nonlinear and nonconvex 1182 subproblems and is, therefore, structurally slower than 1183 SCA, whose main iteration is based on the efficient 1184 solution of the convex Problem 3.

In the first two experiments, we compare the computational 1186 time of IPOPT, a general-purpose NLP solver [33], with that 1187 of algorithm SCA over some randomly generated instances of 1188 Problem 2. In particular, we tested two different versions of 1189 the algorithm SCA. The first version, called SCA-H in what 1190 follows, employs the heuristic mentioned in Remark 6. Since ¹¹⁹¹ the heuristic procedure may fail in some cases, in such cases, ¹¹⁹² we also need an LP solver. In particular, in our experiments, 1193 we used GUROBI whenever the heuristic did not produce 1194 either a feasible solution to Problem 9 or a descent direc- ¹¹⁹⁵ tion. In the second version, called SCA-G in what follows, ¹¹⁹⁶ we always employed GUROBI to solve Problem 9. For what 1197 concerns the choice of the NLP solver IPOPT, we remark ¹¹⁹⁸ that we chose it after a comparison with two further general- ¹¹⁹⁹ purpose NLP solvers, SNOPT and MINOS, which, however, 1200 turned out to perform worse than IPOPT on this class of 120 problems.

In the third experiment, we compare the performance of 1203 the two implemented versions of algorithm SCA applied to ¹²⁰⁴ two specific paths and see their behavior as the number *n* of ¹²⁰⁵ discretized points increases. 1206

In the fourth experiment, we compare the solutions returned 1207 by algorithm SCA with those returned by the heuristic recently 1208 proposed in $[23]$.

Finally, in the fifth experiment, we present a real-life speed 1210 planning task for an LGV operating in an industrial setting, 1211 using real problem bounds and paths layouts, provided by an 1212 automation company based in Parma, Italy.

We remark that, according to our experiments, the spe- 1214 cial purpose routine solveACCNAR (Algorithm 3) strongly ¹²¹⁵ outperforms general-purpose approaches, such as the graph- ¹²¹⁶ based approach proposed in [28], and GUROBI, when solving 1217 Problem 6 (which can be converted into an LP as discussed 1218 in $[28]$).

Finally, we remark that we also tried to solve the convex Problem 3 arising at each iteration of the proposed ¹²²¹

Fig. 3. Flowchart of the routine ComputeUpdate.

 method with an NLP solver in place of the procedure ComputeUpdate, presented in this article. However, the experiments revealed that, in doing this, the computing times become much larger even with respect to the single call to the NLP solver for solving the nonconvex Problem 2.

¹²²⁷ All tests have been performed on an IntelCore i7-8550U ¹²²⁸ CPU at 1.8 GHz. Both for IPOPT and algorithm SCA, the ¹²²⁹ null vector was chosen as a starting point. The parameters used within algorithm SCA were $\varepsilon = 1e^{-8}$, $\varepsilon_1 = 1e^{-6}$ 1231 (tolerance parameters), $\rho = 4$, and $\tau = 0.25$ (trust-region $_{1232}$ update parameters). The initial trust region radius $\sigma^{(0)}$ was 1233 initialized to 1 in the first iteration $k = 0$ but adaptively set equal to the size of the last update $\|\mathbf{w}^{(k)} - \mathbf{w}^{(k-1)}\|_{\infty}$ ¹²³⁵ in all subsequent iterations (this adaptive choice allowed to ¹²³⁶ reduce computing times by more than a half). We remark that ¹²³⁷ algorithm SCA has been implemented in MATLAB, so we ¹²³⁸ expect better performance after a C/C++ implementation.

¹²³⁹ *A. Experiments 1 and 2*

 In Experiment 1, we generated a set of 50 different paths, 1241 each of which was discretized setting $n = 100$, $n = 500$, and $n = 1000$ sample points. The instances were generated by assuming that the traversed path was divided into seven intervals over which the curvature of the path was assumed to be constant. Thus, the *n*-dimensional upper bound vector **u** was generated as follows. First, we fixed $u_1 = u_n = 0$, i.e., the initial and final speeds must be equal to 0. Next, 1248 we partitioned the set $\{2, \ldots, n-1\}$ into seven subintervals 1_{1249} I_j , $j \in \{1, \ldots, 7\}$, which corresponds to intervals with constant curvature. Then, for each subinterval, we randomly 1251 generated a value $u_i \in (0, \tilde{u})$, where \tilde{u} is the maximum upper bound (which was set equal to 100 m²s⁻²). Finally, for each *i* $j \in \{1, ..., 7\}$, we set $u_k = \tilde{u}_j \ \forall k \in I_j$. The maximum acceleration parameter *A* is set equal to 2.78 ms⁻² and the maximum jerk *J* to 0.5 ms⁻³, while the path length is s_f = 60 m. The values for *A* and *J* allow a comfortable motion for a ground transportation vehicle (see [34]).

In Experiment 2, we generated a further set of 50 different 1258 paths, each of which was discretized using $n = 100$, $n = 500$, 1259 and $n = 1000$ variables. These new instances were randomly 1260 generated such that the traversed path was divided into up to ¹²⁶¹ five intervals over which the curvature could be zero, linear ¹²⁶² with respect to the arc length or constant. We chose this kind 1263 of path since they are able to represent the curvature of a 1264 road trip (see [35]). The maximum squared speed along the ¹²⁶⁵ path was fixed equal to 192.93 m²s⁻² (corresponding to a 1266</sup> maximum speed of 50 kmh⁻¹, a typical value for an urban 1267 driving scenario). The total length of the paths was fixed to ¹²⁶⁸ $s_f = 1000$ m, while parameter *A* was set equal to 0.25 ms⁻², 1269 *J* to 0.025 ms⁻³, and A_N to 4.9 ms⁻². 1270

The results are reported in Table I, in which we show ¹²⁷¹ the average (minimum and maximum) computational times ¹²⁷² for SCA-H, SCA-G, and IPOPT. They show that algorithm ¹²⁷³ SCA-H is the fastest one, while SCA-G is slightly faster than 1274 **IPOPT** at $n = 100$ but clearly faster for a larger number of 1275 sample points n . In general, we observe that both SCA-H and 1276 SCA-G tend to outperform IPOPT as *n* increases. Moreover, 1277 while the computing times for IPOPT at $n = 100$ are not much 1278 worse than those of SCA-H and SCA-G, we should point out 1279 that, at this dimension, IPOPT is sometimes unable to converge ¹²⁸⁰ and return solutions whose objective function value differs ¹²⁸¹ from the best one by more than 100%. Also, the objective 1282 function values returned by SCA-H and SCA-G are sometimes 1283 slightly different, due to numerical issues related to the choice 1284 of the tolerance parameters, but such differences are mild ones ¹²⁸⁵ and never exceed 1%. Therefore, these approaches appear to 1286 be fast and robust. It is also worthwhile to remark that SCA 1287 approaches are compatible with online planning requirements ¹²⁸⁸ within the context of the LGV application. According to 1289 Haschke *et al.* [18] (see also [36]), in "highly unstructured, 1290 unpredictable, and dynamic environments," there is a need to 1291 replan in order to adapt the motion in reaction to unforeseen ¹²⁹² events or obstacles. How often to replan depends strictly on the 1293 application. Within the context of the LGV application (where ¹²⁹⁴ the environment is structured), replanning every 100–150 ms ¹²⁹⁵

AVERAGE (MINIMUM AND MAXIMUM) COMPUTING TIMES (IN SECONDS) FOR SCA-H, SCA-G, AND IPOPT OVER EXPERIMENTS 1 AND 2

Exp.	n		SCA-H	$SCA-G$	IPOPT
		min	0.012	0.042	0.03
	100	mean	0.016	0.072	0.132
		max	0.026	0.138	0.305
	500	min	0.042	0.21	0.352
		mean	0.064	0.276	1.01
		max	0.104	0.456	1.828
	1000	min	0.1	0.426	1.432
		mean	0.149	0.626	3.289
		max	0.237	0.828	7.137
2	100	min	0.012	0.036	0.052
		mean	0.02	0.047	0.113
		max	0.038	0.073	0.263
2	500	min	0.049	0.102	0.534
		mean	0.093	0.172	0.886
		max	0.212	0.237	1.457
2	1000	min	0.083	0.228	1.733
		mean	0.242	0.386	2.487
		max	0.709	0.539	3.74

 is acceptable, and thus, the computing times of the SCA 1297 approaches at $n = 100$ are suitable. Of course, computing times increase with *n*, but we notice that the computing times 1299 of SCA-H still meet the requirement at $n = 500$. Moreover, a relevant feature of SCA-H and SCA-G is that, at each iteration, a feasible solution is available. Thus, we could stop 1302 them as soon as a time limit is reached. At $n = 500$, if we impose a time limit of 150 ms, which is still quite reasonable for the application, SCA-G returns slightly worse feasible solutions, but these do not differ from the best ones by more ¹³⁰⁶ than 2%.

¹³⁰⁷ *B. Experiment 3*

3 $\frac{1}{2}$ **EXECUTE 2 Example 19 EXECUTE 2 A Example 19 EXECUTE 2 Example 19 EXECUTE 2 Example 19 Example 1** In our third experiment, we compared the performance of the two proposed approaches (SCA-H and SCA-G), over two possible automated driving scenarios, as the number *n* of samples increases. As a first example, we considered a continuous curvature path composed of a line segment, a clothoid, a circle arc, a clothoid, and a final line segment (see Fig. 4). The minimum-time velocity planning on this 1315 path, whose total length is $s_f = 90$ m, is addressed with the following data. The problem constants are compatible with a typical urban driving scenario. The maximum squared velocity μ ¹³¹⁸ is 225 m²s⁻² (corresponding to 54 km h⁻¹), the longitudinal acceleration limit is $A = 1.5$ ms⁻², and the maximal normal acceleration is $A_N = 1$ ms⁻², while, for the jerk constraints, 1321 we set $J = 1$ ms⁻³. Next, we considered a path of length ¹³²² $s_f = 60$ m (see Fig. 5) whose curvature was defined according to the following function:

$$
k(s) = \frac{1}{5}\sin\left(\frac{s}{10}\right), \quad s \in [0, s_f]
$$

and parameter *A*, A_N , and *J* were set equal to 1.39 ms⁻², 4.9 ms⁻², and 0.5 ms⁻³, respectively. The maximum squared velocity is still equal to 225 m²s⁻². The computational results are reported in Figs. 6 and 7 for values of *n* that grows from 100 to 1000. They show that the performance of SCA-H and SCA-G depends on the path. In particular, it seems that the heuristic performs in a poorer way when the number of

Fig. 5. Experiment 3—second path.

Fig. 6. Computing times (in seconds) for the path in Fig. 4.

points of the upper bound vector at which PAR constraints are 1332 violated tends to be large, which is the case for the second ¹³³³ instance. We can give two possible motivations: 1) the direc- ¹³³⁴ tions computed by the heuristic procedure are not necessarily 1335 good descent directions, so routine computeUpdate slowly ¹³³⁶ converges to a solution and 2) the heuristic procedure often ¹³³⁷ fails, and it is in any case necessary to call GUROBI. Note 1338 that the computing times of IPOPT on these two paths are ¹³³⁹ larger than those of SCA-H and SCA-G, and, as usual, the gap 1340 increases with *n*. Moreover, for the second path, IPOPT was ¹³⁴¹ unable to converge for $n = 100$ and returned a solution, which 1342 differed by more than 35% with respect to those returned by 1343 SCA-H and SCA-G. 1344

As a final remark, we notice that the computed traveling 1345 times along the paths only slightly vary with *n*. For the first ¹³⁴⁶ path, they vary between 14.44 and 14.45 s while, for the 1347 second path, between 20.65 and 20.66 s. The differences are 1348 very mild, but we should point out that this is not always ¹³⁴⁹

Fig. 7. Computing times (in seconds) for the path in Fig. 5.

TABLE II

MINIMUM, AVERAGE, AND MAXIMUM COMPUTING TIMES (IN SECONDS) AND RELATIVE PERCENTAGE DIFFERENCE BETWEEN THE TRAVELING TIMES COMPUTED BY THE HEURISTIC PRESENTED IN [23] AND THE SCA APPROACHES WITH $n = 100$ FOR THE INSTANCES OF EXPERIMENT 1

Heuristic from [23]	min	mean	max
Fime	0.016	0.048	0.2049
Relative percentage difference	5.5%	12.1%	$.2\%$

¹³⁵⁰ the case. We further comment on this point when presenting ¹³⁵¹ Experiment 5.

¹³⁵² *C. Experiment 4*

2.

The strength and in the strength and the pair of the strength and the strength and the strength and in the strength and the strength In this experiment, we compared the performance of our approach with the heuristic procedure recently proposed in [23]. In Table II, we report the computing times and the relative percentage difference [(*f*HEUR − *f*SCA)/ *f*SCA] ∗ 100% between the traveling times computed by the heuristic and the SCA approaches for the instances of Experiment 1 with $n = 100$. Algorithms SCA-H and SCA-G have comparable computing times (actually, better for what concerns SCA-H) with respect to that heuristic, and the quality of the final solutions is, on average, larger than 10% (these observations also extend to other experiments). Such difference between the quality of the solutions returned by algorithm SCA and those returned by the heuristic is best explained through the discussion of a representative instance, taken from Experiment 1 with $n = 100$. In this instance, we set $A = 2.78$ ms⁻², $\frac{1368}{1368}$ while, for the jerk constraints, we set $J = 2 \text{ ms}^{-3}$. The total 1369 length of the path is $s_f = 60$ m. The maximum velocity profile is the piecewise constant black line in Fig. 8. In the same figure, we report in red the velocity profile returned by the heuristic and in blue the one returned by algorithm SCA. The computing time for the heuristic is 45 ms, while, for algorithm SCA-H, it is 39 ms. The final objective function value (i.e., the traveling time along the given path) is 15.4 s for the velocity profile returned by the heuristic and 14.02 s for the velocity profile returned by algorithm SCA. From the qualitative point of view, it can be observed in this instance (and similar observations hold for the other instances that we tested) that the heuristic produces velocity profiles whose local minima coincide with those of the maximum velocity profile. For instance, in the interval between 10 and 20 m, we notice that the velocity profile returned by the heuristic coincides

Fig. 8. Velocity profile returned by the heuristic proposed in [23] (red line) and by algorithm SCA (blue line). The black line is the maximum velocity profile.

with the maximum velocity profile in that interval. Instead, the 1384 velocity profile generated by algorithm SCA generates velocity 1385 profiles that fall below the local minima of the maximum ¹³⁸⁶ velocity profile, but, this way, they are able to keep the ¹³⁸⁷ velocity higher in the regions preceding and following the local 1388 minima of the maximum velocity profile. Again, referring to 1389 the interval between 10 and 20 m, we notice that the velocity $_{1390}$ profile computed by algorithm SCA falls below the maximum ¹³⁹¹ velocity profile in that region and, thus, below the velocities 1392 returned by the heuristic, but, this way, velocities in the region 1393 before 10 m and in the one after 20 m are larger with respect 1394 to those computed by the heuristic.

D. Experiment 5 ¹³⁹⁶

As a final experiment, we planned the speed law of an 1397 autonomous guided vehicle operating in a real-life auto- ¹³⁹⁸ mated warehouse. Paths and problem data have been provided 1399 by packaging company Ocme S.r.l., based in Parma, Italy. 1400 We generated 50 random paths from a general layout. Fig. 9 1401 shows the warehouse layout and a possible path. In all paths, 1402 we set maximum velocity to 2 m s⁻¹, maximum longitudinal 1403 acceleration to $A = 0.28$ m/s², maximum normal acceleration 1404 to 0.2 m/s², and maximum jerk to $J = 0.025$ m/s³. Table III 1405 shows computation times for algorithms SCA-H, SCA-G, and 1406 **IPOPT** for a number of sampling points $n \in \{100, 500, 1000\}$. 1407 SCA-H is quite fast although it sometimes returns slightly ¹⁴⁰⁸ worse solutions (the largest percentage error, at a single ¹⁴⁰⁹ instance with $n = 1000$, is 8%). IPOPT is clearly slower than 1410 SCA-H and SCA-G for $n = 500$ and 1000, while, for $n = 100$, 1411 it is slower than SCA-H but quite similar to SCA-G. However, ¹⁴¹² for these paths, the difference in terms of traveling times as ¹⁴¹³ *n* increases is much more significant with respect to the other 1414 experiments (see also the discussion at the end of Experiment 1415 3). More precisely, the percentage difference between the ¹⁴¹⁶ traveling times of solutions at $n = 100$ and $n = 1000$ is 1417 0.5% on average for Experiment 1 with a maximum of 2.1%, ¹⁴¹⁸ while, for Experiment 2, the average difference is 0.3% with 1419 a maximum of 0.4%. Instead, for the current experiment, ¹⁴²⁰

Fig. 9. Warehouse layout considered in Example 5 and a possible path.

TABLE III

AVERAGE, MINIMUM, AND MAXIMUM COMPUTING TIMES (IN SECONDS) FOR SCA-H, SCA-G, AND IPOPT OVER EXPERIMENT 5

The main of the strong of the strong of continues in the strong of the average difference is 2.7% with a maximum of 7.9%. However, the average falls to 0.2% and the maximum to 0.6% if we consider the percentage difference between the traveling 1424 times of solutions at $n = 500$ and $n = 1000$. Thus, for this experiment, it is advisable to use a finer discretization or, equivalently, a larger number of sampling points. A tentative explanation for such different behavior is related to the lower velocity limits of Experiment 5 with respect to the other experiments. Indeed, the objective function is much more sensitive to small changes at low speeds so that a finer grid of sampling points is able to reduce the impact of approximation errors. However, this is just a possible explanation. A further possible explanation is that, in Experiments 1–4, curves are composed of segments with constant and linear curvature, whereas curves on industrial LGV layouts typically have curvatures that are highly nonlinear with respect to arc length.

¹⁴³⁷ VI. CONCLUSION

 In this article, we considered a speed planning problem under jerk constraints. The problem is a nonconvex one, and we proposed a sequential convex approach, where we exploited the special structure of the convex subproblems to solve them very efficiently. The approach is fast and is theoretically guaranteed to converge to a stationary point of the nonconvex problem. As a possible topic for future research, we would like to investigate ways to solve Problem 9, currently the bottleneck of the proposed approach, alternative to the solver GUROBI, and the heuristic mentioned in Remark 6. Moreover, we suspect that the stationary point to which the proposed approach converges is, in fact, a global minimizer

of the nonconvex problem, and proving this fact is a further ¹⁴⁵⁰ interesting topic for future research.

ACKNOWLEDGMENT ¹⁴⁵²

The authors are really grateful to the Associate Editor and ¹⁴⁵³ the three anonymous reviewers for their careful reading and 1454 very useful suggestions.

REFERENCES 1456

- [1] P. Pharpatara, B. Hérissé, and Y. Bestaoui, "3-D trajectory planning of ¹⁴⁵⁷ aerial vehicles using RRT∗," *IEEE Trans. Control Syst. Technol.*, vol. 25, ¹⁴⁵⁸ no. 3, pp. 1116–1123, May 2017. 1459
- [2] K. Kant and S. W. Zucker, "Toward efficient trajectory planning: ¹⁴⁶⁰ The path-velocity decomposition," *Int. J. Robot. Res.*, vol. 5, no. 3, ¹⁴⁶¹ pp. 72–89, Sep. 1986. 1462
- [3] L. Consolini, M. Locatelli, A. Minari, and A. Piazzi, "An optimal com- ¹⁴⁶³ plexity algorithm for minimum-time velocity planning," *Syst. Control* ¹⁴⁶⁴ *Lett.*, vol. 103, pp. 50–57, May 2017.
- [4] F. Cabassi, L. Consolini, and M. Locatelli, "Time-optimal velocity 1466 planning by a bound-tightening technique," *Comput. Optim. Appl.*, ¹⁴⁶⁷ vol. 70, no. 1, pp. 61–90, May 2018. 1468
- [5] F. Pfeiffer and R. Johanni, "A concept for manipulator trajectory plan- ¹⁴⁶⁹ ning," *IEEE J. Robot. Autom.*, vol. RA-3, no. 2, pp. 115–123, Apr. 1987. ¹⁴⁷⁰
- [6] D. Verscheure, B. Demeulenaere, J. Swevers, J. De Schutter, and ¹⁴⁷¹ M. Diehl, "Time-optimal path tracking for robots: A convex optimization ¹⁴⁷² approach," *IEEE Trans. Autom. Control*, vol. 54, no. 10, pp. 2318–2327, ¹⁴⁷³ Oct. 2009. ¹⁴⁷⁴
- [7] M. Yuan, Z. Chen, B. Yao, and X. Zhu, "Time optimal contouring ¹⁴⁷⁵ control of industrial biaxial gantry: A highly efficient analytical solution ¹⁴⁷⁶ of trajectory planning," *IEEE/ASME Trans. Mechatronics*, vol. 22, no. 1, ¹⁴⁷⁷ pp. 247–257, Feb. 2017. ¹⁴⁷⁸
- [8] E. Velenis and P. Tsiotras, "Minimum-time travel for a vehicle with ¹⁴⁷⁹ acceleration limits: Theoretical analysis and receding-horizon implemen- ¹⁴⁸⁰ tation," *J. Optim. Theory Appl.*, vol. 138, no. 2, pp. 275–296, 2008. ¹⁴⁸¹
- [9] M. Frego, E. Bertolazzi, F. Biral, D. Fontanelli, and L. Palopoli, "Semi- ¹⁴⁸² analytical minimum time solutions with velocity constraints for trajec- ¹⁴⁸³ tory following of vehicles," *Automatica*, vol. 86, pp. 18–28, Dec. 2017. ¹⁴⁸⁴
- [10] K. Hauser, "Fast interpolation and time-optimization with contact," *Int.* ¹⁴⁸⁵ *J. Robot. Res.*, vol. 33, no. 9, pp. 1231–1250, 2014. ¹⁴⁸⁶
- [11] H. Pham and Q.-C. Pham, "A new approach to time-optimal path 1487 parameterization based on reachability analysis," *IEEE Trans. Robot.*, ¹⁴⁸⁸ vol. 34, no. 3, pp. 645–659, Jun. 2018. 1489
- [12] L. Consolini, M. Locatelli, A. Minari, A. Nagy, and I. Vajk, "Optimal ¹⁴⁹⁰ time-complexity speed planning for robot manipulators," *IEEE Trans.* ¹⁴⁹¹ *Robot.*, vol. 35, no. 3, pp. 790–797, Jun. 2019. 1492
- [13] T. Lipp and S. Boyd, "Minimum-time speed optimisation over a fixed ¹⁴⁹³ path," *Int. J. Control*, vol. 87, no. 6, pp. 1297–1311, 2014. ¹⁴⁹⁴
- [14] F. Debrouwere *et al.*, "Time-optimal path following for robots with ¹⁴⁹⁵ convex–concave constraints using sequential convex programming," ¹⁴⁹⁶ *IEEE Trans. Robot.*, vol. 29, no. 6, pp. 1485–1495, Dec. 2013. 1497
- [15] A. K. Singh and K. M. Krishna, "A class of non-linear time scaling 1498 functions for smooth time optimal control along specified paths," in ¹⁴⁹⁹ *Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS)*, Sep. 2015, ¹⁵⁰⁰ pp. 5809–5816. 1501
- [16] A. Palleschi, M. Garabini, D. Caporale, and L. Pallottino, "Time-optimal 1502 path tracking for jerk controlled robots," *IEEE Robot. Autom. Lett.*, ¹⁵⁰³ vol. 4, no. 4, pp. 3932-3939, Oct. 2019. 1504
- [17] S. Macfarlane and E. A. Croft, "Jerk-bounded manipulator trajectory ¹⁵⁰⁵ planning: Design for real-time applications," *IEEE Trans. Robotics* ¹⁵⁰⁶ *Autom.*, vol. 19, no. 1, pp. 42–52, Feb. 2003. 1507
- [18] R. Haschke, E. Weitnauer, and H. Ritter, "On-line planning of time- ¹⁵⁰⁸ optimal, jerk-limited trajectories," in *Proc. IEEE/RSJ Int. Conf. Intell.* ¹⁵⁰⁹ *Robots Syst.*, Sep. 2008, pp. 3248-3253. 1510
- [19] H. Pham and Q.-C. Pham, "On the structure of the time-optimal path ¹⁵¹¹ parameterization problem with third-order constraints," in *Proc. IEEE* ¹⁵¹² *Int. Conf. Robot. Automat. (ICRA)*, May 2017, pp. 679–686. 1513
- [20] J. E. Bobrow, S. Dubowsky, and J. S. Gibson, "Time-optimal control of 1514 robotic manipulators along specified paths," *Int. J. Robot. Res.*, vol. 4, ¹⁵¹⁵ no. 3, pp. 3–17, Sep. 1985. 1516
- [21] K. G. Shin and N. D. McKay, "Minimum-time control of robotic 1517 manipulators with geometric path constraints," *IEEE Trans. Autom.* ¹⁵¹⁸ *Control*, vol. AC-30, no. 6, pp. 531–541, Jun. 1985. 1519
- ¹⁵²⁰ [22] J. Villagra, V. Milanés, J. Pérez, and J. Godoy, "Smooth path and speed ¹⁵²¹ planning for an automated public transport vehicle," *Robot. Auton. Syst.*, ¹⁵²² vol. 60, no. 2, pp. 252–265, 2012.
- ¹⁵²³ [23] M. Raineri and C. G. L. Bianco, "Jerk limited planner for real-time ¹⁵²⁴ applications requiring variable velocity bounds," in *Proc. IEEE Int. Conf.* ¹⁵²⁵ *Automat. Sci. Eng. (CASE)*, Aug. 2019, pp. 1611–1617.
- ¹⁵²⁶ [24] J. Dong, P. M. Ferreira, and J. A. Stori, "Feed-rate optimization with ¹⁵²⁷ jerk constraints for generating minimum-time trajectories," *Int. J. Mach.* ¹⁵²⁸ *Tools Manuf.*, vol. 47, nos. 12–13, pp. 1941–1955, Oct. 2007.
- ¹⁵²⁹ [25] K. Zhang, X. S. Gao, H. B. Li, and C. M. Yuan, "A greedy algorithm for ¹⁵³⁰ feedrate planning of CNC machines along curved tool paths with con-¹⁵³¹ fined jerk," *Robot. Comput.-Integr. Manuf.*, vol. 28, no. 4, pp. 472–483, ¹⁵³² Aug. 2012.
- ¹⁵³³ [26] Y. Zhang *et al.*, "Speed planning for autonomous driving via convex ¹⁵³⁴ optimization," in *Proc. 21st Int. Conf. Intell. Transp. Syst. (ITSC)*, ¹⁵³⁵ Nov. 2018, pp. 1089–1094.
- ¹⁵³⁶ [27] R. Fletcher, *Practical Methods of Optimization*, 2nd ed. Singapore: ¹⁵³⁷ Wiley, 2000.
- ¹⁵³⁸ [28] L. Consolini, M. Laurini, and M. Locatelli, "Graph-based algorithms for ¹⁵³⁹ the efficient solution of optimization problems involving monotone func-¹⁵⁴⁰ tions," *Comput. Optim. Appl.*, vol. 73, no. 1, pp. 101–128, May 2019.
- ¹⁵⁴¹ [29] N. J. Higham, *Accuracy and Stability of Numerical Algorithms*, vol. 80. ¹⁵⁴² Philadelphia, PA, USA: SIAM, 2002.
- ¹⁵⁴³ [30] L. Consolini, M. Locatelli, and A. Minari, "A sequential approach ¹⁵⁴⁴ for speed planning under jerk constraints," 2021, *arXiv:2105.15095*. 1545 [Online]. Available: http://arxiv.org/abs/2105.15095
1546 [31] S. Boyd and L. Vandenberghe. Convex Optimization
- ¹⁵⁴⁶ [31] S. Boyd and L. Vandenberghe, *Convex Optimization*. Cambridge, U.K.: ¹⁵⁴⁷ Cambridge Univ. Press, 2004.
- ¹⁵⁴⁸ [32] Gurobi Optimization Inc. (2016). *Gurobi Optimizer Reference Manual*. ¹⁵⁴⁹ [Online]. Available: http://www.gurobi.com
- ¹⁵⁵⁰ [33] A. Wächter and L. T. Biegler, "On the implementation of an interior-¹⁵⁵¹ point filter line-search algorithm for large-scale nonlinear programming," ¹⁵⁵² *Math. Program.*, vol. 106, no. 1, pp. 25–57, May 2006.
- ¹⁵⁵³ [34] L. L. Hoberock, "A survey of longitudinal acceleration comfort studies ¹⁵⁵⁴ in ground transportation vehicles," *J. Dyn. Syst., Meas., Control*, vol. 99, no. 2, pp. 76–84, Jun. 1977.
- ¹⁵⁵⁶ [35] T. Fraichard and A. Scheuer, "From Reeds and Shepp's to continuous-¹⁵⁵⁷ curvature paths," *IEEE Trans. Robot.*, vol. 20, no. 6, pp. 1025–1035, ¹⁵⁵⁸ Dec. 2004.
- ¹⁵⁵⁹ [36] D. Verscheure, M. Diehl, J. De Schutter, and J. Swevers, "Recursive log-¹⁵⁶⁰ barrier method for on-line time-optimal robot path tracking," in *Proc.* ¹⁵⁶¹ *Amer. Control Conf.*, St. Louis, MO, USA, Apr. 2009, pp. 4134–4140.

Luca Consolini (Member, IEEE) received the Lau- ¹⁵⁶² rea degree *(cum laude)* in electronic engineering ¹⁵⁶³ and the Ph.D. degree from the University of Parma, ¹⁵⁶⁴ Parma, Italy, in 2000 and 2005, respectively. 1565

From 2005 to 2009, he held a post-doctoral posi- ¹⁵⁶⁶ tion at the University of Parma, where he was an ¹⁵⁶⁷ Assistant Professor from 2009 to 2014. Since 2014, ¹⁵⁶⁸ he has been an Associate Professor with the Univer- ¹⁵⁶⁹ sity of Parma. His main current research interests ¹⁵⁷⁰ are nonlinear control, motion planning, and control 1571 of mechanical systems. ¹⁵⁷²

As the contract of the space of the spa Marco Locatelli is currently a Full Professor of 1573 Operations Research with the University of Parma, ¹⁵⁷⁴ Parma, Italy. He published more than 90 arti- ¹⁵⁷⁵ cles in international journals and coauthored, with ¹⁵⁷⁶ F. Schoen, the book *Global Optimization: Theory,* ¹⁵⁷⁷ *Algorithms, and Applications* [Society for Indus- ¹⁵⁷⁸ trial and Applied Mathematics (SIAM)]. His main ¹⁵⁷⁹ research interests are the theoretical, practical, and ¹⁵⁸⁰ applicative aspects of optimization. 1581

Dr. Locatelli has been nominated as a EUROPT ¹⁵⁸² Fellow in 2018. He is also on the Editorial Board of 1583 the journals *Computational Optimization and Applications, Journal of Global* ¹⁵⁸⁴ *Optimization*, and *Operations Research Forum*. ¹⁵⁸⁵

Andrea Minari received the B.S. and M.S. degrees 1586 *(cum laude)* in computer engineering and the Ph.D. ¹⁵⁸⁷ degree from the University of Parma, Parma, Italy, 1588 in 2013, 2016, and 2020, respectively. He presented 1589 a dissertation about optimization-based algorithms ¹⁵⁹⁰ applied to the speed planning problem for mobile ¹⁵⁹¹ robots and industrial manipulators. 1592

AUTHOR QUERIES

AUTHOR PLEASE ANSWER ALL QUERIES

PLEASE NOTE: We cannot accept new source files as corrections for your article. If possible, please annotate the PDF proof we have sent you with your corrections and upload it via the Author Gateway. Alternatively, you may send us your corrections in list format. You may also upload revised graphics via the Author Gateway.

The moot we have seen manufactorized to the contribution of the main control of the state of the state control of the state of the **Carefully check the page proofs (and coordinate with all authors); additional changes or updates WILL NOT be accepted after the article is published online/print in its final form. Please check author names and affiliations, funding, as well as the overall article for any errors prior to sending in your author proof corrections.**

- AQ:1 = Please confirm or add details for any funding or financial support for the research of this article.
- AQ:2 = Please confirm the postal code for Università di Parma.

AQ:3 = Please specify the section numbers for the phrase "next sections."

A Sequential Algorithm for Jerk Limited Speed Planning

Luca Consolini[®], *Member, IEEE*, Marco Locatelli[®], and Andrea Minari[®]

Luca Consolicit⁶, Member, *IEEE*, Marco Locatelli⁶, and Andrea Miran¹O

Abtenct--In this article, we discuss a sequential absorbture. The experiment is a sequential luce search in the consequent of a number of the c *Abstract***— In this article, we discuss a sequential algorithm for the computation of a minimum-time speed profile over a given path, under velocity, acceleration, and jerk constraints. Such a problem arises in industrial contexts, such as automated warehouses, where LGVs need to perform assigned tasks as fast as possible in order to increase productivity. It can be reformulated as an optimization problem with a convex objective function, linear velocity and acceleration constraints, and non- convex jerk constraints, which, thus, represents the main source of the difficulty. While existing nonlinear programming (NLP) solvers can be employed for the solution of this problem, it turns out that the performance and robustness of such solvers can be enhanced by the sequential line-search algorithm proposed in this article. At each iteration, a feasible direction, with respect to the current feasible solution, is computed, and a step along such direction is taken in order to compute the next iterate. The computation of the feasible direction is based on the solution of a linearized version of the problem, and the solution of the linearized problem, through an approach that strongly exploits its special structure, represents the main contribution of this work. The efficiency of the proposed approach with respect to existing NLP solvers is proven through different computational experiments.**

 *Note to Practitioners***—This article was motivated by the needs of LGV manufacturers. In particular, it presents an algorithm for computing the minimum-time speed law for an LGV along a pre- assigned path, respecting assigned velocity, acceleration, and jerk constraints. The solution algorithm should be: 1)** *fast***, since speed planning is made continuously throughout the workday, not only when an LGV receives a new task but also during the execution of the task itself, since conditions may change, e.g., if the LGV has to be halted for security reasons and 2)** *reliable***, i.e., it should return solutions of high quality, because a better speed profile allows to save time and even small percentage improvements, say a 5% improvement, has a considerable impact on the productivity of the warehouse, and, thus, determines a significant economic gain. The algorithm that we propose meets these two requirements, and we believe that it can be a useful tool for LGV manufacturers and users. It is obvious that the proposed method also applies to the speed planning problem for vehicles other than LGVs, e.g., road vehicles.**

AQ:1 Manuscript received June 29, 2021; accepted August 24, 2021. This article was recommended for publication by Associate Editor M. Robba and Editor C. Seatzu upon evaluation of the reviewers' comments. This work was supported in part by the Programme "FIL-Quota Incentivante" of the University of Parma and in part by the Fondazione Cariparma. *(Corresponding author: Marco Locatelli.)*

AQ:2 The authors are with the Dipartimento di Ingegneria e Architettura, Università di Parma, 43121 Parma, Italy (e-mail: luca.consolini@unipr.it; marco.locatelli@unipr.it; andrea.minari2@studenti.unipr.it).
This article has supplementary material pro

This article has supplementary material provided by the thors and color versions of one or more figures available at authors and color versions of one or more https://doi.org/10.1109/TASE.2021.3111758.

Digital Object Identifier 10.1109/TASE.2021.3111758

*Index Terms***— Optimization, sequential line-search method,** ⁴² **speed planning.** 43

I. INTRODUCTION 44

AN IMPORTANT problem in motion planning is the 45
computation of the minimum-time motion of a car-like vehicle from a start configuration to a target one while avoid- ⁴⁷ ing collisions (obstacle avoidance) and satisfying kinematic, ⁴⁸ dynamic, and mechanical constraints (for instance, on veloci- ⁴⁹ ties, accelerations, and maximal steering angle). This problem 50 can be approached in two ways. $\frac{51}{20}$

- 1) As a minimum-time trajectory planning, where both the 52 path to be followed by the vehicle and the timing law 53 on this path (i.e., the vehicle's velocity) are simultane- ⁵⁴ ously designed. For instance, one could use the RRT* ⁵⁵ algorithm (see [1]). $\frac{56}{56}$
- 2) As a (geometric) path planning followed by a minimum- $\frac{57}{2}$ time speed planning on the planned path (see $[2]$). \qquad 58

In this article, following the second paradigm, we assume 59 that the path that joins the initial and the final configuration 60 is assigned, and we aim at finding the time-optimal speed 61 law that satisfies some kinematic and dynamic constraints. 62 The problem can be reformulated as an optimization problem, $\overline{63}$ and it is quite relevant from the practical point of view. 64 In particular, in automated warehouses, the speed of LGVs 65 needs to be planned under acceleration and jerk constraints. 66 As previously mentioned, the solution algorithm should be 67 both *fast* and *reliable*. In our previous work [3], we proposed 68 an optimal time-complexity algorithm for finding the time- 69 optimal speed law that satisfies constraints on maximum veloc- ⁷⁰ ity and tangential and normal acceleration. In the subsequent $₇₁$ </sub> work $[4]$, we included a bound on the derivative of the $\frac{72}{2}$ acceleration with respect to the arc length. In this article, $\frac{1}{73}$ we consider the presence of jerk constraints (constraints on the $\frac{74}{6}$ time derivative of the acceleration). The resulting optimization 75 problem is nonconvex and, for this reason, is significantly $\frac{76}{6}$ more complex than the ones that we discussed in [3] and [4]. π The main contribution of this work is the development of a $\frac{78}{8}$ line-search algorithm for this problem based on the sequential $\frac{79}{9}$ solution of convex problems. The proposed algorithm meets 80 both requirements of being fast and reliable. The former 81 is met by heavily exploiting the special structure of the $\frac{82}{2}$ optimization problem, the latter by the theoretical guarantee 83 that the returned solution is a first-order stationary point (in 84 practice, a local minimizer) of the optimization problem. $\frac{1}{100}$ as

1545-5955 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

⁸⁶ *A. Problem Statement*

⁸⁷ Here, we introduce the problem at hand more formally. ⁸⁸ Let γ :[0, *s*_{*f*}] → \mathbb{R}^2 be a smooth function. The image set 89 *γ* ([0, s_f]) is the path to be followed, *γ* (0) the initial configu-⁹⁰ ration, and $\gamma(s_f)$ the final one. Function γ has arc-length paraon meterization, such that $(\forall \lambda \in [0, s_f])$, $||\mathbf{y}'(\lambda)|| = 1$. In this $\frac{1}{2}$ way, s_f is the path length. We want to compute the speed-law ⁹³ that minimizes the overall transfer time (i.e., the time needed to go from γ (0) to γ (s_f)). To this end, let λ :[0, t_f] \rightarrow [0, s_f] be ⁹⁵ a differentiable monotone increasing function that represents ⁹⁶ the vehicle's arc-length position along the curve as a function 97 of time, and let $v:[0, s_f] \rightarrow [0, +\infty[$ be such that $(\forall t \in$ $[0, t_f]$) $\lambda(t) = v(\lambda(t))$. In this way, $v(s)$ is the derivative of the ⁹⁹ vehicle arc-length position, which corresponds to the norm of ¹⁰⁰ its velocity vector at position *s*. The position of the vehicle as a function of time is given by $\mathbf{x}:[0, t_f] \to \mathbb{R}^2$, $\mathbf{x}(t) = \mathbf{y}(\lambda(t))$. ¹⁰² The velocity and acceleration are given, respectively, by

$$
\dot{\mathbf{x}}(t) = \boldsymbol{\gamma}'(\lambda(t))v(\lambda(t))
$$

$$
\ddot{\mathbf{x}}(t) = a_T(t)\mathbf{y}'(\lambda(t)) + a_N(t)\mathbf{y}'^{\perp}(\lambda(t))
$$

where $a_T(t) = v'(\lambda(t))v(\lambda(t))$ and $a_N(t) = k(\lambda(t))v(\lambda(t))^2$ ¹⁰⁶ are, respectively, the tangential and normal components of the ¹⁰⁷ acceleration (i.e., the projections of the acceleration vector ¹⁰⁸ **x**¨ on the tangent and the normal to the curve). Moreover ¹⁰⁹ $\gamma'^{\perp}(\lambda)$ is the normal to vector $\gamma'(\lambda)$ and the tangent of γ' 110 at λ . Here, $k:[0, s_f] \to \mathbb{R}$ is the scalar curvature, defined as *k*(*s*) = < $\gamma''(s), \gamma'(s)^{\perp}$ >. Note that $|k(s)| = ||\gamma''(s)||$. In the following, we assume that $k(s) \in C^1([0, s_f], \mathbb{R})$. The total maneuver time, for a given velocity profile $v \in C^1([0, s_f], \mathbb{R})$, ¹¹⁴ is returned by the functional

$$
\mathcal{F}: C^1([0, s_f], \mathbb{R}) \to \mathbb{R}, \quad \mathcal{F}(v) = \int_0^{s_f} v^{-1}(s)ds. \quad (1)
$$

¹¹⁶ In our previous work [3], we considered the problem

$$
\min_{v \in \mathcal{V}} \mathcal{F}(v) \tag{2}
$$

where the feasible region $V \subset C^1([0, s_f], \mathbb{R})$ is defined by the ¹¹⁹ following set of constraints:

$$
v(0) = 0, \quad v(s_f) = 0 \tag{3a}
$$

$$
0 \le v(s) \le v_{\max}, \quad s \in [0, s_f] \tag{3b}
$$

$$
|v'(s)v(s)| \le A, \quad s \in [0, s_f]
$$
 (3c)

$$
[0,0) \times [0,1] = 11, 0 \times [0,0)] \tag{2.1}
$$

$$
|k(s)|v(s)^{2} \leq A_{N}, \quad s \in [0, s_{f}]
$$
 (3d)

124 where v_{max} , *A*, and A_N are upper bounds for the velocity, the tangential acceleration, and the normal acceleration, respec- tively. Constraints (3a) are the initial and final interpolation conditions, while constraints (3b)–(3d) limit velocity and the tangential and normal components of acceleration. In [3], we presented an algorithm, with linear-time computational complexity with respect to the number of variables, which provides an optimal solution of (2) after spatial discretiza- tion. One limitation of this algorithm is that the obtained velocity profile is Lipschitz¹ but not differentiable so that the vehicle's acceleration is discontinuous. With the aim

¹A function $f:\mathbb{R} \to \mathbb{R}$ is *Lipschitz* if there exists a real positive constant *L* such that $(\forall x, y \in \mathbb{R})$ $|f(x) - f(y)| \le L|x - y|$.

of obtaining a smoother velocity profile, in the subsequent ¹³⁵ work [4], we required that the velocity be differentiable, and 136 we imposed a Lipschitz condition (with constant J) on its 137 derivative. In this way, after setting $w = v^2$, the feasible region 138 of the problem $W \subset C^1([0, s_f], \mathbb{R})$ is defined by the set of 139 functions $w \in C^1([0, s_f], \mathbb{R})$ that satisfy the following set of 140 constraints: 141

$$
w(0) = 0, \quad w(s_f) = 0 \tag{4a}
$$

$$
0 \le w(s) \le v_{\text{max}}^2, \quad s \in [0, s_f] \qquad (4b) \quad \text{143}
$$

$$
\frac{1}{2}|w'(s)| \le A, \quad s \in [0, s_f]
$$
 (4c) 144

$$
|k(s)|w(s) \le A_N, \quad s \in [0, s_f]
$$
\n(4d) 145

$$
|w'(s_1) - w'(s_2)| \leq J|s_1 - s_2|, \quad s_1, s_2 \in [0, s_f]. \quad (4e)
$$

Then, we end up with the problem 147

$$
\min_{w \in \mathcal{W}} G(w) \tag{5}
$$

where the objective function is 149

$$
G: C^1([0, s_f], \mathbb{R}) \to \mathbb{R}, \quad G(w) = \int_0^{s_f} w^{-1/2}(s)ds. \quad (6) \quad \text{is}
$$

s matterialist, particle into the Theorem in the problem in $W(z)$ ($\sum_{i=1}^{n} (1/x_i)$) is believed by ω_{i} s at the state of the problem in ω_{i} (ω_{i}) is ω_{i} (ω_{i}) is ω_{i}) is ω_{i} (ω_{i}) is $\omega_{$ The objective function (6) and constraints $(4a)$ – $(4d)$ correspond to the ones in problem (2) after the substitution 152 $w = v²$. Note that this change of variable is well known in 153 the literature. It has been first proposed in $[5]$, while, in $[6]$, 154 it is observed that Problem (2) becomes convex after this ¹⁵⁵ change of variable. The added set of constraints (4e) is a ¹⁵⁶ Lipschitz condition on the derivative of the squared velocity w . 157 It is used to enforce a smoother velocity profile by bounding 158 the second derivative of the squared velocity with respect ¹⁵⁹ to arc length. Note that constraints (4) are linear, and the ¹⁶⁰ objective function (6) is convex. In [4], we proposed an 161 algorithm for solving a finite-dimensional approximation of 162 Problem (4). The algorithm exploited the particular structure 163 of the resulting convex finite-dimensional problem. This article ¹⁶⁴ extends the results of [4]. It considers a nonconvex varia- ¹⁶⁵ tion of Problem (4) , in which constraint $(4e)$ is substituted 166 with a constraint on the time derivative of the acceleration 167 $|\dot{a}(t)| \leq J$, where $a(t) = (d/dt)v(\lambda(t)) = v'(\lambda(t))v(\lambda(t)) =$ 168 $(1/2)w'(\lambda(t))$. Then, we set 169

$$
j_L(t) = \dot{a}(t) = \frac{1}{2} w''(s(t)) \sqrt{(w(s(t)))}.
$$

This quantity is commonly called "jerk." Bounding the ¹⁷¹ absolute value of jerk allows to avoid sudden changes of 172 acceleration and obtain a smoother motion. Then, we end up 173 with the following minimum-time problem.

Problem 1 (Smooth Minimum-Time Velocity Planning ¹⁷⁵ *Problem: Continuous Version)*: ¹⁷⁶

$$
\min_{w \in C^2} \int_0^{s_f} w(s)^{-1/2} ds \tag{17}
$$

$$
w(0) = 0, \quad w(s_f) = 0
$$

$$
0 \le w(s) \le \mu^+(s), \quad s \in [0, s_f]
$$
\n
$$
\frac{1}{1 + \sqrt{(s)}} \le \mu^+(s), \quad s \in [0, 1]
$$

$$
\frac{1}{2}|w'(s)| \le A, \quad s \in [0, s_f]
$$
 (7) 180

$$
\frac{1}{2}|w''(s)\sqrt{w(s)}| \le J \quad s \in [0, s_f]
$$
 (8)

 μ ⁺ is the square velocity upper bound depending on ¹⁸³ the shape of the path, i.e.,

$$
\mu^{+}(s) = \min \left\{ v_{\max}^{2}, \frac{A_{N}}{|k(s)|} \right\}
$$

w where G_{max} , A., and A is the fact interaction of the convertion of the stationary constrained to the proof of the convertion 185 where v_{max} , A_N , and k are the maximum vehicle velocity, the maximum normal acceleration, and the path curvature, respectively. Parameters *A* and *J* are the bounds represent- ing the limitations on the (tangential) acceleration and the jerk, respectively. For the sake of simplicity, we consider constraints (7) and (8) symmetric and constant. However, the following development could be easily extended to the non- symmetric and nonconstant case. Note that the jerk con- straint (8) is nonconvex. The continuous problem is discretized 194 as follows. We subdivide the path into $n - 1$ intervals of 195 equal length, i.e., we evaluate function w at points s_i $((i-1)s_f)/(n-1), i = 1,...,n$, so that we have the fol-lowing *n*-dimensional vector of variables:

198
$$
\mathbf{w} = (w_1, w_2, \dots, w_n) = (w(s_1), w(s_2), \dots, w(s_n)).
$$

199 Then, the finite dimensional version of the problem is given ²⁰⁰ as follows.

²⁰¹ *Problem 2 (Smooth Minimum-Time Velocity Planning* ²⁰² *Problem: Discretized Version)*:

203
$$
\min_{\mathbf{w} \in \mathbb{R}^n} \sum_{i=1}^{n-1} \frac{2h}{\sqrt{w_{i+1}} + \sqrt{w_i}}
$$
(9)

$$
0 \le \mathbf{w} \le \mathbf{u} \tag{10}
$$

$$
w_{i+1} - w_i \le 2hA, \quad i = 1, ..., n-1 \tag{11}
$$

$$
w_i - w_{i+1} \le 2hA, \quad i = 1, ..., n-1 \tag{12}
$$

$$
(w_{i-1} - 2w_i + w_{i+1})\sqrt{\frac{\ell_i(\mathbf{w})}{4}} \le 2h^2 J
$$

$$
i = 2, ..., n - 1
$$
 (13)

 $-(w_{i-1} - 2w_i + w_{i+1})\sqrt{\frac{\ell_i(\mathbf{w})}{4}} \leq 2h^2 J$

$$
i = 2, \dots, n - 1 \tag{14}
$$

²¹¹ where

$$
e_i(\mathbf{w}) = w_{i+1} + w_{i-1} + 2w_i \tag{15}
$$

²¹³ while $u_i = \mu^+(s_i)$, for $i = 1, \ldots, n$, and, in particular, $u_1 = 0$ and $u_n = 0$ since we are assuming that the initial ²¹⁵ and final velocities are equal to 0. The objective function (9) ²¹⁶ is an approximation of (6) given by the Riemann sum of ²¹⁷ the intervals obtained by dividing each interval $[s_i, s_{i+1}]$, for $i = 1, \ldots, n - 1$, in two subintervals of the same size. ²¹⁹ Constraints (11) and (12) are obtained by a finite difference approximation of w' . Constraints (13) and (14) are obtained by ²²¹ using a second-order central finite difference to approximate vw'' , while w is approximated by a weighted arithmetic mean ²²³ of three consecutive samples. Due to jerk constraints (13) 224 and (14), Problem 2 is nonconvex and cannot be solved with ²²⁵ the algorithm presented in [4].

²²⁶ *B. Main Result*

²²⁷ The main contribution of this article is the development of ²²⁸ a new solution algorithm for finding a local minimum of the nonconvex Problem 2. As detailed in next sections, we propose 229 to solve Problem 2 by a line-search algorithm based on the 230 sequential solution of convex problems. The algorithm is an 231 iterative one where the following operations are performed at 232 each iteration. 233

1) Constraint Linearization: We first define a convex prob- ²³⁴ lem by linearizing constraints (13) and (14) through a first- ²³⁵ order Taylor approximation around the current point $\mathbf{w}^{(k)}$. . ²³⁶ Different from other sequential algorithms for nonlinear pro-
237 gramming (NLP) problems, we keep the original convex ²³⁸ objective function. The linearized problem is introduced in ²³⁹ Section II. 240

2) Computation of a Feasible Descent Direction: The con- ²⁴¹ vex problem (actually, a relaxation of such problem) is solved 242 in order to compute a feasible descent direction $\delta \mathbf{w}^{(k)}$. The 243 main contribution of this article lies in this part. The compu- ²⁴⁴ tation requires the minimization of a suitably defined objective ²⁴⁵ function through a further iterative algorithm. At each iteration ²⁴⁶ of this algorithm, the following operations are performed: ²⁴⁷

C. Objective Function Evaluation ²⁴⁸

Such evaluation requires the solution of a problem with 249 the same objective function but subject to a subset of the ²⁵⁰ constraints. The special structure of the resulting subproblem ²⁵¹ is heavily exploited in order to solve it efficiently. This is the 252 topic of Section III. 253

D. Computation of a Descent Step ²⁵⁴

Some Lagrange multipliers of the subproblem define a 255 subgradient for the objective function. This can be employed 256 to define a linear programming (LP) problem that returns a 257 descent step for the objective function. This is the topic of 258 Section IV. 259

Line Search: Finally, a standard line search along the half-
z60 line $\mathbf{w}^{(k)} + \alpha \delta \mathbf{w}^{(k)}$, $\alpha \ge 0$, is performed.

Sections II–IV detail all what we discussed above. Next, 262 in Section V, we present different computational experiments. ²⁶³

E. Comparison With Existing Literature ²⁶⁴

Although many works consider the problem of ²⁶⁵ minimum-time speed planning with acceleration constraints 266 (see [7]–[9]), relatively few consider jerk constraints. Perhaps, ²⁶⁷ this is also due to the fact that the jerk constraint is nonconvex 268 so that its presence significantly increases the complexity of 269 the optimization task. One can use a general-purpose NLP $_{270}$ solver (such as SNOPT or IPOPT) for finding a local solution 271 of Problem 2, but the required time is, in general, too large for 272 the speed planning application. As outlined in Section I-D, ²⁷³ in this work, we tackle this problem through an approach ²⁷⁴ based on the solution of a sequence of convex subproblems. 275 There are different approaches in the literature based on the 276 sequential solution of convex subproblems. In [10], it is first 277 observed that the problem with acceleration constraints but no ²⁷⁸ jerk constraints for robotic manipulators can be reformulated 279 as a convex one with linear constraints, and it is solved ²⁸⁰ by a sequence of LP problems obtained by linearizing the ²⁸¹

 $AO:3$

ss problem can be solved way this
health three shocks of a sequence of 2-10 LP problem. In [13], an interior pairs
a profile space of a state of a
state of a state of a state of objective function at the current point, i.e., the objective function is replaced by its supporting hyperplane at the current point, and by introducing a trust region centered at the current point. In $[11]$ and $[12]$, it is further observed that this problem can be solved very efficiently through the solution of a sequence of 2-D LP problems. In [13], an interior point barrier method is used to solve the same problem based on Newton's method. Each Newton step requires the solution of a KKT system, and an efficient way to solve such systems is proposed in that work. Moving to approaches also dealing with jerk constraints, we mention [14]. In this work, it is observed that jerk constraints are nonconvex but can be written as the difference between two convex functions. Based on this observation, the authors solve the problem by a sequence of convex subproblems obtained by linearizing at the current point the concave part of the jerk constraints and by adding a proximal term in the objective function that plays the same role as a trust region, preventing from taking too large steps. In [15] a slightly different objective function is considered. Rather than minimizing the traveling time along the given path, the integral of the squared difference between the maximum velocity profile and the computed velocity profile is minimized. After representing time-varying control inputs as products of parametric exponential and polynomial functions, the authors reformulate the problem in such a way that its objective function is convex quadratic, while nonconvexity lies in difference-of-convex functions. The resulting problem is tackled through the solution of a sequence of convex subproblems obtained by linearizing the concave part of the nonconvex constraints. In [16], the problem of speed planning for robotic manipulators with jerk constraints is reformulated in such a way that nonconvexity lies in simple bilinear terms. Such bilinear terms are replaced 315 by the corresponding convex and concave envelopes, obtaining the so-called McCormick relaxation, which is the tightest 317 possible convex relaxation of the nonconvex problem. Other approaches dealing with jerk constraints do not rely on 319 the solution of convex subproblems. For instance, in [17], a concatenation of fifth-order polynomials is employed to provide smooth trajectories, which results in quadratic jerk profiles, while, in [18], cubic polynomials are employed, resulting in piecewise constant jerk profiles. The decision process involves the choice of the phase durations, i.e., of the intervals over which a given polynomial applies. A very recent and interesting approach to the problem with jerk constraints is [19]. In this work, an approach based on numerical integration is discussed. Numerical integration has been first applied under acceleration constraints in [20] and [21]. In [19], jerk constraints are taken into account. The algorithm detects a position *s* along the trajectory where the jerk constraint is singular, that is, the jerk term disappears from one of the constraints. Then, it computes the speed profile up to *s* by computing two maximum jerk profiles and then connecting them by a minimum jerk profile, found by a shooting method. In general, the overall solution is composed of a sequence of various maximum and minimum jerk profiles. This approach does not guarantee reaching a local minimum of the traversal time. Moreover, since Problem 4

has velocity and acceleration constraints, the jerk constraint 340 is singular for all values of *s* so that the algorithm presented 341 in $[19]$ cannot be directly applied to Problem 4. $\frac{342}{2}$

Some algorithms use heuristics to quickly find sub- 343 optimal solutions of acceptable quality. For instance, ³⁴⁴ Villagra *et al.* [22] propose an algorithm that applies to curves 345 composed of clothoids, circles, and straight lines. The algo- ³⁴⁶ rithm does not guarantee the local optimality of the solution. 347 Raineri and Guarino Lo Bianco [23] present an efficient 348 heuristic algorithm. Also, this method does not guarantee 349 global nor local optimality. Various works in the literature 350 consider jerk bounds in the speed optimization problem for ³⁵¹ robotic manipulators instead of mobile vehicles. This is a 352 slightly different problem but mathematically equivalent to 353 Problem (1). In particular, paper [24] presents a method based 354 on the solution of a large number of nonlinear and nonconvex 355 subproblems. The resulting algorithm is slow due to a large 356 number of subproblems; moreover, the authors do not prove its 357 convergence. Zhang *et al.* [25] propose a similar method that 358 gives a continuous-time solution. Again, the method is com- ³⁵⁹ putationally slow since it is based on the numerical solution of 360 a large number of differential equations; moreover, this article 361 does not contain proof of convergence or local optimality. 362 Some other works replace the jerk constraint with *pseudo-* 363 *jerk*, that is, the derivative of the acceleration with respect 364 to arc length, obtaining a constraint analogous to (4e) and ³⁶⁵ ending up with a convex optimization problem. For instance, 366 Zhang *et al.* [26] add to the objective function a pseudo-jerk 367 penalizing term. This approach is computationally convenient, ³⁶⁸ but substituting (8) with $(4e)$ may be overly restrictive at low $\frac{1}{369}$ speeds. 370

F. Statement of Contribution 371

The method presented in this article is a sequential convex 372 one that aims at finding a local optimizer of Problem 2. ³⁷³ To be more precise, as usual with nonconvex problems, only 374 convergence to a stationary point can usually be proved. ³⁷⁵ However, the fact that the sequence of generated feasible 376 points is decreasing with respect to the objective function 377 values usually guarantees that the stationary point is a local 378 minimizer, except in rather pathological cases (see [27, p. 19]). 379 Moreover, in our experiments, even after running a local solver 380 from different starting points, we have never been able to 381 detect local minimizers better than the one returned by the 382 method we propose. Thus, a possible, nontrivial, topic for 383 future research could be that of proving the global optimality 384 of the solution. To the best of our knowledge and as detailed 385 in the following, this algorithm is more efficient than the ones 386 existing in the literature since it leverages the special struc- 387 ture of the subproblems obtained as local approximations of 388 Problem 2. We discussed this class of problems in our previous 389 work [28]. This structure allows computing very efficiently a 390 feasible descent direction for the main line-search algorithm; ³⁹¹ it is one of the key elements that allow us to outperform 392 generic NLP solvers. In summary, the main contributions of 393 this work are: 1) on the theoretical side, the development of an $_{394}$ approach for which a rigorous mathematical analysis has been ³⁹⁵

Fig. 1. Flowchart of algorithm SCA. The dashed block corresponds to a call of the procedure ComputeUpdate, proposed to solve Problem 3, which represents the main contribution of this article.

 performed, proving a convergence result to a stationary point (see Section II) and 2) on the computational side, to exploit heavily the structure of the problem in order to implement the approach in a fairly efficient way (see Sections III and IV) so that its computing times outperform those of nonlinear solvers and are competitive with heuristic approaches that are only able to return suboptimal solutions of lower quality (see Section V).

⁴⁰⁴ II. SEQUENTIAL ALGORITHM BASED ON CONSTRAINT ⁴⁰⁵ LINEARIZATION

⁴⁰⁶ To account for the nonconvexity of Problem 2, we propose ⁴⁰⁷ a line-search method based on the solution of a sequence of ⁴⁰⁸ special structured convex problems. Throughout this article, ⁴⁰⁹ we call this algorithm Sequential Convex Algorithm (SCA), ⁴¹⁰ and its flowchart is shown in Fig. 1. It belongs to the class of ⁴¹¹ Sequential Convex Programming algorithms, where, at each ⁴¹² iteration, a convex subproblem is solved. In what follows, 413 we denote by Ω the feasible region of Problem 2. At each iteration *k*, we replace the current point $\mathbf{w}^{(k)} \in \Omega$ with a $\alpha^{(k)}$ new point $\mathbf{w}^{(k)} + \alpha^{(k)}\delta\mathbf{w}^{(k)} \in \Omega$, where the step size $\alpha^{(k)}$ ∈ ⁴¹⁶ [0, 1] is obtained by a *line search* along the descent direction $\delta \mathbf{w}^{(k)}$, which, in turn, is obtained through the solution of a ⁴¹⁸ convex problem. The constraints of the convex problem are linear approximations of (10)–(14) around $\mathbf{w}^{(k)}$, while the ⁴²⁰ objective function is the original one. Then, the problem that we consider to compute the direction $\delta \mathbf{w}^{(k)}$ is given in the following (superscript *k* of $w^{(k)}$ is omitted):

⁴²³ *Problem 3:*

$$
\lim_{\delta w \in \mathbb{R}^n} \sum_{i=1}^{n-1} \frac{2h}{\sqrt{w_{i+1} + \delta w_{i+1}} + \sqrt{w_i + \delta w_i}} \tag{16}
$$

$$
l_B \le \delta w \le u_B \tag{17}
$$

$$
a_{26} \t\t \delta w_{i+1} - \delta w_i \le b_{A_i}, \quad i = 1, \dots, n-1 \t\t (18)
$$

$$
\delta w_i - \delta w_{i+1} \le b_{Di}, \quad i = 1, \dots, n-1 \tag{19}
$$

$$
\delta w_i - \eta_i \delta w_{i-1} - \eta_i \delta w_{i+1} \le b_{N_i}, \quad i = 2, ..., n-1
$$

$$
(20) \qquad \text{429}
$$

$$
\eta_i \delta w_{i-1} + \eta_i \delta w_{i+1} - \delta w_i \le b_{P_i}, \quad i = 2, \dots, n-1 \tag{21}
$$

where $\mathbf{l}_B = -\mathbf{w}$ and $\mathbf{u}_B = \mathbf{u} - \mathbf{w}$ (recall that **u** has been 432 introduced in (10), and its components have been defined 433 immediately in Problem 2), while parameters η , \mathbf{b}_A , \mathbf{b}_D , η , η **b_N**, and **b_P** depend on the point **w** around which the constraints (10) – (14) are linearized. More precisely, we have 436

$$
b_{A_i} = 2hA - w_{i+1} + w_i
$$

$$
b_{Di} = 2hA - w_i + w_{i+1}
$$

$$
\eta_i = \frac{3w_{i+1} + 3w_{i-1} + 2w_i}{2(w_{i+1} + w_{i-1} + 6w_i)}
$$
\n⁴³⁹

$$
b_{P_i} = \sqrt{\ell_i(\mathbf{w})} \frac{8h^2 J + (w_{i-1} - 2w_i + w_{i+1})\sqrt{\ell_i(\mathbf{w})}}{2(w_{i+1} + w_{i-1} + 6w_i)}
$$

$$
b_{N_i} = \sqrt{\ell_i(\mathbf{w})} \frac{8h^2 J - (w_{i-1} - 2w_i + w_{i+1})\sqrt{\ell_i(\mathbf{w})}}{2(w_{i+1} + w_{i-1} + 6w_i)}
$$
 (22)

where ℓ_i is defined in (15). The following proposition is an 442 immediate consequence of the feasibility of **w**. 443

Proposition 1: All parameters η , \mathbf{b}_A , \mathbf{b}_D , \mathbf{b}_N , and \mathbf{b}_P are 444 nonnegative. 445

 $\frac{\log n \times \log n \times \log n}{\log n \times \log n \times \log n \times \log n}$

There is a convention of the state of t The proposed approach follows some standard ideas of ⁴⁴⁶ sequential quadratic approaches employed in the literature 447 about nonlinearly constrained problems. However, a quite ⁴⁴⁸ relevant difference is that the true objective function (9) is 449 employed in the problem to compute the direction, rather 450 than a quadratic approximation of such function. This choice 451 comes from the fact that the objective function (9) has some 452 features (in particular, convexity and being decreasing), which, ⁴⁵³ combined with the structure of the linearized constraints, ⁴⁵⁴ allows for an efficient solution of Problem 3. Problem 3 is ⁴⁵⁵ a convex problem with a nonempty feasible region ($\delta \mathbf{w} = \mathbf{0}$ is ϵ_{456} always a feasible solution) and, consequently, can be solved by 457 existing NLP solvers. However, such solvers tend to increase 458 computing times since they need to be called many times ⁴⁵⁹ within the iterative algorithm SCA. The main contribution of 460 this article lies in the routine computeUpdate (see dashed ⁴⁶¹ block in Fig. 1), which is able to solve Problem 3 and effi- ⁴⁶² ciently returns a descent direction $\delta \mathbf{w}^{(k)}$. To be more precise, 463 we solve a *relaxation* of Problem 3. Such relaxation, as well 464 as the routine to solve it, is detailed in Sections III and IV. ⁴⁶⁵ In Section III, we present efficient approaches to solve some 466 subproblems, including proper subsets of the constraints. Then, 467 in Section IV, we address the solution of the relaxation of ⁴⁶⁸ Problem 3. 469

> *Remark 1:* It is possible to see that, if one of the constraints (13) and (14) is active at $w^{(k)}$, then, along the direction $\delta \mathbf{w}^{(k)}$ computed through the solution of the linearized Problem 3, it holds that $\mathbf{w}^{(k)} + \alpha \delta \mathbf{w}^{(k)} \in \Omega$ for any sufficiently 473 small $\alpha > 0$. In other words, small perturbations of the current solution $\mathbf{w}^{(k)}$ along direction $\delta \mathbf{w}^{(k)}$ do not lead outside the feasible region Ω . This fact is illustrated in Fig. 2. Let us

Fig. 2. Constraints (13) and (14) and their linearization ($C = 4h^2J$).

⁴⁷⁷ rewrite constraints (13) and (14) as follows:

$$
\left| (x - 2y)\sqrt{x} \right| \le C \tag{23}
$$

a the commission of $P_{PQ|F}$ with the commission of $P_{PQ|F}$ with a single propose the results about θ_i and θ_i an where $x = \ell_i(\mathbf{w})$, $y = 2w_i$, and $C = 4h^2 J$ is a constant. The ⁴⁸⁰ feasible region associated with constraint (23) is reported in 481 Fig. 2. In particular, it is the region between the blue and red ⁴⁸² curves. Suppose that constraint $y \leq (x/2) + (C/2\sqrt{x})$ is active as at **w**^(k) (the case when $y \ge (x/2) - (C/2\sqrt{x})$ is active can ⁴⁸⁴ be dealt with in a completely analogous way). If we linearize ⁴⁸⁵ such constraint around $\mathbf{w}^{(k)}$, then we obtain a linear constraint ⁴⁸⁶ (black line in Fig. 2), which defines a region completely ⁴⁸⁷ contained into the one defined by the nonlinear constraint *y* ≤ ($x/2$)+($C/2\sqrt{x}$). Hence, for each direction $\delta \mathbf{w}^{(k)}$ feasible ⁴⁸⁹ with respect to the linearized constraint, we are always able to ⁴⁹⁰ perform sufficiently small steps, without violating the original 491 nonlinear constraints, i.e., for $\alpha > 0$ small enough, it holds t_{492} that $\mathbf{w}^{(k)} + \alpha \delta \mathbf{w}^{(k)} \in \Omega$.

⁴⁹³ Constraints (13) and (14) can also be rewritten as follows:

$$
w_{i-1} + w_{i+1} - 2w_i - 4h^2 J(\ell_i(\mathbf{w}))^{-\frac{1}{2}} \le 0 \qquad (24)
$$

$$
2w_i - w_{i-1} - w_{i+1} - 4h^2 J(\ell_i(\mathbf{w}))^{-\frac{1}{2}} \le 0. \tag{25}
$$

 Note that the functions on the left-hand side of these constraints are concave. Now, we can define a variant of Problem 3 where constraints (20) and (21) are replaced by the following linearizations of constraints (24) and (25):

> $\theta_i = \frac{1 + 2h^2 J(\ell_i(\mathbf{w}))^{-\frac{3}{2}}}{h^2}$ $(2 - 4h^2 J(\ell_i(\mathbf{w}))^{-\frac{3}{2}}$

$$
-\beta_i \delta w_{i-1} - \beta_i \delta w_{i+1} + \delta w_i \le b'_{N_i}
$$
 (26)

$$
\theta_i \delta w_{i-1} + \theta_i \delta w_{i+1} - \delta w_i \le b'_{P_i} \tag{27}
$$

2

2

⁵⁰² where

503

504

$$
\beta_i = \frac{1 - 2h^2 J(\ell_i(\mathbf{w}))^{-\frac{3}{2}}}{2 + 4h^2 J(\ell_i(\mathbf{w}))^{-\frac{3}{2}}}
$$

$$
6h^2 J(\ell_i(\mathbf{w}))^{-\frac{1}{2}}
$$

505

$$
b'_{N_i} = \frac{6h^2 J(t_i(\mathbf{w}))^{-\frac{3}{2}}}{2 + 4h^2 J(t_i(\mathbf{w}))^{-\frac{3}{2}}}
$$

\n
$$
b'_{P_i} = \frac{6h^2 J(t_i(\mathbf{w}))^{-\frac{1}{2}}}{2 - 4h^2 J(t_i(\mathbf{w}))^{-\frac{3}{2}}}.
$$
\n(28)

⁵⁰⁷ The following proposition states that constraints (26) ⁵⁰⁸ and (27) are tighter than constraints (20) and (21).

Proposition 2: For all $i = 2, \ldots, n - 1$, it holds that $\beta_i \leq 509$ $\eta_i \leq \theta_i$. Equality $\eta_i = \theta_i$ holds if the corresponding nonlinear 510 constraint (24) is active at the current point **w**. Similarly, $\eta_i = 511$ β_i holds if the corresponding nonlinear constraint (25) is active σ_1 at the current point **w**. 513

Proof: We only prove the results about θ_i and η_i . Those 514 about β_i and η_i are proved in a completely analogous way. ϵ_{15} By definition of η_i and θ_i , we need to prove that 516

$$
\frac{3w_{i+1} + 3w_{i-1} + 2w_i}{w_{i+1} + 6w_i + w_{i-1}} \le \frac{1 + 2h^2 J(\ell_i(\mathbf{w}))^{-\frac{3}{2}}}{2 - 4h^2 J(\ell_i(\mathbf{w}))^{-\frac{3}{2}}}.
$$

After few simple computations, this inequality can be 518 rewritten as 519

$$
4h^2 J(\ell_i(\mathbf{w}))^{-\frac{1}{2}} \ge (w_{i-1} - 2w_i + w_{i+1})
$$

which holds in view of feasibility of **w** and, moreover, holds 521 as an equality if constraint (24) is active at the current point 522 **w**, as we wanted to prove. 523

In view of this result, by replacing constraints (20) and (21) with (26) and (27) , we reduce the search space of the new displacement δw . On the other hand, the following proposition states that, with constraints (26) and (27) , no line search is needed along the direction δw , i.e., we can always choose the ϵ ₅₂₈ step length $\alpha = 1$.

Proposition 3: If constraints (26) and (27) are employed as 530 a replacement of constraints (20) and (21) in the definition of $\overline{531}$ Problem 3, then, for each feasible solution *δ***w** of this problem, ⁵³² it holds that $\mathbf{w} + \delta \mathbf{w} \in \Omega$.

Proof: For the sake of convenience, let us rewrite 534 Problem 2 in the following more compact form: 535

$$
\min f(\mathbf{w} + \boldsymbol{\delta}\mathbf{w}) \tag{536}
$$

$$
\mathbf{c}(\mathbf{w} + \delta \mathbf{w}) \le 0 \tag{29}
$$

where the vector function **c** contains all constraints 538 of Problem 2 and the nonlinear ones are given as ⁵³⁹ in (24) and (25) (recall that, in that case, vector **c** is a vector of $\overline{5}$ $\overline{5}$ concave functions). Then, Problem 3 can be written as follows: ⁵⁴¹

min $f(\mathbf{w} + \delta \mathbf{w}) \mathbf{c}(\mathbf{w}) + \nabla \mathbf{c}(\mathbf{w}) \delta \mathbf{w} \leq 0.$ (30) 542

Now, it is enough to observe that, by concavity, $\frac{543}{2}$

$$
\mathbf{c}(\mathbf{w} + \delta \mathbf{w}) \leq \mathbf{c}(\mathbf{w}) + \nabla \mathbf{c}(\mathbf{w}) \delta \mathbf{w} \qquad \qquad \text{544}
$$

so that each feasible solution of (30) is also feasible for (29). 545 \Box 546

The above proposition states that the feasible region of 547 Problem 3, when constraints (26) and (27) are employed 548 in its definition, is a subset of the feasible region Ω of 549 the original Problem 2. As a final result of this section, ⁵⁵⁰ we state the following theorem, which establishes convergence 551 of algorithm SCA to a stationary (KKT) point of Problem 2. 552

Theorem 1: If algorithm SCA is run for an infinite number 553 of iterations and there exists some positive integer value *K* ⁵⁵⁴ such that for all iterations $k \geq K$, constraints (26) and (27) are 555 always employed in the definition of Problem 3, and then, the 556 sequence of points $\{w^{(k)}\}$ generated by the algorithm converges $\frac{557}{2}$ to a KKT point of Problem 2. ⁵⁵⁹ In order to prove the theorem, we first need to prove some ⁵⁶⁰ lemmas.

Lemma 1: The sequence $\{f(\mathbf{w}^{(k)})\}$ of the function values ⁵⁶² at points generated by algorithm SCA converges to a finite ⁵⁶³ value.

 Proof: The sequence is nonincreasing and bounded from 565 below, e.g., by the value $f(\mathbf{u}_B)$, in view of the fact that the objective function f is monotonic decreasing. Thus, it con-verges to a finite value.

⁵⁶⁸ Next, we need the following result based on strict convexity ⁵⁶⁹ of the objective function *f* .

 570 *Lemma 2:* For each $\delta > 0$ sufficiently small, it holds that

$$
\min\left\{\max\{f(\mathbf{x}), f(\mathbf{y})\} - f\left(\frac{\mathbf{x} + \mathbf{y}}{2}\right)\right\}
$$

$$
\vdots \mathbf{x}, \mathbf{y} \in \Omega, \ \|\mathbf{x} - \mathbf{y}\| \ge \delta\right\} \ge \varepsilon_{\delta} > 0. \quad (31)
$$

 $\frac{1}{573}$ *Proof:* Due to strict convexity, it holds that, $\forall x \neq y$,

$$
\max\{f(\mathbf{x}), f(\mathbf{y})\} - f\left(\frac{\mathbf{x} + \mathbf{y}}{2}\right) > 0.
$$

⁵⁷⁵ Moreover, the function is a continuous one. Next, ⁵⁷⁶ we observe that the region

$$
\{x, y \in \Omega: \|x - y\| \ge \delta\}
$$

⁵⁷⁸ is a compact set. Thus, by the Weierstrass theorem, the ⁵⁷⁹ minimum in (31) is attained, and it must be strictly positive, 580 as we wanted to prove.

⁵⁸¹ Finally, we prove that also the sequence of points generated ⁵⁸² by algorithm SCA converges to some point, feasible for ⁵⁸³ Problem 2.

⁵⁸⁴ *Lemma 3:* It holds that

$$
\|\delta \mathbf{w}^{(k)}\| \to 0.
$$

⁵⁸⁶ *Proof:* Let us assume, by contradiction, that, over some δ ₅₈₇ infinite subsequence with index set *K*, it holds that $\|\delta \mathbf{w}^{(k)}\|$ \geq 588 $2\rho > 0$ for all $k \in \mathcal{K}$, i.e.,

$$
\|\mathbf{w}^{(k+1)} - \mathbf{w}^{(k)}\| \ge 2\rho > 0
$$
 (32)

where $\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} + \delta \mathbf{w}^{(k)}$. Over this subsequence, it holds, ⁵⁹¹ by strict convexity, that

$$
f(\mathbf{w}^{(k+1)}) \le f(\mathbf{w}^{(k)}) - \xi \quad \forall k \in \mathcal{K} \tag{33}
$$

for some $\xi > 0$. Indeed, it follows by optimality of $w^{(k)}$ + $\delta w^{(k)}$ for Problem 3 and convexity of f that

$$
f(\mathbf{w}^{(k+1)}) \le f\left(\frac{\mathbf{w}^{(k+1)} + \mathbf{w}^{(k)}}{2}\right) \le f(\mathbf{w}^{(k)})
$$

⁵⁹⁶ so that

$$
\max\{f(\mathbf{w}^{(k)}), f(\mathbf{w}^{(k+1)})\} = f(\mathbf{w}^{(k)}).
$$

⁵⁹⁸ Then, it follows from (32) and Lemma 2 that we can choose 599 $\zeta = \varepsilon_{\rho} > 0$. Thus, since (33) holds infinitely often, we should ₆₀₀ have $f(\mathbf{w}^{(k)})$ → −∞, which, however, is not possible in view ⁶⁰¹ of Lemma 1. - \Box

⁶⁰² Now, we are ready to prove Theorem 1.

Proof: As a consequence of Lemma 3, it also holds that ⁶⁰³

$$
\mathbf{w}^{(k)} \to \bar{\mathbf{w}} \in \Omega. \tag{34}
$$

Indeed, all points $\mathbf{w}^{(k)}$ belong to the compact feasible region 605 Ω so that the sequence $\{w^{(k)}\}\$ admits accumulation points. ∞ However, due to Lemma 3, the sequence cannot have distinct 607 accumulation points.

Now, let us consider the compact reformulation (29) of 609 Problem 2 and the related linearization (30) , equivalent to 610 Problem 3 with the linearized constraints (26) and (27) . Since $\overline{611}$ the latter is a convex problem with linear constraints, its local 612 minimizer $\delta \mathbf{w}^{(k)}$ (unique in view of strict convexity of the 613 objective function) fulfills the following KKT conditions: ⁶¹⁴

$$
\nabla f(\mathbf{w}^{(k)} + \delta \mathbf{w}^{(k)}) + \boldsymbol{\mu}_k^{\top} \nabla \mathbf{c}(\mathbf{w}^{(k)}) = \mathbf{0}
$$

$$
\mathbf{c}(\mathbf{w}^{(k)}) + \nabla \mathbf{c}(\mathbf{w}^{(k)}) \delta \mathbf{w}^{(k)} \leq 0 \qquad \qquad \text{as}
$$

$$
\boldsymbol{\mu}_k^{\top}(\mathbf{c}(\mathbf{w}^{(k)}) + \nabla \mathbf{c}(\mathbf{w}^{(k)}) \delta \mathbf{w}^{(k)}) = 0
$$

$$
\mu_k \ge 0 \tag{35} \tag{35}
$$

where μ_k is the vector of Lagrange multipliers. Now, by taking 619 the limit of system (35) , possibly over a subsequence, in order 620 to guarantee convergence of the multiplier vectors μ_k to a 621 vector $\bar{\mu}$, in view of Lemma 3 and (34), we have that 622

$$
\nabla f(\bar{\mathbf{w}}) + \bar{\boldsymbol{\mu}}^{\top} \nabla \mathbf{c}(\bar{\mathbf{w}}) = \mathbf{0}
$$

$$
\mathbf{c}(\bar{\mathbf{w}}) \leq 0 \tag{624}
$$

$$
\bar{\boldsymbol{\mu}}^{\top} \mathbf{c}(\bar{\mathbf{w}}) = 0 \tag{625}
$$

$$
\bar{\mu}\geq 0 \hspace{8cm} \text{{\tiny 626}}
$$

or, equivalently, the limit point \bar{w} is a KKT point of Problem 2, 627 as we wanted to prove. \Box 628

Remark 2: In algorithm SCA at each iteration, we solve to 629 optimality Problem 3. This is indeed necessary for the final ⁶³⁰ iterations to prove the convergence result stated in Theorem 1. ⁶³¹ However, during the first iterations, it is not necessary to solve 632 the problem to optimality: finding a feasible descent direction 633 is enough. This does not alter the theoretical properties of the 634 algorithm and allows to reduce the computing times.

so value, $\frac{1}{\sqrt{6}}$ is a content of the form of the content of the content of the content of the content of the form of the strength of the form of the strength of the strength of the strength of the strength of the st In the rest of this article, we refer to constraints (18) and 636 (19) as acceleration constraints, while constraints (20) and (21) $\epsilon_{0.0}$ [or (26) and (27)] are called (linearized) negative acceleration 638 rate (NAR) and positive acceleration rate (PAR) constraints, 639 respectively. Also, note that, in the different subproblems ⁶⁴⁰ discussed in the following, we always refer to the linearization 641 with constraints (20) and (21) and, thus, with parameters ϵ_{42} η_i , but the same results also hold for the linearization with 643 constraints (26) and (27) and, thus, with parameters θ_i and β_i . 644

III. SUBPROBLEM WITH ACCELERATION AND NAR 645 CONSTRAINTS ⁶⁴⁶

In this section, we propose an efficient method to solve 647 Problem 3 when PAR constraints are removed. The solution 648 of this subproblem becomes part of an approach to solve ⁶⁴⁹ a suitable relaxation of Problem 3 and, in fact, under very 650 mild assumptions, to solve Problem 3 itself. This is clarified 651 in Section IV. We discuss: 1) the subproblem including 652 only (17) and the acceleration constraints (18) and (19); 2) the ϵ_{653} subproblem including only (17) and the NAR constraints (20) ; 654

 ϵ_{655} and 2) the subproblem including all constraints (17)–(20). ⁶⁵⁶ Throughout the section, we need the results stated in the ⁶⁵⁷ following two propositions. Let us consider problems with the 658 following form, where $N = \{1, ..., n\}$ and $M_i = \{1, ..., m_j\}$, ⁶⁵⁹ *j* ∈ *N*:

$$
\begin{array}{ll}\n\text{min} & g(x_1, \dots, x_n) \\
\text{for} & x_j \le a_{i,j} x_{j-1} + b_{i,j} x_{j+1} + c_{i,j}, \quad i \in M_j, \ j \in N \\
\text{for} & \ell_j \le x_j \le u_j, \quad j \in N\n\end{array} \tag{36}
$$

663 where *g* is a monotonic decreasing function; $a_{i,j}$, $b_{i,j}$, $c_{i,j} \geq 0$, 664 for $i \in M_j$ and $j \in N$; $a_{i,1} = 0$ for $i \in M_1$; and $b_{i,n} = 0$ 665 for $i \in M_n$. The following result is proven in [28]. Here, ⁶⁶⁶ we report the proof in order to make this article self-contained. 667 We denote by *P* the feasible polytope of problem (36). ⁶⁶⁸ Moreover, we denote by **z** the componentwise maximum of all fies feasible solutions in *P*, i.e., for each $j \in N$, $z_j = \max_{x \in P} x_j$ ⁶⁷⁰ (note that the above maximum value is attained since *P* is a ⁶⁷¹ polytope).

⁶⁷² *Proposition 4:* The unique optimal solution of (36) is the ⁶⁷³ componentwise maximum **z** of all its feasible solutions.

 Proof: If we are able to prove that the componentwise maximum **z** of all feasible solutions is itself a feasible solution, by monotonicity of *g*, it must also be the unique optimal solution. In order to prove that **z** is feasible, we proceed σ ⁸ as follows. For $j \in N$, let \mathbf{x}^{*j} be the optimal solution of $\max_{\mathbf{x} \in P} x_j$ so that $z_j = x_j^{*j}$. Since $\mathbf{x}^{*j} \in P$, then it must 680 hold that $\ell_i \leq z_i \leq u_i$. Moreover, let us consider the generic constraint

$$
x_j \le a_{i,j} x_{j-1} + b_{i,j} x_{j+1} + c_{i,j}
$$

for $i \in M_i$. It holds that

$$
z_j = x_j^{*j} \le a_{i,j} x_{j-1}^{*j} + b_{i,j} x_{j+1}^{*j} + c_{i,j}
$$

$$
\le a_{i,j} z_{j-1} + b_{i,j} z_{j+1} + c_{i,j}
$$

686 where the first inequality follows from feasibility of \mathbf{x}^{*j} , while 687 the second follows from nonnegativity of a_{ij} and b_{ij} and the 688 definition of **z**. Since this holds for all $j \in N$, the result is \Box

690 Now, consider the problem obtained from (36) by removing some constraints, i.e., by taking $M'_i \subseteq M_j$ for each $j \in N$

$$
\begin{array}{ll}\n\text{min} & g(x_1, \dots, x_n) \\
& x_j \le a_{i,j} x_{j-1} + b_{i,j} x_{j+1} + c_{i,j}, \quad i \in M'_j, \ j \in N \\
& \ell_j \le x_j \le u_j, \quad j \in N.\n\end{array} \tag{37}
$$

⁶⁹⁵ Later, we also need the result stated in the following ⁶⁹⁶ proposition.

ess Proposition 5: The optimal solution $\bar{\mathbf{x}}^*$ of problem (37) is as an upper bound for the optimal solution x^* of problem (36), 699 i.e., $\bar{x}^* \geq x^*$.

Proof: It holds that x^* is a feasible solution of prob- τ_{01} lem (37) so that, in view of Proposition 4, $\bar{\mathbf{x}}^* \geq \mathbf{x}^*$ 702 holds.

⁷⁰³ *A. Acceleration Constraints*

⁷⁰⁴ The simplest case is the one where we only consider the ⁷⁰⁵ acceleration constraints (18) and (19), besides constraints (17) with a generic upper bound vector $y > 0$. The problem to be τ_{06} solved is 707

Problem 4: ⁷⁰⁸

$$
\min_{\delta w \in \mathbb{R}^n} \sum_{i=1}^{n-1} \frac{2h}{\sqrt{w_{i+1} + \delta w_{i+1}} + \sqrt{w_i + \delta w_i}}
$$

$$
I_B \leq \delta w \leq y \tag{710}
$$

$$
\delta w_{i+1} - \delta w_i \le b_{A_i}, \quad i = 1, \dots, n-1 \tag{71}
$$

$$
\delta w_i - \delta w_{i+1} \le b_{Di}, \quad i = 1, \dots, n-1.
$$

It can be seen that such a problem belongs to the class 713 of problems (36). Therefore, in view of Proposition 4, the ⁷¹⁴ optimal solution of Problem 4 is the componentwise maximum 715 of its feasible region. Moreover, in [3], it has been proven that $_{716}$ Algorithm 1, based on a forward and a backward iteration 717 and with $O(n)$ computational complexity, returns an optimal 718 solution of Problem 4.

B. NAR Constraints ⁷²⁰

Now, we consider the problem only including NAR constraints (20) and constraints (17) with upper bound vector \mathbf{v} \mathbf{z} *Problem 5:* 723

$$
\min_{\delta \mathbf{w} \in \mathbb{R}^n} \sum_{i=1}^{n-1} \frac{2h}{\sqrt{w_{i+1} + \delta w_{i+1}} + \sqrt{w_i + \delta w_i}} \tag{38}
$$

$$
\delta w_i \leq \eta_i(\delta w_{i-1} + \delta w_{i+1}) + b_{N_i}, \quad i = 2, \ldots, n-1
$$

$$
(39) \quad \text{727}
$$

where $y_1 = y_n = 0$ because of the boundary conditions. τ_{28} Also, this problem belongs to the class of problems (36) 729 so that Proposition 4 states that its optimal solution is the 730 componentwise maximum of its feasible region. Problem 5 can 731 be solved by using the graph-based approach presented in $[4]$ $\frac{732}{2}$ and [28]. However, Cabassi et al. [4] show that, by exploiting 733 the structure of a simpler version of the NAR constraints, it is $_{734}$ possible to develop an algorithm more efficient than the graph- ⁷³⁵ based one. Our purpose is to extend the results presented in [4] $\frac{736}{ }$ to a case with different and more challenging NAR constraints 737 in order to develop an efficient algorithm outperforming the 738 graph-based one. The same state of the s

Now, let us consider the restriction of Problem 5 between $_{740}$ two generic indexes *s* and *t* such that $1 \leq s \leq t \leq n$, obtained 741 by fixing $\delta w_s = y_s$ and $\delta w_t = y_t$ and by considering only the τ_{42}

719

NAR and upper bound constraints at $s + 1, \ldots, t - 1$. Let δw^* ⁷⁴⁴ be the optimal solution of the restriction. We first prove the ⁷⁴⁵ following lemma.

Lemma 4: The optimal solution δw^* of the restriction of 747 Problem 5 between two indexes *s* and *t*, $1 \leq s \leq t \leq n$, $\int \cos t \, dt$ is such that, for each $j \in \{s+1, \ldots, t-1\}$, either $\delta w_j^* \leq y_j$ ⁷⁴⁹ or $\delta w_j^* \leq \eta_j (\delta w_{j+1}^* + \delta w_{j-1}^*) + b_{N_j}$ holds as an equality.

 Proof: It is enough to observe that, in case both inequali- ties were strict for some j , then, in view of the monotonicity of the objective function, we could decrease the objective func-⁷⁵³ tion value by increasing the value of δw_j^* , thus contradicting σ ₇₅₄ optimality of δw^* . Note that the above result also applies to the full Problem 5,

756 which corresponds to the special case $s = 1$, $t = n$ with $y_1 = y_n = 0$. In view of Lemma 4, we have that there exists an index *j*, with $s < j \le t$, such that: 1) $\delta w_j^* = y_j$; 2) the 759 upper bound constraint is not active at $s + 1, \ldots, j - 1$; and 3) all NAR constraints $s + 1, \ldots, j - 1$ are active. Then, *j* is the lowest index in $\{s + 1, \ldots, t - 1\}$ where the upper bound constraint is active If index *j* were known, then the following observation allows returning the components of the optimal solution between *s* and *j*. Let us first introduce the following definitions of matrix **A** and vector **q**:

$$
\mathbf{A} = \begin{bmatrix} 1 & -\eta_{s+1} & 0 & \cdots & 0 \\ -\eta_{s+2} & 1 & -\eta_{s+2} & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & -\eta_{j-1} & 1 \end{bmatrix}
$$

\n
$$
\mathbf{q} = \begin{bmatrix} b_{N_{s+1}} + \eta_{s+1}y_s \\ b_{N_{s+2}} \\ \vdots \\ b_{N_{j-2}} \\ b_{N_{j-1}} + \eta_{j-1}y_j \end{bmatrix}
$$
 (40)

⁷⁶⁸ Note that **A** is the square submatrix of the NAR constraints 769 restricted to rows $s + 1$ up to $j - 1$ and the related columns. *T*₇₇₀ *Observation 1:* Let δw^* be the optimal solution of the ⁷⁷¹ restriction of Problem 5 between *s* and *t* and let *s* < *j*. *If* constraints $\delta w_s^* \leq y_s$, $\delta w_j^* \leq y_j$, and $\delta w_i^* \leq \eta_i (\delta w_{i+1}^* + \delta w_j^*)$ δw_{i-1}^*) + b_{N_i} , for $i = s + 1, ..., j - 1$, are all active, then δw_{s+1}^* ,..., δw_{j-1}^* are obtained by the solution of the following ⁷⁷⁵ tridiagonal system:

$$
\begin{aligned}\n\tau_6 \quad \delta w_s &= y_s \\
\delta w_r - \eta_r \delta w_{r+1} - \eta_r \delta w_{r-1} &= b_{Nr}, \quad r = s+1, \dots, j-1 \\
\delta w_j &= y_j\n\end{aligned}
$$

⁷⁷⁹ or, equivalently, as

$$
\begin{aligned}\n\delta w_{s+1} - \eta_{s+1} \bar{x}_{s+2} \\
&= b_{Ns+1} + \eta_{s+1} y_s \\
\delta w_r - \eta_r \delta w_{r+1} - \eta_r \delta w_{r-1} &= b_{Nr}, \quad r = s+2, \dots, j-2 \\
\delta w_{s+1} - \eta_{s+1} \bar{x}_{s+2} &= b_{Ns+1} + \eta_{s+1} y_s.\n\end{aligned} \tag{41}
$$

⁷⁸⁴ In the matrix form, the above tridiagonal linear system can ⁷⁸⁵ be written as

$$
\mathbf{A}\boldsymbol{\delta}\mathbf{w}_{s+1,j-1}^{*} = \mathbf{q} \tag{42}
$$

where matrix **A** and vector **q** are defined in (40) and $\delta \mathbf{w}_{s+1,j-1}^{*}$ 787 is the restriction of vector $\delta \mathbf{w}$ to its components between $s + 1$ 788 and $j - 1$. 789

Tridiagonal systems 790

$$
a_i x_{i-1} + b_i x_i + c_i x_{i+1} = d_i, \quad i = 1, \ldots, m
$$

so Foldbook States of $h_0 t_1 = 0$. And $h_0 t_2 = 0$ ($h_0 t_3 = 0$ and $h_1 t_3 = 0$ and $h_2 t_4 = 0$ and $h_3 t_5 = 0$ and $h_3 t_6 = 0$ and $h_4 t_7 = 0$ and $h_5 t_8 = 0$ and $h_6 t_9 = 0$ and $h_7 = 0$ and $h_8 = 0$ and $h_9 = 0$ and h with $a_1 = c_m = 0$ can be solved through so-called Thomas τ_{92} algorithm [29] with $O(m)$ operations. In order to detect the τ_{93} lowest index $j \in \{s+1,\ldots,t-1\}$ such that the upper bound τ_{94} constraint is active at j , we propose Algorithm 2, also called $\frac{795}{200}$ SolveNAR and described in what follows. We initially set 796 $j = t$. Then, at each iteration, we solve the linear system (42). $\frac{797}{200}$ Let $\bar{\mathbf{x}} = (\bar{x}_{s+1}, \dots, \bar{x}_{j-1})$ be its solution. We check whether 798 it is feasible and optimal or not. Namely, if there exists $k \in \mathbb{Z}^9$ ${s + 1, \ldots, j - 1}$ such that either $\bar{x}_k < 0$ or $\bar{x}_k > y_k$, then 800 \bar{x} is unfeasible, and consequently, we need to reduce *j* by 1. 801 If $\bar{x}_k = y_k$ for some $k \in \{s+1,\ldots,j-1\}$, then we also 802 reduce *j* by 1 since *j* is not in any case the lowest index $\frac{1}{803}$ of the optimal solution where the upper bound constraint is 804 active. Finally, if $0 \le \bar{x}_k < y_k$, for $k = s + 1, \ldots, j - 1$, then 805 we need to verify if \bar{x} is the best possible solution over the 806 interval $\{s + 1, \ldots, j - 1\}$. We are able to check that after 807 proving the following result.

Proposition 6: Let matrix **A** and vector **q** be defined as 809 in (40). The optimal solution *δ***w**[∗] of the restriction of ⁸¹⁰ Problem 5 between *s* and *t* satisfies 811

$$
\delta w_s^* = y_s
$$
, $\delta w_r^* = \bar{x}_r$, $r = s + 1, ..., j - 1$, $\delta w_j^* = y_j$ (43)

if and only if the optimal value of the LP problem 813

$$
\max_{\epsilon} \mathbf{1}^T \epsilon
$$

$$
A\epsilon \leq 0 \hspace{8.7cm} \hspace{8.7cm} \epsilon
$$

$$
\epsilon \le \bar{\mathbf{y}} - \bar{\mathbf{x}} \tag{44}
$$

is strictly positive or, equivalently, if the following system 817 admits no solution: 818

$$
\mathbf{A}^T \mathbf{\lambda} = \mathbf{1}, \quad \mathbf{\lambda} \ge \mathbf{0}.\tag{45}
$$

Proof: Let us first assume that *δ***w**[∗] does not fulfill (43). ⁸²⁰ Then, in view of Lemma 4, j is not the lowest index such 821 that the upper bound is active at the optimal solution, and 822 consequently, $\delta w_k^* = y_k > \bar{x}_k$ for some $k \in \{s+1, \ldots, j-1\}$. 823 Such optimal solution must be feasible, and in particular, 824 it must satisfy all NAR constraints between $s + 1$ and $j - 1$ 825 and the upper bound constraints between $s + 1$ and *j*, i.e., \qquad 826

$$
\delta w_{s+1}^* - \eta_{s+1} \delta w_{s+2}^* \tag{827}
$$

$$
\leq b_{Ns+1} + \eta_{s+1} y_s \tag{828}
$$

$$
\delta w_r^* - \eta_r \delta w_{r+1}^* - \eta_r \delta w_{r-1}^* \le b_{Nr}, \quad r = s+2, \ldots, j-2 \quad \text{as}
$$

$$
\delta w_{j-1}^* - \eta_{j-1} \delta w_{j-2}^* - \eta_{j-1} \delta w_j^* \le b_{N,j-1}
$$

$$
\delta w_r^* \leq y_r, \quad r = s+1, \ldots, j.
$$

In view of $\delta w_j^* \leq y_j$ and $\eta_{j-1} \geq 0$, $\delta \mathbf{w}^*$ also satisfies the 832 following system of inequalities: 833

$$
\delta w_{s+1}^* - \eta_{s+1} \delta w_{s+2}^* \tag{834}
$$

$$
\leq b_{N_s+1} + \eta_{s+1} y_s \tag{835}
$$

$$
\delta w_r^* - \eta_r \delta w_{r+1}^* - \eta_r \delta w_{r-1}^* \le b_{Nr}, \quad r = s+2, \ldots, j-2 \quad \text{as}
$$

$$
\delta w_{j-1}^* - \eta_{j-1} \delta w_{j-2}^* \le b_{N,j-1} + \eta_{j-1} y_j
$$

$$
838 \t\t \delta w_r^* \leq y_r, \quad r = s + 1, \ldots, j - 1
$$

After making the change of variables $\delta w_r^* = \bar{x}_r + \epsilon_r$ for 840 $r = s + 1, \ldots, j - 1$, and recalling that \bar{x} solves system (41), 841 the system of inequalities can be further rewritten as

842
$$
\epsilon_{s+1} - \eta_{s+1} \epsilon_{s+2} \le 0
$$

843 $\epsilon_r - \eta_r \epsilon_{r+1} - \eta_r \epsilon_{r-1} \le 0, \quad r = s+2, \ldots, j-2$

844 *i* $\epsilon_{i-1} - \eta_{i-1} \epsilon_{i-2} < 0$

845 $\epsilon_r \leq y_r - \bar{x}_r, \quad r = s + 1, \ldots, j - 1.$

⁸⁴⁶ Finally, recalling the definition of matrix **A** and vector **q** 847 given in (40), this can also be written in a more compact form ⁸⁴⁸ as

849 **A** $\epsilon \leq 0$

$$
\epsilon \leq \bar{y} - \bar{x}.
$$

IEEE Proof δx_1 If $\delta w_k^* = y_k > \bar{x}_k$ for some $k \in \{s+1, \ldots, j-1\}$, then the 852 system must admit a solution with $\epsilon_k > 0$. This is equivalent ⁸⁵³ to prove that problem (44) has an optimal solution with at ⁸⁵⁴ least one strictly positive component, and the optimal value ⁸⁵⁵ is strictly positive. Indeed, in view of the definition of matrix ⁸⁵⁶ **A**, problem (44) has the structure of the problems discussed 857 in Proposition 4. More precisely, to see that, we need to ⁸⁵⁸ remark that maximizing $\mathbf{1}^T \boldsymbol{\epsilon}$ is equivalent to minimizing the decreasing function $-\mathbf{1}^T \boldsymbol{\epsilon}$. Then, observing that $\boldsymbol{\epsilon} = \mathbf{0}$ is a 860 feasible solution of problem (44), by Proposition 4, the optimal ssi solution ϵ^* must be a nonnegative vector, and since at least 862 one component, namely, component k , is strictly positive, then 863 the optimal value must also be strictly positive.

⁸⁶⁴ Conversely, let us assume that the optimal value is strictly $_{865}$ positive, and ϵ^* is an optimal solution with at least one strictly ⁸⁶⁶ positive component. Then, there are two possible alternatives. ⁸⁶⁷ Either the optimal solution **δw**^{*} of the restriction of Problem 5 between *s* and *t* is such that $\delta w_j^* < y_j$, in which case (43) ⁸⁶⁹ obviously does not hold, or $\delta w_j^* = y_j$. In the latter case, let 870 us assume by contradiction that (43) holds. We observe that 871 the solution that is defined as follows:

$$
x'_s = y_s
$$

873
\n874
\n
$$
x'_{r} = \bar{x}_{r} + \epsilon_{r}^{*} = \delta w_{r}^{*} + \epsilon_{r}^{*}, \quad r = s + 1, ..., j - 1
$$
\n874
\n874
\n875
\n876
\n877
\n879
\n889
\n899
\n890
\n891
\n892
\n893
\n894
\n895
\n896
\n897
\n899
\

875
$$
x'_r = \delta w^*_r, \quad r = j + 1, ..., t
$$

⁸⁷⁶ is feasible for the restriction of Problem 5 between *s* and *t*. $\frac{1}{877}$ Indeed, by feasibility of ϵ^* in problem (44), all upper bound ⁸⁷⁸ and NAR constraints between *s* and *j* − 1 are fulfilled. Those 879 between, $j + 1$ and t, are also fulfilled by the feasibility of δ **w**^{*}. Then, we only need to prove that the NAR constraint at *j* $\sum_{i=1}^{881}$ is satisfied. By feasibility of $\delta \mathbf{w}^*$ and in view of $\epsilon_{j-1}^*, \eta_j \geq 0$, ⁸⁸² we have that

$$
x'_{j} = \delta w_{j}^{*} \leq \eta_{j} \delta w_{j-1}^{*} + \eta_{j} \delta w_{j+1}^{*} + b_{N j}
$$

\n
$$
\leq \eta_{j} (\delta w_{j-1}^{*} + \epsilon_{j-1}) + \eta_{j} \delta w_{j+1}^{*} + b_{N j}
$$

$$
= \eta_j x'_{j-1} + \eta_j x'_{j+1} + b_{Nj}.
$$

Thus, **x**' is feasible such that $\mathbf{x}' > \delta \mathbf{w}^*$ with at least one strict 886 inequality (recall that at least one component of ϵ^* is strictly 887 positive), which contradicts the optimality of δw^* (recall that 888 the optimal solution must be the componentwise maximum of 889 all feasible solutions).

In order to prove the last part, i.e., problem (44) has a 89 positive optimal value if and only if (45) admits no solution, $\frac{892}{2}$ and we notice that the optimal value is positive if and 893 only if the feasible point $\epsilon = 0$ is not an optimal solution, 894 or equivalently, the null vector is not a KKT point. Since, ⁸⁹⁵ at $\epsilon = 0$, constraints $\epsilon \leq \bar{y} - \bar{x}$ cannot be active, then the 896 KKT conditions for problem (44) at this point are exactly those 897 established in (45), where vector λ is the vector of Lagrange 898 mutlpliers for constraints $A \epsilon \leq 0$. This concludes the 899 proof. 900

Then, if (45) admits no solution, (43) does not hold, and 901 again, we need to reduce j by 1. Otherwise, we can fix the 902 optimal solution between *s* and *j* according to (43). After that, ⁹⁰³ we recursively call the routine SolveNAR on the remaining 904 subinterval $\{j, \ldots, t\}$ in order to obtain the solution over the 905 full interval.

Remark 3: In Algorithm 2, routine isFeasible is the 907 routine used to verify if, for $k = s+1, \ldots, j-1, 0 \le \bar{x}_k < y_k$, 908 while isOptimal is the procedure to check optimality of \bar{x} = 909 over the interval $\{s+1,\ldots,j-1\}$, i.e., (43) holds. $\qquad \qquad \text{910}$

Now, we are ready to prove that Algorithm 2 solves 911 Problem 5. 912

Proposition 7: The call solveNAR(y , 1, *n*) of 913 Algorithm 2 returns the optimal solution of Problem $5.$ 914

Proof: After the call solveNAR(y , 1, *n*), we are able 915 to identify the portion of the optimal solution between 1 and 916 some index j_1 , $1 < j_1 \le n$. If $j_1 = n$, then we are done. Otherwise, we make the recursive call solveNAR(y , j_1 , n), 918 which enables to identify also the portion of the optimal 919 solution between j_1 and some index j_2 , $j_1 < j_2 \le n$. If $j_2 = n$, 920 then we are done. Otherwise, we make the recursive call 921 solveNAR(y , j_2 , n) and so on. After at most *n* recursive 922 calls, we are able to return the full optimal solution. \Box 923

⁹²⁴ *Remark 4:* Note that Algorithm 2 involves solving a signifi-925 cant amount of linear systems, both to compute \bar{x} and verify its 926 optimality [see (42) and (45)]. Some tricks can be employed to 927 reduce the number of operations. Some of these are discussed ⁹²⁸ in [30].

929 The following proposition states the worst case complexity ⁹³⁰ of solveNAR(**y**,1,*n*).

Proposition 8: Problem 5 can be solved with $O(n^3)$ oper-932 ations by running the procedure $SolveNAR(y, 1, n)$ and by ⁹³³ using the Thomas algorithm for the solution of each linear ⁹³⁴ system.

 $\frac{935}{1}$ *Proof:* In the worst case, at the first call, we have $j_1 = 2$ $\frac{1}{936}$ since we need to go all the way from $j = n$ down to $j = 2$. 937 Since, for each *j*, we need to solve a tridiagonal system, which 938 requires at most $O(n)$ operations, the first call of SolveNAR requires $O(n^2)$ operations. This is similar for all successive 940 calls, and since the number of recursive calls is at most $O(n)$, $\begin{bmatrix} 941 \end{bmatrix}$ the overall effort is at most of $O(n^3)$ operations.

942 In fact, what we observed is that the practical complexity ⁹⁴³ of the algorithm is much better, namely, $\Theta(n^2)$.

⁹⁴⁴ *C. Acceleration and NAR Constraints*

⁹⁴⁵ Now, we discuss the problem with acceleration and NAR ⁹⁴⁶ constraints, with upper bound vector **y**, i.e.,

⁹⁴⁷ *Problem 6:*

948
$$
\min_{\delta w \in \mathbb{R}^n} \sum_{i=1}^{n-1} \frac{2h}{\sqrt{w_{i+1} + \delta w_{i+1}} + \sqrt{w_i + \delta w_i}}
$$

$$
I_{B} \leq \delta w \leq y
$$

 $\delta w_{i+1} - \delta w_i \le b_{A_i}, \quad i = 1, \ldots, n-1$

951 $\delta w_i - \delta w_{i+1} \le b_{Di}, \quad i = 1, \ldots, n-1$

 $\delta w_i - \eta_i \delta w_{i-1} - \eta_i \delta w_{i+1} \le b_N, \quad i = 2, ..., n-1.$

IS The Hole has providen states the wover case complexity solution of Photon is one are the last of nord-
 α the distribution of the states of the last of the states of the states of the states of the states of the sta We first remark that Problem 6 has the structure of problem (36) so that, by Proposition 4, its unique optimal solution is the componentwise maximum of its feasible region. As for Problem 5, we can solve Problem 6 by using the graph- based approach proposed in [28]. However, Cabassi *et al.* [4] show that, if we adopt a very efficient procedure to solve Prob- lems 4 and 5, then it is worth splitting the full problem into two separated ones and use an iterative approach (see Algorithm 3). 961 Indeed, Problems 4–6 share the common property that their optimal solution is also the componentwise maximum of the corresponding feasible region. Moreover, according to Proposition 5, the optimal solutions of Problems 4 and 5 are valid upper bounds for the optimal solution (actually, also for any feasible solution) of the full Problem 6. In Algorithm 3, 967 we first call the procedure SolveACC with input the upper bound vector **y**. Then, the output of this procedure, which, according to what we have just stated, is an upper bound for 970 the solution of the full Problem 6, satisfies $\delta w_{\text{Acc}} \leq y$, and 971 becomes the input for a call of the procedure SolveNAR. 972 The output δw_{NAR} of this call is again an upper bound for 973 the solution of the full Problem 6, and it satisfies $\delta w_{\text{NAR}} \leq$ *δ***w**Acc. This output becomes the input of a further call to the procedure SolveACC, and we proceed in this way until the distance between two consecutive output vectors falls below a

prescribed tolerance value ε . The following proposition states $\frac{977}{2}$ that the sequence of output vectors generated by the alternate 978 calls to the procedures SolveACC and SolveNAR converges 979 to the optimal solution of the full Problem 6.

Proposition 9: Algorithm 3 converges to the the optimal 981 solution of Problem 6 when $\varepsilon = 0$ and stops after a finite 982 number of iterations if $\varepsilon > 0$.

Proof: We have observed that the sequence of alternate 984 solutions of Problems 4 and 5, here denoted by $\{y_t\}$, is: 1) a 985 sequence of valid upper bounds for the optimal solution of 986 Problem 6; 2) componentwise monotonic nonincreasing; and 987 3) componentwise bounded from below by the null vector. 988 Thus, if $\varepsilon = 0$, an infinite sequence is generated, which 989 converges to some point \bar{y} , which is also an upper bound $\frac{990}{2}$ for the optimal solution of Problem 6 but, more precisely, ⁹⁹¹ by continuity, is also a feasible point of the problem and, ⁹⁹² is thus, also the optimal solution of the problem. If $\varepsilon > 0$, due 993 to the convergence to some point \bar{y} , at some finite iteration, $\frac{994}{994}$ the exit condition of the while loop must be satisfied. \Box 995

IV. DESCENT METHOD FOR THE CASE OF ACCELERATION, 996 PAR, AND NAR CONSTRAINTS 997

Unfortunately, PAR constraints (21) do not satisfy the 998 assumptions requested in Proposition 4 in order to guarantee 999 that the componentwise maximum of the feasible region is ¹⁰⁰⁰ the optimal solution of Problem 3. However, in Section III, ¹⁰⁰¹ we have shown that Problem 6, i.e., Problem 3 without the 1002 PAR constraints, can be efficiently solved by Algorithm 3. 1003 Our purpose then is to separate the acceleration and NAR ¹⁰⁰⁴ constraints from the PAR constraints.

Definition 1: Let $f: \mathbb{R}^n \to \mathbb{R}$ be the objective function of 1006 Problem 3, and let D be the region defined by the acceleration 1007 and NAR constraints (the feasible region of Problem 6). ¹⁰⁰⁸ We define the function $F: \mathbb{R}^n \to \mathbb{R}$ as follows: 1009

$$
F(\mathbf{y}) = \min\{f(\mathbf{x}) \, | \, \mathbf{x} \in \mathcal{D}, \mathbf{x} \leq \mathbf{y}\}.
$$

Namely, *F* is the optimal value function of Problem 6 when 1011 the upper bound vector is **y**. 1012

Proposition 10: Function *F* is a convex function. *Proof:* Since Problem 6 is convex, then the optimal value 1014 function *F* is convex (see [31, Sec. 5.6.1]). 1015

Now, let us introduce the following problem:

$$
1017 \tProblem 7:
$$
\n
$$
\min_{\mathbf{y} \in \mathbb{R}^n} F(\mathbf{y}) \t(46)
$$

$$
\eta_{i}(y_{i-1} + y_{i+1}) - y_i \le b_{P_i}, \quad i = 2, \dots, n-1 \quad (47)
$$

$$
l_B \le y \le u_B. \tag{48}
$$

1021 Such a problem is a relaxation of Problem 3. Indeed, each feasible solution of Problem 3 is also feasible for Problem 7, and the value of *F* at such solution is equal to the value of the objective function of Problem 3 at the same solution. We solve Problem 7 rather than Problem 3 to compute the new displacement δw . More precisely, if y^* is the optimal solution of Problem 7, then we set

$$
\delta \mathbf{w} = \arg \min_{\mathbf{x} \in \mathcal{D}, \mathbf{x} \le \mathbf{y}^*} f(\mathbf{x}). \tag{49}
$$

 In the following proposition, we prove that, under a very mild condition, the optimal solution of Problem 7 computed in (49) is feasible and, thus, optimal for Problem 3 so that, although we solve a relaxation of the latter problem, we return an optimal solution for it.

Proposition 11: Let $\mathbf{w}^{(k)}$ be the current point. If

1035
$$
\ell_j(\delta \mathbf{w}) \leq \ell_j(\mathbf{w}^{(k)}) \big(3 + \min\{0, \xi(\mathbf{w}^{(k)})\}\big), \quad j = 2, \ldots, n-1
$$
 (50)

¹⁰³⁷ where *δ***w** is computed through (49) and

$$
\zeta(\mathbf{w}^{(k)}) = \frac{\sqrt{\ell_j(\mathbf{w}^{(k)})}\left(w_{j-1}^{(k)} + w_{j+1}^{(k)} - 2w_j^{(k)}\right)}{2h^2J} \ge -2
$$

(the inequality follows from feasibility of $w^{(k)}$), then δw is feasible for Problem 3, both if the nonlinear constraints are linearized as in (20) and (21), and if they are linearized as in (26) and (27).

 Proof: First, we notice that, if we prove the result for the tighter constraints (26) and (27), then it must also hold for constraints (20) and (21). Thus, we prove the result only for the former. By definition (49), *δ***w** satisfies the acceleration and NAR constraints so that

$\delta w_j \leq \delta w_{j+1} + b_{D_j}$
$\delta w_j \leq \delta w_{j-1} + b_{A_{j-1}}$
$\delta w_j \leq \beta y_{j-1} + b_{A_{j-1}}$
$\delta w_j \leq \beta_j (\delta w_{j+1} + \delta w_{j-1}) + b'_{N_j}$
$\delta w_j \leq y_j^*$

 At least one of these constraints must be active; otherwise, δw_i could be increased, thus contradicting optimality. If the active constraint is $\delta w_j \leq \beta_j(\delta w_{j+1} + \delta w_{j-1}) + b'_{N_j}$, then constraint (27) can be rewritten as follows:

$$
1056 \quad 4h^2 J\big(\ell_j(\mathbf{w}^{(k)})\big)^{-\frac{3}{2}} \big(\delta w_{j+1} + 2\delta w_j + \delta w_{j-1}\big) \\
 \leq 12h^2 J\big(\ell_j(\mathbf{w}^{(k)})\big)^{-\frac{1}{2}}
$$

¹⁰⁵⁸ or, equivalently,

$$
\ell_j(\delta \mathbf{w}) \leq 3\ell_j(\mathbf{w}^{(k)})
$$

¹⁰⁶⁰ implied by (50), and thus, the constraint is satisfied under the ¹⁰⁶¹ given assumption. If $\delta w_j = y_j^*$, then

$$
\log_2 \theta_j \left(\delta w_{j-1} + \delta w_{j+1} \right) \leq \theta_j \left(y_{j-1}^* + y_{j+1}^* \right) \leq y_j^* + b'_{P_j} = \delta w_j + b'_{P_j}
$$

where the second inequality follows from the fact that **y**[∗] ¹⁰⁶³ satisfies the PAR constraints. Now, let $\delta w_j = \delta w_{j+1} + b_{D_j}$ 1064 (the case when $\delta w_j \leq \delta w_{j-1} + b_{A_{j-1}}$ is active can be dealt 1065 with in a completely analogous way). First, we observe that 1066 $\delta w_j \ge \delta w_{j-1} - b_{D_{j-1}}$. Then, 1067

$$
2\delta w_j \ge \delta w_{j+1} + \delta w_{j-1} + b_{D_j} - b_{D_{j-1}}.
$$

In view of the definitions of b_{D_i} and $b_{D_{i-1}}$, this can also be 1069 written as 1070

$$
2\delta w_j \ge \delta w_{j+1} + \delta w_{j-1} + w_{j+1}^{(k)} - 2w_j^{(k)} + w_{j-1}^{(k)}.
$$
 (51) 1071

Now, after recalling the definitions of θ_j and b'_{P_j} given 1072 in (28), and setting $\Delta = h^2 J$, (27) can be rewritten as 1073

$$
2\delta w_j \ge \delta w_{j+1} + \delta w_{j-1} + 2\Delta \big(\ell_j(\mathbf{w}^{(k)})\big)^{-\frac{3}{2}} \ell_j(\delta \mathbf{w})
$$
\n⁽¹⁰⁷⁴⁾

$$
-6\Delta\big(\ell_j\big(\mathbf{w}^{(k)}\big)\big)^{-\frac{1}{2}}.\t(1075)
$$

1081

Taking into account (51) , such inequality certainly holds if 1076

$$
w_{j+1}^{(k)} - 2w_j^{(k)} + w_{j-1}^{(k)} \ge 2\Delta \big(\ell_j(\mathbf{w}^{(k)})\big)^{-\frac{3}{2}} \ell_j(\delta \mathbf{w})
$$

-6\Delta \big(\ell_j(\mathbf{w}^{(k)})\big)^{-\frac{1}{2}}

which is equivalent to 1079

$$
\ell_j(\delta \mathbf{w}) \leq \ell_j(\mathbf{w}^{(k)}) \big(3 + \xi(\mathbf{w}^{(k)}) \big).
$$

This is also implied by (50) .

Assumption (50) is mild. In order to fulfill it, one can 1082 impose restrictions on δw_{i-1} , δw_i and δw_{i+1} . In fact, in the 1083 computational experiments, we did not impose such restric- ¹⁰⁸⁴ tions unless a positive step-length along the computed direc- ¹⁰⁸⁵ tion **δw** could not be taken (which, however, never occurred 1086 in our experiments).

vs. Such a problem is a relation of Problem 3, both in the set of $\frac{1}{2}$ and $\frac{1}{2}$ and Now, let us turn our attention toward the solution of 1088 Problem 7. In order to solve it, we propose a descent method. 1089 We can exploit the information provided by the dual optimal 1090 solution $v \in \mathbb{R}^n_+$ associated with the upper bound constraints 1091 of Problem 6. Indeed, from the sensitivity theory, we know ¹⁰⁹² that the dual solution is related to the gradient of the optimal 1093 value function F (see Definition 1) and provides information 1094 about how it changes its value for small perturbations of the ¹⁰⁹⁵ upper bound values (for further details, see [31, Secs. $5.6.2$ and $_{1096}$ 5.6.5]). Let $\mathbf{y}^{(t)}$ be a feasible solution of Problem 7 and $\mathbf{v} \in \mathbb{R}^n_+$ 1097 be the Lagrange multipliers of the upper bound constraints of 1098 Problem 6 when the upper bound is $y^{(t)}$. Let $_{1099}$

$$
\varphi_i = b_{P_i} - \eta_i \left(y_{i-1}^{(t)} + y_{i+1}^{(t)} \right) + y_i^{(t)}, \quad i = 2, \dots, n-1.
$$

Then, a *feasible descent direction* $\mathbf{d}^{(t)}$ can be obtained by 1101 solving the following LP problem: 1102 *Problem 8:* 1103

$$
\min_{\mathbf{d}\in\mathbb{R}^n} -\mathbf{v}^T\mathbf{d} \tag{52}
$$

$$
\eta_i(d_{i-1}+d_{i+1})-d_i\leq \varphi_i, \quad i=2,\ldots,n-1 \qquad (53)
$$

$$
\mathbf{l}_{\mathbf{B}} \leq \mathbf{y}^{(t)} + \mathbf{d} \leq \mathbf{u}_{\mathbf{B}} \tag{54}
$$

where the objective function (52) imposes that $\mathbf{d}^{(t)}$ is a 1107 descent direction, while constraints (53) and (54) guarantee 1108 feasibility with respect to Problem 7. Problem 8 is an LP ¹¹⁰⁹ problem, and consequently, it can easily be solved through a standard LP solver. In particular, we employed GUROBI [32]. Unfortunately, since the information provided by the dual optimal solution *ν* is local and related to small perturbations of the upper bounds, it might happen that $F(\mathbf{y}^{(t)} + \mathbf{d}^{(t)}) \geq F(\mathbf{y}^{(t)})$. To overcome this issue, we introduce a trust-region constraint ¹¹¹⁶ in Problem 8. Thus, let $\sigma^{(t)} \in \mathbb{R}_+$ be the radius of the trust region at iteration *t*; then, we have

¹¹¹⁸ *Problem 9:*

$$
\min_{\mathbf{d}\in\mathbb{R}^n} -\mathbf{v}^T \mathbf{d} \tag{55}
$$

1120 $\eta_i(d_{i-1} + d_{i+1}) - d_i \leq \varphi_i, \quad i = 2, \dots, n-1$ (56)

 $\bar{\mathbf{I}}_{\mathbf{B}} < \mathbf{d} < \bar{\mathbf{u}}_{\mathbf{B}}$ (57)

 $\sum_{i=1}^{n}$ where $\bar{l}_{B_i} = \max\{l_{B_i} - y_i^{(t)}, -\sigma^{(t)}\}$ and $\bar{u}_{B_i} = \min\{u_{B_i} - v_i^{(t)}\}$ ^{*t*123} $y_i^{(t)}$, $\sigma^{(t)}$ } for $i = 1, ..., n$. After each iteration of the descent algorithm, we change the radius $\sigma^{(t)}$ according to the following ¹¹²⁵ rules.

1126 1) If $F(\mathbf{y}^{(t)} + \mathbf{d}^{(t)}) \geq F(\mathbf{y}^{(t)})$, then we set $\mathbf{y}^{(t+1)} = \mathbf{y}^{(t)}$, and we tight the trust region by decreasing $\sigma^{(t)}$ by a factor 1128 $\tau \in (0, 1)$.

1129 2) If $F(\mathbf{y}^{(t)} + \mathbf{d}^{(t)}) < F(\mathbf{y}^{(t)})$, then we set $\mathbf{y}^{(t+1)} = \mathbf{y}^{(t)} + \mathbf{d}^{(t)}$ and enlarge the radius $\sigma^{(t)}$ by a factor $\rho > 1$.

so. Reupenbends, Sumphila space that for $V_0^{(1)} + U^0$ $\geq V_0^{(1)} + U^0$ and a material subtrial subtrial space of the content of th ¹¹³¹ The proposed descent algorithm is sketched in Fig. 3, which ¹¹³² reports the flowchart of the procedure ComputeUpdate used in algorithm SCA. We initially set $\mathbf{v}^{(0)} = \mathbf{0}$. At each iteration *t*, we evaluate the objective function $F(y^t)$ by solving Problem 6 with upper bound vector $y^{(t)}$ through a call of the routine ¹¹³⁶ solveACCNAR (see Algorithm 3). Then, we compute the $L₁₁₃₇$ Lagrange multipliers $ν^(t)$ associated with the upper bound con-¹¹³⁸ straints. After that, we compute a candidate descent direction ¹¹³⁹ **d**^(*t*) by solving Problem 9. If $\mathbf{d}^{(t)}$ is a descent step, then we set ¹¹⁴⁰ $\mathbf{y}^{(t+1)} = \mathbf{y}^{(t)} + \mathbf{d}^{(t)}$ and enlarge the radius of the trust region; ¹¹⁴¹ otherwise, we do not move to a new point, and we tight the ¹¹⁴² trust region and solve again Problem 9. The descent algorithm ¹¹⁴³ stops as soon as the radius of the trust region becomes smaller 1144 than a fixed tolerance ε_1 .

Remark 5: Note that we initially set $y^{(0)} = 0$. However, any feasible solution of Problem 9 does the job, and actually, start- ing with a good initial solution may enhance the performance of the algorithm.

 Remark 6: Problem 9 is an LP and can be solved by any existing LP solver. However, a suboptimal solution to Problem 9, obtained by a heuristic approach, is also accept- able. Indeed, we observe that: 1) an *optimal* descent direction is not strictly required and 2) a heuristic approach allows to reduce the time needed to get a descent direction. In this article, we employed a possible heuristic, whose description can be found in [30], but the development of further heuristic approaches is a possible topic for future research.

¹¹⁵⁸ V. COMPUTATIONAL EXPERIMENTS

¹¹⁵⁹ In this section, we present various computational experi-¹¹⁶⁰ ments performed in order to evaluate the approaches proposed ¹¹⁶¹ in Sections III and IV.

¹¹⁶² In particular, we compared solutions of Problem 2 computed ¹¹⁶³ by algorithm SCA to solutions obtained with commercial NLP solvers. Note that, with a single exception, we did not carry out 1164 a direct comparison with other methods specifically tailored to 1165 Problem 2 for the following reasons.

- 1) Some algorithms (such as $[22]$ and $[23]$) use heuristics to 1167 quickly find suboptimal solutions of acceptable quality ¹¹⁶⁸ but do not achieve local optimality. Hence, comparing 1169 their solution times with SCA would not be fair. How- ¹¹⁷⁰ ever, in one of our experiments (see Experiment 4), 1171 we made a comparison between the most recent heuristic $_{1172}$ proposed in [23] and algorithm SCA, both in terms 1173 of computing times and in terms of the quality of the ¹¹⁷⁴ returned solution.
- 2) The method presented in [26] does not consider the ¹¹⁷⁶ (nonconvex) jerk constraint but solves a convex problem 1177 whose objective function has a penalization term that 1178 includes pseudojerk. Due to this difference, a direct ¹¹⁷⁹ comparison with SCA is not possible. 1180
- 3) The method presented in $[24]$ is based on the numerical 1181 solution of a large number of nonlinear and nonconvex 1182 subproblems and is, therefore, structurally slower than 1183 SCA, whose main iteration is based on the efficient 1184 solution of the convex Problem 3.

In the first two experiments, we compare the computational 1186 time of IPOPT, a general-purpose NLP solver [33], with that 1187 of algorithm SCA over some randomly generated instances of 1188 Problem 2. In particular, we tested two different versions of 1189 the algorithm SCA. The first version, called SCA-H in what 1190 follows, employs the heuristic mentioned in Remark 6. Since ¹¹⁹¹ the heuristic procedure may fail in some cases, in such cases, ¹¹⁹² we also need an LP solver. In particular, in our experiments, 1193 we used GUROBI whenever the heuristic did not produce 1194 either a feasible solution to Problem 9 or a descent direc- ¹¹⁹⁵ tion. In the second version, called SCA-G in what follows, ¹¹⁹⁶ we always employed GUROBI to solve Problem 9. For what 1197 concerns the choice of the NLP solver IPOPT, we remark ¹¹⁹⁸ that we chose it after a comparison with two further general- ¹¹⁹⁹ purpose NLP solvers, SNOPT and MINOS, which, however, 1200 turned out to perform worse than IPOPT on this class of 120 problems.

In the third experiment, we compare the performance of 1203 the two implemented versions of algorithm SCA applied to ¹²⁰⁴ two specific paths and see their behavior as the number *n* of ¹²⁰⁵ discretized points increases. 1206

In the fourth experiment, we compare the solutions returned 1207 by algorithm SCA with those returned by the heuristic recently 1208 proposed in $[23]$.

Finally, in the fifth experiment, we present a real-life speed 1210 planning task for an LGV operating in an industrial setting, 1211 using real problem bounds and paths layouts, provided by an 1212 automation company based in Parma, Italy.

We remark that, according to our experiments, the spe- 1214 cial purpose routine solveACCNAR (Algorithm 3) strongly ¹²¹⁵ outperforms general-purpose approaches, such as the graph- ¹²¹⁶ based approach proposed in [28], and GUROBI, when solving 1217 Problem 6 (which can be converted into an LP as discussed 1218 in $[28]$).

Finally, we remark that we also tried to solve the convex Problem 3 arising at each iteration of the proposed ¹²²¹

Fig. 3. Flowchart of the routine ComputeUpdate.

 method with an NLP solver in place of the procedure ComputeUpdate, presented in this article. However, the experiments revealed that, in doing this, the computing times become much larger even with respect to the single call to the NLP solver for solving the nonconvex Problem 2.

¹²²⁷ All tests have been performed on an IntelCore i7-8550U ¹²²⁸ CPU at 1.8 GHz. Both for IPOPT and algorithm SCA, the ¹²²⁹ null vector was chosen as a starting point. The parameters used within algorithm SCA were $\varepsilon = 1e^{-8}$, $\varepsilon_1 = 1e^{-6}$ 1231 (tolerance parameters), $\rho = 4$, and $\tau = 0.25$ (trust-region $_{1232}$ update parameters). The initial trust region radius $\sigma^{(0)}$ was 1233 initialized to 1 in the first iteration $k = 0$ but adaptively set equal to the size of the last update $\|\mathbf{w}^{(k)} - \mathbf{w}^{(k-1)}\|_{\infty}$ ¹²³⁵ in all subsequent iterations (this adaptive choice allowed to ¹²³⁶ reduce computing times by more than a half). We remark that ¹²³⁷ algorithm SCA has been implemented in MATLAB, so we ¹²³⁸ expect better performance after a C/C++ implementation.

¹²³⁹ *A. Experiments 1 and 2*

 In Experiment 1, we generated a set of 50 different paths, 1241 each of which was discretized setting $n = 100$, $n = 500$, and $n = 1000$ sample points. The instances were generated by assuming that the traversed path was divided into seven intervals over which the curvature of the path was assumed to be constant. Thus, the *n*-dimensional upper bound vector **u** was generated as follows. First, we fixed $u_1 = u_n = 0$, i.e., the initial and final speeds must be equal to 0. Next, 1248 we partitioned the set $\{2, \ldots, n-1\}$ into seven subintervals 1_{1249} I_j , $j \in \{1, \ldots, 7\}$, which corresponds to intervals with constant curvature. Then, for each subinterval, we randomly 1251 generated a value $u_i \in (0, \tilde{u})$, where \tilde{u} is the maximum upper bound (which was set equal to 100 m²s⁻²). Finally, for each *i* $j \in \{1, \ldots, 7\}$, we set $u_k = \tilde{u}_j \ \forall k \in I_j$. The maximum acceleration parameter *A* is set equal to 2.78 ms⁻² and the maximum jerk *J* to 0.5 ms⁻³, while the path length is s_f = 60 m. The values for *A* and *J* allow a comfortable motion for a ground transportation vehicle (see [34]).

In Experiment 2, we generated a further set of 50 different 1258 paths, each of which was discretized using $n = 100$, $n = 500$, 1259 and $n = 1000$ variables. These new instances were randomly 1260 generated such that the traversed path was divided into up to ¹²⁶¹ five intervals over which the curvature could be zero, linear ¹²⁶² with respect to the arc length or constant. We chose this kind 1263 of path since they are able to represent the curvature of a 1264 road trip (see [35]). The maximum squared speed along the ¹²⁶⁵ path was fixed equal to 192.93 m²s⁻² (corresponding to a 1266</sup> maximum speed of 50 kmh⁻¹, a typical value for an urban 1267 driving scenario). The total length of the paths was fixed to ¹²⁶⁸ $s_f = 1000$ m, while parameter *A* was set equal to 0.25 ms⁻², 1269 *J* to 0.025 ms⁻³, and A_N to 4.9 ms⁻². 1270

The results are reported in Table I, in which we show ¹²⁷¹ the average (minimum and maximum) computational times 1272 for SCA-H, SCA-G, and IPOPT. They show that algorithm ¹²⁷³ SCA-H is the fastest one, while SCA-G is slightly faster than 1274 **IPOPT** at $n = 100$ but clearly faster for a larger number of 1275 sample points n . In general, we observe that both SCA-H and 1276 SCA-G tend to outperform IPOPT as *n* increases. Moreover, 1277 while the computing times for IPOPT at $n = 100$ are not much 1278 worse than those of SCA-H and SCA-G, we should point out 1279 that, at this dimension, IPOPT is sometimes unable to converge ¹²⁸⁰ and return solutions whose objective function value differs 1281 from the best one by more than 100%. Also, the objective 1282 function values returned by SCA-H and SCA-G are sometimes 1283 slightly different, due to numerical issues related to the choice 1284 of the tolerance parameters, but such differences are mild ones ¹²⁸⁵ and never exceed 1%. Therefore, these approaches appear to 1286 be fast and robust. It is also worthwhile to remark that SCA 1287 approaches are compatible with online planning requirements ¹²⁸⁸ within the context of the LGV application. According to 1289 Haschke *et al.* [18] (see also [36]), in "highly unstructured, 1290 unpredictable, and dynamic environments," there is a need to 1291 replan in order to adapt the motion in reaction to unforeseen ¹²⁹² events or obstacles. How often to replan depends strictly on the 1293 application. Within the context of the LGV application (where ¹²⁹⁴ the environment is structured), replanning every 100–150 ms ¹²⁹⁵

TABLE I AVERAGE (MINIMUM AND MAXIMUM) COMPUTING TIMES (IN SECONDS) FOR SCA-H, SCA-G, AND IPOPT OVER EXPERIMENTS 1 AND 2

Exp.	n		$SCA-H$	SCA-G	IPOPT
		min	0.012	0.042	0.03
	100	mean	0.016	0.072	0.132
		max	0.026	0.138	0.305
		min	0.042	0.21	0.352
	500	mean	0.064	0.276	1.01
		max	0.104	0.456	1.828
		min	0.1	0.426	1.432
	1000	mean	0.149	0.626	3.289
		max	0.237	0.828	7.137
\overline{c}		min	0.012	0.036	0.052
	100	mean	0.02	0.047	0.113
		max	0.038	0.073	0.263
2		min	0.049	0.102	0.534
	500	mean	0.093	0.172	0.886
		max	0.212	0.237	1.457
2		min	0.083	0.228	1.733
	1000	mean	0.242	0.386	2.487
		max	0.709	0.539	3.74

 is acceptable, and thus, the computing times of the SCA 1297 approaches at $n = 100$ are suitable. Of course, computing times increase with *n*, but we notice that the computing times 1299 of SCA-H still meet the requirement at $n = 500$. Moreover, a relevant feature of SCA-H and SCA-G is that, at each iteration, a feasible solution is available. Thus, we could stop 1302 them as soon as a time limit is reached. At $n = 500$, if we impose a time limit of 150 ms, which is still quite reasonable for the application, SCA-G returns slightly worse feasible solutions, but these do not differ from the best ones by more ¹³⁰⁶ than 2%.

¹³⁰⁷ *B. Experiment 3*

18 $\frac{1}{\pi}$ **18** $\frac{1}{\pi}$ **6 Example 1974** (ABS And **A CASE** (ABS And **A CASE 18 CASE CASE 18 CASE CASE CASE CASE CAS** In our third experiment, we compared the performance of the two proposed approaches (SCA-H and SCA-G), over two possible automated driving scenarios, as the number *n* of samples increases. As a first example, we considered a continuous curvature path composed of a line segment, a clothoid, a circle arc, a clothoid, and a final line segment (see Fig. 4). The minimum-time velocity planning on this 1315 path, whose total length is $s_f = 90$ m, is addressed with the following data. The problem constants are compatible with a typical urban driving scenario. The maximum squared velocity μ ¹³¹⁸ is 225 m²s⁻² (corresponding to 54 km h⁻¹), the longitudinal acceleration limit is $A = 1.5$ ms⁻², and the maximal normal acceleration is $A_N = 1$ ms⁻², while, for the jerk constraints, 1321 we set $J = 1$ ms⁻³. Next, we considered a path of length ¹³²² $s_f = 60$ m (see Fig. 5) whose curvature was defined according to the following function:

$$
k(s) = \frac{1}{5}\sin\left(\frac{s}{10}\right), \quad s \in [0, s_f]
$$

and parameter *A*, A_N , and *J* were set equal to 1.39 ms⁻², 4.9 ms⁻², and 0.5 ms⁻³, respectively. The maximum squared velocity is still equal to 225 m²s⁻². The computational results are reported in Figs. 6 and 7 for values of *n* that grows from 100 to 1000. They show that the performance of SCA-H and SCA-G depends on the path. In particular, it seems that the heuristic performs in a poorer way when the number of

Fig. 5. Experiment 3—second path.

Fig. 6. Computing times (in seconds) for the path in Fig. 4.

points of the upper bound vector at which PAR constraints are 1332 violated tends to be large, which is the case for the second ¹³³³ instance. We can give two possible motivations: 1) the direc- ¹³³⁴ tions computed by the heuristic procedure are not necessarily 1335 good descent directions, so routine computeUpdate slowly ¹³³⁶ converges to a solution and 2) the heuristic procedure often ¹³³⁷ fails, and it is in any case necessary to call GUROBI. Note 1338 that the computing times of IPOPT on these two paths are ¹³³⁹ larger than those of SCA-H and SCA-G, and, as usual, the gap 1340 increases with *n*. Moreover, for the second path, IPOPT was ¹³⁴¹ unable to converge for $n = 100$ and returned a solution, which 1342 differed by more than 35% with respect to those returned by 1343 SCA-H and SCA-G. 1344

As a final remark, we notice that the computed traveling 1345 times along the paths only slightly vary with *n*. For the first ¹³⁴⁶ path, they vary between 14.44 and 14.45 s while, for the ¹³⁴⁷ second path, between 20.65 and 20.66 s. The differences are 1348 very mild, but we should point out that this is not always ¹³⁴⁹

Fig. 7. Computing times (in seconds) for the path in Fig. 5.

TABLE II

MINIMUM, AVERAGE, AND MAXIMUM COMPUTING TIMES (IN SECONDS) AND RELATIVE PERCENTAGE DIFFERENCE BETWEEN THE TRAVELING TIMES COMPUTED BY THE HEURISTIC PRESENTED IN [23] AND THE SCA APPROACHES WITH $n = 100$ FOR THE INSTANCES OF EXPERIMENT 1

Heuristic from [23]	min	mean	max
Fime.	0.016	0.048	0.2049
Relative percentage difference	5.5%	12.1%	31.2%

¹³⁵⁰ the case. We further comment on this point when presenting ¹³⁵¹ Experiment 5.

¹³⁵² *C. Experiment 4*

The 7. Computer time is the set of the best in the set of the set o In this experiment, we compared the performance of our approach with the heuristic procedure recently proposed in [23]. In Table II, we report the computing times and the relative percentage difference [(*f*HEUR − *f*SCA)/ *f*SCA] ∗ 100% between the traveling times computed by the heuristic and the SCA approaches for the instances of Experiment 1 with $n = 100$. Algorithms SCA-H and SCA-G have comparable computing times (actually, better for what concerns SCA-H) with respect to that heuristic, and the quality of the final solutions is, on average, larger than 10% (these observations also extend to other experiments). Such difference between the quality of the solutions returned by algorithm SCA and those returned by the heuristic is best explained through the discussion of a representative instance, taken from Experiment 1 with $n = 100$. In this instance, we set $A = 2.78$ ms⁻², $\frac{1368}{1368}$ while, for the jerk constraints, we set $J = 2 \text{ ms}^{-3}$. The total 1369 length of the path is $s_f = 60$ m. The maximum velocity profile is the piecewise constant black line in Fig. 8. In the same figure, we report in red the velocity profile returned by the heuristic and in blue the one returned by algorithm SCA. The computing time for the heuristic is 45 ms, while, for algorithm SCA-H, it is 39 ms. The final objective function value (i.e., the traveling time along the given path) is 15.4 s for the velocity profile returned by the heuristic and 14.02 s for the velocity profile returned by algorithm SCA. From the qualitative point of view, it can be observed in this instance (and similar observations hold for the other instances that we tested) that the heuristic produces velocity profiles whose local minima coincide with those of the maximum velocity profile. For instance, in the interval between 10 and 20 m, we notice that the velocity profile returned by the heuristic coincides

Fig. 8. Velocity profile returned by the heuristic proposed in [23] (red line) and by algorithm SCA (blue line). The black line is the maximum velocity profile.

with the maximum velocity profile in that interval. Instead, the 1384 velocity profile generated by algorithm SCA generates velocity 1385 profiles that fall below the local minima of the maximum ¹³⁸⁶ velocity profile, but, this way, they are able to keep the ¹³⁸⁷ velocity higher in the regions preceding and following the local 1388 minima of the maximum velocity profile. Again, referring to 1389 the interval between 10 and 20 m, we notice that the velocity $_{1390}$ profile computed by algorithm SCA falls below the maximum ¹³⁹¹ velocity profile in that region and, thus, below the velocities 1392 returned by the heuristic, but, this way, velocities in the region 1393 before 10 m and in the one after 20 m are larger with respect 1394 to those computed by the heuristic.

D. Experiment 5 ¹³⁹⁶

As a final experiment, we planned the speed law of an 1397 autonomous guided vehicle operating in a real-life auto- ¹³⁹⁸ mated warehouse. Paths and problem data have been provided 1399 by packaging company Ocme S.r.l., based in Parma, Italy. 1400 We generated 50 random paths from a general layout. Fig. 9 1401 shows the warehouse layout and a possible path. In all paths, 1402 we set maximum velocity to 2 m s⁻¹, maximum longitudinal 1403 acceleration to $A = 0.28$ m/s², maximum normal acceleration 1404 to 0.2 m/s², and maximum jerk to $J = 0.025$ m/s³. Table III 1405 shows computation times for algorithms SCA-H, SCA-G, and 1406 **IPOPT** for a number of sampling points $n \in \{100, 500, 1000\}$. 1407 SCA-H is quite fast although it sometimes returns slightly ¹⁴⁰⁸ worse solutions (the largest percentage error, at a single ¹⁴⁰⁹ instance with $n = 1000$, is 8%). IPOPT is clearly slower than 1410 SCA-H and SCA-G for $n = 500$ and 1000, while, for $n = 100$, 1411 it is slower than SCA-H but quite similar to SCA-G. However, ¹⁴¹² for these paths, the difference in terms of traveling times as ¹⁴¹³ *n* increases is much more significant with respect to the other 1414 experiments (see also the discussion at the end of Experiment 1415 3). More precisely, the percentage difference between the ¹⁴¹⁶ traveling times of solutions at $n = 100$ and $n = 1000$ is 1417 0.5% on average for Experiment 1 with a maximum of 2.1% , 1418 while, for Experiment 2, the average difference is 0.3% with 1419 a maximum of 0.4%. Instead, for the current experiment, ¹⁴²⁰

Fig. 9. Warehouse layout considered in Example 5 and a possible path.

TABLE III

AVERAGE, MINIMUM, AND MAXIMUM COMPUTING TIMES (IN SECONDS) FOR SCA-H, SCA-G, AND IPOPT OVER EXPERIMENT 5

For the strengthenial of the str the average difference is 2.7% with a maximum of 7.9%. However, the average falls to 0.2% and the maximum to 0.6% if we consider the percentage difference between the traveling times of solutions at $n = 500$ and $n = 1000$. Thus, for this experiment, it is advisable to use a finer discretization or, equivalently, a larger number of sampling points. A tentative explanation for such different behavior is related to the lower velocity limits of Experiment 5 with respect to the other experiments. Indeed, the objective function is much more sensitive to small changes at low speeds so that a finer grid of sampling points is able to reduce the impact of approximation errors. However, this is just a possible explanation. A further possible explanation is that, in Experiments 1–4, curves are composed of segments with constant and linear curvature, whereas curves on industrial LGV layouts typically have curvatures that are highly nonlinear with respect to arc length.

¹⁴³⁷ VI. CONCLUSION

 In this article, we considered a speed planning problem under jerk constraints. The problem is a nonconvex one, and we proposed a sequential convex approach, where we exploited the special structure of the convex subproblems to solve them very efficiently. The approach is fast and is theoretically guaranteed to converge to a stationary point of the nonconvex problem. As a possible topic for future research, we would like to investigate ways to solve Problem 9, currently the bottleneck of the proposed approach, alternative to the solver GUROBI, and the heuristic mentioned in Remark 6. Moreover, we suspect that the stationary point to which the proposed approach converges is, in fact, a global minimizer

of the nonconvex problem, and proving this fact is a further ¹⁴⁵⁰ interesting topic for future research.

ACKNOWLEDGMENT ¹⁴⁵²

The authors are really grateful to the Associate Editor and ¹⁴⁵³ the three anonymous reviewers for their careful reading and 1454 very useful suggestions.

REFERENCES 1456

- [1] P. Pharpatara, B. Hérissé, and Y. Bestaoui, "3-D trajectory planning of ¹⁴⁵⁷ aerial vehicles using RRT∗," *IEEE Trans. Control Syst. Technol.*, vol. 25, ¹⁴⁵⁸ no. 3, pp. 1116–1123, May 2017. 1459
- [2] K. Kant and S. W. Zucker, "Toward efficient trajectory planning: ¹⁴⁶⁰ The path-velocity decomposition," *Int. J. Robot. Res.*, vol. 5, no. 3, ¹⁴⁶¹ pp. 72–89, Sep. 1986. 1462
- [3] L. Consolini, M. Locatelli, A. Minari, and A. Piazzi, "An optimal com- ¹⁴⁶³ plexity algorithm for minimum-time velocity planning," *Syst. Control* ¹⁴⁶⁴ *Lett.*, vol. 103, pp. 50–57, May 2017.
- [4] F. Cabassi, L. Consolini, and M. Locatelli, "Time-optimal velocity 1466 planning by a bound-tightening technique," *Comput. Optim. Appl.*, ¹⁴⁶⁷ vol. 70, no. 1, pp. 61–90, May 2018. 1468
- [5] F. Pfeiffer and R. Johanni, "A concept for manipulator trajectory plan- ¹⁴⁶⁹ ning," *IEEE J. Robot. Autom.*, vol. RA-3, no. 2, pp. 115–123, Apr. 1987. ¹⁴⁷⁰
- [6] D. Verscheure, B. Demeulenaere, J. Swevers, J. De Schutter, and ¹⁴⁷¹ M. Diehl, "Time-optimal path tracking for robots: A convex optimization ¹⁴⁷² approach," *IEEE Trans. Autom. Control*, vol. 54, no. 10, pp. 2318–2327, ¹⁴⁷³ Oct. 2009. ¹⁴⁷⁴
- [7] M. Yuan, Z. Chen, B. Yao, and X. Zhu, "Time optimal contouring ¹⁴⁷⁵ control of industrial biaxial gantry: A highly efficient analytical solution ¹⁴⁷⁶ of trajectory planning," *IEEE/ASME Trans. Mechatronics*, vol. 22, no. 1, ¹⁴⁷⁷ pp. 247–257, Feb. 2017. ¹⁴⁷⁸
- [8] E. Velenis and P. Tsiotras, "Minimum-time travel for a vehicle with ¹⁴⁷⁹ acceleration limits: Theoretical analysis and receding-horizon implemen- ¹⁴⁸⁰ tation," *J. Optim. Theory Appl.*, vol. 138, no. 2, pp. 275–296, 2008. ¹⁴⁸¹
- [9] M. Frego, E. Bertolazzi, F. Biral, D. Fontanelli, and L. Palopoli, "Semi- ¹⁴⁸² analytical minimum time solutions with velocity constraints for trajec- ¹⁴⁸³ tory following of vehicles," *Automatica*, vol. 86, pp. 18–28, Dec. 2017. ¹⁴⁸⁴
- [10] K. Hauser, "Fast interpolation and time-optimization with contact," *Int.* ¹⁴⁸⁵ *J. Robot. Res.*, vol. 33, no. 9, pp. 1231–1250, 2014. ¹⁴⁸⁶
- [11] H. Pham and Q.-C. Pham, "A new approach to time-optimal path 1487 parameterization based on reachability analysis," *IEEE Trans. Robot.*, ¹⁴⁸⁸ vol. 34, no. 3, pp. 645–659, Jun. 2018. 1489
- [12] L. Consolini, M. Locatelli, A. Minari, A. Nagy, and I. Vajk, "Optimal ¹⁴⁹⁰ time-complexity speed planning for robot manipulators," *IEEE Trans.* ¹⁴⁹¹ *Robot.*, vol. 35, no. 3, pp. 790–797, Jun. 2019. 1492
- [13] T. Lipp and S. Boyd, "Minimum-time speed optimisation over a fixed ¹⁴⁹³ path," *Int. J. Control*, vol. 87, no. 6, pp. 1297–1311, 2014. ¹⁴⁹⁴
- [14] F. Debrouwere *et al.*, "Time-optimal path following for robots with ¹⁴⁹⁵ convex–concave constraints using sequential convex programming," ¹⁴⁹⁶ *IEEE Trans. Robot.*, vol. 29, no. 6, pp. 1485–1495, Dec. 2013. 1497
- [15] A. K. Singh and K. M. Krishna, "A class of non-linear time scaling 1498 functions for smooth time optimal control along specified paths," in ¹⁴⁹⁹ *Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS)*, Sep. 2015, ¹⁵⁰⁰ pp. 5809–5816. 1501
- [16] A. Palleschi, M. Garabini, D. Caporale, and L. Pallottino, "Time-optimal 1502 path tracking for jerk controlled robots," *IEEE Robot. Autom. Lett.*, ¹⁵⁰³ vol. 4, no. 4, pp. 3932–3939, Oct. 2019. ¹⁵⁰⁴
- [17] S. Macfarlane and E. A. Croft, "Jerk-bounded manipulator trajectory ¹⁵⁰⁵ planning: Design for real-time applications," *IEEE Trans. Robotics* ¹⁵⁰⁶ *Autom.*, vol. 19, no. 1, pp. 42–52, Feb. 2003. 1507
- [18] R. Haschke, E. Weitnauer, and H. Ritter, "On-line planning of time- ¹⁵⁰⁸ optimal, jerk-limited trajectories," in *Proc. IEEE/RSJ Int. Conf. Intell.* ¹⁵⁰⁹ *Robots Syst.*, Sep. 2008, pp. 3248-3253. 1510
- [19] H. Pham and Q.-C. Pham, "On the structure of the time-optimal path ¹⁵¹¹ parameterization problem with third-order constraints," in *Proc. IEEE* ¹⁵¹² *Int. Conf. Robot. Automat. (ICRA)*, May 2017, pp. 679–686. 1513
- [20] J. E. Bobrow, S. Dubowsky, and J. S. Gibson, "Time-optimal control of 1514 robotic manipulators along specified paths," *Int. J. Robot. Res.*, vol. 4, ¹⁵¹⁵ no. 3, pp. 3–17, Sep. 1985. 1516
- [21] K. G. Shin and N. D. McKay, "Minimum-time control of robotic 1517 manipulators with geometric path constraints," *IEEE Trans. Autom.* ¹⁵¹⁸ *Control*, vol. AC-30, no. 6, pp. 531–541, Jun. 1985. 1519
- ¹⁵²⁰ [22] J. Villagra, V. Milanés, J. Pérez, and J. Godoy, "Smooth path and speed ¹⁵²¹ planning for an automated public transport vehicle," *Robot. Auton. Syst.*, ¹⁵²² vol. 60, no. 2, pp. 252–265, 2012.
- ¹⁵²³ [23] M. Raineri and C. G. L. Bianco, "Jerk limited planner for real-time ¹⁵²⁴ applications requiring variable velocity bounds," in *Proc. IEEE Int. Conf.* ¹⁵²⁵ *Automat. Sci. Eng. (CASE)*, Aug. 2019, pp. 1611–1617.
- ¹⁵²⁶ [24] J. Dong, P. M. Ferreira, and J. A. Stori, "Feed-rate optimization with ¹⁵²⁷ jerk constraints for generating minimum-time trajectories," *Int. J. Mach.* ¹⁵²⁸ *Tools Manuf.*, vol. 47, nos. 12–13, pp. 1941–1955, Oct. 2007.
- ¹⁵²⁹ [25] K. Zhang, X. S. Gao, H. B. Li, and C. M. Yuan, "A greedy algorithm for ¹⁵³⁰ feedrate planning of CNC machines along curved tool paths with con-¹⁵³¹ fined jerk," *Robot. Comput.-Integr. Manuf.*, vol. 28, no. 4, pp. 472–483, ¹⁵³² Aug. 2012.
- ¹⁵³³ [26] Y. Zhang *et al.*, "Speed planning for autonomous driving via convex ¹⁵³⁴ optimization," in *Proc. 21st Int. Conf. Intell. Transp. Syst. (ITSC)*, ¹⁵³⁵ Nov. 2018, pp. 1089–1094.
- ¹⁵³⁶ [27] R. Fletcher, *Practical Methods of Optimization*, 2nd ed. Singapore: ¹⁵³⁷ Wiley, 2000.
- ¹⁵³⁸ [28] L. Consolini, M. Laurini, and M. Locatelli, "Graph-based algorithms for ¹⁵³⁹ the efficient solution of optimization problems involving monotone func-¹⁵⁴⁰ tions," *Comput. Optim. Appl.*, vol. 73, no. 1, pp. 101–128, May 2019.
- ¹⁵⁴¹ [29] N. J. Higham, *Accuracy and Stability of Numerical Algorithms*, vol. 80. ¹⁵⁴² Philadelphia, PA, USA: SIAM, 2002.
- ¹⁵⁴³ [30] L. Consolini, M. Locatelli, and A. Minari, "A sequential approach ¹⁵⁴⁴ for speed planning under jerk constraints," 2021, *arXiv:2105.15095*. ¹⁵⁴⁵ [Online]. Available: http://arxiv.org/abs/2105.15095
- ¹⁵⁴⁶ [31] S. Boyd and L. Vandenberghe, *Convex Optimization*. Cambridge, U.K.: ¹⁵⁴⁷ Cambridge Univ. Press, 2004.
- ¹⁵⁴⁸ [32] Gurobi Optimization Inc. (2016). *Gurobi Optimizer Reference Manual*. ¹⁵⁴⁹ [Online]. Available: http://www.gurobi.com
- ¹⁵⁵⁰ [33] A. Wächter and L. T. Biegler, "On the implementation of an interior-¹⁵⁵¹ point filter line-search algorithm for large-scale nonlinear programming," ¹⁵⁵² *Math. Program.*, vol. 106, no. 1, pp. 25–57, May 2006.
- ¹⁵⁵³ [34] L. L. Hoberock, "A survey of longitudinal acceleration comfort studies ¹⁵⁵⁴ in ground transportation vehicles," *J. Dyn. Syst., Meas., Control*, vol. 99, no. 2, pp. 76–84, Jun. 1977.
- ¹⁵⁵⁶ [35] T. Fraichard and A. Scheuer, "From Reeds and Shepp's to continuous-¹⁵⁵⁷ curvature paths," *IEEE Trans. Robot.*, vol. 20, no. 6, pp. 1025–1035, ¹⁵⁵⁸ Dec. 2004.
- ¹⁵⁵⁹ [36] D. Verscheure, M. Diehl, J. De Schutter, and J. Swevers, "Recursive log-¹⁵⁶⁰ barrier method for on-line time-optimal robot path tracking," in *Proc.* ¹⁵⁶¹ *Amer. Control Conf.*, St. Louis, MO, USA, Apr. 2009, pp. 4134–4140.

Luca Consolini (Member, IEEE) received the Lau- ¹⁵⁶² rea degree *(cum laude)* in electronic engineering ¹⁵⁶³ and the Ph.D. degree from the University of Parma, ¹⁵⁶⁴ Parma, Italy, in 2000 and 2005, respectively. 1565

From 2005 to 2009, he held a post-doctoral posi- ¹⁵⁶⁶ tion at the University of Parma, where he was an ¹⁵⁶⁷ Assistant Professor from 2009 to 2014. Since 2014, ¹⁵⁶⁸ he has been an Associate Professor with the Univer- ¹⁵⁶⁹ sity of Parma. His main current research interests 1570 are nonlinear control, motion planning, and control 1571 of mechanical systems. ¹⁵⁷²

The proposition of the set of the Marco Locatelli is currently a Full Professor of 1573 Operations Research with the University of Parma, ¹⁵⁷⁴ Parma, Italy. He published more than 90 arti- ¹⁵⁷⁵ cles in international journals and coauthored, with ¹⁵⁷⁶ F. Schoen, the book *Global Optimization: Theory,* ¹⁵⁷⁷ *Algorithms, and Applications* [Society for Indus- ¹⁵⁷⁸ trial and Applied Mathematics (SIAM)]. His main ¹⁵⁷⁹ research interests are the theoretical, practical, and ¹⁵⁸⁰ applicative aspects of optimization. 1581

Dr. Locatelli has been nominated as a EUROPT ¹⁵⁸² Fellow in 2018. He is also on the Editorial Board of 1583 the journals *Computational Optimization and Applications, Journal of Global* ¹⁵⁸⁴ *Optimization*, and *Operations Research Forum*. ¹⁵⁸⁵

Andrea Minari received the B.S. and M.S. degrees 1586 *(cum laude)* in computer engineering and the Ph.D. ¹⁵⁸⁷ degree from the University of Parma, Parma, Italy, 1588 in 2013, 2016, and 2020, respectively. He presented 1589 a dissertation about optimization-based algorithms ¹⁵⁹⁰ applied to the speed planning problem for mobile ¹⁵⁹¹ robots and industrial manipulators. 1592