
31 December 2024

University of Parma Research Repository

A Sequential Algorithm for Jerk Limited Speed Planning / Consolini, L.; Locatelli, M.; Minari, A.. - In: IEEE
TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING. - ISSN 1545-5955. - (2021), pp. 1-18.
[10.1109/TASE.2021.3111758]

Original

A Sequential Algorithm for Jerk Limited Speed Planning

Publisher:

Published
DOI:10.1109/TASE.2021.3111758

Terms of use:

Publisher copyright

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available

Availability:
This version is available at: 11381/2905629 since: 2021-12-16T12:45:02Z

Institute of Electrical and Electronics Engineers Inc.

This is the peer reviewd version of the followng article:

note finali coverpage



IE
EE P

ro
of

AUTHOR QUERIES

AUTHOR PLEASE ANSWER ALL QUERIES

PLEASE NOTE: We cannot accept new source files as corrections for your article. If possible, please annotate the
PDF proof we have sent you with your corrections and upload it via the Author Gateway. Alternatively, you may send
us your corrections in list format. You may also upload revised graphics via the Author Gateway.

Carefully check the page proofs (and coordinate with all authors); additional changes or updates WILL NOT
be accepted after the article is published online/print in its final form. Please check author names and affiliations,
funding, as well as the overall article for any errors prior to sending in your author proof corrections.

AQ:1 = Please confirm or add details for any funding or financial support for the
research of this article.

AQ:2 = Please confirm the postal code for Università di Parma.
AQ:3 = Please specify the section numbers for the phrase “next sections.”



IE
EE P

ro
of

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 1

A Sequential Algorithm for Jerk Limited
Speed Planning

Luca Consolini , Member, IEEE, Marco Locatelli , and Andrea Minari

Abstract— In this article, we discuss a sequential algorithm1

for the computation of a minimum-time speed profile over a2

given path, under velocity, acceleration, and jerk constraints.3

Such a problem arises in industrial contexts, such as automated4

warehouses, where LGVs need to perform assigned tasks as5

fast as possible in order to increase productivity. It can be6

reformulated as an optimization problem with a convex objective7

function, linear velocity and acceleration constraints, and non-8

convex jerk constraints, which, thus, represents the main source9

of the difficulty. While existing nonlinear programming (NLP)10

solvers can be employed for the solution of this problem, it turns11

out that the performance and robustness of such solvers can be12

enhanced by the sequential line-search algorithm proposed in13

this article. At each iteration, a feasible direction, with respect14

to the current feasible solution, is computed, and a step along15

such direction is taken in order to compute the next iterate. The16

computation of the feasible direction is based on the solution17

of a linearized version of the problem, and the solution of the18

linearized problem, through an approach that strongly exploits19

its special structure, represents the main contribution of this20

work. The efficiency of the proposed approach with respect to21

existing NLP solvers is proven through different computational22

experiments.23

Note to Practitioners—This article was motivated by the needs24

of LGV manufacturers. In particular, it presents an algorithm for25

computing the minimum-time speed law for an LGV along a pre-26

assigned path, respecting assigned velocity, acceleration, and jerk27

constraints. The solution algorithm should be: 1) fast, since speed28

planning is made continuously throughout the workday, not only29

when an LGV receives a new task but also during the execution of30

the task itself, since conditions may change, e.g., if the LGV has to31

be halted for security reasons and 2) reliable, i.e., it should return32

solutions of high quality, because a better speed profile allows33

to save time and even small percentage improvements, say a 5%34

improvement, has a considerable impact on the productivity of35

the warehouse, and, thus, determines a significant economic gain.36

The algorithm that we propose meets these two requirements, and37

we believe that it can be a useful tool for LGV manufacturers38

and users. It is obvious that the proposed method also applies39

to the speed planning problem for vehicles other than LGVs,40

e.g., road vehicles.41
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Index Terms— Optimization, sequential line-search method, 42

speed planning. 43

I. INTRODUCTION 44

AN IMPORTANT problem in motion planning is the 45

computation of the minimum-time motion of a car-like 46

vehicle from a start configuration to a target one while avoid- 47

ing collisions (obstacle avoidance) and satisfying kinematic, 48

dynamic, and mechanical constraints (for instance, on veloci- 49

ties, accelerations, and maximal steering angle). This problem 50

can be approached in two ways. 51

1) As a minimum-time trajectory planning, where both the 52

path to be followed by the vehicle and the timing law 53

on this path (i.e., the vehicle’s velocity) are simultane- 54

ously designed. For instance, one could use the RRT* 55

algorithm (see [1]). 56

2) As a (geometric) path planning followed by a minimum- 57

time speed planning on the planned path (see [2]). 58

In this article, following the second paradigm, we assume 59

that the path that joins the initial and the final configuration 60

is assigned, and we aim at finding the time-optimal speed 61

law that satisfies some kinematic and dynamic constraints. 62

The problem can be reformulated as an optimization problem, 63

and it is quite relevant from the practical point of view. 64

In particular, in automated warehouses, the speed of LGVs 65

needs to be planned under acceleration and jerk constraints. 66

As previously mentioned, the solution algorithm should be 67

both fast and reliable. In our previous work [3], we proposed 68

an optimal time-complexity algorithm for finding the time- 69

optimal speed law that satisfies constraints on maximum veloc- 70

ity and tangential and normal acceleration. In the subsequent 71

work [4], we included a bound on the derivative of the 72

acceleration with respect to the arc length. In this article, 73

we consider the presence of jerk constraints (constraints on the 74

time derivative of the acceleration). The resulting optimization 75

problem is nonconvex and, for this reason, is significantly 76

more complex than the ones that we discussed in [3] and [4]. 77

The main contribution of this work is the development of a 78

line-search algorithm for this problem based on the sequential 79

solution of convex problems. The proposed algorithm meets 80

both requirements of being fast and reliable. The former 81

is met by heavily exploiting the special structure of the 82

optimization problem, the latter by the theoretical guarantee 83

that the returned solution is a first-order stationary point (in 84

practice, a local minimizer) of the optimization problem. 85
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A. Problem Statement86

Here, we introduce the problem at hand more formally.87

Let γ :[0, s f ] → R
2 be a smooth function. The image set88

γ ([0, s f ]) is the path to be followed, γ (0) the initial configu-89

ration, and γ (s f ) the final one. Function γ has arc-length para-90

meterization, such that (∀λ ∈ [0, s f ]), ‖γ ′(λ)‖ = 1. In this91

way, s f is the path length. We want to compute the speed-law92

that minimizes the overall transfer time (i.e., the time needed to93

go from γ (0) to γ (s f )). To this end, let λ:[0, t f ] → [0, s f ] be94

a differentiable monotone increasing function that represents95

the vehicle’s arc-length position along the curve as a function96

of time, and let v:[0, s f ] → [0,+∞[ be such that (∀t ∈97

[0, t f ]) λ̇(t) = v(λ(t)). In this way, v(s) is the derivative of the98

vehicle arc-length position, which corresponds to the norm of99

its velocity vector at position s. The position of the vehicle as100

a function of time is given by x:[0, t f ] → R
2, x(t) = γ (λ(t)).101

The velocity and acceleration are given, respectively, by102

ẋ(t) = γ ′(λ(t))v(λ(t))103

ẍ(t) = aT (t)γ ′(λ(t)) + aN (t)γ ′⊥(λ(t))104

where aT (t) = v ′(λ(t))v(λ(t)) and aN (t) = k(λ(t))v(λ(t))2
105

are, respectively, the tangential and normal components of the106

acceleration (i.e., the projections of the acceleration vector107

ẍ on the tangent and the normal to the curve). Moreover108

γ ′⊥(λ) is the normal to vector γ ′(λ) and the tangent of γ ′
109

at λ. Here, k:[0, s f ] → R is the scalar curvature, defined as110

k(s) =< γ ′′(s), γ ′(s)⊥ >. Note that |k(s)| = ‖γ ′′(s)‖. In the111

following, we assume that k(s) ∈ C1([0, s f ], R). The total112

maneuver time, for a given velocity profile v ∈ C1([0, s f ], R),113

is returned by the functional114

F : C1
([

0, s f
]
, R

) → R, F(v) =
∫ s f

0
v−1(s)ds. (1)115

In our previous work [3], we considered the problem116

min
v∈V

F(v) (2)117

where the feasible region V ⊂ C1([0, s f ], R) is defined by the118

following set of constraints:119

v(0) = 0, v
(
s f

) = 0 (3a)120

0 ≤ v(s) ≤ vmax, s ∈ [
0, s f

]
(3b)121

|v ′(s)v(s)| ≤ A, s ∈ [
0, s f

]
(3c)122

|k(s)|v(s)2 ≤ AN , s ∈ [
0, s f

]
(3d)123

where vmax, A, and AN are upper bounds for the velocity, the124

tangential acceleration, and the normal acceleration, respec-125

tively. Constraints (3a) are the initial and final interpolation126

conditions, while constraints (3b)–(3d) limit velocity and the127

tangential and normal components of acceleration. In [3],128

we presented an algorithm, with linear-time computational129

complexity with respect to the number of variables, which130

provides an optimal solution of (2) after spatial discretiza-131

tion. One limitation of this algorithm is that the obtained132

velocity profile is Lipschitz1 but not differentiable so that133

the vehicle’s acceleration is discontinuous. With the aim134

1A function f :R → R is Lipschitz if there exists a real positive constant L
such that (∀x, y ∈ R) | f (x) − f (y)| ≤ L|x − y|.

of obtaining a smoother velocity profile, in the subsequent 135

work [4], we required that the velocity be differentiable, and 136

we imposed a Lipschitz condition (with constant J ) on its 137

derivative. In this way, after setting w = v2, the feasible region 138

of the problem W ⊂ C1([0, s f ], R) is defined by the set of 139

functions w ∈ C1([0, s f ], R) that satisfy the following set of 140

constraints: 141

w(0) = 0, w
(
s f

) = 0 (4a) 142

0 ≤ w(s) ≤ v2
max, s ∈ [

0, s f
]

(4b) 143

1

2
|w′(s)| ≤ A, s ∈ [

0, s f
]

(4c) 144

|k(s)|w(s) ≤ AN , s ∈ [
0, s f

]
(4d) 145

|w′(s1) − w′(s2)| ≤ J |s1 − s2|, s1, s2 ∈ [
0, s f

]
. (4e) 146

Then, we end up with the problem 147

min
w∈W

G(w) (5) 148

where the objective function is 149

G : C1([0, s f
]
, R

) → R, G(w) =
∫ s f

0
w−1/2(s)ds. (6) 150

The objective function (6) and constraints (4a)–(4d) cor- 151

respond to the ones in problem (2) after the substitution 152

w = v2. Note that this change of variable is well known in 153

the literature. It has been first proposed in [5], while, in [6], 154

it is observed that Problem (2) becomes convex after this 155

change of variable. The added set of constraints (4e) is a 156

Lipschitz condition on the derivative of the squared velocity w. 157

It is used to enforce a smoother velocity profile by bounding 158

the second derivative of the squared velocity with respect 159

to arc length. Note that constraints (4) are linear, and the 160

objective function (6) is convex. In [4], we proposed an 161

algorithm for solving a finite-dimensional approximation of 162

Problem (4). The algorithm exploited the particular structure 163

of the resulting convex finite-dimensional problem. This article 164

extends the results of [4]. It considers a nonconvex varia- 165

tion of Problem (4), in which constraint (4e) is substituted 166

with a constraint on the time derivative of the acceleration 167

|ȧ(t)| ≤ J , where a(t) = (d/dt)v(λ(t)) = v ′(λ(t))v(λ(t)) = 168

(1/2)w′(λ(t)). Then, we set 169

jL(t) = ȧ(t) = 1

2
w′′(s(t))

√
(w(s(t))). 170

This quantity is commonly called “jerk.” Bounding the 171

absolute value of jerk allows to avoid sudden changes of 172

acceleration and obtain a smoother motion. Then, we end up 173

with the following minimum-time problem. 174

Problem 1 (Smooth Minimum-Time Velocity Planning 175

Problem: Continuous Version): 176

min
w∈C2

∫ s f

0
w(s)−1/2 ds 177

w(0) = 0, w
(
s f

) = 0 178

0 ≤ w(s) ≤ μ+(s), s ∈ [
0, s f

]
179

1

2
|w′(s)| ≤ A, s ∈ [

0, s f
]

(7) 180

1

2
|w′′(s)

√
w(s)| ≤ J s ∈ [

0, s f
]

(8) 181
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where μ+ is the square velocity upper bound depending on182

the shape of the path, i.e.,183

μ+(s) = min

{
v2

max,
AN

|k(s)|
}

184

where vmax, AN , and k are the maximum vehicle velocity,185

the maximum normal acceleration, and the path curvature,186

respectively. Parameters A and J are the bounds represent-187

ing the limitations on the (tangential) acceleration and the188

jerk, respectively. For the sake of simplicity, we consider189

constraints (7) and (8) symmetric and constant. However, the190

following development could be easily extended to the non-191

symmetric and nonconstant case. Note that the jerk con-192

straint (8) is nonconvex. The continuous problem is discretized193

as follows. We subdivide the path into n − 1 intervals of194

equal length, i.e., we evaluate function w at points si =195

((i − 1)s f )/(n − 1), i = 1, . . . , n, so that we have the fol-196

lowing n-dimensional vector of variables:197

w = (w1, w2, . . . , wn) = (w(s1),w(s2), . . . , w(sn)).198

Then, the finite dimensional version of the problem is given199

as follows.200

Problem 2 (Smooth Minimum-Time Velocity Planning201

Problem: Discretized Version):202

min
w∈Rn

n−1∑
i=1

2h√
wi+1 + √

wi
(9)203

0 ≤ w ≤ u (10)204

wi+1 − wi ≤ 2h A, i = 1, . . . , n − 1 (11)205

wi − wi+1 ≤ 2h A, i = 1, . . . , n − 1 (12)206

(wi−1 − 2wi + wi+1)

√
�i(w)

4
≤ 2h2 J207

i = 2, . . . , n − 1 (13)208

−(wi−1 − 2wi + wi+1)

√
�i (w)

4
≤ 2h2 J209

i = 2, . . . , n − 1 (14)210

where211

�i(w) = wi+1 + wi−1 + 2wi (15)212

while ui = μ+(si ), for i = 1, . . . , n, and, in particular,213

u1 = 0 and un = 0 since we are assuming that the initial214

and final velocities are equal to 0. The objective function (9)215

is an approximation of (6) given by the Riemann sum of216

the intervals obtained by dividing each interval [si , si+1], for217

i = 1, . . . , n − 1, in two subintervals of the same size.218

Constraints (11) and (12) are obtained by a finite difference219

approximation of w′. Constraints (13) and (14) are obtained by220

using a second-order central finite difference to approximate221

w′′, while w is approximated by a weighted arithmetic mean222

of three consecutive samples. Due to jerk constraints (13)223

and (14), Problem 2 is nonconvex and cannot be solved with224

the algorithm presented in [4].225

B. Main Result226

The main contribution of this article is the development of227

a new solution algorithm for finding a local minimum of the228

nonconvex Problem 2. As detailed in next sections, we propose 229

to solve Problem 2 by a line-search algorithm based on the 230

sequential solution of convex problems. The algorithm is an

AQ:3

231

iterative one where the following operations are performed at 232

each iteration. 233

1) Constraint Linearization: We first define a convex prob- 234

lem by linearizing constraints (13) and (14) through a first- 235

order Taylor approximation around the current point w(k). 236

Different from other sequential algorithms for nonlinear pro- 237

gramming (NLP) problems, we keep the original convex 238

objective function. The linearized problem is introduced in 239

Section II. 240

2) Computation of a Feasible Descent Direction: The con- 241

vex problem (actually, a relaxation of such problem) is solved 242

in order to compute a feasible descent direction δw(k). The 243

main contribution of this article lies in this part. The compu- 244

tation requires the minimization of a suitably defined objective 245

function through a further iterative algorithm. At each iteration 246

of this algorithm, the following operations are performed: 247

C. Objective Function Evaluation 248

Such evaluation requires the solution of a problem with 249

the same objective function but subject to a subset of the 250

constraints. The special structure of the resulting subproblem 251

is heavily exploited in order to solve it efficiently. This is the 252

topic of Section III. 253

D. Computation of a Descent Step 254

Some Lagrange multipliers of the subproblem define a 255

subgradient for the objective function. This can be employed 256

to define a linear programming (LP) problem that returns a 257

descent step for the objective function. This is the topic of 258

Section IV. 259

Line Search: Finally, a standard line search along the half- 260

line w(k) + αδw(k), α ≥ 0, is performed. 261

Sections II–IV detail all what we discussed above. Next, 262

in Section V, we present different computational experiments. 263

E. Comparison With Existing Literature 264

Although many works consider the problem of 265

minimum-time speed planning with acceleration constraints 266

(see [7]–[9]), relatively few consider jerk constraints. Perhaps, 267

this is also due to the fact that the jerk constraint is nonconvex 268

so that its presence significantly increases the complexity of 269

the optimization task. One can use a general-purpose NLP 270

solver (such as SNOPT or IPOPT) for finding a local solution 271

of Problem 2, but the required time is, in general, too large for 272

the speed planning application. As outlined in Section I-D, 273

in this work, we tackle this problem through an approach 274

based on the solution of a sequence of convex subproblems. 275

There are different approaches in the literature based on the 276

sequential solution of convex subproblems. In [10], it is first 277

observed that the problem with acceleration constraints but no 278

jerk constraints for robotic manipulators can be reformulated 279

as a convex one with linear constraints, and it is solved 280

by a sequence of LP problems obtained by linearizing the 281

Marco
Evidenziato

Marco
Nota
next Sections II-IV
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objective function at the current point, i.e., the objective282

function is replaced by its supporting hyperplane at the283

current point, and by introducing a trust region centered at the284

current point. In [11] and [12], it is further observed that this285

problem can be solved very efficiently through the solution286

of a sequence of 2-D LP problems. In [13], an interior point287

barrier method is used to solve the same problem based on288

Newton’s method. Each Newton step requires the solution of289

a KKT system, and an efficient way to solve such systems290

is proposed in that work. Moving to approaches also dealing291

with jerk constraints, we mention [14]. In this work, it is292

observed that jerk constraints are nonconvex but can be293

written as the difference between two convex functions.294

Based on this observation, the authors solve the problem by295

a sequence of convex subproblems obtained by linearizing296

at the current point the concave part of the jerk constraints297

and by adding a proximal term in the objective function that298

plays the same role as a trust region, preventing from taking299

too large steps. In [15] a slightly different objective function300

is considered. Rather than minimizing the traveling time301

along the given path, the integral of the squared difference302

between the maximum velocity profile and the computed303

velocity profile is minimized. After representing time-varying304

control inputs as products of parametric exponential and305

polynomial functions, the authors reformulate the problem in306

such a way that its objective function is convex quadratic,307

while nonconvexity lies in difference-of-convex functions.308

The resulting problem is tackled through the solution of a309

sequence of convex subproblems obtained by linearizing310

the concave part of the nonconvex constraints. In [16], the311

problem of speed planning for robotic manipulators with jerk312

constraints is reformulated in such a way that nonconvexity313

lies in simple bilinear terms. Such bilinear terms are replaced314

by the corresponding convex and concave envelopes, obtaining315

the so-called McCormick relaxation, which is the tightest316

possible convex relaxation of the nonconvex problem. Other317

approaches dealing with jerk constraints do not rely on318

the solution of convex subproblems. For instance, in [17],319

a concatenation of fifth-order polynomials is employed to320

provide smooth trajectories, which results in quadratic jerk321

profiles, while, in [18], cubic polynomials are employed,322

resulting in piecewise constant jerk profiles. The decision323

process involves the choice of the phase durations, i.e.,324

of the intervals over which a given polynomial applies. A325

very recent and interesting approach to the problem with326

jerk constraints is [19]. In this work, an approach based327

on numerical integration is discussed. Numerical integration328

has been first applied under acceleration constraints in [20]329

and [21]. In [19], jerk constraints are taken into account. The330

algorithm detects a position s along the trajectory where the331

jerk constraint is singular, that is, the jerk term disappears332

from one of the constraints. Then, it computes the speed333

profile up to s by computing two maximum jerk profiles and334

then connecting them by a minimum jerk profile, found by a335

shooting method. In general, the overall solution is composed336

of a sequence of various maximum and minimum jerk337

profiles. This approach does not guarantee reaching a local338

minimum of the traversal time. Moreover, since Problem 4339

has velocity and acceleration constraints, the jerk constraint 340

is singular for all values of s so that the algorithm presented 341

in [19] cannot be directly applied to Problem 4. 342

Some algorithms use heuristics to quickly find sub- 343

optimal solutions of acceptable quality. For instance, 344

Villagra et al. [22] propose an algorithm that applies to curves 345

composed of clothoids, circles, and straight lines. The algo- 346

rithm does not guarantee the local optimality of the solution. 347

Raineri and Guarino Lo Bianco [23] present an efficient 348

heuristic algorithm. Also, this method does not guarantee 349

global nor local optimality. Various works in the literature 350

consider jerk bounds in the speed optimization problem for 351

robotic manipulators instead of mobile vehicles. This is a 352

slightly different problem but mathematically equivalent to 353

Problem (1). In particular, paper [24] presents a method based 354

on the solution of a large number of nonlinear and nonconvex 355

subproblems. The resulting algorithm is slow due to a large 356

number of subproblems; moreover, the authors do not prove its 357

convergence. Zhang et al. [25] propose a similar method that 358

gives a continuous-time solution. Again, the method is com- 359

putationally slow since it is based on the numerical solution of 360

a large number of differential equations; moreover, this article 361

does not contain proof of convergence or local optimality. 362

Some other works replace the jerk constraint with pseudo- 363

jerk, that is, the derivative of the acceleration with respect 364

to arc length, obtaining a constraint analogous to (4e) and 365

ending up with a convex optimization problem. For instance, 366

Zhang et al. [26] add to the objective function a pseudo-jerk 367

penalizing term. This approach is computationally convenient, 368

but substituting (8) with (4e) may be overly restrictive at low 369

speeds. 370

F. Statement of Contribution 371

The method presented in this article is a sequential convex 372

one that aims at finding a local optimizer of Problem 2. 373

To be more precise, as usual with nonconvex problems, only 374

convergence to a stationary point can usually be proved. 375

However, the fact that the sequence of generated feasible 376

points is decreasing with respect to the objective function 377

values usually guarantees that the stationary point is a local 378

minimizer, except in rather pathological cases (see [27, p. 19]). 379

Moreover, in our experiments, even after running a local solver 380

from different starting points, we have never been able to 381

detect local minimizers better than the one returned by the 382

method we propose. Thus, a possible, nontrivial, topic for 383

future research could be that of proving the global optimality 384

of the solution. To the best of our knowledge and as detailed 385

in the following, this algorithm is more efficient than the ones 386

existing in the literature since it leverages the special struc- 387

ture of the subproblems obtained as local approximations of 388

Problem 2. We discussed this class of problems in our previous 389

work [28]. This structure allows computing very efficiently a 390

feasible descent direction for the main line-search algorithm; 391

it is one of the key elements that allow us to outperform 392

generic NLP solvers. In summary, the main contributions of 393

this work are: 1) on the theoretical side, the development of an 394

approach for which a rigorous mathematical analysis has been 395
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Fig. 1. Flowchart of algorithm SCA. The dashed block corresponds to a call
of the procedure ComputeUpdate, proposed to solve Problem 3, which
represents the main contribution of this article.

performed, proving a convergence result to a stationary point396

(see Section II) and 2) on the computational side, to exploit397

heavily the structure of the problem in order to implement the398

approach in a fairly efficient way (see Sections III and IV)399

so that its computing times outperform those of nonlinear400

solvers and are competitive with heuristic approaches that are401

only able to return suboptimal solutions of lower quality (see402

Section V).403

II. SEQUENTIAL ALGORITHM BASED ON CONSTRAINT404

LINEARIZATION405

To account for the nonconvexity of Problem 2, we propose406

a line-search method based on the solution of a sequence of407

special structured convex problems. Throughout this article,408

we call this algorithm Sequential Convex Algorithm (SCA),409

and its flowchart is shown in Fig. 1. It belongs to the class of410

Sequential Convex Programming algorithms, where, at each411

iteration, a convex subproblem is solved. In what follows,412

we denote by � the feasible region of Problem 2. At each413

iteration k, we replace the current point w(k) ∈ � with a414

new point w(k) + α(k)δw(k) ∈ �, where the step size α(k) ∈415

[0, 1] is obtained by a line search along the descent direction416

δw(k), which, in turn, is obtained through the solution of a417

convex problem. The constraints of the convex problem are418

linear approximations of (10)–(14) around w(k), while the419

objective function is the original one. Then, the problem that420

we consider to compute the direction δw(k) is given in the421

following (superscript k of w(k) is omitted):422

Problem 3:423

min
δw∈Rn

n−1∑
i=1

2h√
wi+1 + δwi+1 + √

wi + δwi
(16)424

lB ≤ δw ≤ uB (17)425

δwi+1 − δwi ≤ bAi , i = 1, . . . , n − 1 (18)426

δwi − δwi+1 ≤ bDi , i = 1, . . . , n − 1 (19) 427

δwi − ηiδwi−1 − ηiδwi+1 ≤ bNi , i = 2, . . . , n − 1 428

(20) 429

ηiδwi−1 + ηiδwi+1 − δwi ≤ bPi , i = 2, . . . , n − 1 430

(21) 431

where lB = −w and uB = u − w (recall that u has been 432

introduced in (10), and its components have been defined 433

immediately in Problem 2), while parameters η, bA, bD, 434

bN, and bP depend on the point w around which the con- 435

straints (10)–(14) are linearized. More precisely, we have 436

bAi = 2h A − wi+1 + wi 437

bDi = 2h A − wi + wi+1 438

ηi = 3wi+1 + 3wi−1 + 2wi

2(wi+1 + wi−1 + 6wi)
439

bPi = √
�i (w)

8h2 J + (wi−1 − 2wi + wi+1)
√

�i(w)

2(wi+1 + wi−1 + 6wi)
440

bNi = √
�i (w)

8h2 J − (wi−1 − 2wi + wi+1)
√

�i(w)

2(wi+1 + wi−1 + 6wi)
(22) 441

where �i is defined in (15). The following proposition is an 442

immediate consequence of the feasibility of w. 443

Proposition 1: All parameters η, bA, bD, bN, and bP are 444

nonnegative. 445

The proposed approach follows some standard ideas of 446

sequential quadratic approaches employed in the literature 447

about nonlinearly constrained problems. However, a quite 448

relevant difference is that the true objective function (9) is 449

employed in the problem to compute the direction, rather 450

than a quadratic approximation of such function. This choice 451

comes from the fact that the objective function (9) has some 452

features (in particular, convexity and being decreasing), which, 453

combined with the structure of the linearized constraints, 454

allows for an efficient solution of Problem 3. Problem 3 is 455

a convex problem with a nonempty feasible region (δw = 0 is 456

always a feasible solution) and, consequently, can be solved by 457

existing NLP solvers. However, such solvers tend to increase 458

computing times since they need to be called many times 459

within the iterative algorithm SCA. The main contribution of 460

this article lies in the routine computeUpdate (see dashed 461

block in Fig. 1), which is able to solve Problem 3 and effi- 462

ciently returns a descent direction δw(k). To be more precise, 463

we solve a relaxation of Problem 3. Such relaxation, as well 464

as the routine to solve it, is detailed in Sections III and IV. 465

In Section III, we present efficient approaches to solve some 466

subproblems, including proper subsets of the constraints. Then, 467

in Section IV, we address the solution of the relaxation of 468

Problem 3. 469

Remark 1: It is possible to see that, if one of the con- 470

straints (13) and (14) is active at w(k), then, along the 471

direction δw(k) computed through the solution of the linearized 472

Problem 3, it holds that w(k)+αδw(k) ∈ � for any sufficiently 473

small α > 0. In other words, small perturbations of the current 474

solution w(k) along direction δw(k) do not lead outside the 475

feasible region �. This fact is illustrated in Fig. 2. Let us 476
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Fig. 2. Constraints (13) and (14) and their linearization (C = 4h2 J ).

rewrite constraints (13) and (14) as follows:477 ∣∣(x − 2y)
√

x
∣∣ ≤ C (23)478

where x = �i(w), y = 2wi , and C = 4h2 J is a constant. The479

feasible region associated with constraint (23) is reported in480

Fig. 2. In particular, it is the region between the blue and red481

curves. Suppose that constraint y ≤ (x/2)+(C/2
√

x) is active482

at w(k) (the case when y ≥ (x/2) − (C/2
√

x) is active can483

be dealt with in a completely analogous way). If we linearize484

such constraint around w(k), then we obtain a linear constraint485

(black line in Fig. 2), which defines a region completely486

contained into the one defined by the nonlinear constraint487

y ≤ (x/2)+(C/2
√

x). Hence, for each direction δw(k) feasible488

with respect to the linearized constraint, we are always able to489

perform sufficiently small steps, without violating the original490

nonlinear constraints, i.e., for α > 0 small enough, it holds491

that w(k) + αδw(k) ∈ �.492

Constraints (13) and (14) can also be rewritten as follows:493

wi−1 + wi+1 − 2wi − 4h2 J (�i (w))−
1
2 ≤ 0 (24)494

2wi − wi−1 − wi+1 − 4h2 J (�i (w))−
1
2 ≤ 0. (25)495

Note that the functions on the left-hand side of these496

constraints are concave. Now, we can define a variant of497

Problem 3 where constraints (20) and (21) are replaced by498

the following linearizations of constraints (24) and (25):499

−βiδwi−1 − βiδwi+1 + δwi ≤ b′
Ni

(26)500

θiδwi−1 + θiδwi+1 − δwi ≤ b′
Pi

(27)501

where502

θi = 1 + 2h2 J (�i(w))−
3
2

2 − 4h2 J (�i(w))−
3
2

503

βi = 1 − 2h2 J (�i(w))−
3
2

2 + 4h2 J (�i(w))−
3
2

504

b′
Ni

= 6h2 J (�i(w))−
1
2

2 + 4h2 J (�i(w))−
3
2

505

b′
Pi

= 6h2 J (�i(w))−
1
2

2 − 4h2 J (�i(w))−
3
2

. (28)506

The following proposition states that constraints (26)507

and (27) are tighter than constraints (20) and (21).508

Proposition 2: For all i = 2, . . . , n − 1, it holds that βi ≤ 509

ηi ≤ θi . Equality ηi = θi holds if the corresponding nonlinear 510

constraint (24) is active at the current point w. Similarly, ηi = 511

βi holds if the corresponding nonlinear constraint (25) is active 512

at the current point w. 513

Proof: We only prove the results about θi and ηi . Those 514

about βi and ηi are proved in a completely analogous way. 515

By definition of ηi and θi , we need to prove that 516

3wi+1 + 3wi−1 + 2wi

wi+1 + 6wi + wi−1
≤ 1 + 2h2 J (�i(w))−

3
2

2 − 4h2 J (�i(w))−
3
2

. 517

After few simple computations, this inequality can be 518

rewritten as 519

4h2 J (�i (w))−
1
2 ≥ (wi−1 − 2wi + wi+1) 520

which holds in view of feasibility of w and, moreover, holds 521

as an equality if constraint (24) is active at the current point 522

w, as we wanted to prove. � 523

In view of this result, by replacing constraints (20) and (21) 524

with (26) and (27), we reduce the search space of the new 525

displacement δw. On the other hand, the following proposition 526

states that, with constraints (26) and (27), no line search is 527

needed along the direction δw, i.e., we can always choose the 528

step length α = 1. 529

Proposition 3: If constraints (26) and (27) are employed as 530

a replacement of constraints (20) and (21) in the definition of 531

Problem 3, then, for each feasible solution δw of this problem, 532

it holds that w + δw ∈ �. 533

Proof: For the sake of convenience, let us rewrite 534

Problem 2 in the following more compact form: 535

min f (w + δw) 536

c(w + δw) ≤ 0 (29) 537

where the vector function c contains all constraints 538

of Problem 2 and the nonlinear ones are given as 539

in (24) and (25) (recall that, in that case, vector c is a vector of 540

concave functions). Then, Problem 3 can be written as follows: 541

min f (w + δw) c(w) + ∇c(w)δw ≤ 0. (30) 542

Now, it is enough to observe that, by concavity, 543

c(w + δw) ≤ c(w) + ∇c(w)δw 544

so that each feasible solution of (30) is also feasible for (29). 545

� 546

The above proposition states that the feasible region of 547

Problem 3, when constraints (26) and (27) are employed 548

in its definition, is a subset of the feasible region � of 549

the original Problem 2. As a final result of this section, 550

we state the following theorem, which establishes convergence 551

of algorithm SCA to a stationary (KKT) point of Problem 2. 552

Theorem 1: If algorithm SCA is run for an infinite number 553

of iterations and there exists some positive integer value K 554

such that for all iterations k ≥ K , constraints (26) and (27) are 555

always employed in the definition of Problem 3, and then, the 556

sequence of points {w(k)} generated by the algorithm converges 557

to a KKT point of Problem 2. 558

Marco
Evidenziato
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In order to prove the theorem, we first need to prove some559

lemmas.560

Lemma 1: The sequence { f (w(k))} of the function values561

at points generated by algorithm SCA converges to a finite562

value.563

Proof: The sequence is nonincreasing and bounded from564

below, e.g., by the value f (uB), in view of the fact that the565

objective function f is monotonic decreasing. Thus, it con-566

verges to a finite value. �567

Next, we need the following result based on strict convexity568

of the objective function f .569

Lemma 2: For each δ > 0 sufficiently small, it holds that570

min

{
max{ f (x), f (y)} − f

(
x + y

2

)
571

: x, y ∈ �, ‖x − y‖ ≥ δ

}
≥ εδ > 0. (31)572

Proof: Due to strict convexity, it holds that, ∀x �= y,573

max{ f (x), f (y)} − f

(
x + y

2

)
> 0.574

Moreover, the function is a continuous one. Next,575

we observe that the region576

{x, y ∈ � : ‖x − y‖ ≥ δ}577

is a compact set. Thus, by the Weierstrass theorem, the578

minimum in (31) is attained, and it must be strictly positive,579

as we wanted to prove. �580

Finally, we prove that also the sequence of points generated581

by algorithm SCA converges to some point, feasible for582

Problem 2.583

Lemma 3: It holds that584

‖δw(k)‖ → 0.585

Proof: Let us assume, by contradiction, that, over some586

infinite subsequence with index set K, it holds that ‖δw(k)‖ ≥587

2ρ > 0 for all k ∈ K, i.e.,588

‖w(k+1) − w(k)‖ ≥ 2ρ > 0 (32)589

where w(k+1) = w(k) + δw(k). Over this subsequence, it holds,590

by strict convexity, that591

f
(
w(k+1)

) ≤ f
(
w(k)

) − ξ ∀k ∈ K (33)592

for some ξ > 0. Indeed, it follows by optimality of w(k) +593

δw(k) for Problem 3 and convexity of f that594

f
(
w(k+1)

) ≤ f

(
w(k+1) + w(k)

2

)
≤ f

(
w(k)

)
595

so that596

max
{

f
(
w(k)

)
, f

(
w(k+1)

)} = f
(
w(k)

)
.597

Then, it follows from (32) and Lemma 2 that we can choose598

ξ = ερ > 0. Thus, since (33) holds infinitely often, we should599

have f (w(k)) → −∞, which, however, is not possible in view600

of Lemma 1. �601

Now, we are ready to prove Theorem 1.602

Proof: As a consequence of Lemma 3, it also holds that 603

w(k) → w̄ ∈ �. (34) 604

Indeed, all points w(k) belong to the compact feasible region 605

� so that the sequence {w(k)} admits accumulation points. 606

However, due to Lemma 3, the sequence cannot have distinct 607

accumulation points. 608

Now, let us consider the compact reformulation (29) of 609

Problem 2 and the related linearization (30), equivalent to 610

Problem 3 with the linearized constraints (26) and (27). Since 611

the latter is a convex problem with linear constraints, its local 612

minimizer δw(k) (unique in view of strict convexity of the 613

objective function) fulfills the following KKT conditions: 614

∇ f
(
w(k) + δw(k)

) + μ�
k ∇c

(
w(k)

) = 0 615

c
(
w(k)

) + ∇c
(
w(k)

)
δw(k) ≤ 0 616

μ�
k

(
c
(
w(k)

) + ∇c
(
w(k)

)
δw(k)

) = 0 617

μk ≥ 0 (35) 618

where μk is the vector of Lagrange multipliers. Now, by taking 619

the limit of system (35), possibly over a subsequence, in order 620

to guarantee convergence of the multiplier vectors μk to a 621

vector μ̄, in view of Lemma 3 and (34), we have that 622

∇ f (w̄) + μ̄�∇c(w̄) = 0 623

c(w̄) ≤ 0 624

μ̄�c(w̄) = 0 625

μ̄ ≥ 0 626

or, equivalently, the limit point w̄ is a KKT point of Problem 2, 627

as we wanted to prove. � 628

Remark 2: In algorithm SCA at each iteration, we solve to 629

optimality Problem 3. This is indeed necessary for the final 630

iterations to prove the convergence result stated in Theorem 1. 631

However, during the first iterations, it is not necessary to solve 632

the problem to optimality: finding a feasible descent direction 633

is enough. This does not alter the theoretical properties of the 634

algorithm and allows to reduce the computing times. 635

In the rest of this article, we refer to constraints (18) and 636

(19) as acceleration constraints, while constraints (20) and (21) 637

[or (26) and (27)] are called (linearized) negative acceleration 638

rate (NAR) and positive acceleration rate (PAR) constraints, 639

respectively. Also, note that, in the different subproblems 640

discussed in the following, we always refer to the linearization 641

with constraints (20) and (21) and, thus, with parameters 642

ηi , but the same results also hold for the linearization with 643

constraints (26) and (27) and, thus, with parameters θi and βi . 644

III. SUBPROBLEM WITH ACCELERATION AND NAR 645

CONSTRAINTS 646

In this section, we propose an efficient method to solve 647

Problem 3 when PAR constraints are removed. The solution 648

of this subproblem becomes part of an approach to solve 649

a suitable relaxation of Problem 3 and, in fact, under very 650

mild assumptions, to solve Problem 3 itself. This is clarified 651

in Section IV. We discuss: 1) the subproblem including 652

only (17) and the acceleration constraints (18) and (19); 2) the 653

subproblem including only (17) and the NAR constraints (20); 654
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and 2) the subproblem including all constraints (17)–(20).655

Throughout the section, we need the results stated in the656

following two propositions. Let us consider problems with the657

following form, where N = {1, . . . , n} and M j = {1, . . . , m j },658

j ∈ N :659

min g(x1, . . . , xn)660

x j ≤ ai, j x j−1 + bi, j x j+1 + ci, j , i ∈ M j , j ∈ N661

� j ≤ x j ≤ u j , j ∈ N (36)662

where g is a monotonic decreasing function; ai, j , bi, j , ci, j ≥ 0,663

for i ∈ M j and j ∈ N ; ai,1 = 0 for i ∈ M1; and bi,n = 0664

for i ∈ Mn . The following result is proven in [28]. Here,665

we report the proof in order to make this article self-contained.666

We denote by P the feasible polytope of problem (36).667

Moreover, we denote by z the componentwise maximum of all668

feasible solutions in P , i.e., for each j ∈ N , z j = maxx∈P x j669

(note that the above maximum value is attained since P is a670

polytope).671

Proposition 4: The unique optimal solution of (36) is the672

componentwise maximum z of all its feasible solutions.673

Proof: If we are able to prove that the componentwise674

maximum z of all feasible solutions is itself a feasible solution,675

by monotonicity of g, it must also be the unique optimal676

solution. In order to prove that z is feasible, we proceed677

as follows. For j ∈ N , let x∗ j be the optimal solution of678

maxx∈P x j so that z j = x∗ j
j . Since x∗ j ∈ P , then it must679

hold that � j ≤ z j ≤ u j . Moreover, let us consider the generic680

constraint681

x j ≤ ai, j x j−1 + bi, j x j+1 + ci, j682

for i ∈ M j . It holds that683

z j = x∗ j
j ≤ ai, j x

∗ j
j−1 + bi, j x

∗ j
j+1 + ci, j684

≤ ai, j z j−1 + bi, j z j+1 + ci, j685

where the first inequality follows from feasibility of x∗ j , while686

the second follows from nonnegativity of ai j and bi j and the687

definition of z. Since this holds for all j ∈ N , the result is688

proven. �689

Now, consider the problem obtained from (36) by removing690

some constraints, i.e., by taking M ′
j ⊆ M j for each j ∈ N691

min g(x1, . . . , xn)692

x j ≤ ai, j x j−1 + bi, j x j+1 + ci, j , i ∈ M ′
j , j ∈ N693

� j ≤ x j ≤ u j , j ∈ N. (37)694

Later, we also need the result stated in the following695

proposition.696

Proposition 5: The optimal solution x̄ of problem (37) is697

an upper bound for the optimal solution x of problem (36),698

i.e., x̄ ≥ x.699

Proof: It holds that x is a feasible solution of prob-700

lem (37) so that, in view of Proposition 4, x̄ ≥ x
701

holds. �702

A. Acceleration Constraints703

The simplest case is the one where we only consider the704

acceleration constraints (18) and (19), besides constraints (17)705

with a generic upper bound vector y ≥ 0. The problem to be 706

solved is 707

Problem 4: 708

min
δw∈Rn

n−1∑
i=1

2h√
wi+1 + δwi+1 + √

wi + δwi
709

lB ≤ δw ≤ y 710

δwi+1 − δwi ≤ bAi , i = 1, . . . , n − 1 711

δwi − δwi+1 ≤ bDi , i = 1, . . . , n − 1. 712

It can be seen that such a problem belongs to the class 713

of problems (36). Therefore, in view of Proposition 4, the 714

optimal solution of Problem 4 is the componentwise maximum 715

of its feasible region. Moreover, in [3], it has been proven that 716

Algorithm 1, based on a forward and a backward iteration 717

and with O(n) computational complexity, returns an optimal 718

solution of Problem 4.

Algorithm 1 Routine SolveAcc for the Solution of the
Problem With Acceleration Constraints

input : Upper bound y
output: δw

1 δw1 = 0, δwn = 0 ;
2 for i = 1 to n − 1 do
3 δwi+1 = min

{
δwi + bAi , yi+1

}
4 for i = n − 1 to 1 do
5 δwi = min

{
δwi+1 + bAi , yi

}
6 return δw

719

B. NAR Constraints 720

Now, we consider the problem only including NAR con- 721

straints (20) and constraints (17) with upper bound vector y 722

Problem 5: 723

min
δw∈Rn

n−1∑
i=1

2h√
wi+1 + δwi+1 + √

wi + δwi
724

0 ≤ δw ≤ y (38) 725

δwi ≤ ηi (δwi−1 + δwi+1) + bNi , i = 2, . . . , n − 1 726

(39) 727

where y1 = yn = 0 because of the boundary conditions. 728

Also, this problem belongs to the class of problems (36) 729

so that Proposition 4 states that its optimal solution is the 730

componentwise maximum of its feasible region. Problem 5 can 731

be solved by using the graph-based approach presented in [4] 732

and [28]. However, Cabassi et al. [4] show that, by exploiting 733

the structure of a simpler version of the NAR constraints, it is 734

possible to develop an algorithm more efficient than the graph- 735

based one. Our purpose is to extend the results presented in [4] 736

to a case with different and more challenging NAR constraints 737

in order to develop an efficient algorithm outperforming the 738

graph-based one. 739

Now, let us consider the restriction of Problem 5 between 740

two generic indexes s and t such that 1 ≤ s < t ≤ n, obtained 741

by fixing δws = ys and δwt = yt and by considering only the 742
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NAR and upper bound constraints at s +1, . . . , t −1. Let δw∗
743

be the optimal solution of the restriction. We first prove the744

following lemma.745

Lemma 4: The optimal solution δw∗ of the restriction of746

Problem 5 between two indexes s and t , 1 ≤ s < t ≤ n,747

is such that, for each j ∈ {s + 1, . . . , t − 1}, either δw∗
j ≤ y j748

or δw∗
j ≤ η j (δw

∗
j+1 + δw∗

j−1) + bN j holds as an equality.749

Proof: It is enough to observe that, in case both inequali-750

ties were strict for some j , then, in view of the monotonicity of751

the objective function, we could decrease the objective func-752

tion value by increasing the value of δw∗
j , thus contradicting753

optimality of δw∗. �754

Note that the above result also applies to the full Problem 5,755

which corresponds to the special case s = 1, t = n with756

y1 = yn = 0. In view of Lemma 4, we have that there exists757

an index j , with s < j ≤ t , such that: 1) δw∗
j = y j ; 2) the758

upper bound constraint is not active at s + 1, . . . , j − 1; and759

3) all NAR constraints s + 1, . . . , j − 1 are active. Then, j is760

the lowest index in {s + 1, . . . , t − 1} where the upper bound761

constraint is active If index j were known, then the following762

observation allows returning the components of the optimal763

solution between s and j . Let us first introduce the following764

definitions of matrix A and vector q:765

A =

⎡
⎢⎢⎢⎢⎣

1 −ηs+1 0 · · · 0

−ηs+2 1 −ηs+2
. . .

...

0
. . .

. . .
. . . 0

0 · · · 0 −η j−1 1

⎤
⎥⎥⎥⎥⎦766

q =

⎡
⎢⎢⎢⎢⎢⎣

bN s+1 + ηs+1 ys

bN s+2
...

bN j−2

bN j−1 + η j−1 y j

⎤
⎥⎥⎥⎥⎥⎦

. (40)767

Note that A is the square submatrix of the NAR constraints768

restricted to rows s + 1 up to j − 1 and the related columns.769

Observation 1: Let δw∗ be the optimal solution of the770

restriction of Problem 5 between s and t and let s < j .771

If constraints δw∗
s ≤ ys , δw∗

j ≤ y j , and δw∗
i ≤ ηi (δw

∗
i+1 +772

δw∗
i−1) + bNi , for i = s + 1, . . . , j − 1, are all active, then773

δw∗
s+1, . . . , δw

∗
j−1 are obtained by the solution of the following774

tridiagonal system:775

δws = ys776

δwr −ηrδwr+1−ηrδwr−1 =bN r , r =s+1, . . . , j − 1777

δw j = y j778

or, equivalently, as779

δws+1 − ηs+1 x̄s+2780

= bN s+1 + ηs+1 ys781

δwr − ηrδwr+1 − ηrδwr−1 = bN r , r = s + 2, . . . , j − 2782

δws+1 − ηs+1 x̄s+2 = bN s+1 + ηs+1 ys . (41)783

In the matrix form, the above tridiagonal linear system can784

be written as785

Aδw∗
s+1, j−1 = q (42)786

where matrix A and vector q are defined in (40) and δw∗
s+1, j−1 787

is the restriction of vector δw to its components between s +1 788

and j − 1. 789

Tridiagonal systems 790

ai xi−1 + bi xi + ci xi+1 = di , i = 1, . . . , m 791

with a1 = cm = 0 can be solved through so-called Thomas 792

algorithm [29] with O(m) operations. In order to detect the 793

lowest index j ∈ {s + 1, . . . , t − 1} such that the upper bound 794

constraint is active at j , we propose Algorithm 2, also called 795

SolveNAR and described in what follows. We initially set 796

j = t . Then, at each iteration, we solve the linear system (42). 797

Let x̄ = (x̄s+1, . . . , x̄ j−1) be its solution. We check whether 798

it is feasible and optimal or not. Namely, if there exists k ∈ 799

{s + 1, . . . , j − 1} such that either x̄k < 0 or x̄k > yk , then 800

x̄ is unfeasible, and consequently, we need to reduce j by 1. 801

If x̄k = yk for some k ∈ {s + 1, . . . , j − 1}, then we also 802

reduce j by 1 since j is not in any case the lowest index 803

of the optimal solution where the upper bound constraint is 804

active. Finally, if 0 ≤ x̄k < yk , for k = s + 1, . . . , j − 1, then 805

we need to verify if x̄ is the best possible solution over the 806

interval {s + 1, . . . , j − 1}. We are able to check that after 807

proving the following result. 808

Proposition 6: Let matrix A and vector q be defined as 809

in (40). The optimal solution δw∗ of the restriction of 810

Problem 5 between s and t satisfies 811

δw∗
s = ys, δw∗

r = x̄r , r = s + 1, . . . , j − 1, δw∗
j = y j (43) 812

if and only if the optimal value of the LP problem 813

max
ε

1T ε 814

Aε ≤ 0 815

ε ≤ ȳ − x̄ (44) 816

is strictly positive or, equivalently, if the following system 817

admits no solution: 818

AT λ = 1, λ ≥ 0. (45) 819

Proof: Let us first assume that δw∗ does not fulfill (43). 820

Then, in view of Lemma 4, j is not the lowest index such 821

that the upper bound is active at the optimal solution, and 822

consequently, δw∗
k = yk > x̄k for some k ∈ {s + 1, . . . , j − 1}. 823

Such optimal solution must be feasible, and in particular, 824

it must satisfy all NAR constraints between s + 1 and j − 1 825

and the upper bound constraints between s + 1 and j , i.e., 826

δw∗
s+1 − ηs+1δw

∗
s+2 827

≤ bN s+1 + ηs+1 ys 828

δw∗
r − ηrδw

∗
r+1 − ηrδw

∗
r−1 ≤ bN r , r = s + 2, . . . , j − 2 829

δw∗
j−1 − η j−1δw

∗
j−2 − η j−1δw

∗
j ≤ bN j−1 830

δw∗
r ≤ yr , r = s + 1, . . . , j. 831

In view of δw∗
j ≤ y j and η j−1 ≥ 0, δw∗ also satisfies the 832

following system of inequalities: 833

δw∗
s+1 − ηs+1δw

∗
s+2 834

≤ bN s+1 + ηs+1 ys 835

δw∗
r − ηrδw

∗
r+1 − ηrδw

∗
r−1 ≤ bN r , r = s + 2, . . . , j − 2 836

Marco
Evidenziato
mettere .
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δw∗
j−1 − η j−1δw

∗
j−2 ≤ bN j−1 + η j−1 y j837

δw∗
r ≤ yr , r = s + 1, . . . , j − 1.838

After making the change of variables δw∗
r = x̄r + εr for839

r = s + 1, . . . , j − 1, and recalling that x̄ solves system (41),840

the system of inequalities can be further rewritten as841

εs+1 − ηs+1εs+2 ≤ 0842

εr − ηrεr+1 − ηrεr−1 ≤ 0, r = s + 2, . . . , j − 2843

ε j−1 − η j−1ε j−2 ≤ 0844

εr ≤ yr − x̄r , r = s + 1, . . . , j − 1.845

Finally, recalling the definition of matrix A and vector q846

given in (40), this can also be written in a more compact form847

as848

Aε ≤ 0849

ε ≤ ȳ − x̄.850

If δw∗
k = yk > x̄k for some k ∈ {s + 1, . . . , j − 1}, then the851

system must admit a solution with εk > 0. This is equivalent852

to prove that problem (44) has an optimal solution with at853

least one strictly positive component, and the optimal value854

is strictly positive. Indeed, in view of the definition of matrix855

A, problem (44) has the structure of the problems discussed856

in Proposition 4. More precisely, to see that, we need to857

remark that maximizing 1T ε is equivalent to minimizing the858

decreasing function −1T ε. Then, observing that ε = 0 is a859

feasible solution of problem (44), by Proposition 4, the optimal860

solution ε∗ must be a nonnegative vector, and since at least861

one component, namely, component k, is strictly positive, then862

the optimal value must also be strictly positive.863

Conversely, let us assume that the optimal value is strictly864

positive, and ε∗ is an optimal solution with at least one strictly865

positive component. Then, there are two possible alternatives.866

Either the optimal solution δw∗ of the restriction of Problem 5867

between s and t is such that δw∗
j < y j , in which case (43)868

obviously does not hold, or δw∗
j = y j . In the latter case, let869

us assume by contradiction that (43) holds. We observe that870

the solution that is defined as follows:871

x ′
s = ys872

x ′
r = x̄r + ε∗

r = δw∗
r + ε∗

r , r = s + 1, . . . , j − 1873

x ′
j = y j = δw∗

j874

x ′
r = δw∗

r , r = j + 1, . . . , t875

is feasible for the restriction of Problem 5 between s and t .876

Indeed, by feasibility of ε∗ in problem (44), all upper bound877

and NAR constraints between s and j − 1 are fulfilled. Those878

between, j + 1 and t , are also fulfilled by the feasibility of879

δw∗. Then, we only need to prove that the NAR constraint at j880

is satisfied. By feasibility of δw∗ and in view of ε∗
j−1, η j ≥ 0,881

we have that882

x ′
j = δw∗

j ≤ η jδw
∗
j−1 + η jδw

∗
j+1 + bN j883

≤ η j
(
δw∗

j−1 + ε j−1
) + η jδw

∗
j+1 + bN j884

= η j x
′
j−1 + η j x

′
j+1 + bN j .885

Thus, x′ is feasible such that x′ ≥ δw∗ with at least one strict 886

inequality (recall that at least one component of ε∗ is strictly 887

positive), which contradicts the optimality of δw∗ (recall that 888

the optimal solution must be the componentwise maximum of 889

all feasible solutions). 890

In order to prove the last part, i.e., problem (44) has a 891

positive optimal value if and only if (45) admits no solution, 892

and we notice that the optimal value is positive if and 893

only if the feasible point ε = 0 is not an optimal solution, 894

or equivalently, the null vector is not a KKT point. Since, 895

at ε = 0, constraints ε ≤ ȳ − x̄ cannot be active, then the 896

KKT conditions for problem (44) at this point are exactly those 897

established in (45), where vector λ is the vector of Lagrange 898

mutlpliers for constraints Aε ≤ 0. This concludes the 899

proof. � 900

Then, if (45) admits no solution, (43) does not hold, and 901

again, we need to reduce j by 1. Otherwise, we can fix the 902

optimal solution between s and j according to (43). After that, 903

we recursively call the routine SolveNAR on the remaining 904

subinterval { j, . . . , t} in order to obtain the solution over the 905

full interval. 906

Remark 3: In Algorithm 2, routine isFeasible is the 907

routine used to verify if, for k = s+1, . . . , j −1, 0 ≤ x̄k < yk , 908

while isOptimal is the procedure to check optimality of x̄ 909

over the interval {s + 1, . . . , j − 1}, i.e., (43) holds. 910

Now, we are ready to prove that Algorithm 2 solves 911

Problem 5. 912

Proposition 7: The call solveNAR(y, 1, n) of 913

Algorithm 2 returns the optimal solution of Problem 5. 914

Proof: After the call solveNAR(y, 1, n), we are able 915

to identify the portion of the optimal solution between 1 and 916

some index j1, 1 < j1 ≤ n. If j1 = n, then we are done. Oth- 917

erwise, we make the recursive call solveNAR(y, j1, n), 918

which enables to identify also the portion of the optimal 919

solution between j1 and some index j2, j1 < j2 ≤ n. If j2 = n, 920

then we are done. Otherwise, we make the recursive call 921

solveNAR(y, j2, n) and so on. After at most n recursive 922

calls, we are able to return the full optimal solution. � 923

Algorithm 2 SolveNAR(y, s, t)
input : Upper bound y and two indices s and t with

1 ≤ s < t ≤ n
output: δw∗

1 Set j = t ;
2 δw∗ = y;
3 while j ≥ s + 1 do
4 Compute the solution x̄ of the linear system (42);
5 if isFeasible(x̄) and isOptimal(x̄) then
6 Break;

7 else
8 Set j = j − 1;

9 for i = s + 1, . . . , j − 1 do
10 Set δw∗

i = x̄i ;

11 return δw∗ = min{δw∗,SolveNAR(δw∗, j, t)};

Marco
Evidenziato
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Remark 4: Note that Algorithm 2 involves solving a signifi-924

cant amount of linear systems, both to compute x̄ and verify its925

optimality [see (42) and (45)]. Some tricks can be employed to926

reduce the number of operations. Some of these are discussed927

in [30].928

The following proposition states the worst case complexity929

of solveNAR(y,1,n).930

Proposition 8: Problem 5 can be solved with O(n3) oper-931

ations by running the procedure SolveNAR(y, 1, n) and by932

using the Thomas algorithm for the solution of each linear933

system.934

Proof: In the worst case, at the first call, we have j1 = 2935

since we need to go all the way from j = n down to j = 2.936

Since, for each j , we need to solve a tridiagonal system, which937

requires at most O(n) operations, the first call of SolveNAR938

requires O(n2) operations. This is similar for all successive939

calls, and since the number of recursive calls is at most O(n),940

the overall effort is at most of O(n3) operations. �941

In fact, what we observed is that the practical complexity942

of the algorithm is much better, namely, �(n2).943

C. Acceleration and NAR Constraints944

Now, we discuss the problem with acceleration and NAR945

constraints, with upper bound vector y, i.e.,946

Problem 6:947

min
δw∈Rn

n−1∑
i=1

2h√
wi+1 + δwi+1 + √

wi + δwi
948

lB ≤ δw ≤ y949

δwi+1 − δwi ≤ bAi , i = 1, . . . , n − 1950

δwi − δwi+1 ≤ bDi , i = 1, . . . , n − 1951

δwi − ηiδwi−1 − ηiδwi+1 ≤ bNi , i = 2, . . . , n − 1.952

We first remark that Problem 6 has the structure of953

problem (36) so that, by Proposition 4, its unique optimal954

solution is the componentwise maximum of its feasible region.955

As for Problem 5, we can solve Problem 6 by using the graph-956

based approach proposed in [28]. However, Cabassi et al. [4]957

show that, if we adopt a very efficient procedure to solve Prob-958

lems 4 and 5, then it is worth splitting the full problem into two959

separated ones and use an iterative approach (see Algorithm 3).960

Indeed, Problems 4–6 share the common property that their961

optimal solution is also the componentwise maximum of962

the corresponding feasible region. Moreover, according to963

Proposition 5, the optimal solutions of Problems 4 and 5 are964

valid upper bounds for the optimal solution (actually, also for965

any feasible solution) of the full Problem 6. In Algorithm 3,966

we first call the procedure SolveACC with input the upper967

bound vector y. Then, the output of this procedure, which,968

according to what we have just stated, is an upper bound for969

the solution of the full Problem 6, satisfies δwAcc ≤ y, and970

becomes the input for a call of the procedure SolveNAR.971

The output δwNAR of this call is again an upper bound for972

the solution of the full Problem 6, and it satisfies δwNAR ≤973

δwAcc. This output becomes the input of a further call to the974

procedure SolveACC, and we proceed in this way until the975

distance between two consecutive output vectors falls below a976

prescribed tolerance value ε. The following proposition states 977

that the sequence of output vectors generated by the alternate 978

calls to the procedures SolveACC and SolveNAR converges 979

to the optimal solution of the full Problem 6. 980

Proposition 9: Algorithm 3 converges to the the optimal 981

solution of Problem 6 when ε = 0 and stops after a finite 982

number of iterations if ε > 0. 983

Proof: We have observed that the sequence of alternate 984

solutions of Problems 4 and 5, here denoted by {yt}, is: 1) a 985

sequence of valid upper bounds for the optimal solution of 986

Problem 6; 2) componentwise monotonic nonincreasing; and 987

3) componentwise bounded from below by the null vector. 988

Thus, if ε = 0, an infinite sequence is generated, which 989

converges to some point ȳ, which is also an upper bound 990

for the optimal solution of Problem 6 but, more precisely, 991

by continuity, is also a feasible point of the problem and, 992

is thus, also the optimal solution of the problem. If ε > 0, due 993

to the convergence to some point ȳ, at some finite iteration, 994

the exit condition of the while loop must be satisfied. � 995

Algorithm 3 Algorithm SolveACCNAR for the Solution
of Problem 6

input : The upper bound y and the tolerance ε
output: The optimal solution δw∗ and the optimal value

f ∗
1 δwAcc = SolveACC(y);
2 δwNAR = SolveNAR(δwAcc, 1, n);
3 while ‖δwNAR − δwAcc‖ > ε do
4 δwAcc = SolveACC(δw∗);
5 δwNAR = SolveNAR(δwAcc, 1, n);

6 δw∗ = δwNAR;
7 return δw∗, evaluateObj(δw∗)

IV. DESCENT METHOD FOR THE CASE OF ACCELERATION, 996

PAR, AND NAR CONSTRAINTS 997

Unfortunately, PAR constraints (21) do not satisfy the 998

assumptions requested in Proposition 4 in order to guarantee 999

that the componentwise maximum of the feasible region is 1000

the optimal solution of Problem 3. However, in Section III, 1001

we have shown that Problem 6, i.e., Problem 3 without the 1002

PAR constraints, can be efficiently solved by Algorithm 3. 1003

Our purpose then is to separate the acceleration and NAR 1004

constraints from the PAR constraints. 1005

Definition 1: Let f :Rn → R be the objective function of 1006

Problem 3, and let D be the region defined by the acceleration 1007

and NAR constraints (the feasible region of Problem 6). 1008

We define the function F :Rn → R as follows: 1009

F(y) = min{ f (x) | x ∈ D, x ≤ y}. 1010

Namely, F is the optimal value function of Problem 6 when 1011

the upper bound vector is y. 1012

Proposition 10: Function F is a convex function. 1013

Proof: Since Problem 6 is convex, then the optimal value 1014

function F is convex (see [31, Sec. 5.6.1]). � 1015

Now, let us introduce the following problem: 1016
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Problem 7:1017

min
y∈Rn

F(y) (46)1018

ηi (yi−1 + yi+1) − yi ≤ bPi , i = 2, . . . , n − 1 (47)1019

lB ≤ y ≤ uB. (48)1020

Such a problem is a relaxation of Problem 3. Indeed, each1021

feasible solution of Problem 3 is also feasible for Problem 7,1022

and the value of F at such solution is equal to the value1023

of the objective function of Problem 3 at the same solution.1024

We solve Problem 7 rather than Problem 3 to compute the1025

new displacement δw. More precisely, if y∗ is the optimal1026

solution of Problem 7, then we set1027

δw = arg min
x∈D,x≤y∗ f (x). (49)1028

In the following proposition, we prove that, under a very1029

mild condition, the optimal solution of Problem 7 computed1030

in (49) is feasible and, thus, optimal for Problem 3 so that,1031

although we solve a relaxation of the latter problem, we return1032

an optimal solution for it.1033

Proposition 11: Let w(k) be the current point. If1034

� j(δw)≤� j
(
w(k)

)(
3+min

{
0, ξ

(
w(k)

)})
, j =2, . . . , n−11035

(50)1036

where δw is computed through (49) and1037

ξ
(
w(k)

) =
√

� j
(
w(k)

)(
w

(k)
j−1 + w

(k)
j+1 − 2w

(k)
j

)
2h2 J

≥ −21038

(the inequality follows from feasibility of w(k)), then δw is1039

feasible for Problem 3, both if the nonlinear constraints are1040

linearized as in (20) and (21), and if they are linearized as1041

in (26) and (27).1042

Proof: First, we notice that, if we prove the result for1043

the tighter constraints (26) and (27), then it must also hold1044

for constraints (20) and (21). Thus, we prove the result only1045

for the former. By definition (49), δw satisfies the acceleration1046

and NAR constraints so that1047

δw j ≤ δw j+1 + bD j1048

δw j ≤ δw j−1 + bA j−11049

δw j ≤ β j
(
δw j+1 + δw j−1

) + b′
N j

1050

δw j ≤ y∗
j .1051

At least one of these constraints must be active; otherwise,1052

δw j could be increased, thus contradicting optimality. If the1053

active constraint is δw j ≤ β j (δw j+1 + δw j−1) + b′
N j

, then1054

constraint (27) can be rewritten as follows:1055

4h2 J
(
� j

(
w(k)

))− 3
2
(
δw j+1 + 2δw j + δw j−1

)
1056

≤ 12h2 J
(
� j

(
w(k)

))− 1
2

1057

or, equivalently,1058

� j(δw) ≤ 3� j
(
w(k)

)
1059

implied by (50), and thus, the constraint is satisfied under the1060

given assumption. If δw j = y∗
j , then1061

θ j
(
δw j−1+δw j+1

)≤θ j
(
y∗

j−1 + y∗
j+1

)≤ y∗
j + b′

Pj
= δw j + b′

Pj
1062

where the second inequality follows from the fact that y∗
1063

satisfies the PAR constraints. Now, let δw j = δw j+1 + bD j 1064

(the case when δw j ≤ δw j−1 + bA j−1 is active can be dealt 1065

with in a completely analogous way). First, we observe that 1066

δw j ≥ δw j−1 − bD j−1 . Then, 1067

2δw j ≥ δw j+1 + δw j−1 + bD j − bD j−1 . 1068

In view of the definitions of bD j and bD j−1 , this can also be 1069

written as 1070

2δw j ≥ δw j+1 + δw j−1 + w
(k)
j+1 − 2w

(k)
j + w

(k)
j−1. (51) 1071

Now, after recalling the definitions of θ j and b′
Pj

given 1072

in (28), and setting � = h2 J , (27) can be rewritten as 1073

2δw j ≥ δw j+1 + δw j−1 + 2�
(
� j

(
w(k)

))− 3
2 � j (δw) 1074

−6�
(
� j

(
w(k)

))− 1
2 . 1075

Taking into account (51), such inequality certainly holds if 1076

w
(k)
j+1 − 2w

(k)
j + w

(k)
j−1 ≥ 2�

(
� j

(
w(k)

))− 3
2 � j(δw) 1077

−6�
(
� j

(
w(k)

))− 1
2

1078

which is equivalent to 1079

� j (δw) ≤ � j
(
w(k)

)(
3 + ξ

(
w(k)

))
. 1080

This is also implied by (50). � 1081

Assumption (50) is mild. In order to fulfill it, one can 1082

impose restrictions on δw j−1, δw j and δw j+1. In fact, in the 1083

computational experiments, we did not impose such restric- 1084

tions unless a positive step-length along the computed direc- 1085

tion δw could not be taken (which, however, never occurred 1086

in our experiments). 1087

Now, let us turn our attention toward the solution of 1088

Problem 7. In order to solve it, we propose a descent method. 1089

We can exploit the information provided by the dual optimal 1090

solution ν ∈ R
n+ associated with the upper bound constraints 1091

of Problem 6. Indeed, from the sensitivity theory, we know 1092

that the dual solution is related to the gradient of the optimal 1093

value function F (see Definition 1) and provides information 1094

about how it changes its value for small perturbations of the 1095

upper bound values (for further details, see [31, Secs. 5.6.2 and 1096

5.6.5]). Let y(t) be a feasible solution of Problem 7 and ν ∈ R
n+ 1097

be the Lagrange multipliers of the upper bound constraints of 1098

Problem 6 when the upper bound is y(t). Let 1099

ϕi = bPi − ηi

(
y(t)

i−1 + y(t)
i+1

)
+ y(t)

i , i = 2, . . . , n − 1. 1100

Then, a feasible descent direction d(t) can be obtained by 1101

solving the following LP problem: 1102

Problem 8: 1103

min
d∈Rn

−νT d (52) 1104

ηi(di−1 + di+1) − di ≤ ϕi , i = 2, . . . , n − 1 (53) 1105

lB ≤ y(t) + d ≤ uB (54) 1106

where the objective function (52) imposes that d(t) is a 1107

descent direction, while constraints (53) and (54) guarantee 1108

feasibility with respect to Problem 7. Problem 8 is an LP 1109
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problem, and consequently, it can easily be solved through a1110

standard LP solver. In particular, we employed GUROBI [32].1111

Unfortunately, since the information provided by the dual1112

optimal solution ν is local and related to small perturbations of1113

the upper bounds, it might happen that F(y(t)+d(t)) ≥ F(y(t)).1114

To overcome this issue, we introduce a trust-region constraint1115

in Problem 8. Thus, let σ (t) ∈ R+ be the radius of the trust1116

region at iteration t; then, we have1117

Problem 9:1118

min
d∈Rn

−νT d (55)1119

ηi (di−1 + di+1) − di ≤ ϕi , i = 2, . . . , n − 1 (56)1120

l̄B ≤ d ≤ ūB (57)1121

where l̄Bi = max{lBi − y(t)
i ,−σ (t)} and ū Bi = min{uBi −1122

y(t)
i , σ (t)} for i = 1, . . . , n. After each iteration of the descent1123

algorithm, we change the radius σ (t) according to the following1124

rules.1125

1) If F(y(t) +d(t)) ≥ F(y(t)), then we set y(t+1) = y(t), and1126

we tight the trust region by decreasing σ (t) by a factor1127

τ ∈ (0, 1).1128

2) If F(y(t)+d(t)) < F(y(t)), then we set y(t+1) = y(t)+d(t)
1129

and enlarge the radius σ (t) by a factor ρ > 1.1130

The proposed descent algorithm is sketched in Fig. 3, which1131

reports the flowchart of the procedure ComputeUpdate used1132

in algorithm SCA. We initially set y(0) = 0. At each iteration t ,1133

we evaluate the objective function F(yt) by solving Problem 61134

with upper bound vector y(t) through a call of the routine1135

solveACCNAR (see Algorithm 3). Then, we compute the1136

Lagrange multipliers ν(t) associated with the upper bound con-1137

straints. After that, we compute a candidate descent direction1138

d(t) by solving Problem 9. If d(t) is a descent step, then we set1139

y(t+1) = y(t) + d(t) and enlarge the radius of the trust region;1140

otherwise, we do not move to a new point, and we tight the1141

trust region and solve again Problem 9. The descent algorithm1142

stops as soon as the radius of the trust region becomes smaller1143

than a fixed tolerance ε1.1144

Remark 5: Note that we initially set y(0) = 0. However, any1145

feasible solution of Problem 9 does the job, and actually, start-1146

ing with a good initial solution may enhance the performance1147

of the algorithm.1148

Remark 6: Problem 9 is an LP and can be solved by1149

any existing LP solver. However, a suboptimal solution to1150

Problem 9, obtained by a heuristic approach, is also accept-1151

able. Indeed, we observe that: 1) an optimal descent direction1152

is not strictly required and 2) a heuristic approach allows to1153

reduce the time needed to get a descent direction. In this1154

article, we employed a possible heuristic, whose description1155

can be found in [30], but the development of further heuristic1156

approaches is a possible topic for future research.1157

V. COMPUTATIONAL EXPERIMENTS1158

In this section, we present various computational experi-1159

ments performed in order to evaluate the approaches proposed1160

in Sections III and IV.1161

In particular, we compared solutions of Problem 2 computed1162

by algorithm SCA to solutions obtained with commercial NLP1163

solvers. Note that, with a single exception, we did not carry out 1164

a direct comparison with other methods specifically tailored to 1165

Problem 2 for the following reasons. 1166

1) Some algorithms (such as [22] and [23]) use heuristics to 1167

quickly find suboptimal solutions of acceptable quality 1168

but do not achieve local optimality. Hence, comparing 1169

their solution times with SCA would not be fair. How- 1170

ever, in one of our experiments (see Experiment 4), 1171

we made a comparison between the most recent heuristic 1172

proposed in [23] and algorithm SCA, both in terms 1173

of computing times and in terms of the quality of the 1174

returned solution. 1175

2) The method presented in [26] does not consider the 1176

(nonconvex) jerk constraint but solves a convex problem 1177

whose objective function has a penalization term that 1178

includes pseudojerk. Due to this difference, a direct 1179

comparison with SCA is not possible. 1180

3) The method presented in [24] is based on the numerical 1181

solution of a large number of nonlinear and nonconvex 1182

subproblems and is, therefore, structurally slower than 1183

SCA, whose main iteration is based on the efficient 1184

solution of the convex Problem 3. 1185

In the first two experiments, we compare the computational 1186

time of IPOPT, a general-purpose NLP solver [33], with that 1187

of algorithm SCA over some randomly generated instances of 1188

Problem 2. In particular, we tested two different versions of 1189

the algorithm SCA. The first version, called SCA-H in what 1190

follows, employs the heuristic mentioned in Remark 6. Since 1191

the heuristic procedure may fail in some cases, in such cases, 1192

we also need an LP solver. In particular, in our experiments, 1193

we used GUROBI whenever the heuristic did not produce 1194

either a feasible solution to Problem 9 or a descent direc- 1195

tion. In the second version, called SCA-G in what follows, 1196

we always employed GUROBI to solve Problem 9. For what 1197

concerns the choice of the NLP solver IPOPT, we remark 1198

that we chose it after a comparison with two further general- 1199

purpose NLP solvers, SNOPT and MINOS, which, however, 1200

turned out to perform worse than IPOPT on this class of 1201

problems. 1202

In the third experiment, we compare the performance of 1203

the two implemented versions of algorithm SCA applied to 1204

two specific paths and see their behavior as the number n of 1205

discretized points increases. 1206

In the fourth experiment, we compare the solutions returned 1207

by algorithm SCA with those returned by the heuristic recently 1208

proposed in [23]. 1209

Finally, in the fifth experiment, we present a real-life speed 1210

planning task for an LGV operating in an industrial setting, 1211

using real problem bounds and paths layouts, provided by an 1212

automation company based in Parma, Italy. 1213

We remark that, according to our experiments, the spe- 1214

cial purpose routine solveACCNAR (Algorithm 3) strongly 1215

outperforms general-purpose approaches, such as the graph- 1216

based approach proposed in [28], and GUROBI, when solving 1217

Problem 6 (which can be converted into an LP as discussed 1218

in [28]). 1219

Finally, we remark that we also tried to solve the con- 1220

vex Problem 3 arising at each iteration of the proposed 1221
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Fig. 3. Flowchart of the routine ComputeUpdate.

method with an NLP solver in place of the procedure1222

ComputeUpdate, presented in this article. However, the1223

experiments revealed that, in doing this, the computing times1224

become much larger even with respect to the single call to the1225

NLP solver for solving the nonconvex Problem 2.1226

All tests have been performed on an IntelCore i7-8550U1227

CPU at 1.8 GHz. Both for IPOPT and algorithm SCA, the1228

null vector was chosen as a starting point. The parameters1229

used within algorithm SCA were ε = 1e−8, ε1 = 1e−6
1230

(tolerance parameters), ρ = 4, and τ = 0.25 (trust-region1231

update parameters). The initial trust region radius σ (0) was1232

initialized to 1 in the first iteration k = 0 but adaptively1233

set equal to the size of the last update ‖w(k) − w(k−1)‖∞1234

in all subsequent iterations (this adaptive choice allowed to1235

reduce computing times by more than a half). We remark that1236

algorithm SCA has been implemented in MATLAB, so we1237

expect better performance after a C/C++ implementation.1238

A. Experiments 1 and 21239

In Experiment 1, we generated a set of 50 different paths,1240

each of which was discretized setting n = 100, n = 500,1241

and n = 1000 sample points. The instances were generated1242

by assuming that the traversed path was divided into seven1243

intervals over which the curvature of the path was assumed1244

to be constant. Thus, the n-dimensional upper bound vector1245

u was generated as follows. First, we fixed u1 = un = 0,1246

i.e., the initial and final speeds must be equal to 0. Next,1247

we partitioned the set {2, . . . , n − 1} into seven subintervals1248

I j , j ∈ {1, . . . , 7}, which corresponds to intervals with1249

constant curvature. Then, for each subinterval, we randomly1250

generated a value u j ∈ (0, ũ], where ũ is the maximum upper1251

bound (which was set equal to 100 m2s−2). Finally, for each1252

j ∈ {1, . . . , 7}, we set uk = ũ j ∀k ∈ I j . The maximum1253

acceleration parameter A is set equal to 2.78 ms−2 and the1254

maximum jerk J to 0.5 ms−3, while the path length is s f =1255

60 m. The values for A and J allow a comfortable motion for1256

a ground transportation vehicle (see [34]).1257

In Experiment 2, we generated a further set of 50 different 1258

paths, each of which was discretized using n = 100, n = 500, 1259

and n = 1000 variables. These new instances were randomly 1260

generated such that the traversed path was divided into up to 1261

five intervals over which the curvature could be zero, linear 1262

with respect to the arc length or constant. We chose this kind 1263

of path since they are able to represent the curvature of a 1264

road trip (see [35]). The maximum squared speed along the 1265

path was fixed equal to 192.93 m2s−2 (corresponding to a 1266

maximum speed of 50 kmh−1, a typical value for an urban 1267

driving scenario). The total length of the paths was fixed to 1268

s f = 1000 m, while parameter A was set equal to 0.25 ms−2, 1269

J to 0.025 ms−3, and AN to 4.9 ms−2. 1270

The results are reported in Table I, in which we show 1271

the average (minimum and maximum) computational times 1272

for SCA-H, SCA-G, and IPOPT. They show that algorithm 1273

SCA-H is the fastest one, while SCA-G is slightly faster than 1274

IPOPT at n = 100 but clearly faster for a larger number of 1275

sample points n. In general, we observe that both SCA-H and 1276

SCA-G tend to outperform IPOPT as n increases. Moreover, 1277

while the computing times for IPOPT at n = 100 are not much 1278

worse than those of SCA-H and SCA-G, we should point out 1279

that, at this dimension, IPOPT is sometimes unable to converge 1280

and return solutions whose objective function value differs 1281

from the best one by more than 100%. Also, the objective 1282

function values returned by SCA-H and SCA-G are sometimes 1283

slightly different, due to numerical issues related to the choice 1284

of the tolerance parameters, but such differences are mild ones 1285

and never exceed 1%. Therefore, these approaches appear to 1286

be fast and robust. It is also worthwhile to remark that SCA 1287

approaches are compatible with online planning requirements 1288

within the context of the LGV application. According to 1289

Haschke et al. [18] (see also [36]), in “highly unstructured, 1290

unpredictable, and dynamic environments,” there is a need to 1291

replan in order to adapt the motion in reaction to unforeseen 1292

events or obstacles. How often to replan depends strictly on the 1293

application. Within the context of the LGV application (where 1294

the environment is structured), replanning every 100–150 ms 1295
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TABLE I

AVERAGE (MINIMUM AND MAXIMUM) COMPUTING TIMES (IN SECONDS)
FOR SCA-H, SCA-G, AND IPOPT OVER EXPERIMENTS 1 AND 2

is acceptable, and thus, the computing times of the SCA1296

approaches at n = 100 are suitable. Of course, computing1297

times increase with n, but we notice that the computing times1298

of SCA-H still meet the requirement at n = 500. Moreover,1299

a relevant feature of SCA-H and SCA-G is that, at each1300

iteration, a feasible solution is available. Thus, we could stop1301

them as soon as a time limit is reached. At n = 500, if we1302

impose a time limit of 150 ms, which is still quite reasonable1303

for the application, SCA-G returns slightly worse feasible1304

solutions, but these do not differ from the best ones by more1305

than 2%.1306

B. Experiment 31307

In our third experiment, we compared the performance1308

of the two proposed approaches (SCA-H and SCA-G), over1309

two possible automated driving scenarios, as the number1310

n of samples increases. As a first example, we considered1311

a continuous curvature path composed of a line segment,1312

a clothoid, a circle arc, a clothoid, and a final line segment1313

(see Fig. 4). The minimum-time velocity planning on this1314

path, whose total length is s f = 90 m, is addressed with the1315

following data. The problem constants are compatible with a1316

typical urban driving scenario. The maximum squared velocity1317

is 225 m2s−2 (corresponding to 54 km h−1), the longitudinal1318

acceleration limit is A = 1.5 ms−2, and the maximal normal1319

acceleration is AN = 1 ms−2, while, for the jerk constraints,1320

we set J = 1 ms−3. Next, we considered a path of length1321

s f = 60 m (see Fig. 5) whose curvature was defined according1322

to the following function:1323

k(s) = 1

5
sin

( s

10

)
, s ∈ [

0, s f
]

1324

and parameter A, AN , and J were set equal to 1.39 ms−2,1325

4.9 ms−2, and 0.5 ms−3, respectively. The maximum squared1326

velocity is still equal to 225 m2s−2. The computational results1327

are reported in Figs. 6 and 7 for values of n that grows1328

from 100 to 1000. They show that the performance of SCA-H1329

and SCA-G depends on the path. In particular, it seems that1330

the heuristic performs in a poorer way when the number of1331

Fig. 4. Experiment 3—first path.

Fig. 5. Experiment 3—second path.

Fig. 6. Computing times (in seconds) for the path in Fig. 4.

points of the upper bound vector at which PAR constraints are 1332

violated tends to be large, which is the case for the second 1333

instance. We can give two possible motivations: 1) the direc- 1334

tions computed by the heuristic procedure are not necessarily 1335

good descent directions, so routine computeUpdate slowly 1336

converges to a solution and 2) the heuristic procedure often 1337

fails, and it is in any case necessary to call GUROBI. Note 1338

that the computing times of IPOPT on these two paths are 1339

larger than those of SCA-H and SCA-G, and, as usual, the gap 1340

increases with n. Moreover, for the second path, IPOPT was 1341

unable to converge for n = 100 and returned a solution, which 1342

differed by more than 35% with respect to those returned by 1343

SCA-H and SCA-G. 1344

As a final remark, we notice that the computed traveling 1345

times along the paths only slightly vary with n. For the first 1346

path, they vary between 14.44 and 14.45 s while, for the 1347

second path, between 20.65 and 20.66 s. The differences are 1348

very mild, but we should point out that this is not always 1349
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Fig. 7. Computing times (in seconds) for the path in Fig. 5.

TABLE II

MINIMUM, AVERAGE, AND MAXIMUM COMPUTING TIMES (IN SECONDS)
AND RELATIVE PERCENTAGE DIFFERENCE BETWEEN THE TRAVELING

TIMES COMPUTED BY THE HEURISTIC PRESENTED IN [23] AND

THE SCA APPROACHES WITH n = 100 FOR THE INSTANCES OF

EXPERIMENT 1

the case. We further comment on this point when presenting1350

Experiment 5.1351

C. Experiment 41352

In this experiment, we compared the performance of our1353

approach with the heuristic procedure recently proposed1354

in [23]. In Table II, we report the computing times and the1355

relative percentage difference [( fHEUR − fSCA)/ fSCA] ∗ 100%1356

between the traveling times computed by the heuristic and1357

the SCA approaches for the instances of Experiment 1 with1358

n = 100. Algorithms SCA-H and SCA-G have comparable1359

computing times (actually, better for what concerns SCA-H)1360

with respect to that heuristic, and the quality of the final1361

solutions is, on average, larger than 10% (these observations1362

also extend to other experiments). Such difference between1363

the quality of the solutions returned by algorithm SCA and1364

those returned by the heuristic is best explained through the1365

discussion of a representative instance, taken from Experiment1366

1 with n = 100. In this instance, we set A = 2.78 ms−2,1367

while, for the jerk constraints, we set J = 2 ms−3. The total1368

length of the path is s f = 60 m. The maximum velocity1369

profile is the piecewise constant black line in Fig. 8. In the1370

same figure, we report in red the velocity profile returned1371

by the heuristic and in blue the one returned by algorithm1372

SCA. The computing time for the heuristic is 45 ms, while,1373

for algorithm SCA-H, it is 39 ms. The final objective function1374

value (i.e., the traveling time along the given path) is 15.4 s1375

for the velocity profile returned by the heuristic and 14.02 s1376

for the velocity profile returned by algorithm SCA. From the1377

qualitative point of view, it can be observed in this instance1378

(and similar observations hold for the other instances that we1379

tested) that the heuristic produces velocity profiles whose local1380

minima coincide with those of the maximum velocity profile.1381

For instance, in the interval between 10 and 20 m, we notice1382

that the velocity profile returned by the heuristic coincides1383

Fig. 8. Velocity profile returned by the heuristic proposed in [23] (red line)
and by algorithm SCA (blue line). The black line is the maximum velocity
profile.

with the maximum velocity profile in that interval. Instead, the 1384

velocity profile generated by algorithm SCA generates velocity 1385

profiles that fall below the local minima of the maximum 1386

velocity profile, but, this way, they are able to keep the 1387

velocity higher in the regions preceding and following the local 1388

minima of the maximum velocity profile. Again, referring to 1389

the interval between 10 and 20 m, we notice that the velocity 1390

profile computed by algorithm SCA falls below the maximum 1391

velocity profile in that region and, thus, below the velocities 1392

returned by the heuristic, but, this way, velocities in the region 1393

before 10 m and in the one after 20 m are larger with respect 1394

to those computed by the heuristic. 1395

D. Experiment 5 1396

As a final experiment, we planned the speed law of an 1397

autonomous guided vehicle operating in a real-life auto- 1398

mated warehouse. Paths and problem data have been provided 1399

by packaging company Ocme S.r.l., based in Parma, Italy. 1400

We generated 50 random paths from a general layout. Fig. 9 1401

shows the warehouse layout and a possible path. In all paths, 1402

we set maximum velocity to 2 m s−1, maximum longitudinal 1403

acceleration to A = 0.28 m/s2, maximum normal acceleration 1404

to 0.2 m/s2, and maximum jerk to J = 0.025 m/s3. Table III 1405

shows computation times for algorithms SCA-H, SCA-G, and 1406

IPOPT for a number of sampling points n ∈ {100, 500, 1000}. 1407

SCA-H is quite fast although it sometimes returns slightly 1408

worse solutions (the largest percentage error, at a single 1409

instance with n = 1000, is 8%). IPOPT is clearly slower than 1410

SCA-H and SCA-G for n = 500 and 1000, while, for n = 100, 1411

it is slower than SCA-H but quite similar to SCA-G. However, 1412

for these paths, the difference in terms of traveling times as 1413

n increases is much more significant with respect to the other 1414

experiments (see also the discussion at the end of Experiment 1415

3). More precisely, the percentage difference between the 1416

traveling times of solutions at n = 100 and n = 1000 is 1417

0.5% on average for Experiment 1 with a maximum of 2.1%, 1418

while, for Experiment 2, the average difference is 0.3% with 1419

a maximum of 0.4%. Instead, for the current experiment, 1420
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Fig. 9. Warehouse layout considered in Example 5 and a possible path.

TABLE III

AVERAGE, MINIMUM, AND MAXIMUM COMPUTING TIMES (IN SECONDS)
FOR SCA-H, SCA-G, AND IPOPT OVER EXPERIMENT 5

the average difference is 2.7% with a maximum of 7.9%.1421

However, the average falls to 0.2% and the maximum to 0.6%1422

if we consider the percentage difference between the traveling1423

times of solutions at n = 500 and n = 1000. Thus, for this1424

experiment, it is advisable to use a finer discretization or,1425

equivalently, a larger number of sampling points. A tentative1426

explanation for such different behavior is related to the lower1427

velocity limits of Experiment 5 with respect to the other1428

experiments. Indeed, the objective function is much more1429

sensitive to small changes at low speeds so that a finer grid of1430

sampling points is able to reduce the impact of approximation1431

errors. However, this is just a possible explanation. A further1432

possible explanation is that, in Experiments 1–4, curves are1433

composed of segments with constant and linear curvature,1434

whereas curves on industrial LGV layouts typically have1435

curvatures that are highly nonlinear with respect to arc length.1436

VI. CONCLUSION1437

In this article, we considered a speed planning problem1438

under jerk constraints. The problem is a nonconvex one,1439

and we proposed a sequential convex approach, where we1440

exploited the special structure of the convex subproblems1441

to solve them very efficiently. The approach is fast and is1442

theoretically guaranteed to converge to a stationary point of the1443

nonconvex problem. As a possible topic for future research, we1444

would like to investigate ways to solve Problem 9, currently1445

the bottleneck of the proposed approach, alternative to the1446

solver GUROBI, and the heuristic mentioned in Remark 6.1447

Moreover, we suspect that the stationary point to which the1448

proposed approach converges is, in fact, a global minimizer1449

of the nonconvex problem, and proving this fact is a further 1450

interesting topic for future research. 1451
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A Sequential Algorithm for Jerk Limited
Speed Planning

Luca Consolini , Member, IEEE, Marco Locatelli , and Andrea Minari

Abstract— In this article, we discuss a sequential algorithm1

for the computation of a minimum-time speed profile over a2

given path, under velocity, acceleration, and jerk constraints.3

Such a problem arises in industrial contexts, such as automated4

warehouses, where LGVs need to perform assigned tasks as5

fast as possible in order to increase productivity. It can be6

reformulated as an optimization problem with a convex objective7

function, linear velocity and acceleration constraints, and non-8

convex jerk constraints, which, thus, represents the main source9

of the difficulty. While existing nonlinear programming (NLP)10

solvers can be employed for the solution of this problem, it turns11

out that the performance and robustness of such solvers can be12

enhanced by the sequential line-search algorithm proposed in13

this article. At each iteration, a feasible direction, with respect14

to the current feasible solution, is computed, and a step along15

such direction is taken in order to compute the next iterate. The16

computation of the feasible direction is based on the solution17

of a linearized version of the problem, and the solution of the18

linearized problem, through an approach that strongly exploits19

its special structure, represents the main contribution of this20

work. The efficiency of the proposed approach with respect to21

existing NLP solvers is proven through different computational22

experiments.23

Note to Practitioners—This article was motivated by the needs24

of LGV manufacturers. In particular, it presents an algorithm for25

computing the minimum-time speed law for an LGV along a pre-26

assigned path, respecting assigned velocity, acceleration, and jerk27

constraints. The solution algorithm should be: 1) fast, since speed28

planning is made continuously throughout the workday, not only29

when an LGV receives a new task but also during the execution of30

the task itself, since conditions may change, e.g., if the LGV has to31

be halted for security reasons and 2) reliable, i.e., it should return32

solutions of high quality, because a better speed profile allows33

to save time and even small percentage improvements, say a 5%34

improvement, has a considerable impact on the productivity of35

the warehouse, and, thus, determines a significant economic gain.36

The algorithm that we propose meets these two requirements, and37

we believe that it can be a useful tool for LGV manufacturers38

and users. It is obvious that the proposed method also applies39

to the speed planning problem for vehicles other than LGVs,40

e.g., road vehicles.41
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was recommended for publication by Associate Editor M. Robba and Editor
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Index Terms— Optimization, sequential line-search method, 42

speed planning. 43

I. INTRODUCTION 44

AN IMPORTANT problem in motion planning is the 45

computation of the minimum-time motion of a car-like 46

vehicle from a start configuration to a target one while avoid- 47

ing collisions (obstacle avoidance) and satisfying kinematic, 48

dynamic, and mechanical constraints (for instance, on veloci- 49

ties, accelerations, and maximal steering angle). This problem 50

can be approached in two ways. 51

1) As a minimum-time trajectory planning, where both the 52

path to be followed by the vehicle and the timing law 53

on this path (i.e., the vehicle’s velocity) are simultane- 54

ously designed. For instance, one could use the RRT* 55

algorithm (see [1]). 56

2) As a (geometric) path planning followed by a minimum- 57

time speed planning on the planned path (see [2]). 58

In this article, following the second paradigm, we assume 59

that the path that joins the initial and the final configuration 60

is assigned, and we aim at finding the time-optimal speed 61

law that satisfies some kinematic and dynamic constraints. 62

The problem can be reformulated as an optimization problem, 63

and it is quite relevant from the practical point of view. 64

In particular, in automated warehouses, the speed of LGVs 65

needs to be planned under acceleration and jerk constraints. 66

As previously mentioned, the solution algorithm should be 67

both fast and reliable. In our previous work [3], we proposed 68

an optimal time-complexity algorithm for finding the time- 69

optimal speed law that satisfies constraints on maximum veloc- 70

ity and tangential and normal acceleration. In the subsequent 71

work [4], we included a bound on the derivative of the 72

acceleration with respect to the arc length. In this article, 73

we consider the presence of jerk constraints (constraints on the 74

time derivative of the acceleration). The resulting optimization 75

problem is nonconvex and, for this reason, is significantly 76

more complex than the ones that we discussed in [3] and [4]. 77

The main contribution of this work is the development of a 78

line-search algorithm for this problem based on the sequential 79

solution of convex problems. The proposed algorithm meets 80

both requirements of being fast and reliable. The former 81

is met by heavily exploiting the special structure of the 82

optimization problem, the latter by the theoretical guarantee 83

that the returned solution is a first-order stationary point (in 84

practice, a local minimizer) of the optimization problem. 85

1545-5955 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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A. Problem Statement86

Here, we introduce the problem at hand more formally.87

Let γ :[0, s f ] → R
2 be a smooth function. The image set88

γ ([0, s f ]) is the path to be followed, γ (0) the initial configu-89

ration, and γ (s f ) the final one. Function γ has arc-length para-90

meterization, such that (∀λ ∈ [0, s f ]), ‖γ ′(λ)‖ = 1. In this91

way, s f is the path length. We want to compute the speed-law92

that minimizes the overall transfer time (i.e., the time needed to93

go from γ (0) to γ (s f )). To this end, let λ:[0, t f ] → [0, s f ] be94

a differentiable monotone increasing function that represents95

the vehicle’s arc-length position along the curve as a function96

of time, and let v:[0, s f ] → [0,+∞[ be such that (∀t ∈97

[0, t f ]) λ̇(t) = v(λ(t)). In this way, v(s) is the derivative of the98

vehicle arc-length position, which corresponds to the norm of99

its velocity vector at position s. The position of the vehicle as100

a function of time is given by x:[0, t f ] → R
2, x(t) = γ (λ(t)).101

The velocity and acceleration are given, respectively, by102

ẋ(t) = γ ′(λ(t))v(λ(t))103

ẍ(t) = aT (t)γ ′(λ(t)) + aN (t)γ ′⊥(λ(t))104

where aT (t) = v ′(λ(t))v(λ(t)) and aN (t) = k(λ(t))v(λ(t))2
105

are, respectively, the tangential and normal components of the106

acceleration (i.e., the projections of the acceleration vector107

ẍ on the tangent and the normal to the curve). Moreover108

γ ′⊥(λ) is the normal to vector γ ′(λ) and the tangent of γ ′
109

at λ. Here, k:[0, s f ] → R is the scalar curvature, defined as110

k(s) =< γ ′′(s), γ ′(s)⊥ >. Note that |k(s)| = ‖γ ′′(s)‖. In the111

following, we assume that k(s) ∈ C1([0, s f ], R). The total112

maneuver time, for a given velocity profile v ∈ C1([0, s f ], R),113

is returned by the functional114

F : C1
([

0, s f
]
, R

) → R, F(v) =
∫ s f

0
v−1(s)ds. (1)115

In our previous work [3], we considered the problem116

min
v∈V

F(v) (2)117

where the feasible region V ⊂ C1([0, s f ], R) is defined by the118

following set of constraints:119

v(0) = 0, v
(
s f

) = 0 (3a)120

0 ≤ v(s) ≤ vmax, s ∈ [
0, s f

]
(3b)121

|v ′(s)v(s)| ≤ A, s ∈ [
0, s f

]
(3c)122

|k(s)|v(s)2 ≤ AN , s ∈ [
0, s f

]
(3d)123

where vmax, A, and AN are upper bounds for the velocity, the124

tangential acceleration, and the normal acceleration, respec-125

tively. Constraints (3a) are the initial and final interpolation126

conditions, while constraints (3b)–(3d) limit velocity and the127

tangential and normal components of acceleration. In [3],128

we presented an algorithm, with linear-time computational129

complexity with respect to the number of variables, which130

provides an optimal solution of (2) after spatial discretiza-131

tion. One limitation of this algorithm is that the obtained132

velocity profile is Lipschitz1 but not differentiable so that133

the vehicle’s acceleration is discontinuous. With the aim134

1A function f :R → R is Lipschitz if there exists a real positive constant L
such that (∀x, y ∈ R) | f (x) − f (y)| ≤ L|x − y|.

of obtaining a smoother velocity profile, in the subsequent 135

work [4], we required that the velocity be differentiable, and 136

we imposed a Lipschitz condition (with constant J ) on its 137

derivative. In this way, after setting w = v2, the feasible region 138

of the problem W ⊂ C1([0, s f ], R) is defined by the set of 139

functions w ∈ C1([0, s f ], R) that satisfy the following set of 140

constraints: 141

w(0) = 0, w
(
s f

) = 0 (4a) 142

0 ≤ w(s) ≤ v2
max, s ∈ [

0, s f
]

(4b) 143

1

2
|w′(s)| ≤ A, s ∈ [

0, s f
]

(4c) 144

|k(s)|w(s) ≤ AN , s ∈ [
0, s f

]
(4d) 145

|w′(s1) − w′(s2)| ≤ J |s1 − s2|, s1, s2 ∈ [
0, s f

]
. (4e) 146

Then, we end up with the problem 147

min
w∈W

G(w) (5) 148

where the objective function is 149

G : C1([0, s f
]
, R

) → R, G(w) =
∫ s f

0
w−1/2(s)ds. (6) 150

The objective function (6) and constraints (4a)–(4d) cor- 151

respond to the ones in problem (2) after the substitution 152

w = v2. Note that this change of variable is well known in 153

the literature. It has been first proposed in [5], while, in [6], 154

it is observed that Problem (2) becomes convex after this 155

change of variable. The added set of constraints (4e) is a 156

Lipschitz condition on the derivative of the squared velocity w. 157

It is used to enforce a smoother velocity profile by bounding 158

the second derivative of the squared velocity with respect 159

to arc length. Note that constraints (4) are linear, and the 160

objective function (6) is convex. In [4], we proposed an 161

algorithm for solving a finite-dimensional approximation of 162

Problem (4). The algorithm exploited the particular structure 163

of the resulting convex finite-dimensional problem. This article 164

extends the results of [4]. It considers a nonconvex varia- 165

tion of Problem (4), in which constraint (4e) is substituted 166

with a constraint on the time derivative of the acceleration 167

|ȧ(t)| ≤ J , where a(t) = (d/dt)v(λ(t)) = v ′(λ(t))v(λ(t)) = 168

(1/2)w′(λ(t)). Then, we set 169

jL(t) = ȧ(t) = 1

2
w′′(s(t))

√
(w(s(t))). 170

This quantity is commonly called “jerk.” Bounding the 171

absolute value of jerk allows to avoid sudden changes of 172

acceleration and obtain a smoother motion. Then, we end up 173

with the following minimum-time problem. 174

Problem 1 (Smooth Minimum-Time Velocity Planning 175

Problem: Continuous Version): 176

min
w∈C2

∫ s f

0
w(s)−1/2 ds 177

w(0) = 0, w
(
s f

) = 0 178

0 ≤ w(s) ≤ μ+(s), s ∈ [
0, s f

]
179

1

2
|w′(s)| ≤ A, s ∈ [

0, s f
]

(7) 180

1

2
|w′′(s)

√
w(s)| ≤ J s ∈ [

0, s f
]

(8) 181
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where μ+ is the square velocity upper bound depending on182

the shape of the path, i.e.,183

μ+(s) = min

{
v2

max,
AN

|k(s)|
}

184

where vmax, AN , and k are the maximum vehicle velocity,185

the maximum normal acceleration, and the path curvature,186

respectively. Parameters A and J are the bounds represent-187

ing the limitations on the (tangential) acceleration and the188

jerk, respectively. For the sake of simplicity, we consider189

constraints (7) and (8) symmetric and constant. However, the190

following development could be easily extended to the non-191

symmetric and nonconstant case. Note that the jerk con-192

straint (8) is nonconvex. The continuous problem is discretized193

as follows. We subdivide the path into n − 1 intervals of194

equal length, i.e., we evaluate function w at points si =195

((i − 1)s f )/(n − 1), i = 1, . . . , n, so that we have the fol-196

lowing n-dimensional vector of variables:197

w = (w1, w2, . . . , wn) = (w(s1),w(s2), . . . , w(sn)).198

Then, the finite dimensional version of the problem is given199

as follows.200

Problem 2 (Smooth Minimum-Time Velocity Planning201

Problem: Discretized Version):202

min
w∈Rn

n−1∑
i=1

2h√
wi+1 + √

wi
(9)203

0 ≤ w ≤ u (10)204

wi+1 − wi ≤ 2h A, i = 1, . . . , n − 1 (11)205

wi − wi+1 ≤ 2h A, i = 1, . . . , n − 1 (12)206

(wi−1 − 2wi + wi+1)

√
�i(w)

4
≤ 2h2 J207

i = 2, . . . , n − 1 (13)208

−(wi−1 − 2wi + wi+1)

√
�i (w)

4
≤ 2h2 J209

i = 2, . . . , n − 1 (14)210

where211

�i(w) = wi+1 + wi−1 + 2wi (15)212

while ui = μ+(si ), for i = 1, . . . , n, and, in particular,213

u1 = 0 and un = 0 since we are assuming that the initial214

and final velocities are equal to 0. The objective function (9)215

is an approximation of (6) given by the Riemann sum of216

the intervals obtained by dividing each interval [si , si+1], for217

i = 1, . . . , n − 1, in two subintervals of the same size.218

Constraints (11) and (12) are obtained by a finite difference219

approximation of w′. Constraints (13) and (14) are obtained by220

using a second-order central finite difference to approximate221

w′′, while w is approximated by a weighted arithmetic mean222

of three consecutive samples. Due to jerk constraints (13)223

and (14), Problem 2 is nonconvex and cannot be solved with224

the algorithm presented in [4].225

B. Main Result226

The main contribution of this article is the development of227

a new solution algorithm for finding a local minimum of the228

nonconvex Problem 2. As detailed in next sections, we propose 229

to solve Problem 2 by a line-search algorithm based on the 230

sequential solution of convex problems. The algorithm is an

AQ:3

231

iterative one where the following operations are performed at 232

each iteration. 233

1) Constraint Linearization: We first define a convex prob- 234

lem by linearizing constraints (13) and (14) through a first- 235

order Taylor approximation around the current point w(k). 236

Different from other sequential algorithms for nonlinear pro- 237

gramming (NLP) problems, we keep the original convex 238

objective function. The linearized problem is introduced in 239

Section II. 240

2) Computation of a Feasible Descent Direction: The con- 241

vex problem (actually, a relaxation of such problem) is solved 242

in order to compute a feasible descent direction δw(k). The 243

main contribution of this article lies in this part. The compu- 244

tation requires the minimization of a suitably defined objective 245

function through a further iterative algorithm. At each iteration 246

of this algorithm, the following operations are performed: 247

C. Objective Function Evaluation 248

Such evaluation requires the solution of a problem with 249

the same objective function but subject to a subset of the 250

constraints. The special structure of the resulting subproblem 251

is heavily exploited in order to solve it efficiently. This is the 252

topic of Section III. 253

D. Computation of a Descent Step 254

Some Lagrange multipliers of the subproblem define a 255

subgradient for the objective function. This can be employed 256

to define a linear programming (LP) problem that returns a 257

descent step for the objective function. This is the topic of 258

Section IV. 259

Line Search: Finally, a standard line search along the half- 260

line w(k) + αδw(k), α ≥ 0, is performed. 261

Sections II–IV detail all what we discussed above. Next, 262

in Section V, we present different computational experiments. 263

E. Comparison With Existing Literature 264

Although many works consider the problem of 265

minimum-time speed planning with acceleration constraints 266

(see [7]–[9]), relatively few consider jerk constraints. Perhaps, 267

this is also due to the fact that the jerk constraint is nonconvex 268

so that its presence significantly increases the complexity of 269

the optimization task. One can use a general-purpose NLP 270

solver (such as SNOPT or IPOPT) for finding a local solution 271

of Problem 2, but the required time is, in general, too large for 272

the speed planning application. As outlined in Section I-D, 273

in this work, we tackle this problem through an approach 274

based on the solution of a sequence of convex subproblems. 275

There are different approaches in the literature based on the 276

sequential solution of convex subproblems. In [10], it is first 277

observed that the problem with acceleration constraints but no 278

jerk constraints for robotic manipulators can be reformulated 279

as a convex one with linear constraints, and it is solved 280

by a sequence of LP problems obtained by linearizing the 281
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objective function at the current point, i.e., the objective282

function is replaced by its supporting hyperplane at the283

current point, and by introducing a trust region centered at the284

current point. In [11] and [12], it is further observed that this285

problem can be solved very efficiently through the solution286

of a sequence of 2-D LP problems. In [13], an interior point287

barrier method is used to solve the same problem based on288

Newton’s method. Each Newton step requires the solution of289

a KKT system, and an efficient way to solve such systems290

is proposed in that work. Moving to approaches also dealing291

with jerk constraints, we mention [14]. In this work, it is292

observed that jerk constraints are nonconvex but can be293

written as the difference between two convex functions.294

Based on this observation, the authors solve the problem by295

a sequence of convex subproblems obtained by linearizing296

at the current point the concave part of the jerk constraints297

and by adding a proximal term in the objective function that298

plays the same role as a trust region, preventing from taking299

too large steps. In [15] a slightly different objective function300

is considered. Rather than minimizing the traveling time301

along the given path, the integral of the squared difference302

between the maximum velocity profile and the computed303

velocity profile is minimized. After representing time-varying304

control inputs as products of parametric exponential and305

polynomial functions, the authors reformulate the problem in306

such a way that its objective function is convex quadratic,307

while nonconvexity lies in difference-of-convex functions.308

The resulting problem is tackled through the solution of a309

sequence of convex subproblems obtained by linearizing310

the concave part of the nonconvex constraints. In [16], the311

problem of speed planning for robotic manipulators with jerk312

constraints is reformulated in such a way that nonconvexity313

lies in simple bilinear terms. Such bilinear terms are replaced314

by the corresponding convex and concave envelopes, obtaining315

the so-called McCormick relaxation, which is the tightest316

possible convex relaxation of the nonconvex problem. Other317

approaches dealing with jerk constraints do not rely on318

the solution of convex subproblems. For instance, in [17],319

a concatenation of fifth-order polynomials is employed to320

provide smooth trajectories, which results in quadratic jerk321

profiles, while, in [18], cubic polynomials are employed,322

resulting in piecewise constant jerk profiles. The decision323

process involves the choice of the phase durations, i.e.,324

of the intervals over which a given polynomial applies. A325

very recent and interesting approach to the problem with326

jerk constraints is [19]. In this work, an approach based327

on numerical integration is discussed. Numerical integration328

has been first applied under acceleration constraints in [20]329

and [21]. In [19], jerk constraints are taken into account. The330

algorithm detects a position s along the trajectory where the331

jerk constraint is singular, that is, the jerk term disappears332

from one of the constraints. Then, it computes the speed333

profile up to s by computing two maximum jerk profiles and334

then connecting them by a minimum jerk profile, found by a335

shooting method. In general, the overall solution is composed336

of a sequence of various maximum and minimum jerk337

profiles. This approach does not guarantee reaching a local338

minimum of the traversal time. Moreover, since Problem 4339

has velocity and acceleration constraints, the jerk constraint 340

is singular for all values of s so that the algorithm presented 341

in [19] cannot be directly applied to Problem 4. 342

Some algorithms use heuristics to quickly find sub- 343

optimal solutions of acceptable quality. For instance, 344

Villagra et al. [22] propose an algorithm that applies to curves 345

composed of clothoids, circles, and straight lines. The algo- 346

rithm does not guarantee the local optimality of the solution. 347

Raineri and Guarino Lo Bianco [23] present an efficient 348

heuristic algorithm. Also, this method does not guarantee 349

global nor local optimality. Various works in the literature 350

consider jerk bounds in the speed optimization problem for 351

robotic manipulators instead of mobile vehicles. This is a 352

slightly different problem but mathematically equivalent to 353

Problem (1). In particular, paper [24] presents a method based 354

on the solution of a large number of nonlinear and nonconvex 355

subproblems. The resulting algorithm is slow due to a large 356

number of subproblems; moreover, the authors do not prove its 357

convergence. Zhang et al. [25] propose a similar method that 358

gives a continuous-time solution. Again, the method is com- 359

putationally slow since it is based on the numerical solution of 360

a large number of differential equations; moreover, this article 361

does not contain proof of convergence or local optimality. 362

Some other works replace the jerk constraint with pseudo- 363

jerk, that is, the derivative of the acceleration with respect 364

to arc length, obtaining a constraint analogous to (4e) and 365

ending up with a convex optimization problem. For instance, 366

Zhang et al. [26] add to the objective function a pseudo-jerk 367

penalizing term. This approach is computationally convenient, 368

but substituting (8) with (4e) may be overly restrictive at low 369

speeds. 370

F. Statement of Contribution 371

The method presented in this article is a sequential convex 372

one that aims at finding a local optimizer of Problem 2. 373

To be more precise, as usual with nonconvex problems, only 374

convergence to a stationary point can usually be proved. 375

However, the fact that the sequence of generated feasible 376

points is decreasing with respect to the objective function 377

values usually guarantees that the stationary point is a local 378

minimizer, except in rather pathological cases (see [27, p. 19]). 379

Moreover, in our experiments, even after running a local solver 380

from different starting points, we have never been able to 381

detect local minimizers better than the one returned by the 382

method we propose. Thus, a possible, nontrivial, topic for 383

future research could be that of proving the global optimality 384

of the solution. To the best of our knowledge and as detailed 385

in the following, this algorithm is more efficient than the ones 386

existing in the literature since it leverages the special struc- 387

ture of the subproblems obtained as local approximations of 388

Problem 2. We discussed this class of problems in our previous 389

work [28]. This structure allows computing very efficiently a 390

feasible descent direction for the main line-search algorithm; 391

it is one of the key elements that allow us to outperform 392

generic NLP solvers. In summary, the main contributions of 393

this work are: 1) on the theoretical side, the development of an 394

approach for which a rigorous mathematical analysis has been 395
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Fig. 1. Flowchart of algorithm SCA. The dashed block corresponds to a call
of the procedure ComputeUpdate, proposed to solve Problem 3, which
represents the main contribution of this article.

performed, proving a convergence result to a stationary point396

(see Section II) and 2) on the computational side, to exploit397

heavily the structure of the problem in order to implement the398

approach in a fairly efficient way (see Sections III and IV)399

so that its computing times outperform those of nonlinear400

solvers and are competitive with heuristic approaches that are401

only able to return suboptimal solutions of lower quality (see402

Section V).403

II. SEQUENTIAL ALGORITHM BASED ON CONSTRAINT404

LINEARIZATION405

To account for the nonconvexity of Problem 2, we propose406

a line-search method based on the solution of a sequence of407

special structured convex problems. Throughout this article,408

we call this algorithm Sequential Convex Algorithm (SCA),409

and its flowchart is shown in Fig. 1. It belongs to the class of410

Sequential Convex Programming algorithms, where, at each411

iteration, a convex subproblem is solved. In what follows,412

we denote by � the feasible region of Problem 2. At each413

iteration k, we replace the current point w(k) ∈ � with a414

new point w(k) + α(k)δw(k) ∈ �, where the step size α(k) ∈415

[0, 1] is obtained by a line search along the descent direction416

δw(k), which, in turn, is obtained through the solution of a417

convex problem. The constraints of the convex problem are418

linear approximations of (10)–(14) around w(k), while the419

objective function is the original one. Then, the problem that420

we consider to compute the direction δw(k) is given in the421

following (superscript k of w(k) is omitted):422

Problem 3:423

min
δw∈Rn

n−1∑
i=1

2h√
wi+1 + δwi+1 + √

wi + δwi
(16)424

lB ≤ δw ≤ uB (17)425

δwi+1 − δwi ≤ bAi , i = 1, . . . , n − 1 (18)426

δwi − δwi+1 ≤ bDi , i = 1, . . . , n − 1 (19) 427

δwi − ηiδwi−1 − ηiδwi+1 ≤ bNi , i = 2, . . . , n − 1 428

(20) 429

ηiδwi−1 + ηiδwi+1 − δwi ≤ bPi , i = 2, . . . , n − 1 430

(21) 431

where lB = −w and uB = u − w (recall that u has been 432

introduced in (10), and its components have been defined 433

immediately in Problem 2), while parameters η, bA, bD, 434

bN, and bP depend on the point w around which the con- 435

straints (10)–(14) are linearized. More precisely, we have 436

bAi = 2h A − wi+1 + wi 437

bDi = 2h A − wi + wi+1 438

ηi = 3wi+1 + 3wi−1 + 2wi

2(wi+1 + wi−1 + 6wi)
439

bPi = √
�i (w)

8h2 J + (wi−1 − 2wi + wi+1)
√

�i(w)

2(wi+1 + wi−1 + 6wi)
440

bNi = √
�i (w)

8h2 J − (wi−1 − 2wi + wi+1)
√

�i(w)

2(wi+1 + wi−1 + 6wi)
(22) 441

where �i is defined in (15). The following proposition is an 442

immediate consequence of the feasibility of w. 443

Proposition 1: All parameters η, bA, bD, bN, and bP are 444

nonnegative. 445

The proposed approach follows some standard ideas of 446

sequential quadratic approaches employed in the literature 447

about nonlinearly constrained problems. However, a quite 448

relevant difference is that the true objective function (9) is 449

employed in the problem to compute the direction, rather 450

than a quadratic approximation of such function. This choice 451

comes from the fact that the objective function (9) has some 452

features (in particular, convexity and being decreasing), which, 453

combined with the structure of the linearized constraints, 454

allows for an efficient solution of Problem 3. Problem 3 is 455

a convex problem with a nonempty feasible region (δw = 0 is 456

always a feasible solution) and, consequently, can be solved by 457

existing NLP solvers. However, such solvers tend to increase 458

computing times since they need to be called many times 459

within the iterative algorithm SCA. The main contribution of 460

this article lies in the routine computeUpdate (see dashed 461

block in Fig. 1), which is able to solve Problem 3 and effi- 462

ciently returns a descent direction δw(k). To be more precise, 463

we solve a relaxation of Problem 3. Such relaxation, as well 464

as the routine to solve it, is detailed in Sections III and IV. 465

In Section III, we present efficient approaches to solve some 466

subproblems, including proper subsets of the constraints. Then, 467

in Section IV, we address the solution of the relaxation of 468

Problem 3. 469

Remark 1: It is possible to see that, if one of the con- 470

straints (13) and (14) is active at w(k), then, along the 471

direction δw(k) computed through the solution of the linearized 472

Problem 3, it holds that w(k)+αδw(k) ∈ � for any sufficiently 473

small α > 0. In other words, small perturbations of the current 474

solution w(k) along direction δw(k) do not lead outside the 475

feasible region �. This fact is illustrated in Fig. 2. Let us 476



IE
EE P

ro
of

6 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Fig. 2. Constraints (13) and (14) and their linearization (C = 4h2 J ).

rewrite constraints (13) and (14) as follows:477 ∣∣(x − 2y)
√

x
∣∣ ≤ C (23)478

where x = �i(w), y = 2wi , and C = 4h2 J is a constant. The479

feasible region associated with constraint (23) is reported in480

Fig. 2. In particular, it is the region between the blue and red481

curves. Suppose that constraint y ≤ (x/2)+(C/2
√

x) is active482

at w(k) (the case when y ≥ (x/2) − (C/2
√

x) is active can483

be dealt with in a completely analogous way). If we linearize484

such constraint around w(k), then we obtain a linear constraint485

(black line in Fig. 2), which defines a region completely486

contained into the one defined by the nonlinear constraint487

y ≤ (x/2)+(C/2
√

x). Hence, for each direction δw(k) feasible488

with respect to the linearized constraint, we are always able to489

perform sufficiently small steps, without violating the original490

nonlinear constraints, i.e., for α > 0 small enough, it holds491

that w(k) + αδw(k) ∈ �.492

Constraints (13) and (14) can also be rewritten as follows:493

wi−1 + wi+1 − 2wi − 4h2 J (�i (w))−
1
2 ≤ 0 (24)494

2wi − wi−1 − wi+1 − 4h2 J (�i (w))−
1
2 ≤ 0. (25)495

Note that the functions on the left-hand side of these496

constraints are concave. Now, we can define a variant of497

Problem 3 where constraints (20) and (21) are replaced by498

the following linearizations of constraints (24) and (25):499

−βiδwi−1 − βiδwi+1 + δwi ≤ b′
Ni

(26)500

θiδwi−1 + θiδwi+1 − δwi ≤ b′
Pi

(27)501

where502

θi = 1 + 2h2 J (�i(w))−
3
2

2 − 4h2 J (�i(w))−
3
2

503

βi = 1 − 2h2 J (�i(w))−
3
2

2 + 4h2 J (�i(w))−
3
2

504

b′
Ni

= 6h2 J (�i(w))−
1
2

2 + 4h2 J (�i(w))−
3
2

505

b′
Pi

= 6h2 J (�i(w))−
1
2

2 − 4h2 J (�i(w))−
3
2

. (28)506

The following proposition states that constraints (26)507

and (27) are tighter than constraints (20) and (21).508

Proposition 2: For all i = 2, . . . , n − 1, it holds that βi ≤ 509

ηi ≤ θi . Equality ηi = θi holds if the corresponding nonlinear 510

constraint (24) is active at the current point w. Similarly, ηi = 511

βi holds if the corresponding nonlinear constraint (25) is active 512

at the current point w. 513

Proof: We only prove the results about θi and ηi . Those 514

about βi and ηi are proved in a completely analogous way. 515

By definition of ηi and θi , we need to prove that 516

3wi+1 + 3wi−1 + 2wi

wi+1 + 6wi + wi−1
≤ 1 + 2h2 J (�i(w))−

3
2

2 − 4h2 J (�i(w))−
3
2

. 517

After few simple computations, this inequality can be 518

rewritten as 519

4h2 J (�i (w))−
1
2 ≥ (wi−1 − 2wi + wi+1) 520

which holds in view of feasibility of w and, moreover, holds 521

as an equality if constraint (24) is active at the current point 522

w, as we wanted to prove. � 523

In view of this result, by replacing constraints (20) and (21) 524

with (26) and (27), we reduce the search space of the new 525

displacement δw. On the other hand, the following proposition 526

states that, with constraints (26) and (27), no line search is 527

needed along the direction δw, i.e., we can always choose the 528

step length α = 1. 529

Proposition 3: If constraints (26) and (27) are employed as 530

a replacement of constraints (20) and (21) in the definition of 531

Problem 3, then, for each feasible solution δw of this problem, 532

it holds that w + δw ∈ �. 533

Proof: For the sake of convenience, let us rewrite 534

Problem 2 in the following more compact form: 535

min f (w + δw) 536

c(w + δw) ≤ 0 (29) 537

where the vector function c contains all constraints 538

of Problem 2 and the nonlinear ones are given as 539

in (24) and (25) (recall that, in that case, vector c is a vector of 540

concave functions). Then, Problem 3 can be written as follows: 541

min f (w + δw) c(w) + ∇c(w)δw ≤ 0. (30) 542

Now, it is enough to observe that, by concavity, 543

c(w + δw) ≤ c(w) + ∇c(w)δw 544

so that each feasible solution of (30) is also feasible for (29). 545

� 546

The above proposition states that the feasible region of 547

Problem 3, when constraints (26) and (27) are employed 548

in its definition, is a subset of the feasible region � of 549

the original Problem 2. As a final result of this section, 550

we state the following theorem, which establishes convergence 551

of algorithm SCA to a stationary (KKT) point of Problem 2. 552

Theorem 1: If algorithm SCA is run for an infinite number 553

of iterations and there exists some positive integer value K 554

such that for all iterations k ≥ K , constraints (26) and (27) are 555

always employed in the definition of Problem 3, and then, the 556

sequence of points {w(k)} generated by the algorithm converges 557

to a KKT point of Problem 2. 558
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In order to prove the theorem, we first need to prove some559

lemmas.560

Lemma 1: The sequence { f (w(k))} of the function values561

at points generated by algorithm SCA converges to a finite562

value.563

Proof: The sequence is nonincreasing and bounded from564

below, e.g., by the value f (uB), in view of the fact that the565

objective function f is monotonic decreasing. Thus, it con-566

verges to a finite value. �567

Next, we need the following result based on strict convexity568

of the objective function f .569

Lemma 2: For each δ > 0 sufficiently small, it holds that570

min

{
max{ f (x), f (y)} − f

(
x + y

2

)
571

: x, y ∈ �, ‖x − y‖ ≥ δ

}
≥ εδ > 0. (31)572

Proof: Due to strict convexity, it holds that, ∀x �= y,573

max{ f (x), f (y)} − f

(
x + y

2

)
> 0.574

Moreover, the function is a continuous one. Next,575

we observe that the region576

{x, y ∈ � : ‖x − y‖ ≥ δ}577

is a compact set. Thus, by the Weierstrass theorem, the578

minimum in (31) is attained, and it must be strictly positive,579

as we wanted to prove. �580

Finally, we prove that also the sequence of points generated581

by algorithm SCA converges to some point, feasible for582

Problem 2.583

Lemma 3: It holds that584

‖δw(k)‖ → 0.585

Proof: Let us assume, by contradiction, that, over some586

infinite subsequence with index set K, it holds that ‖δw(k)‖ ≥587

2ρ > 0 for all k ∈ K, i.e.,588

‖w(k+1) − w(k)‖ ≥ 2ρ > 0 (32)589

where w(k+1) = w(k) + δw(k). Over this subsequence, it holds,590

by strict convexity, that591

f
(
w(k+1)

) ≤ f
(
w(k)

) − ξ ∀k ∈ K (33)592

for some ξ > 0. Indeed, it follows by optimality of w(k) +593

δw(k) for Problem 3 and convexity of f that594

f
(
w(k+1)

) ≤ f

(
w(k+1) + w(k)

2

)
≤ f

(
w(k)

)
595

so that596

max
{

f
(
w(k)

)
, f

(
w(k+1)

)} = f
(
w(k)

)
.597

Then, it follows from (32) and Lemma 2 that we can choose598

ξ = ερ > 0. Thus, since (33) holds infinitely often, we should599

have f (w(k)) → −∞, which, however, is not possible in view600

of Lemma 1. �601

Now, we are ready to prove Theorem 1.602

Proof: As a consequence of Lemma 3, it also holds that 603

w(k) → w̄ ∈ �. (34) 604

Indeed, all points w(k) belong to the compact feasible region 605

� so that the sequence {w(k)} admits accumulation points. 606

However, due to Lemma 3, the sequence cannot have distinct 607

accumulation points. 608

Now, let us consider the compact reformulation (29) of 609

Problem 2 and the related linearization (30), equivalent to 610

Problem 3 with the linearized constraints (26) and (27). Since 611

the latter is a convex problem with linear constraints, its local 612

minimizer δw(k) (unique in view of strict convexity of the 613

objective function) fulfills the following KKT conditions: 614

∇ f
(
w(k) + δw(k)

) + μ�
k ∇c

(
w(k)

) = 0 615

c
(
w(k)

) + ∇c
(
w(k)

)
δw(k) ≤ 0 616

μ�
k

(
c
(
w(k)

) + ∇c
(
w(k)

)
δw(k)

) = 0 617

μk ≥ 0 (35) 618

where μk is the vector of Lagrange multipliers. Now, by taking 619

the limit of system (35), possibly over a subsequence, in order 620

to guarantee convergence of the multiplier vectors μk to a 621

vector μ̄, in view of Lemma 3 and (34), we have that 622

∇ f (w̄) + μ̄�∇c(w̄) = 0 623

c(w̄) ≤ 0 624

μ̄�c(w̄) = 0 625

μ̄ ≥ 0 626

or, equivalently, the limit point w̄ is a KKT point of Problem 2, 627

as we wanted to prove. � 628

Remark 2: In algorithm SCA at each iteration, we solve to 629

optimality Problem 3. This is indeed necessary for the final 630

iterations to prove the convergence result stated in Theorem 1. 631

However, during the first iterations, it is not necessary to solve 632

the problem to optimality: finding a feasible descent direction 633

is enough. This does not alter the theoretical properties of the 634

algorithm and allows to reduce the computing times. 635

In the rest of this article, we refer to constraints (18) and 636

(19) as acceleration constraints, while constraints (20) and (21) 637

[or (26) and (27)] are called (linearized) negative acceleration 638

rate (NAR) and positive acceleration rate (PAR) constraints, 639

respectively. Also, note that, in the different subproblems 640

discussed in the following, we always refer to the linearization 641

with constraints (20) and (21) and, thus, with parameters 642

ηi , but the same results also hold for the linearization with 643

constraints (26) and (27) and, thus, with parameters θi and βi . 644

III. SUBPROBLEM WITH ACCELERATION AND NAR 645

CONSTRAINTS 646

In this section, we propose an efficient method to solve 647

Problem 3 when PAR constraints are removed. The solution 648

of this subproblem becomes part of an approach to solve 649

a suitable relaxation of Problem 3 and, in fact, under very 650

mild assumptions, to solve Problem 3 itself. This is clarified 651

in Section IV. We discuss: 1) the subproblem including 652

only (17) and the acceleration constraints (18) and (19); 2) the 653

subproblem including only (17) and the NAR constraints (20); 654
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and 2) the subproblem including all constraints (17)–(20).655

Throughout the section, we need the results stated in the656

following two propositions. Let us consider problems with the657

following form, where N = {1, . . . , n} and M j = {1, . . . , m j },658

j ∈ N :659

min g(x1, . . . , xn)660

x j ≤ ai, j x j−1 + bi, j x j+1 + ci, j , i ∈ M j , j ∈ N661

� j ≤ x j ≤ u j , j ∈ N (36)662

where g is a monotonic decreasing function; ai, j , bi, j , ci, j ≥ 0,663

for i ∈ M j and j ∈ N ; ai,1 = 0 for i ∈ M1; and bi,n = 0664

for i ∈ Mn . The following result is proven in [28]. Here,665

we report the proof in order to make this article self-contained.666

We denote by P the feasible polytope of problem (36).667

Moreover, we denote by z the componentwise maximum of all668

feasible solutions in P , i.e., for each j ∈ N , z j = maxx∈P x j669

(note that the above maximum value is attained since P is a670

polytope).671

Proposition 4: The unique optimal solution of (36) is the672

componentwise maximum z of all its feasible solutions.673

Proof: If we are able to prove that the componentwise674

maximum z of all feasible solutions is itself a feasible solution,675

by monotonicity of g, it must also be the unique optimal676

solution. In order to prove that z is feasible, we proceed677

as follows. For j ∈ N , let x∗ j be the optimal solution of678

maxx∈P x j so that z j = x∗ j
j . Since x∗ j ∈ P , then it must679

hold that � j ≤ z j ≤ u j . Moreover, let us consider the generic680

constraint681

x j ≤ ai, j x j−1 + bi, j x j+1 + ci, j682

for i ∈ M j . It holds that683

z j = x∗ j
j ≤ ai, j x

∗ j
j−1 + bi, j x

∗ j
j+1 + ci, j684

≤ ai, j z j−1 + bi, j z j+1 + ci, j685

where the first inequality follows from feasibility of x∗ j , while686

the second follows from nonnegativity of ai j and bi j and the687

definition of z. Since this holds for all j ∈ N , the result is688

proven. �689

Now, consider the problem obtained from (36) by removing690

some constraints, i.e., by taking M ′
j ⊆ M j for each j ∈ N691

min g(x1, . . . , xn)692

x j ≤ ai, j x j−1 + bi, j x j+1 + ci, j , i ∈ M ′
j , j ∈ N693

� j ≤ x j ≤ u j , j ∈ N. (37)694

Later, we also need the result stated in the following695

proposition.696

Proposition 5: The optimal solution x̄ of problem (37) is697

an upper bound for the optimal solution x of problem (36),698

i.e., x̄ ≥ x.699

Proof: It holds that x is a feasible solution of prob-700

lem (37) so that, in view of Proposition 4, x̄ ≥ x
701

holds. �702

A. Acceleration Constraints703

The simplest case is the one where we only consider the704

acceleration constraints (18) and (19), besides constraints (17)705

with a generic upper bound vector y ≥ 0. The problem to be 706

solved is 707

Problem 4: 708

min
δw∈Rn

n−1∑
i=1

2h√
wi+1 + δwi+1 + √

wi + δwi
709

lB ≤ δw ≤ y 710

δwi+1 − δwi ≤ bAi , i = 1, . . . , n − 1 711

δwi − δwi+1 ≤ bDi , i = 1, . . . , n − 1. 712

It can be seen that such a problem belongs to the class 713

of problems (36). Therefore, in view of Proposition 4, the 714

optimal solution of Problem 4 is the componentwise maximum 715

of its feasible region. Moreover, in [3], it has been proven that 716

Algorithm 1, based on a forward and a backward iteration 717

and with O(n) computational complexity, returns an optimal 718

solution of Problem 4.

Algorithm 1 Routine SolveAcc for the Solution of the
Problem With Acceleration Constraints

input : Upper bound y
output: δw

1 δw1 = 0, δwn = 0 ;
2 for i = 1 to n − 1 do
3 δwi+1 = min

{
δwi + bAi , yi+1

}
4 for i = n − 1 to 1 do
5 δwi = min

{
δwi+1 + bAi , yi

}
6 return δw

719

B. NAR Constraints 720

Now, we consider the problem only including NAR con- 721

straints (20) and constraints (17) with upper bound vector y 722

Problem 5: 723

min
δw∈Rn

n−1∑
i=1

2h√
wi+1 + δwi+1 + √

wi + δwi
724

0 ≤ δw ≤ y (38) 725

δwi ≤ ηi (δwi−1 + δwi+1) + bNi , i = 2, . . . , n − 1 726

(39) 727

where y1 = yn = 0 because of the boundary conditions. 728

Also, this problem belongs to the class of problems (36) 729

so that Proposition 4 states that its optimal solution is the 730

componentwise maximum of its feasible region. Problem 5 can 731

be solved by using the graph-based approach presented in [4] 732

and [28]. However, Cabassi et al. [4] show that, by exploiting 733

the structure of a simpler version of the NAR constraints, it is 734

possible to develop an algorithm more efficient than the graph- 735

based one. Our purpose is to extend the results presented in [4] 736

to a case with different and more challenging NAR constraints 737

in order to develop an efficient algorithm outperforming the 738

graph-based one. 739

Now, let us consider the restriction of Problem 5 between 740

two generic indexes s and t such that 1 ≤ s < t ≤ n, obtained 741

by fixing δws = ys and δwt = yt and by considering only the 742
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NAR and upper bound constraints at s +1, . . . , t −1. Let δw∗
743

be the optimal solution of the restriction. We first prove the744

following lemma.745

Lemma 4: The optimal solution δw∗ of the restriction of746

Problem 5 between two indexes s and t , 1 ≤ s < t ≤ n,747

is such that, for each j ∈ {s + 1, . . . , t − 1}, either δw∗
j ≤ y j748

or δw∗
j ≤ η j (δw

∗
j+1 + δw∗

j−1) + bN j holds as an equality.749

Proof: It is enough to observe that, in case both inequali-750

ties were strict for some j , then, in view of the monotonicity of751

the objective function, we could decrease the objective func-752

tion value by increasing the value of δw∗
j , thus contradicting753

optimality of δw∗. �754

Note that the above result also applies to the full Problem 5,755

which corresponds to the special case s = 1, t = n with756

y1 = yn = 0. In view of Lemma 4, we have that there exists757

an index j , with s < j ≤ t , such that: 1) δw∗
j = y j ; 2) the758

upper bound constraint is not active at s + 1, . . . , j − 1; and759

3) all NAR constraints s + 1, . . . , j − 1 are active. Then, j is760

the lowest index in {s + 1, . . . , t − 1} where the upper bound761

constraint is active If index j were known, then the following762

observation allows returning the components of the optimal763

solution between s and j . Let us first introduce the following764

definitions of matrix A and vector q:765

A =

⎡
⎢⎢⎢⎢⎣

1 −ηs+1 0 · · · 0

−ηs+2 1 −ηs+2
. . .

...

0
. . .

. . .
. . . 0

0 · · · 0 −η j−1 1

⎤
⎥⎥⎥⎥⎦766

q =

⎡
⎢⎢⎢⎢⎢⎣

bN s+1 + ηs+1 ys

bN s+2
...

bN j−2

bN j−1 + η j−1 y j

⎤
⎥⎥⎥⎥⎥⎦

. (40)767

Note that A is the square submatrix of the NAR constraints768

restricted to rows s + 1 up to j − 1 and the related columns.769

Observation 1: Let δw∗ be the optimal solution of the770

restriction of Problem 5 between s and t and let s < j .771

If constraints δw∗
s ≤ ys , δw∗

j ≤ y j , and δw∗
i ≤ ηi (δw

∗
i+1 +772

δw∗
i−1) + bNi , for i = s + 1, . . . , j − 1, are all active, then773

δw∗
s+1, . . . , δw

∗
j−1 are obtained by the solution of the following774

tridiagonal system:775

δws = ys776

δwr −ηrδwr+1−ηrδwr−1 =bN r , r =s+1, . . . , j − 1777

δw j = y j778

or, equivalently, as779

δws+1 − ηs+1 x̄s+2780

= bN s+1 + ηs+1 ys781

δwr − ηrδwr+1 − ηrδwr−1 = bN r , r = s + 2, . . . , j − 2782

δws+1 − ηs+1 x̄s+2 = bN s+1 + ηs+1 ys . (41)783

In the matrix form, the above tridiagonal linear system can784

be written as785

Aδw∗
s+1, j−1 = q (42)786

where matrix A and vector q are defined in (40) and δw∗
s+1, j−1 787

is the restriction of vector δw to its components between s +1 788

and j − 1. 789

Tridiagonal systems 790

ai xi−1 + bi xi + ci xi+1 = di , i = 1, . . . , m 791

with a1 = cm = 0 can be solved through so-called Thomas 792

algorithm [29] with O(m) operations. In order to detect the 793

lowest index j ∈ {s + 1, . . . , t − 1} such that the upper bound 794

constraint is active at j , we propose Algorithm 2, also called 795

SolveNAR and described in what follows. We initially set 796

j = t . Then, at each iteration, we solve the linear system (42). 797

Let x̄ = (x̄s+1, . . . , x̄ j−1) be its solution. We check whether 798

it is feasible and optimal or not. Namely, if there exists k ∈ 799

{s + 1, . . . , j − 1} such that either x̄k < 0 or x̄k > yk , then 800

x̄ is unfeasible, and consequently, we need to reduce j by 1. 801

If x̄k = yk for some k ∈ {s + 1, . . . , j − 1}, then we also 802

reduce j by 1 since j is not in any case the lowest index 803

of the optimal solution where the upper bound constraint is 804

active. Finally, if 0 ≤ x̄k < yk , for k = s + 1, . . . , j − 1, then 805

we need to verify if x̄ is the best possible solution over the 806

interval {s + 1, . . . , j − 1}. We are able to check that after 807

proving the following result. 808

Proposition 6: Let matrix A and vector q be defined as 809

in (40). The optimal solution δw∗ of the restriction of 810

Problem 5 between s and t satisfies 811

δw∗
s = ys, δw∗

r = x̄r , r = s + 1, . . . , j − 1, δw∗
j = y j (43) 812

if and only if the optimal value of the LP problem 813

max
ε

1T ε 814

Aε ≤ 0 815

ε ≤ ȳ − x̄ (44) 816

is strictly positive or, equivalently, if the following system 817

admits no solution: 818

AT λ = 1, λ ≥ 0. (45) 819

Proof: Let us first assume that δw∗ does not fulfill (43). 820

Then, in view of Lemma 4, j is not the lowest index such 821

that the upper bound is active at the optimal solution, and 822

consequently, δw∗
k = yk > x̄k for some k ∈ {s + 1, . . . , j − 1}. 823

Such optimal solution must be feasible, and in particular, 824

it must satisfy all NAR constraints between s + 1 and j − 1 825

and the upper bound constraints between s + 1 and j , i.e., 826

δw∗
s+1 − ηs+1δw

∗
s+2 827

≤ bN s+1 + ηs+1 ys 828

δw∗
r − ηrδw

∗
r+1 − ηrδw

∗
r−1 ≤ bN r , r = s + 2, . . . , j − 2 829

δw∗
j−1 − η j−1δw

∗
j−2 − η j−1δw

∗
j ≤ bN j−1 830

δw∗
r ≤ yr , r = s + 1, . . . , j. 831

In view of δw∗
j ≤ y j and η j−1 ≥ 0, δw∗ also satisfies the 832

following system of inequalities: 833

δw∗
s+1 − ηs+1δw

∗
s+2 834

≤ bN s+1 + ηs+1 ys 835

δw∗
r − ηrδw

∗
r+1 − ηrδw

∗
r−1 ≤ bN r , r = s + 2, . . . , j − 2 836
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δw∗
j−1 − η j−1δw

∗
j−2 ≤ bN j−1 + η j−1 y j837

δw∗
r ≤ yr , r = s + 1, . . . , j − 1.838

After making the change of variables δw∗
r = x̄r + εr for839

r = s + 1, . . . , j − 1, and recalling that x̄ solves system (41),840

the system of inequalities can be further rewritten as841

εs+1 − ηs+1εs+2 ≤ 0842

εr − ηrεr+1 − ηrεr−1 ≤ 0, r = s + 2, . . . , j − 2843

ε j−1 − η j−1ε j−2 ≤ 0844

εr ≤ yr − x̄r , r = s + 1, . . . , j − 1.845

Finally, recalling the definition of matrix A and vector q846

given in (40), this can also be written in a more compact form847

as848

Aε ≤ 0849

ε ≤ ȳ − x̄.850

If δw∗
k = yk > x̄k for some k ∈ {s + 1, . . . , j − 1}, then the851

system must admit a solution with εk > 0. This is equivalent852

to prove that problem (44) has an optimal solution with at853

least one strictly positive component, and the optimal value854

is strictly positive. Indeed, in view of the definition of matrix855

A, problem (44) has the structure of the problems discussed856

in Proposition 4. More precisely, to see that, we need to857

remark that maximizing 1T ε is equivalent to minimizing the858

decreasing function −1T ε. Then, observing that ε = 0 is a859

feasible solution of problem (44), by Proposition 4, the optimal860

solution ε∗ must be a nonnegative vector, and since at least861

one component, namely, component k, is strictly positive, then862

the optimal value must also be strictly positive.863

Conversely, let us assume that the optimal value is strictly864

positive, and ε∗ is an optimal solution with at least one strictly865

positive component. Then, there are two possible alternatives.866

Either the optimal solution δw∗ of the restriction of Problem 5867

between s and t is such that δw∗
j < y j , in which case (43)868

obviously does not hold, or δw∗
j = y j . In the latter case, let869

us assume by contradiction that (43) holds. We observe that870

the solution that is defined as follows:871

x ′
s = ys872

x ′
r = x̄r + ε∗

r = δw∗
r + ε∗

r , r = s + 1, . . . , j − 1873

x ′
j = y j = δw∗

j874

x ′
r = δw∗

r , r = j + 1, . . . , t875

is feasible for the restriction of Problem 5 between s and t .876

Indeed, by feasibility of ε∗ in problem (44), all upper bound877

and NAR constraints between s and j − 1 are fulfilled. Those878

between, j + 1 and t , are also fulfilled by the feasibility of879

δw∗. Then, we only need to prove that the NAR constraint at j880

is satisfied. By feasibility of δw∗ and in view of ε∗
j−1, η j ≥ 0,881

we have that882

x ′
j = δw∗

j ≤ η jδw
∗
j−1 + η jδw

∗
j+1 + bN j883

≤ η j
(
δw∗

j−1 + ε j−1
) + η jδw

∗
j+1 + bN j884

= η j x
′
j−1 + η j x

′
j+1 + bN j .885

Thus, x′ is feasible such that x′ ≥ δw∗ with at least one strict 886

inequality (recall that at least one component of ε∗ is strictly 887

positive), which contradicts the optimality of δw∗ (recall that 888

the optimal solution must be the componentwise maximum of 889

all feasible solutions). 890

In order to prove the last part, i.e., problem (44) has a 891

positive optimal value if and only if (45) admits no solution, 892

and we notice that the optimal value is positive if and 893

only if the feasible point ε = 0 is not an optimal solution, 894

or equivalently, the null vector is not a KKT point. Since, 895

at ε = 0, constraints ε ≤ ȳ − x̄ cannot be active, then the 896

KKT conditions for problem (44) at this point are exactly those 897

established in (45), where vector λ is the vector of Lagrange 898

mutlpliers for constraints Aε ≤ 0. This concludes the 899

proof. � 900

Then, if (45) admits no solution, (43) does not hold, and 901

again, we need to reduce j by 1. Otherwise, we can fix the 902

optimal solution between s and j according to (43). After that, 903

we recursively call the routine SolveNAR on the remaining 904

subinterval { j, . . . , t} in order to obtain the solution over the 905

full interval. 906

Remark 3: In Algorithm 2, routine isFeasible is the 907

routine used to verify if, for k = s+1, . . . , j −1, 0 ≤ x̄k < yk , 908

while isOptimal is the procedure to check optimality of x̄ 909

over the interval {s + 1, . . . , j − 1}, i.e., (43) holds. 910

Now, we are ready to prove that Algorithm 2 solves 911

Problem 5. 912

Proposition 7: The call solveNAR(y, 1, n) of 913

Algorithm 2 returns the optimal solution of Problem 5. 914

Proof: After the call solveNAR(y, 1, n), we are able 915

to identify the portion of the optimal solution between 1 and 916

some index j1, 1 < j1 ≤ n. If j1 = n, then we are done. Oth- 917

erwise, we make the recursive call solveNAR(y, j1, n), 918

which enables to identify also the portion of the optimal 919

solution between j1 and some index j2, j1 < j2 ≤ n. If j2 = n, 920

then we are done. Otherwise, we make the recursive call 921

solveNAR(y, j2, n) and so on. After at most n recursive 922

calls, we are able to return the full optimal solution. � 923

Algorithm 2 SolveNAR(y, s, t)
input : Upper bound y and two indices s and t with

1 ≤ s < t ≤ n
output: δw∗

1 Set j = t;
2 δw∗ = y;
3 while j ≥ s + 1 do
4 Compute the solution x̄ of the linear system (42);
5 if isFeasible(x̄) and isOptimal(x̄) then
6 Break;

7 else
8 Set j = j − 1;

9 for i = s + 1, . . . , j − 1 do
10 Set δw∗

i = x̄i ;

11 return δw∗ = min{δw∗,SolveNAR(δw∗, j, t)};
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Remark 4: Note that Algorithm 2 involves solving a signifi-924

cant amount of linear systems, both to compute x̄ and verify its925

optimality [see (42) and (45)]. Some tricks can be employed to926

reduce the number of operations. Some of these are discussed927

in [30].928

The following proposition states the worst case complexity929

of solveNAR(y,1,n).930

Proposition 8: Problem 5 can be solved with O(n3) oper-931

ations by running the procedure SolveNAR(y, 1, n) and by932

using the Thomas algorithm for the solution of each linear933

system.934

Proof: In the worst case, at the first call, we have j1 = 2935

since we need to go all the way from j = n down to j = 2.936

Since, for each j , we need to solve a tridiagonal system, which937

requires at most O(n) operations, the first call of SolveNAR938

requires O(n2) operations. This is similar for all successive939

calls, and since the number of recursive calls is at most O(n),940

the overall effort is at most of O(n3) operations. �941

In fact, what we observed is that the practical complexity942

of the algorithm is much better, namely, �(n2).943

C. Acceleration and NAR Constraints944

Now, we discuss the problem with acceleration and NAR945

constraints, with upper bound vector y, i.e.,946

Problem 6:947

min
δw∈Rn

n−1∑
i=1

2h√
wi+1 + δwi+1 + √

wi + δwi
948

lB ≤ δw ≤ y949

δwi+1 − δwi ≤ bAi , i = 1, . . . , n − 1950

δwi − δwi+1 ≤ bDi , i = 1, . . . , n − 1951

δwi − ηiδwi−1 − ηiδwi+1 ≤ bNi , i = 2, . . . , n − 1.952

We first remark that Problem 6 has the structure of953

problem (36) so that, by Proposition 4, its unique optimal954

solution is the componentwise maximum of its feasible region.955

As for Problem 5, we can solve Problem 6 by using the graph-956

based approach proposed in [28]. However, Cabassi et al. [4]957

show that, if we adopt a very efficient procedure to solve Prob-958

lems 4 and 5, then it is worth splitting the full problem into two959

separated ones and use an iterative approach (see Algorithm 3).960

Indeed, Problems 4–6 share the common property that their961

optimal solution is also the componentwise maximum of962

the corresponding feasible region. Moreover, according to963

Proposition 5, the optimal solutions of Problems 4 and 5 are964

valid upper bounds for the optimal solution (actually, also for965

any feasible solution) of the full Problem 6. In Algorithm 3,966

we first call the procedure SolveACC with input the upper967

bound vector y. Then, the output of this procedure, which,968

according to what we have just stated, is an upper bound for969

the solution of the full Problem 6, satisfies δwAcc ≤ y, and970

becomes the input for a call of the procedure SolveNAR.971

The output δwNAR of this call is again an upper bound for972

the solution of the full Problem 6, and it satisfies δwNAR ≤973

δwAcc. This output becomes the input of a further call to the974

procedure SolveACC, and we proceed in this way until the975

distance between two consecutive output vectors falls below a976

prescribed tolerance value ε. The following proposition states 977

that the sequence of output vectors generated by the alternate 978

calls to the procedures SolveACC and SolveNAR converges 979

to the optimal solution of the full Problem 6. 980

Proposition 9: Algorithm 3 converges to the the optimal 981

solution of Problem 6 when ε = 0 and stops after a finite 982

number of iterations if ε > 0. 983

Proof: We have observed that the sequence of alternate 984

solutions of Problems 4 and 5, here denoted by {yt}, is: 1) a 985

sequence of valid upper bounds for the optimal solution of 986

Problem 6; 2) componentwise monotonic nonincreasing; and 987

3) componentwise bounded from below by the null vector. 988

Thus, if ε = 0, an infinite sequence is generated, which 989

converges to some point ȳ, which is also an upper bound 990

for the optimal solution of Problem 6 but, more precisely, 991

by continuity, is also a feasible point of the problem and, 992

is thus, also the optimal solution of the problem. If ε > 0, due 993

to the convergence to some point ȳ, at some finite iteration, 994

the exit condition of the while loop must be satisfied. � 995

Algorithm 3 Algorithm SolveACCNAR for the Solution
of Problem 6

input : The upper bound y and the tolerance ε
output: The optimal solution δw∗ and the optimal value

f ∗
1 δwAcc = SolveACC(y);
2 δwNAR = SolveNAR(δwAcc, 1, n);
3 while ‖δwNAR − δwAcc‖ > ε do
4 δwAcc = SolveACC(δw∗);
5 δwNAR = SolveNAR(δwAcc, 1, n);

6 δw∗ = δwNAR;
7 return δw∗, evaluateObj(δw∗)

IV. DESCENT METHOD FOR THE CASE OF ACCELERATION, 996

PAR, AND NAR CONSTRAINTS 997

Unfortunately, PAR constraints (21) do not satisfy the 998

assumptions requested in Proposition 4 in order to guarantee 999

that the componentwise maximum of the feasible region is 1000

the optimal solution of Problem 3. However, in Section III, 1001

we have shown that Problem 6, i.e., Problem 3 without the 1002

PAR constraints, can be efficiently solved by Algorithm 3. 1003

Our purpose then is to separate the acceleration and NAR 1004

constraints from the PAR constraints. 1005

Definition 1: Let f :Rn → R be the objective function of 1006

Problem 3, and let D be the region defined by the acceleration 1007

and NAR constraints (the feasible region of Problem 6). 1008

We define the function F :Rn → R as follows: 1009

F(y) = min{ f (x) | x ∈ D, x ≤ y}. 1010

Namely, F is the optimal value function of Problem 6 when 1011

the upper bound vector is y. 1012

Proposition 10: Function F is a convex function. 1013

Proof: Since Problem 6 is convex, then the optimal value 1014

function F is convex (see [31, Sec. 5.6.1]). � 1015

Now, let us introduce the following problem: 1016
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Problem 7:1017

min
y∈Rn

F(y) (46)1018

ηi (yi−1 + yi+1) − yi ≤ bPi , i = 2, . . . , n − 1 (47)1019

lB ≤ y ≤ uB. (48)1020

Such a problem is a relaxation of Problem 3. Indeed, each1021

feasible solution of Problem 3 is also feasible for Problem 7,1022

and the value of F at such solution is equal to the value1023

of the objective function of Problem 3 at the same solution.1024

We solve Problem 7 rather than Problem 3 to compute the1025

new displacement δw. More precisely, if y∗ is the optimal1026

solution of Problem 7, then we set1027

δw = arg min
x∈D,x≤y∗ f (x). (49)1028

In the following proposition, we prove that, under a very1029

mild condition, the optimal solution of Problem 7 computed1030

in (49) is feasible and, thus, optimal for Problem 3 so that,1031

although we solve a relaxation of the latter problem, we return1032

an optimal solution for it.1033

Proposition 11: Let w(k) be the current point. If1034

� j(δw)≤� j
(
w(k)

)(
3+min

{
0, ξ

(
w(k)

)})
, j =2, . . . , n−11035

(50)1036

where δw is computed through (49) and1037

ξ
(
w(k)

) =
√

� j
(
w(k)

)(
w

(k)
j−1 + w

(k)
j+1 − 2w

(k)
j

)
2h2 J

≥ −21038

(the inequality follows from feasibility of w(k)), then δw is1039

feasible for Problem 3, both if the nonlinear constraints are1040

linearized as in (20) and (21), and if they are linearized as1041

in (26) and (27).1042

Proof: First, we notice that, if we prove the result for1043

the tighter constraints (26) and (27), then it must also hold1044

for constraints (20) and (21). Thus, we prove the result only1045

for the former. By definition (49), δw satisfies the acceleration1046

and NAR constraints so that1047

δw j ≤ δw j+1 + bD j1048

δw j ≤ δw j−1 + bA j−11049

δw j ≤ β j
(
δw j+1 + δw j−1

) + b′
N j

1050

δw j ≤ y∗
j .1051

At least one of these constraints must be active; otherwise,1052

δw j could be increased, thus contradicting optimality. If the1053

active constraint is δw j ≤ β j (δw j+1 + δw j−1) + b′
N j

, then1054

constraint (27) can be rewritten as follows:1055

4h2 J
(
� j

(
w(k)

))− 3
2
(
δw j+1 + 2δw j + δw j−1

)
1056

≤ 12h2 J
(
� j

(
w(k)

))− 1
2

1057

or, equivalently,1058

� j(δw) ≤ 3� j
(
w(k)

)
1059

implied by (50), and thus, the constraint is satisfied under the1060

given assumption. If δw j = y∗
j , then1061

θ j
(
δw j−1+δw j+1

)≤θ j
(
y∗

j−1 + y∗
j+1

)≤ y∗
j + b′

Pj
= δw j + b′

Pj
1062

where the second inequality follows from the fact that y∗
1063

satisfies the PAR constraints. Now, let δw j = δw j+1 + bD j 1064

(the case when δw j ≤ δw j−1 + bA j−1 is active can be dealt 1065

with in a completely analogous way). First, we observe that 1066

δw j ≥ δw j−1 − bD j−1 . Then, 1067

2δw j ≥ δw j+1 + δw j−1 + bD j − bD j−1 . 1068

In view of the definitions of bD j and bD j−1 , this can also be 1069

written as 1070

2δw j ≥ δw j+1 + δw j−1 + w
(k)
j+1 − 2w

(k)
j + w

(k)
j−1. (51) 1071

Now, after recalling the definitions of θ j and b′
Pj

given 1072

in (28), and setting � = h2 J , (27) can be rewritten as 1073

2δw j ≥ δw j+1 + δw j−1 + 2�
(
� j

(
w(k)

))− 3
2 � j (δw) 1074

−6�
(
� j

(
w(k)

))− 1
2 . 1075

Taking into account (51), such inequality certainly holds if 1076

w
(k)
j+1 − 2w

(k)
j + w

(k)
j−1 ≥ 2�

(
� j

(
w(k)

))− 3
2 � j(δw) 1077

−6�
(
� j

(
w(k)

))− 1
2

1078

which is equivalent to 1079

� j (δw) ≤ � j
(
w(k)

)(
3 + ξ

(
w(k)

))
. 1080

This is also implied by (50). � 1081

Assumption (50) is mild. In order to fulfill it, one can 1082

impose restrictions on δw j−1, δw j and δw j+1. In fact, in the 1083

computational experiments, we did not impose such restric- 1084

tions unless a positive step-length along the computed direc- 1085

tion δw could not be taken (which, however, never occurred 1086

in our experiments). 1087

Now, let us turn our attention toward the solution of 1088

Problem 7. In order to solve it, we propose a descent method. 1089

We can exploit the information provided by the dual optimal 1090

solution ν ∈ R
n+ associated with the upper bound constraints 1091

of Problem 6. Indeed, from the sensitivity theory, we know 1092

that the dual solution is related to the gradient of the optimal 1093

value function F (see Definition 1) and provides information 1094

about how it changes its value for small perturbations of the 1095

upper bound values (for further details, see [31, Secs. 5.6.2 and 1096

5.6.5]). Let y(t) be a feasible solution of Problem 7 and ν ∈ R
n+ 1097

be the Lagrange multipliers of the upper bound constraints of 1098

Problem 6 when the upper bound is y(t). Let 1099

ϕi = bPi − ηi

(
y(t)

i−1 + y(t)
i+1

)
+ y(t)

i , i = 2, . . . , n − 1. 1100

Then, a feasible descent direction d(t) can be obtained by 1101

solving the following LP problem: 1102

Problem 8: 1103

min
d∈Rn

−νT d (52) 1104

ηi(di−1 + di+1) − di ≤ ϕi , i = 2, . . . , n − 1 (53) 1105

lB ≤ y(t) + d ≤ uB (54) 1106

where the objective function (52) imposes that d(t) is a 1107

descent direction, while constraints (53) and (54) guarantee 1108

feasibility with respect to Problem 7. Problem 8 is an LP 1109
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problem, and consequently, it can easily be solved through a1110

standard LP solver. In particular, we employed GUROBI [32].1111

Unfortunately, since the information provided by the dual1112

optimal solution ν is local and related to small perturbations of1113

the upper bounds, it might happen that F(y(t)+d(t)) ≥ F(y(t)).1114

To overcome this issue, we introduce a trust-region constraint1115

in Problem 8. Thus, let σ (t) ∈ R+ be the radius of the trust1116

region at iteration t; then, we have1117

Problem 9:1118

min
d∈Rn

−νT d (55)1119

ηi (di−1 + di+1) − di ≤ ϕi , i = 2, . . . , n − 1 (56)1120

l̄B ≤ d ≤ ūB (57)1121

where l̄Bi = max{lBi − y(t)
i ,−σ (t)} and ū Bi = min{uBi −1122

y(t)
i , σ (t)} for i = 1, . . . , n. After each iteration of the descent1123

algorithm, we change the radius σ (t) according to the following1124

rules.1125

1) If F(y(t) +d(t)) ≥ F(y(t)), then we set y(t+1) = y(t), and1126

we tight the trust region by decreasing σ (t) by a factor1127

τ ∈ (0, 1).1128

2) If F(y(t)+d(t)) < F(y(t)), then we set y(t+1) = y(t)+d(t)
1129

and enlarge the radius σ (t) by a factor ρ > 1.1130

The proposed descent algorithm is sketched in Fig. 3, which1131

reports the flowchart of the procedure ComputeUpdate used1132

in algorithm SCA. We initially set y(0) = 0. At each iteration t ,1133

we evaluate the objective function F(yt) by solving Problem 61134

with upper bound vector y(t) through a call of the routine1135

solveACCNAR (see Algorithm 3). Then, we compute the1136

Lagrange multipliers ν(t) associated with the upper bound con-1137

straints. After that, we compute a candidate descent direction1138

d(t) by solving Problem 9. If d(t) is a descent step, then we set1139

y(t+1) = y(t) + d(t) and enlarge the radius of the trust region;1140

otherwise, we do not move to a new point, and we tight the1141

trust region and solve again Problem 9. The descent algorithm1142

stops as soon as the radius of the trust region becomes smaller1143

than a fixed tolerance ε1.1144

Remark 5: Note that we initially set y(0) = 0. However, any1145

feasible solution of Problem 9 does the job, and actually, start-1146

ing with a good initial solution may enhance the performance1147

of the algorithm.1148

Remark 6: Problem 9 is an LP and can be solved by1149

any existing LP solver. However, a suboptimal solution to1150

Problem 9, obtained by a heuristic approach, is also accept-1151

able. Indeed, we observe that: 1) an optimal descent direction1152

is not strictly required and 2) a heuristic approach allows to1153

reduce the time needed to get a descent direction. In this1154

article, we employed a possible heuristic, whose description1155

can be found in [30], but the development of further heuristic1156

approaches is a possible topic for future research.1157

V. COMPUTATIONAL EXPERIMENTS1158

In this section, we present various computational experi-1159

ments performed in order to evaluate the approaches proposed1160

in Sections III and IV.1161

In particular, we compared solutions of Problem 2 computed1162

by algorithm SCA to solutions obtained with commercial NLP1163

solvers. Note that, with a single exception, we did not carry out 1164

a direct comparison with other methods specifically tailored to 1165

Problem 2 for the following reasons. 1166

1) Some algorithms (such as [22] and [23]) use heuristics to 1167

quickly find suboptimal solutions of acceptable quality 1168

but do not achieve local optimality. Hence, comparing 1169

their solution times with SCA would not be fair. How- 1170

ever, in one of our experiments (see Experiment 4), 1171

we made a comparison between the most recent heuristic 1172

proposed in [23] and algorithm SCA, both in terms 1173

of computing times and in terms of the quality of the 1174

returned solution. 1175

2) The method presented in [26] does not consider the 1176

(nonconvex) jerk constraint but solves a convex problem 1177

whose objective function has a penalization term that 1178

includes pseudojerk. Due to this difference, a direct 1179

comparison with SCA is not possible. 1180

3) The method presented in [24] is based on the numerical 1181

solution of a large number of nonlinear and nonconvex 1182

subproblems and is, therefore, structurally slower than 1183

SCA, whose main iteration is based on the efficient 1184

solution of the convex Problem 3. 1185

In the first two experiments, we compare the computational 1186

time of IPOPT, a general-purpose NLP solver [33], with that 1187

of algorithm SCA over some randomly generated instances of 1188

Problem 2. In particular, we tested two different versions of 1189

the algorithm SCA. The first version, called SCA-H in what 1190

follows, employs the heuristic mentioned in Remark 6. Since 1191

the heuristic procedure may fail in some cases, in such cases, 1192

we also need an LP solver. In particular, in our experiments, 1193

we used GUROBI whenever the heuristic did not produce 1194

either a feasible solution to Problem 9 or a descent direc- 1195

tion. In the second version, called SCA-G in what follows, 1196

we always employed GUROBI to solve Problem 9. For what 1197

concerns the choice of the NLP solver IPOPT, we remark 1198

that we chose it after a comparison with two further general- 1199

purpose NLP solvers, SNOPT and MINOS, which, however, 1200

turned out to perform worse than IPOPT on this class of 1201

problems. 1202

In the third experiment, we compare the performance of 1203

the two implemented versions of algorithm SCA applied to 1204

two specific paths and see their behavior as the number n of 1205

discretized points increases. 1206

In the fourth experiment, we compare the solutions returned 1207

by algorithm SCA with those returned by the heuristic recently 1208

proposed in [23]. 1209

Finally, in the fifth experiment, we present a real-life speed 1210

planning task for an LGV operating in an industrial setting, 1211

using real problem bounds and paths layouts, provided by an 1212

automation company based in Parma, Italy. 1213

We remark that, according to our experiments, the spe- 1214

cial purpose routine solveACCNAR (Algorithm 3) strongly 1215

outperforms general-purpose approaches, such as the graph- 1216

based approach proposed in [28], and GUROBI, when solving 1217

Problem 6 (which can be converted into an LP as discussed 1218

in [28]). 1219

Finally, we remark that we also tried to solve the con- 1220

vex Problem 3 arising at each iteration of the proposed 1221
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Fig. 3. Flowchart of the routine ComputeUpdate.

method with an NLP solver in place of the procedure1222

ComputeUpdate, presented in this article. However, the1223

experiments revealed that, in doing this, the computing times1224

become much larger even with respect to the single call to the1225

NLP solver for solving the nonconvex Problem 2.1226

All tests have been performed on an IntelCore i7-8550U1227

CPU at 1.8 GHz. Both for IPOPT and algorithm SCA, the1228

null vector was chosen as a starting point. The parameters1229

used within algorithm SCA were ε = 1e−8, ε1 = 1e−6
1230

(tolerance parameters), ρ = 4, and τ = 0.25 (trust-region1231

update parameters). The initial trust region radius σ (0) was1232

initialized to 1 in the first iteration k = 0 but adaptively1233

set equal to the size of the last update ‖w(k) − w(k−1)‖∞1234

in all subsequent iterations (this adaptive choice allowed to1235

reduce computing times by more than a half). We remark that1236

algorithm SCA has been implemented in MATLAB, so we1237

expect better performance after a C/C++ implementation.1238

A. Experiments 1 and 21239

In Experiment 1, we generated a set of 50 different paths,1240

each of which was discretized setting n = 100, n = 500,1241

and n = 1000 sample points. The instances were generated1242

by assuming that the traversed path was divided into seven1243

intervals over which the curvature of the path was assumed1244

to be constant. Thus, the n-dimensional upper bound vector1245

u was generated as follows. First, we fixed u1 = un = 0,1246

i.e., the initial and final speeds must be equal to 0. Next,1247

we partitioned the set {2, . . . , n − 1} into seven subintervals1248

I j , j ∈ {1, . . . , 7}, which corresponds to intervals with1249

constant curvature. Then, for each subinterval, we randomly1250

generated a value u j ∈ (0, ũ], where ũ is the maximum upper1251

bound (which was set equal to 100 m2s−2). Finally, for each1252

j ∈ {1, . . . , 7}, we set uk = ũ j ∀k ∈ I j . The maximum1253

acceleration parameter A is set equal to 2.78 ms−2 and the1254

maximum jerk J to 0.5 ms−3, while the path length is s f =1255

60 m. The values for A and J allow a comfortable motion for1256

a ground transportation vehicle (see [34]).1257

In Experiment 2, we generated a further set of 50 different 1258

paths, each of which was discretized using n = 100, n = 500, 1259

and n = 1000 variables. These new instances were randomly 1260

generated such that the traversed path was divided into up to 1261

five intervals over which the curvature could be zero, linear 1262

with respect to the arc length or constant. We chose this kind 1263

of path since they are able to represent the curvature of a 1264

road trip (see [35]). The maximum squared speed along the 1265

path was fixed equal to 192.93 m2s−2 (corresponding to a 1266

maximum speed of 50 kmh−1, a typical value for an urban 1267

driving scenario). The total length of the paths was fixed to 1268

s f = 1000 m, while parameter A was set equal to 0.25 ms−2, 1269

J to 0.025 ms−3, and AN to 4.9 ms−2. 1270

The results are reported in Table I, in which we show 1271

the average (minimum and maximum) computational times 1272

for SCA-H, SCA-G, and IPOPT. They show that algorithm 1273

SCA-H is the fastest one, while SCA-G is slightly faster than 1274

IPOPT at n = 100 but clearly faster for a larger number of 1275

sample points n. In general, we observe that both SCA-H and 1276

SCA-G tend to outperform IPOPT as n increases. Moreover, 1277

while the computing times for IPOPT at n = 100 are not much 1278

worse than those of SCA-H and SCA-G, we should point out 1279

that, at this dimension, IPOPT is sometimes unable to converge 1280

and return solutions whose objective function value differs 1281

from the best one by more than 100%. Also, the objective 1282

function values returned by SCA-H and SCA-G are sometimes 1283

slightly different, due to numerical issues related to the choice 1284

of the tolerance parameters, but such differences are mild ones 1285

and never exceed 1%. Therefore, these approaches appear to 1286

be fast and robust. It is also worthwhile to remark that SCA 1287

approaches are compatible with online planning requirements 1288

within the context of the LGV application. According to 1289

Haschke et al. [18] (see also [36]), in “highly unstructured, 1290

unpredictable, and dynamic environments,” there is a need to 1291

replan in order to adapt the motion in reaction to unforeseen 1292

events or obstacles. How often to replan depends strictly on the 1293

application. Within the context of the LGV application (where 1294

the environment is structured), replanning every 100–150 ms 1295
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TABLE I

AVERAGE (MINIMUM AND MAXIMUM) COMPUTING TIMES (IN SECONDS)
FOR SCA-H, SCA-G, AND IPOPT OVER EXPERIMENTS 1 AND 2

is acceptable, and thus, the computing times of the SCA1296

approaches at n = 100 are suitable. Of course, computing1297

times increase with n, but we notice that the computing times1298

of SCA-H still meet the requirement at n = 500. Moreover,1299

a relevant feature of SCA-H and SCA-G is that, at each1300

iteration, a feasible solution is available. Thus, we could stop1301

them as soon as a time limit is reached. At n = 500, if we1302

impose a time limit of 150 ms, which is still quite reasonable1303

for the application, SCA-G returns slightly worse feasible1304

solutions, but these do not differ from the best ones by more1305

than 2%.1306

B. Experiment 31307

In our third experiment, we compared the performance1308

of the two proposed approaches (SCA-H and SCA-G), over1309

two possible automated driving scenarios, as the number1310

n of samples increases. As a first example, we considered1311

a continuous curvature path composed of a line segment,1312

a clothoid, a circle arc, a clothoid, and a final line segment1313

(see Fig. 4). The minimum-time velocity planning on this1314

path, whose total length is s f = 90 m, is addressed with the1315

following data. The problem constants are compatible with a1316

typical urban driving scenario. The maximum squared velocity1317

is 225 m2s−2 (corresponding to 54 km h−1), the longitudinal1318

acceleration limit is A = 1.5 ms−2, and the maximal normal1319

acceleration is AN = 1 ms−2, while, for the jerk constraints,1320

we set J = 1 ms−3. Next, we considered a path of length1321

s f = 60 m (see Fig. 5) whose curvature was defined according1322

to the following function:1323

k(s) = 1

5
sin

( s

10

)
, s ∈ [

0, s f
]

1324

and parameter A, AN , and J were set equal to 1.39 ms−2,1325

4.9 ms−2, and 0.5 ms−3, respectively. The maximum squared1326

velocity is still equal to 225 m2s−2. The computational results1327

are reported in Figs. 6 and 7 for values of n that grows1328

from 100 to 1000. They show that the performance of SCA-H1329

and SCA-G depends on the path. In particular, it seems that1330

the heuristic performs in a poorer way when the number of1331

Fig. 4. Experiment 3—first path.

Fig. 5. Experiment 3—second path.

Fig. 6. Computing times (in seconds) for the path in Fig. 4.

points of the upper bound vector at which PAR constraints are 1332

violated tends to be large, which is the case for the second 1333

instance. We can give two possible motivations: 1) the direc- 1334

tions computed by the heuristic procedure are not necessarily 1335

good descent directions, so routine computeUpdate slowly 1336

converges to a solution and 2) the heuristic procedure often 1337

fails, and it is in any case necessary to call GUROBI. Note 1338

that the computing times of IPOPT on these two paths are 1339

larger than those of SCA-H and SCA-G, and, as usual, the gap 1340

increases with n. Moreover, for the second path, IPOPT was 1341

unable to converge for n = 100 and returned a solution, which 1342

differed by more than 35% with respect to those returned by 1343

SCA-H and SCA-G. 1344

As a final remark, we notice that the computed traveling 1345

times along the paths only slightly vary with n. For the first 1346

path, they vary between 14.44 and 14.45 s while, for the 1347

second path, between 20.65 and 20.66 s. The differences are 1348

very mild, but we should point out that this is not always 1349
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Fig. 7. Computing times (in seconds) for the path in Fig. 5.

TABLE II

MINIMUM, AVERAGE, AND MAXIMUM COMPUTING TIMES (IN SECONDS)
AND RELATIVE PERCENTAGE DIFFERENCE BETWEEN THE TRAVELING

TIMES COMPUTED BY THE HEURISTIC PRESENTED IN [23] AND

THE SCA APPROACHES WITH n = 100 FOR THE INSTANCES OF

EXPERIMENT 1

the case. We further comment on this point when presenting1350

Experiment 5.1351

C. Experiment 41352

In this experiment, we compared the performance of our1353

approach with the heuristic procedure recently proposed1354

in [23]. In Table II, we report the computing times and the1355

relative percentage difference [( fHEUR − fSCA)/ fSCA] ∗ 100%1356

between the traveling times computed by the heuristic and1357

the SCA approaches for the instances of Experiment 1 with1358

n = 100. Algorithms SCA-H and SCA-G have comparable1359

computing times (actually, better for what concerns SCA-H)1360

with respect to that heuristic, and the quality of the final1361

solutions is, on average, larger than 10% (these observations1362

also extend to other experiments). Such difference between1363

the quality of the solutions returned by algorithm SCA and1364

those returned by the heuristic is best explained through the1365

discussion of a representative instance, taken from Experiment1366

1 with n = 100. In this instance, we set A = 2.78 ms−2,1367

while, for the jerk constraints, we set J = 2 ms−3. The total1368

length of the path is s f = 60 m. The maximum velocity1369

profile is the piecewise constant black line in Fig. 8. In the1370

same figure, we report in red the velocity profile returned1371

by the heuristic and in blue the one returned by algorithm1372

SCA. The computing time for the heuristic is 45 ms, while,1373

for algorithm SCA-H, it is 39 ms. The final objective function1374

value (i.e., the traveling time along the given path) is 15.4 s1375

for the velocity profile returned by the heuristic and 14.02 s1376

for the velocity profile returned by algorithm SCA. From the1377

qualitative point of view, it can be observed in this instance1378

(and similar observations hold for the other instances that we1379

tested) that the heuristic produces velocity profiles whose local1380

minima coincide with those of the maximum velocity profile.1381

For instance, in the interval between 10 and 20 m, we notice1382

that the velocity profile returned by the heuristic coincides1383

Fig. 8. Velocity profile returned by the heuristic proposed in [23] (red line)
and by algorithm SCA (blue line). The black line is the maximum velocity
profile.

with the maximum velocity profile in that interval. Instead, the 1384

velocity profile generated by algorithm SCA generates velocity 1385

profiles that fall below the local minima of the maximum 1386

velocity profile, but, this way, they are able to keep the 1387

velocity higher in the regions preceding and following the local 1388

minima of the maximum velocity profile. Again, referring to 1389

the interval between 10 and 20 m, we notice that the velocity 1390

profile computed by algorithm SCA falls below the maximum 1391

velocity profile in that region and, thus, below the velocities 1392

returned by the heuristic, but, this way, velocities in the region 1393

before 10 m and in the one after 20 m are larger with respect 1394

to those computed by the heuristic. 1395

D. Experiment 5 1396

As a final experiment, we planned the speed law of an 1397

autonomous guided vehicle operating in a real-life auto- 1398

mated warehouse. Paths and problem data have been provided 1399

by packaging company Ocme S.r.l., based in Parma, Italy. 1400

We generated 50 random paths from a general layout. Fig. 9 1401

shows the warehouse layout and a possible path. In all paths, 1402

we set maximum velocity to 2 m s−1, maximum longitudinal 1403

acceleration to A = 0.28 m/s2, maximum normal acceleration 1404

to 0.2 m/s2, and maximum jerk to J = 0.025 m/s3. Table III 1405

shows computation times for algorithms SCA-H, SCA-G, and 1406

IPOPT for a number of sampling points n ∈ {100, 500, 1000}. 1407

SCA-H is quite fast although it sometimes returns slightly 1408

worse solutions (the largest percentage error, at a single 1409

instance with n = 1000, is 8%). IPOPT is clearly slower than 1410

SCA-H and SCA-G for n = 500 and 1000, while, for n = 100, 1411

it is slower than SCA-H but quite similar to SCA-G. However, 1412

for these paths, the difference in terms of traveling times as 1413

n increases is much more significant with respect to the other 1414

experiments (see also the discussion at the end of Experiment 1415

3). More precisely, the percentage difference between the 1416

traveling times of solutions at n = 100 and n = 1000 is 1417

0.5% on average for Experiment 1 with a maximum of 2.1%, 1418

while, for Experiment 2, the average difference is 0.3% with 1419

a maximum of 0.4%. Instead, for the current experiment, 1420
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Fig. 9. Warehouse layout considered in Example 5 and a possible path.

TABLE III

AVERAGE, MINIMUM, AND MAXIMUM COMPUTING TIMES (IN SECONDS)
FOR SCA-H, SCA-G, AND IPOPT OVER EXPERIMENT 5

the average difference is 2.7% with a maximum of 7.9%.1421

However, the average falls to 0.2% and the maximum to 0.6%1422

if we consider the percentage difference between the traveling1423

times of solutions at n = 500 and n = 1000. Thus, for this1424

experiment, it is advisable to use a finer discretization or,1425

equivalently, a larger number of sampling points. A tentative1426

explanation for such different behavior is related to the lower1427

velocity limits of Experiment 5 with respect to the other1428

experiments. Indeed, the objective function is much more1429

sensitive to small changes at low speeds so that a finer grid of1430

sampling points is able to reduce the impact of approximation1431

errors. However, this is just a possible explanation. A further1432

possible explanation is that, in Experiments 1–4, curves are1433

composed of segments with constant and linear curvature,1434

whereas curves on industrial LGV layouts typically have1435

curvatures that are highly nonlinear with respect to arc length.1436

VI. CONCLUSION1437

In this article, we considered a speed planning problem1438

under jerk constraints. The problem is a nonconvex one,1439

and we proposed a sequential convex approach, where we1440

exploited the special structure of the convex subproblems1441

to solve them very efficiently. The approach is fast and is1442

theoretically guaranteed to converge to a stationary point of the1443

nonconvex problem. As a possible topic for future research, we1444

would like to investigate ways to solve Problem 9, currently1445

the bottleneck of the proposed approach, alternative to the1446

solver GUROBI, and the heuristic mentioned in Remark 6.1447

Moreover, we suspect that the stationary point to which the1448

proposed approach converges is, in fact, a global minimizer1449

of the nonconvex problem, and proving this fact is a further 1450

interesting topic for future research. 1451
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