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REGULARITY FOR MINIMIZERS OF DOUBLE PHASE

FUNCTIONALS WITH MILD TRANSITION AND REGULAR

COEFFICIENTS

ALESSANDRA COSCIA

Abstract. We prove sharp regularity results for minimizers of the functional

P(w,Ω) :=

∫
Ω
b(x,w)

[
|Dw|p + a(x)|Dw|p log(e+ |Dw|)

]
dx ,

with w ∈W 1,1(Ω), p > 1, a ∈ L∞(Ω), a(·) ≥ 0, and 0 < ν ≤ b(·, ·) ≤ L.

P is a double phase functional with mild transition between |Du|p and
|Du|p log(e+|Du|). First, under suitable conditions on the moduli of continuity

of a(·) and b(·, ·), we prove that local minimizers are of class C0,α for every

α ∈ (0, 1), then that they are of class C1,α for some α > 0, provided the
functions a(·) and b(·, ·) are Hölder continuous.

1. Introduction and results

A major topic in Calculus of Variations is the study of the regularity of mini-
mizers of integral functionals as

F(w,Ω) :=

∫
Ω

F (x,w,Dw) dx ,

where Ω is an open subset of Rn and F : Ω×R×Rn → R a Carathéodory function
satisfying the following growth conditions:

(1.1)
1

c
|z|p ≤ F (x, v, z) ≤ c (|z|q + 1)

for a.e. x ∈ Ω and for all (v, z) ∈ R× Rn, with 1 < p ≤ q , c ≥ 1. If p = q in (1.1)
we say that the functional has standard growth conditions of order p. On the other
hand, if F depends only on the gradient, i.e. F (x, v, z) ≡ F (z), F is called an
autonomous functional. The most natural autonomous functional with p-growth is
clearly

Fp(w,Ω) :=

∫
Ω

|Dw|p dx ,

whose corresponding Euler-Lagrange equation is the well-known p-Laplace equation

div(|Dw|p−2Dw) = 0 .

The maximal regularity of minimizers of the functional Fp is C1,α for some exponent
α ∈ (0, 1) depending only on p and on the dimension n, as shown by Ural’tseva in
1968 [49]. The corresponding result in the vectorial case has been instead obtained
by Uhlenbeck [48]. Subsequently, the issue has by now been widely developed
through extensive literature, also in the evolutionary case. We refer to [37, 39] for
an overview on the elliptic case, and to [19, 36] in the parabolic case. We refer to
[27, 28, 38] for general information about regularity theory. In the case p < q we
obtain the so-called functionals with non-standard growth conditions of (p, q)-type,
as initially defined and studied by Marcellini [40, 41, 42]; these may be anisotropic,
e.g. also F (Dw) =

∑n
i=1 |Diw|pi dx , pi > 1 may be considered (see [1, 50]).
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2 A. COSCIA

In his seminal works [51, 52], Zhikov studied some kinds of non-autonomous
functionals with non-standard growth, whose integrands change their ellipticity rate
according to the position. He was interested in describing the behaviour of strongly
anisotropic materials in the context of homogenisation, nonlinear elasticity and
Lavrentiev phenomenon. In particular, in [51] Zhikov considered, among others,
the following models functionals:

Fp(x)(w,Ω) :=

∫
Ω

|Dw|p(x) dx , 1 < p1 ≤ p(x) ≤ p2 <∞ ,(1.2)

Fp,q(w,Ω) :=

∫
Ω

[ |Dw|p + a(x)|Dw|q ] dx 0 ≤ a(x) ≤ L 1 < p < q .(1.3)

Functionals like (1.2) and (1.3) can be used to describe the behaviour of strongly
anisotropic materials. Similar models appear in the study of non-Newtonian fluids,
that change their viscosity in the presence of an electro-magnetic field (see [3]) or
in image segmentation problems [31]. When referring to (p, q)-growth conditions,
the quantity q/p > 1 is called the gap (ratio) of the integrand F . In order to ensure
the regularity of minima, the gap cannot differ too much from 1, in other words the
distance between p and q cannot be too large (see the counterexamples [25, 26, 42]
concerning both autonomous and non-autonomous functionals). In the last years
there has been a considerable amount of interest in functionals with (p, q)-growth,
see for instance [8, 7, 6, 11, 12, 18, 22, 35, 44, 47].

In the autonomous case the bound on the gap depends on the space dimension n.
Otherwise, for non-autonomous functionals the presence of x cannot be treated as
a perturbation, as in the standard p = q case, since x directly influences the growth
of the integrand. The effect of x can thus be very relevant and the regularity of
minima is ruled by a subtle interaction between the regularity of F with respect
to the x-variable and the gap q/p. Confirming this, in [5] Baroni, Colombo and
Mingione provides a complete regularity theory for the functional Fp,q in (1.3)
under the assumptions

(1.4) 0 ≤ a(·) ∈ C0,α(Ω) and
q

p
≤ 1 +

α

n
,

where the bound on the gap is sharp by the counterexamples in [25]. Further
contributions to the regularity theory of double phase functionals can be found in
[10, 17, 21, 31, 33, 45]; we recommend the reader the references [30, 46] for a list
of developments on problems with strong anisotropicity.

In the case of the functional Fp(x) in (1.2), the Hölder continuity of minimizers
can be proven under a suitable assumption on the logarithmic modulus of continuity
ω(·) on the exponent p(x), which is a non-decreasing continuous function such that

ω(0) = 0 and |p(x)− p(y)| ≤ ω(|x− y|) holds for every x, y ∈ Ω .

The log-continuity assumption prescribes that

(1.5) lim sup
r→0

ω(r) log

(
1

r

)
=: l < ∞ ;

assumption (1.5) is crucial: Zhikov proved in [51] that if condition (1.5) is violated,
then minimizers can be discontinuous. Moreover, it holds that

• [24] if l <∞, then u ∈ C0,α
loc (Ω) for some α ∈ (0, 1);

• [2] if l = 0, then u ∈ C0,α
loc (Ω) for every α ∈ (0, 1) .

On the other hand, as done in order to prove Hölder continuity of the gradient (the
result is proven in [16] by the author and Mingione) it is unavoidable to assume
that p(x) is itself Hölder continuous, that is

ω(r) ≤ Lrα , α > 0 ,
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which is obviously stronger than (1.5). This result is sharp in the sense that if p(x) is
not Hölder continuous then the gradient is not even continuous in general, as shown
in [33]. See also [14] for a further contribution to the issue. In the recent paper [4]
another significant model example with non-standard (p, q)-growth is considered:

(1.6) Plog(w,Ω) :=

∫
Ω

[
|Dw|p + a(x)|Dw|p log(e+ |Dw|)

]
dx ,

where the non-negative function a(·) is supposed to be bounded. This functional
shares features both with Pp(x) and Pp,q introduced in (1.2) and (1.3): the struc-
ture resembles that of Pp,q, but with a mild phase transition between |Du|p and
|Du|p log(e + |Du|). Then, to avoid discontinuity of minima, Hölder continuity of
the coefficient a(·) is not needed but, again, a log-continuity assumption on a(·) is
required, exactly as for the exponent p(x) of the functional Fp(x). For a contribu-
tion to the study of the functional Plog see also [12]. Indeed, in analogy with the
regularity theory of p(x)-growth functional, we have the following:

Theorem 1.1 ([4]). Let u ∈ W 1,1
loc (Ω) be a local minimizer of the functional Plog

defined in (1.6) and assume that the function a(·) is non-negative and bounded. Let
ω(·) be a modulus of continuity of a(·) and denote

(1.7) l := lim sup
r→0

ω(r) log

(
1

r

)
.

Then

• if l <∞, then u ∈ C0,β
loc (Ω) for some β ∈ (0, 1) ;

• if l = 0, then u ∈ C0,β
loc (Ω) for every β ∈ (0, 1) ;

• if ω(r) . rσ with σ ∈ (0, 1), then Du is locally Hölder continuous in Ω .

In the sequel, to simplify the notation, we will denote

(1.8) H(x, z) := |z|p + a(x)|z|p log(e+ |z|) so that Plog(w,Ω) :=

∫
Ω

H(x,Dw) dx .

The first assertion of Theorem 1.1 holds for a larger family of functionals defined
for u ∈W 1,1

loc (Ω) as

(1.9) F(w,Ω) :=

∫
Ω

F (x,w,Dw) dx ,

where the energy density F : Ω×R×Rn → R is a Carathéodory function satisfying
the following growth conditions: ν H(x, z) ≤ F (x, v, z) ≤ L H(x, z) whenever
x ∈ Ω, v ∈ R and z ∈ Rn, with 0 < ν ≤ 1 ≤ L. Indeed, it is proven in [4, Theorem

4.1], that a local minimizer u ∈ W 1,p
loc (Ω) of the functional F defined in (1.9) is

locally Hölder continuous under the only assumption on the modulus of continuity
of a(·) that l < ∞, with l being defined in (1.7). In the same theorem also local
higher integrability of H(·, Du(·)) is proven.

Let us recall that, due to the (p, q)-growth conditions satisfied by the integrand
F , the following more general definition of local minimizer is usually adopted for
the functional F introduced in (1.9).

Definition 1. A function u ∈ W 1,1
loc (Ω) is a local minimizer of the functional F ,

introduced in (1.9), if and only if F (·, u(·), Du(·)) ∈ L1
loc(Ω) and the minimality

condition ∫
suppφ

F (x, u,Du) dx ≤
∫

suppφ

F (x, u+ φ,Du+Dφ) dx

is satisfied for any variation φ ∈W 1,1
loc (Ω) such that suppφ ⊂ Ω.
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In this paper we shall consider a family of functionals based on the model func-
tional Plog, defined in (1.6), allowing for dependence on the variables x and w via
a coefficient b(x,w) which is assumed to be positive and bounded from above and
from below (see (1.11)). The space dimension will always be n ≥ 2. We shall indeed
consider the functional defined by

P(w,Ω) :=

∫
Ω

b(x,w)
[
|Dw|p + a(x)|Dw|p log(e+ |Dw|)

]
dx(1.10)

=

∫
Ω

b(x,w) H(x,Dw) dx ,

with the notation introduced in (1.8). In the rest of the paper the coefficients a(·)
and b(·, ·) satisfy the following assumption:

Assumption 1

• the function a : Ω→ R is measurable, non-negative and bounded:

0 ≤ a(·) ≤ ||a||L∞(Ω) <∞ ,

• the function b : Ω × R → R is a positive Carathéodory function bounded
from above and from below:

(1.11) 0 < ν ≤ b(·, ·) ≤ L <∞ with 0 < ν ≤ 1 ≤ L .

Notice that, by Definition 1 and the bounds (1.11) on b(·, ·), any local minimizer

u is in W 1,p
loc (Ω) with H(·, Du(·)) ∈ L1

loc(Ω). Since all the forthcoming results are
local in nature, the global integrability of local minimizers and of their energy will
be assumed with no loss of generality and for this reason we shall several times
assume that local minimizers u are directly in W 1,p(Ω) with H(·, Du(·)) ∈ L1(Ω).

In order to prove any regularity result for local minimizers of P we need to assume
that the function a(·) is uniformly continuous on Ω. Then let ωa : [0,+∞[→ [0,+∞[
be a modulus of continuity of a(·), that is a non-decreasing continuous function such
that ωa(0) = 0 and

(1.12) |a(x)− a(y)| ≤ ωa(|x− y|) for every x, y ∈ Ω .

We stress that, in order to prove the first assertion of Theorem 1.2, no assump-
tions on the function b(·, ·) are needed, except for Assumption 1.

Otherwise, to prove higher regularity results we require uniform continuity also
of the coefficient b(·, ·). Thus, let ωb : [0,+∞[→ [0,+∞[ be a modulus of continuity
of b(·, ·), that is a non-decreasing continuous function such that ωb(0) = 0 and

(1.13) |b(x, v)− b(y, w)| ≤ ωb(|x− y|+ |v − w|) for every x, y ∈ Ω and v, w ∈ R .

In both cases, without loss of generality we may assume that ωa(·) and ωb(·) are
concave.

The main result of the paper is the following

Theorem 1.2. Let u ∈ W 1,1
loc (Ω) be a local minimizer of the functional P defined

in (1.10); let us assume that the functions a(·) and b(·, ·) satisfy Assumption 1, that
ωa(·) is a modulus of continuity of a(·) as defined in (1.12), and denote

(1.14) l := lim sup
r→0

ωa(r) log

(
1

r

)
.

Then

• if l <∞, then u ∈ C0,α
loc (Ω) for some α ∈ (0, 1) .

In addition, if ωb(·) is a modulus of continuity of b(·, ·) as defined in (1.13), we
have
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• if l = 0, then u ∈ C0,α
loc (Ω) for every α ∈ (0, 1) ;

• if ωa(r) . rσ1 and ωb(r) . rσ2 with σ1 , σ2 ∈ (0, 1), then Du is locally
Hölder continuous in Ω .

We point out that the continuity of the coefficient b(·, ·), together with the con-
dition l = 0, is needed to prove the second assertion in Theorem 1.2. We also notice
that the real new facts in Theorem 1.2 are the second and the third one, the first
one being actually a consequence of [4, Theorem 4.1] and we have included it for
the sake of completeness. This has been in fact already remarked after Theorem
1.1.

It is worth remarking that a vectorial version of Theorem 1.2 is obtainable.
Specifically, the second and the third statements in Theorem 1.2 still hold in the
case of vector valued minimizers, provided b(·) only depends on x, and it is w-
independent. The proof of this fact follows along the lines of that given here in the
scalar case. The w-independence of b(·) is not a technical assumption as, already
in the case of quadratic functionals, minimizers might exhibit singularities in the
case of explicit w-dependence of the integrand. For this, we refer to the classical
counterexample in [29]. For more results concerning double phase type functionals
in the vectorial case, and estimates involving potentially singular minimizers, we
refer to [21].

In Section 3 (Theorem 3.1) Hölder continuity of minima is obtained, for some
possibly small exponent, under the assumption l < ∞, with l being defined in
(1.14), as a particular case of [4, Theorem 4.1]. The remaining higher regularity
results, including gradient Hölder continuity, are then proven in Section 4. More
precisely, the second assertion in Theorem 1.2 will be proven in Paragraph 4.3 while
the last one will be proven in Paragraph 4.4. The proofs of the results are based
on a comparison lemma (Paragraph 4.1) and a decay estimate (Paragraph 4.2).

2. Preliminaries

2.1. Notation and elementary properties. In what follows we denote by c a
general positive constant possibly varying from line to line; special occurrences will
be denoted by c0, c1 or the like. All such constants will always be larger or equal
than one; moreover relevant dependencies on parameters will be emphasised using
parentheses, i.e., c ≡ c(n, p, δ) means that c depends on n, p, δ. We denote by

Br(x0) := {x ∈ Rn : |x− x0| < r}
the open ball with center x0 and radius r > 0; when not important, or clear from the
context, we shall omit denoting the center just denoting as follows: Br ≡ Br(x0).
Unless otherwise stated, different balls in the same context will have the same
center. With B ⊂ Rn being a measurable set with positive, finite measure |B| > 0,
and with g : B → Rk, k ≥ 1, being a locally integrable map, we shall denote by

(g)B ≡
∫
B
g(x) dx :=

1

|B|

∫
B
g(x) dx

its integral average. A well-known property is the following: for any g ∈ Lp(B,Rk),
p ≥ 1, k ≥ 1, the estimate

(2.1)

∫
B
|g(x) − (g)B|p dx ≤ 2p

∫
B
|g(x) − ζ|p dx

holds for each ζ ∈ Rn.
For g : B → R being a measurable bounded map, we denote its oscillation by

(2.2) osc
B
g = sup

B
g − inf

B
g .
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Given a bounded open subset A ⊂ Rn and α ∈ (0, 1], a map g : A→ Rk is said to
be α-Hölder continuous if there exists a constant Cα > 0 such that

(2.3) |g(x)− g(y)| ≤ Cα |x− y|α for every x, y ∈ A .

We denote by C0,α(A,Rk) the space of α-Hölder continuous maps g : A → Rk; in
this space we can consider the Hölder seminorm

(2.4) [g]C0,α(A,Rk) := sup
x,y∈A
x 6=y

|g(x)− g(y)|
|x− y|α

and the norm ‖g‖C0,α = [g]C0,α + ‖g‖L∞ . In the above definition (2.4) we can fix
d > 0 and consider only points x, y ∈ A such that |x− y| ≤ d : indeed if |x− y| > d
every quotient is bounded by 2 d−α‖g‖L∞ .

The Sobolev exponent p∗ is np/(n− p) if p < n or every number larger than p,
in the case p ≥ n.

It is well known (see for instance [27, Proposition 3.23]) that if a function g
belongs to the Sobolev space W 1,p(A), then g+ = max{g, 0} ∈W 1,p(A) with

(2.5) Dg+ =

{
Dg a.e. on {g > 0}
0 a.e. on {g ≤ 0}

and Dg = 0 a.e. on {g = 0}. Then it is easy to prove that

(2.6) if gh → g strongly in W 1,p(A) , then g+
h → g+ strongly in W 1,p(A) .

Indeed, the convergence g+
h → g+ in Lp(A) follows from g+

h = 1
2 (|gh| + gh), while

the fact that Dg+
h → Dg+ in Lp(A) from |Dg+

h | ≤ |Dgh|, Dg
+
h → Dg+ a.e. on A

and a well-known variant of the Lebesgue’s dominated convergence theorem.

We denote by z⊗z the tensor product, i.e., the matrix z ⊗ z = (zizj)i,j=1,...,n,
with z ∈ Rn. It is easy to verify that the equality

(2.7) 〈(z ⊗ z)λ , λ〉 = (〈z , λ〉)2

holds for every λ ∈ Rn, where 〈· , ·〉 denotes the scalar product in Rn.

We recall some useful properties of the logarithm function of later frequent use.
For every t ≥ 0 we have

log(e+ t) ≥ 1 ,(2.8)

log(e+ t) ≤ 2 log t for every t ≥ e ,(2.9)

log(e+At) ≤ A log(e+ t) for every A ≥ 1 ,(2.10)

log(e+At) ≥ A log(e+ t) for every 0 < A ≤ 1 .(2.11)

In addition

(2.12) log(A/R) ≤ 2 log(1/R) for every A > 0 and every 0 < R ≤ 1/A .

2.2. N-functions setting. In the following we are going to introduce a general
class of tools, related to the so-called general class of N -functions. For the results
we mention here see for instance [23, 30].

We consider a convex function ϕ : [0,∞)→ [0,∞), such that

ϕ ∈ C1([0,∞)) ∩ C2((0,∞)), ϕ(0) = ϕ′(0) = 0,(2.13)

ϕ′(t) is monotone increasing and lim
t→∞

ϕ′(t) =∞ .
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In addition we assume that there exists a constant cϕ ≥ 1 such that

(2.14)
1

cϕ
≤ ϕ′′(t)t

ϕ′(t)
≤ cϕ, for all t > 0 .

If the function ϕ verifies (2.13) and (2.14), then we call ϕ as an N -function.
Notice that every non-decreasing function ϕ : [0,∞) → [0,∞) satisfies the fol-

lowing property

(2.15) ϕ(t+ s) ≤ ϕ(2t) + ϕ(2s) .

We denote by ϕ∗ the conjugate function of ϕ which is defined, for s ≥ 0, as

(2.16) ϕ∗(s) = sup
t≥0

(st− ϕ(t)) .

By definition, for every s, t ≥ 0, the conjugate function ϕ∗ satisfies the Young’s
inequality

(2.17) t s ≤ ϕ(t) + ϕ∗(s)

and also the property (see for instance [30, proof of Theorem 2.4.10])

(2.18) ϕ∗
(ϕ(s)

s

)
≤ ϕ(s) .

We define the auxiliary vector field Vϕ : Rn → Rn by

(2.19) Vϕ(z) :=

(
ϕ′(|z|)
|z|

)1/2

z ,

where Vϕ is continuously extended to zero when z = 0; Vϕ turns out to be a bijection
of Rn by (2.13).

Under the assumption (2.14) Vϕ describes the monotonicity properties of the
map [ϕ′(|z|)/|z|]z in the sense that for z1, z2 ∈ Rn , z1, z2 6= 0 we have
(2.20)

1

c
|Vϕ(z1)− Vϕ(z2)|2 ≤ 〈ϕ

′(|z1|)
|z1|

z1 −
ϕ′(|z2|)
|z2|

z2, z1 − z2〉 ≤ c |Vϕ(z1)− Vϕ(z2)|2 ,

for a constant c ≥ 1 depending on cϕ. For another constant c ≡ c(cϕ) the following
relations (see [23, Lemma 2.4]) hold for every z, z1, z2 ∈ Rn with z1 or z2 different
from zero (which means |z1|+ |z2| > 0):

(2.21)
1

c
ϕ(|z|) ≤ |Vϕ(z)|2 ≤ c ϕ(|z|) ,

(2.22)
1

c
ϕ′′(|z1|+ |z2|)|z1− z2|2 ≤ |Vϕ(z1)−Vϕ(z2)|2 ≤ c ϕ′′(|z1|+ |z2|)|z1− z2|2 .

We are interested in

(2.23) ϕp(t) = tp and ϕlog(t) = tp log(e+ t) ,

which verify all the assumptions (2.13). In addition

t ϕ′′p(t) = (p− 1)ϕ′p(t)(2.24)

t ϕ′′log(t) ≤ 2pϕ′log(t) , t ϕ′′log(t) ≥ (p− 1)ϕ′log(t) ,(2.25)

so (2.14) is satisfied with a constant depending only on p. We also need the following
estimates

(2.26) p(p− 1) tp−2 log(e+ t) ≤ ϕ′′log(t) ≤ p(p+ 1) tp−2 log(e+ t) ,

which can be easily deduced using also (2.8).
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Let us denote by Vp(·) the vector field Vp(z) :=
√
p |z|(p−2)/2z generated by ϕp,

and by Vlog(·) the one generated by ϕlog, that is

Vlog(z) :=

√
p|z|p−2 log(e+ |z|) +

|z|p−1

(e+ |z|)
z ,

both continuously extended to zero when z = 0. It is easy to verify that
(2.27)
|z|p ≤ |Vp(z)|2 = p |z|p , |z|p log(e+ |z|) ≤ |Vlog(z)|2 ≤ (p+ 1) |z|p log(e+ |z|) ,

thus in both cases (2.21) holds for a constant c depending only on p.
In addition, since ϕ′′p(t) = p(p − 1)tp−2 the estimate in (2.22), which holds

whenever z1, z2 ∈ Rn , |z1|+ |z2| > 0, becomes:

(2.28)
1

c
|z1 − z2|2 (|z1|+ |z2|)p−2 ≤ |Vp(z1)− Vp(z2)|2 ≤ c|z1 − z2|2 (|z1|+ |z2|)p−2

where c depends only on p. In particular, when p ≥ 2,

(2.29) |z1 − z2|p ≤ c|Vp(z1)− Vp(z2)|2

holds, while for 1 < p < 2 we will use that

(2.30) |z1 − z2|p ≤ c |Vp(z1)− Vp(z2)|p (|z1|+ |z2|)(2−p)p/2 ,

both for a suitable constant c ≡ c(p). Instead, using (2.26), from (2.22) we deduce
that the vector field Vlog satisfies

(2.31) |Vlog(z1)− Vlog(z2)|2 ≤ c |z1 − z2|2(|z1|+ |z2|)p−2 log(e+ |z1|+ |z2|)
for every z1, z2 ∈ Rn , |z1|+ |z2| > 0, and a constant c depending on p.

Recalling (2.23) we adopt the notation

(2.32) f(z) := |z|p = ϕp(|z|) , g(z) := |z|p log(e+ |z|) = ϕlog(|z|) ,
from which

(2.33) H(x, z) = f(z) + a(x) g(z) = ϕp(|z|) + a(x)ϕlog(|z|) .
Then the first inequality in (2.20) (see also (2.43) below) can be rewritten for Vp
and Vlog with a constant c ≡ c(p) as

1

c
|Vp(z1)− Vp(z2)|2 ≤ 〈∂f(z1)− ∂f(z2), z1 − z2〉 ,(2.34)

1

c
|Vlog(z1)− Vlog(z2)|2 ≤ 〈∂g(z1)− ∂g(z2), z1 − z2〉 .(2.35)

2.3. Preliminary results. Recalling (1.8) and (2.32) we adopt the notation

(2.36) h(x, v, z) := b(x, v)H(x, z) = b(x, v)
[
f(z) + a(x)g(z)

]
.

To prove the comparison estimate in Lemma 4.2 we need the forthcoming Lem-
mata 2.2 and 2.3 and the maximum principle 4.1. Lemma 2.3 can be deduced by
Taylor’s formula, using estimates on the matrix of the second derivatives of the
functions f and g defined in (2.32). Such estimates are the content of the following
Lemma 2.1, together with estimates on the gradient of f and g, while Lemma 2.2
contains estimates on the function H(·, ·) defined in (1.8), needed to prove the
maximum principle and the comparison estimate.

Lemma 2.1. Let f, g : Rn → R be the functions defined in (2.32). Then the
following relations hold for every z , λ ∈ Rn:

|∂f(z)| = p|z|p−1 ,(2.37)

|∂g(z)| ≤ (p+ 1) |z|p−1 log(e+ |z|) ,(2.38)
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〈∂f(z) , z〉 = p |z|p ,(2.39)

〈∂g(z) , z〉 ≥ p |z|p log(e+ |z|) ,(2.40)

ϕ′′p(|z|) |λ|2 ≤ c(p) 〈∂2f(z)λ , λ〉 ,(2.41)

ϕ′′log(|z|) |λ|2 ≤ c(p) 〈∂2g(z)λ , λ〉 ,(2.42)

with the condition z 6= 0 in (2.41) and (2.42).

Proof. We calculate

∂f(z) = ϕ′p(|z|)
z

|z|
= p |z|p−2 z ,(2.43)

∂g(z) = ϕ′log(|z|) z
|z|

=
(
p|z|p−2 log(e+ |z|) +

|z|p−1

e+ |z|
)
z ;

identities (2.37) and (2.39) follow immediately from (2.43), while (2.38) and (2.40)
from (2.43) and (2.8).

Now, let us prove (2.42) since with exactly the same calculations, using (2.24)
instead of the first inequality in (2.25), we can prove (2.41) with the constant
c(p) = max{1, p− 1}. Using (2.7) we calculate

∂2g(z) =
[
ϕ′′log(|z|) −

ϕ′log(|z|)
|z|

] z ⊗ z
|z|2

+
ϕ′log(|z|)
|z|

I ,

〈∂2g(z)λ , λ〉 =
[
ϕ′′log(|z|) −

ϕ′log(|z|)
|z|

] (〈z , λ〉)2

|z|2
+
ϕ′log(|z|)
|z|

|λ|2 ,

where I denotes the identity matrix in Rn.
If z ∈ Rn \ {0} is such that ϕ′′log(|z|) ≥ ϕ′log(|z|)/|z|, from the first inequality in

(2.25) we get immediately that

〈∂2g(z)λ , λ〉 ≥ 1

2p
ϕ′′log(|z|) |λ|2 .

Otherwise, if z is such that ϕ′′log(|z|) < ϕ′log(|z|)/|z|, using Cauchy-Schwartz in-
equality we obtain

〈∂2g(z)λ , λ〉 ≥
[
ϕ′′log(|z|) −

ϕ′log(|z|)
|z|

]
|λ|2 +

ϕ′log(|z|)
|z|

|λ|2 = ϕ′′log(|z|) |λ|2

and we conclude that (2.42) holds with the constant c(p) = 2p. �

By (2.10) the function H(x, z) defined in (1.8) satisfies the following estimate
for every x ∈ Ω, every A ≥ 1 and every z ∈ Rn:

(2.44) H(x , Az) ≤ Ap+1H(x, z) .

In addition notice that for every z1, z2 ∈ Rn we have

(2.45) H(x, z1 ± z2) ≤ 2p+1(H(x, z1) +H(x, z2)) .

Indeed, using (2.33), (2.15) and (2.44) we get

H(x, z1 ± z2) = ϕp(|z1 ± z2|) + a(x)ϕlog(|z1 ± z2|)
≤ ϕp(|z1|+ |z2|) + a(x)ϕlog(|z1|+ |z2|)
≤ ϕp(2|z1|) + a(x)ϕlog(2|z1|) + ϕp(2|z2|) + a(x)ϕlog(2|z2|)
≤ 2p+1(H(x, z1) +H(x, z2)) .

In addition, we get the following estimates on the gradient of the function H.
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Lemma 2.2. Let H : Ω × Rn → R be the function defined in (1.8). Then the
following estimates hold for every x ∈ Ω and every z , λ ∈ Rn:

|∂zH(x, z)| ≤ (p+ 1)
[
|z|p−1 + a(x) |z|p−1 log(e+ |z|)

]
,(2.46)

〈∂zH(x, z) , z〉 ≥ p
[
|z|p + a(x) |z|p log(e+ |z|)

]
,(2.47)

|〈∂zH(x, z) , λ〉| ≤ (p+ 1)
(
H(x, z) + H(x, λ)

)
.(2.48)

Proof. Inequality (2.46) follows immediately from (2.37) and (2.38), while (2.47)
from (2.39) and (2.40).

In order to prove (2.48), let us assume that |z| 6= 0, otherwise the inequality is
trivial. Using Cauchy-Schwartz inequality and (2.46) we obtain

|〈∂zH(x, z) , λ〉| ≤ (p+ 1)
[
|z|p−1 |λ| + a(x) |z|p−1 log(e+ |z|) |λ|

]
= (p+ 1)

[
I1 + a(x) I2

]
.(2.49)

Thanks to Young’s inequality with conjugate exponents (p , p/(p−1)), we estimate:

I1 = |z|p−1 |λ| ≤ p− 1

p
|z|p +

1

p
|λ|p ≤ |z|p + |λ|p .(2.50)

For the second term, we need to consider the conjugate function ϕ∗log(·), as defined

in (2.16), of the N -function ϕlog: by properties (2.17), applied with t = |λ| and
s = |z|p−1 log (e + |z|), and (2.18), we obtain the following chain of inequalities:

I2 = |z|p−1 log(e+ |z|) |λ|(2.51)

≤ ϕ∗log(|z|p−1 log(e+ |z|)) + ϕlog(|λ|)

= ϕ∗log

( |z|p log(e+ |z|)
|z|

)
+ ϕlog(|λ|)

≤ ϕlog(|z|) + ϕlog(|λ|)
= |z|p log(e+ |z|) + |λ|p log(e+ |λ|) .

Putting together (2.49), (2.50) and (2.51), the proof of (2.48) is complete. �

Now we are able to prove the following lemma.

Lemma 2.3. Let h : Ω × R × Rn → R be the function defined in (2.36). Then
there exists a positive constant c = c(p, ν) such that the following inequality holds
for every (x, v) ∈ Ω× R and every z1, z2 ∈ Rn

1

c

[
|Vp(z1)− Vp(z2)|2 + a(x) |Vlog(z1)− Vlog(z2)|2

]
(2.52)

≤ h(x, v, z1)− h(x, v, z2)− 〈∂zh(x, v, z2), z1 − z2〉 .

Proof. In the case z1 = z2 inequality (2.52) is trivial, so we can assume that z1 6= z2,
which in particular means |z1|+ |z2| > 0.

The first step is to prove that there exists a constant c ≡ c(p) such that

|z1 − z2|2(|z1|+ |z2|)p−2 ≤ c(p)
[
f(z1)− f(z2)− 〈∂f(z2) , z1 − z2〉

]
,(2.53)

|z1 − z2|2(|z1|+ |z2|)p−2 log(e+ |z1|+ |z2|)(2.54)

≤ c(p)
[
g(z1)− g(z2)− 〈∂g(z2) , z1 − z2〉

]
.

We postpone the proof of (2.53)-(2.54) and show how it implies (2.52). Indeed,
using the bounds (1.11) on b(· , ·), (2.53), (2.54), the second estimate in (2.28) and
(2.31) we obtain

h(x, v,z1)− h(x, v, z2)− 〈∂zh(x, v, z2), z1 − z2〉

= b(x, v)
[
f(z1)− f(z2)− 〈∂f(z2) , z1 − z2〉
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+ a(x)
(
g(z1)− g(z2)− 〈∂g(z2) , z1 − z2〉

) ]
≥ ν

c(p)

[
|z1 − z2|2(|z1|+ |z2|)p−2

+ a(x) |z1 − z2|2
(
|z1|+ |z2|

)p−2
log(e+ |z1|+ |z2| )

]
≥ 1

c(p, ν)

[
|Vp(z1)− Vp(z2)|2 + a(x) |Vlog(z1)− Vlog(z2)|2

]
,

which proves the lemma.
Now, let us prove (2.54), since, with exactly the same arguments and calculations,

we can prove (2.53), without the estimates due to the presence of the logarithmic
term. Let us assume for a moment that t z1 + (1− t)z2 6= 0 for every t ∈ [0, 1] and
consider the function G : [0, 1] → R defined as G(t) := g(t z1 + (1 − t) z2): since
G ∈ C2([0, 1]) we can use Taylor formula with integral remainder obtaining that

(2.55) G(1) = G(0) +G′(0) +

∫ 1

0

(1− s)G′′(s) ds .

As

G′(t) = 〈∂g(t z1 + (1− t) z2) , z1 − z2〉 ,
G′′(t) = 〈∂2g(t z1 + (1− t) z2) (z1 − z2) , z1 − z2〉 ,

from (2.55) we obtain

g(z1)− g(z2)− 〈∂g(z2) , z1 − z2〉 =(2.56)

=

∫ 1

0

(1− s) 〈∂2g(s z1 + (1− s) z2) (z1 − z2) , z1 − z2〉 ds = Ig .

Using (2.42) with λ = z1− z2 , z = s z1 + (1− s) z2 and the first inequality in (2.26)
we estimate Ig in (2.56) as

(2.57) c Ig ≥ |z1−z2|2
∫ 1

0

(1−s) |s z1 +(1−s) z2|p−2 log(e+ |s z1 +(1−s) z2|) ds ,

for a constant c depending only on p.
Now, if 1 < p < 2 we may estimate

(2.58) |s z1 + (1− s) z2|p−2 ≥ (|z1|+ |z2|)p−2 ,

instead in the case p ≥ 2, in order to estimate from below |s z1 + (1 − s) z2|p−2

we have to distinguish between |z2| ≤ |z1| and |z2| > |z1| on a suitable subinterval
of [0, 1].

More precisely, if |z2| ≤ |z1| and s ∈ [3/4, 1], then −1/4 ≤ s− 1 ≤ 0 and

(2.59) |s z1 + (1− s) z2| ≥ s |z1|+ (s− 1) |z2| ≥
3

4
|z1| −

1

4
|z2| ≥

1

4
(|z1|+ |z2|) ,

while, if |z2| > |z1| and s ∈ [0, 1/4], then 3/4 ≤ 1− s ≤ 1 and

|s z1 + (1− s) z2| ≥ (1− s) |z2| − s |z1| ≥
3

4
|z2| −

1

4
|z1| ≥

1

4
(|z1|+ |z2|) .

Therefore

(2.60) |s z1 + (1− s) z2|p−2 ≥ 42−p (|z1|+ |z2|)p−2

holds when p ≥ 2 on a suitable subinterval of [0, 1].
For the logarithmic term, by (2.11) we get

(2.61) log(e+
1

4
(|z1|+ |z2|)) ≥

1

4
log(e+ |z1|+ |z2|) .
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Now, if 1 < p < 2 and |z2| ≤ |z1|, using (2.58), (2.59) together with the monotonicity
of the logarithm function and (2.61) we can estimate from below∫ 1

3/4

(1− s) |s z1 + (1− s) z2|p−2 log(e+ |s z1 + (1− s) z2|) ds

≥ (|z1|+ |z2|)p−2

∫ 1

3/4

(1− s) log(e+
1

4
(|z1|+ |z2|)) ds(2.62)

≥ 1

128
(|z1|+ |z2|)p−2 log(e+ |z1|+ |z2|) .

From (2.56), (2.57) and (2.62) it follows that there exists a constant c ≡ c(p) such
that (2.54) holds. By restricting the interval to [0, 1/4] instead of [3/4, 1] we obtain
(2.54) also in the case 1 < p < 2 and |z2| > |z1|.

Otherwise, if p ≥ 2 and |z2| ≤ |z1|, the same arguments with (2.60) instead of
(2.58) allow to estimate∫ 1

3/4

(1− s) |s z1 + (1− s) z2|p−2 log(e+ |s z1 + (1− s) z2|) ds

≥ 1

8 · 4p
(|z1|+ |z2|)p−2 log(e+ |z1|+ |z2|) ,

so (2.54) holds also in this case; finally the case p ≥ 2 and |z2| > |z1| is obtained
by restricting the interval to [0, 1/4].

To conclude the proof of (2.54) we need to consider the possibility that there
exists t0 ∈ [0, 1] such that t0z1 + (1 − t0)z2 = 0, where we can assume also that
z2 6= 0, otherwise inequality (2.54) is trivially satisfied by the definition of the
function g. In this case the result can be obtained by continuity by applying (2.54)
with z2 and z1,ε := z1 + ε ej (where ej is the unit vector of the j-axis and j is
chosen in such a way that tz1,ε + (1 − t)z2 6= 0 for every t ∈ [0, 1]) and passing to
the limit as ε→ 0. �

2.4. Campanato spaces. We recall the definition and some basic properties about
such spaces, referring the reader to [13, 28, 27] for more details.

Definition 2. Let Ω be a bounded domain of Rn with Lipschitz boundary. Set
Ω(x0, %) := Ω ∩ B%(x0) and for every 1 ≤ p ≤ +∞, k ≥ 1, λ ≥ 0 define the
Campanato space

Lp,λ(Ω,Rk) :=

u ∈ Lp(Ω,Rk) : sup
x0∈Ω
%>0

%−λ
∫

Ω(x0,%)

|u− (u)Ω(x0,%)|
p dx <∞

 .

In the Campanato space we can consider the seminorm

[u]Lp,λ :=
(

sup
x0∈Ω
%>0

%−λ
∫

Ω(x0,%)

|u− (u)Ω(x0,%)|
p dx

)1/p

and the norm ‖u‖Lp,λ = [u]Lp,λ + ‖u‖Lp .

Remark 2.1. In the above definition only small radii are relevant: we can fix
%0 > 0 and consider

sup
x0∈Ω

0<%≤%0

%−λ
∫

Ω(x0,%)

|u− (u)Ω(x0,%)|
p dx ;



REGULARITY FOR MINIMIZERS OF DOUBLE PHASE FUNCTIONALS 13

indeed by Jensen’s inequality we get easily that

(2.63) sup
x0∈Ω
%>%0

%−λ
∫

Ω(x0,%)

|u− (u)Ω(x0,%)|
p dx ≤ (%0)−λ 2p ‖u‖pLp(Ω) .

For the following result due to Campanato see for instance [28, Theorem 2.9] or
[27, Theorem 5.5].

Theorem 2.1. Let Ω be a bounded domain of Rn with Lipschitz boundary. For
n < λ ≤ n + p and α = (λ − n)/p we have Lp,λ(Ω,Rk) ∼= C0,α(Ω ,Rk). Moreover
the Hölder seminorm (2.4) is equivalent to [u]Lp,λ .

Remark 2.2. More precisely the Hölder and Campanato seminorms are equivalent
in the following way:

(2.64) [u]Lp,λ ≤ (ωn)1/p [u]C0,α , [u]C0,α ≤ c(n, p, λ,Lip(∂Ω)) [u]Lp,λ ,

where ωn is the measure of the unitary ball in Rn and Lip(∂Ω) denotes the Lipschitz
constant of ∂Ω.

Thus we obtain the following well-known integral characterization of Hölder con-
tinuity.

Lemma 2.4. Let Ω be a domain of Rn, let α ∈ (0, 1] and let u ∈ Lploc(Ω,Rk) with
p ≥ 1 , k ≥ 1. If for every Ω′ b Ω there exist positive constants c0 = c0(Ω′) and
%0 = %0(Ω′) < dist(Ω′, ∂Ω) such that

(2.65)

∫
B%(x0)

|u− (u)B% |p dx ≤ c0 %pα+n

for every x0 ∈ Ω′ and every 0 < % ≤ %0, then u ∈ C0,α
loc (Ω,Rk).

2.5. An iteration lemma. In order to prove our regularity results we will use the
following iteration lemma which can be easily deduced from [28, Lemma 7.3].

Lemma 2.5. Let φ : [0, R̄] → [0,∞) be a non-decreasing function, such that the
following inequality holds for some ε ≥ 0 and whenever 0 < % ≤ R ≤ R̄:

φ(%) ≤ c0
[( %
R

)n
+ ε
]
φ(R) .

For every δ ∈ (0, n), there exists ε0 ≡ ε0(n, δ, c0) > 0 such that if ε ≤ ε0, then

φ(%) ≤ c1
( %
R

)n−δ
φ(R)

holds whenever 0 < % ≤ R ≤ R̄ and for a constant c1 ≡ c1(n, δ, c0).

3. Hölder continuity of local minimizers and approximation by
smooth functions

In this section we discuss the first assertion of Theorem 1.2. Further, we prove
an approximation result (see Lemma 3.2 below) that allows us to extend the class
of admissible test functions for the Euler-Lagrange equations (see Remark 4.3) we
will use in the proof of our comparison lemma.



14 A. COSCIA

3.1. Basic regularity. Let us recall that in order to get Hölder continuity of
local minimizers we need to assume that a(·) is a uniformly continuous function
with a modulus of continuity ωa(·) as defined in (1.12). As pointed out in the
introduction, due to the local nature of our results, we may assume that Ω is
a bounded domain and that local minimizers u are directly in W 1,p(Ω) with in
addition H(·, Du(·)) ∈ L1(Ω). The Hölder continuity of a local minimizer u of the
functional P defined in (1.10) follows immediately from the results in [4] under the
only assumption

lim sup
r→0

ωa(r) log

(
1

r

)
<∞ ,

which can be rewritten for a constant L̃ ≥ 1 as

(3.1) ωa(r) log

(
1

r

)
≤ L̃ for every r ≤ 1 .

More precisely, thanks to the bounds on b(·, ·) in Assumption 1 the following theo-
rem is a particular case of [4, Theorem 4.1].

Theorem 3.1. Let u ∈ W 1,p(Ω) be a local minimizer of the functional P defined
in (1.10) and let ωa(·) be the modulus of continuity of the function a(·), under the
only assumption (3.1). Then:

• (Gehring’s theory) There exists a positive integrability exponent δg > 0,

depending only on n, p, ν, L, L̃, ‖Du‖Lp(Ω), such that

(3.2) H(x,Du) ∈ L1+δg
loc (Ω) .

More precisely, the local reverse Hölder’s inequality

(3.3)

(∫
BR/2

[H(x,Du)]1+δg dx

)1/(1+δg)

≤ c
∫
BR

H(x,Du) dx

holds true for every ball BR ⊂ Ω and for a constant c depending only on
n, p, ν, L, L̃, ‖Du‖Lp(Ω). In particular, if p > n/(1 + δg), then u is locally
Hölder continuous.
• (De Giorgi’s theory) u is locally bounded. Moreover, when p ≤ n/(1 + δg),

for every open subset Ω′ b Ω there exists α ∈ (0, 1), depending only on

n, p, ν, L, L̃ and ‖u‖L∞(Ω′), such that

u ∈ C0,α
loc (Ω′) .

Remark 3.1. From the proof of [4, Theorem 4.1] we can see that if the minimizer
u is assumed a priori to be bounded, i.e. u ∈ L∞(Ω), then there exists an exponent

α ∈ (0, 1), depending on n, p, ν, L, L̃ and ‖u‖L∞(Ω), such that u ∈ C0,α
loc (Ω). In

addition, on every Ω′ b Ω the minimizer u satisfies (2.3) with a constant Cα which

depends not only on n, p, ν, L, L̃, ‖u‖L∞(Ω) but also on the distance dist(Ω′, ∂Ω).

Remark 3.2. Let us remark that all the constants in the above and forthcoming
a priori estimates depend on the starting quantities assigned by the problem, that
is on n, p, ν, L, L̃ and, as in all other non-uniformly elliptic problems, also on the
specific minimizer in question. In this paper the dependence is via ‖Du‖Lp(Ω) or
‖u‖L∞(Ω) as in Theorem 3.1 and in the comparison estimate (Lemma 4.2), or via
‖H(·, Du(·))‖L1(Ω) as in the decay and Morrey type estimates (Lemmata 4.3 and
4.4) and in the estimate of the excess (Lemma 4.5).

As explained in [4, Remark 4.3] the only dependence of the constant c in (3.3) on
‖Du‖Lp(Ω) (and therefore the only dependence of δg and c in the statement of Theo-
rem 3.1) comes from the estimate in the last line of [4, proof of Theorem 4.1, (4.13)].
In particular we can see that the dependence of the exponent δg on ‖Du‖Lp(Ω) is
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monotonically decreasing, while that of the constant c is monotonically increasing.
In addition also the dependence on ‖Du‖Lp(Ω) of the constants appearing in the
comparison and decay estimates [4, Lemmata 5.2 and 5.3] and in the estimate of
the excess [4, (5.24)] is monotonically increasing, by carefully looking at the proofs.

3.2. An approximation result. In this paragraph we prove that, given a ball
BR b Ω, every function φ ∈ W 1,p

0 (BR) with finite energy can be approximated
in W 1,p by a sequence {φk} ⊂ C∞0 (BR) with the energy of φk converging to the
energy of φ. First we need a result on the continuity in L1 of the dilatation.

For every ε ∈ (0, 1/2) let us consider the dilatation τε : Rn → Rn defined by

(3.4) τε(x) :=
x

1− 2ε
.

Let us prove the following lemma.

Lemma 3.1. For ε ∈ (0, εn =
n
√

2 − 1

2 n
√

2
] let τε be the dilatation defined in (3.4).

Let f ∈ L1(Rn) be a function such that suppf ⊂ BR(0) and let us set fε := f ◦τε.
Then fε ∈ L1(Rn) and fε → f strongly in L1(Rn) as ε→ 0.

Remark 3.3. In the proof of Lemma 3.1, given a measurable set A ⊂ Rn with
finite measure, we need to control the measure of τε(A) in term of the measure

of A, so we consider the condition ε ≤
n
√

2− 1

2 n
√

2
which means

1

(1− 2ε)n
≤ 2 and

implies |τε(A)| ≤ 2 |A|.

Proof. By changing variables
∫
Rn fε(x) dx = (1−2ε)n

∫
Rn f(y) dy, thus fε ∈ L1(Rn).

By the absolute continuity of the integral of f ∈ L1(Rn), for every ζ > 0 there
exists δ > 0 such that

∫
E
|f(x)| dx < ζ for every measurable set E ⊂ Rn with

|E| < δ. In addition, using Lusin’s theorem with δ/4 > 0 there exist a function
g ∈ C0

0 (BR), extended to zero outside BR, and a set A ⊂ BR with |A| < δ/4 such
that g = f a.e. on Rn \A.

We want to show that for every ζ > 0 there exists 0 < ε̄ < εn sufficiently small
such that for every ε ∈ (0, ε̄) we have

(3.5)

∫
Rn
|fε(x)− f(x)| dx < 3ζ

which proves the lemma. Since fε(x) = g(τε(x)) a.e. on Rn \ τ−1
ε (A), we can write∫

Rn
|fε(x)− f(x)| dx =(3.6)

=

∫
Rn\(A∪τ−1

ε (A))

|g(τε(x))− g(x)| dx+

∫
A∪τ−1

ε (A)

|fε(x)− f(x)| dx

≤
∫
Rn
|g(τε(x))− g(x)| dx+

∫
A∪τ−1

ε (A)

|fε(x)− f(x)| dx = I1 + I2 .

By Remark 3.3 we have that |τε(A)| < δ/2, while |τ−1
ε (A)| ≤ |A| < δ/4, so that

|A ∪ τ−1
ε (A)| < δ/2 and |τε(A ∪ τ−1

ε (A))| = |τε(A) ∪ A| < 3δ/4. Therefore, by
changing variables

I2 ≤
∫
A∪τ−1

ε (A)

|fε(x)| dx+

∫
A∪τ−1

ε (A)

|f(x)| dx(3.7)

≤
∫
τε(A∪τ−1

ε (A))

|f(y)| dy +

∫
A∪τ−1

ε (A)

|f(x)| dx ≤ 2ζ .

In order to estimate I1, notice that by continuity g(τε(x))→ g(x) for every x ∈ Rn,
while by changing variables

∫
Rn |g(τε(x))|dx = (1−2ε)n

∫
Rn |g(y)|dy →

∫
Rn |g(x)| dx.
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A well-known result on L1-convergence assures that g(τε(x)) → g(x) strongly in
L1(Rn), then there exists 0 < ε̄ < εn such that I1 < ζ for every ε ∈ (0, ε̄) which,
together with (3.6) and (3.7), proves (3.5). �

To prove the following approximation lemma we adapt the proof of [15, Propo-
sition 3.1] (see also [20] for related results).

Lemma 3.2. Let us consider a ball B = BR(x0) b Ω and a function φ ∈W 1,p
0 (BR)

such that H(x,Dφ) ∈ L1(BR), with the function H defined in (1.8) and the modulus
of continuity ωa(·) of the function a(·) satisfying assumption (3.1).

Then there exists a sequence {φk} ⊂ C∞0 (BR) such that Dφk → Dφ a.e. and

(3.8) H(x,Dφk)→ H(x,Dφ) strongly in L1(BR) .

Remark 3.4. Notice that φk → φ strongly in W 1,p(BR): by (2.45) we estimate

|Dφk −Dφ|p ≤ H(x,Dφk −Dφ) ≤ 2p+1
(
H(x,Dφk) +H(x,Dφ)

)
,

and the conclusion follows from a well-known variant of the Lebesgue’s dominated
convergence theorem and Poincaré inequality in W 1,p

0 .

Proof. By dilatation and translation we reduce to the case B = B1(0) = B1. We
consider the function a(x) only on B1 (the modulus of continuity ωa results modified
by a factor R if R > 1, otherwise it remains exactly the same): we can extend the
function a(x) as a continuous non-negative function on the whole Rn, with the same
modulus of continuity ωa(·), by taking a(x) = infy∈B1{a(y) + ωa(|x− y|)}.

We first take the null extension of φ outside B1 assuming that φ ∈ W 1,p
0 (Rn)

and H(x,Dφ) ∈ L1(Rn). We then consider a family {ηε} of standard, radially
symmetric mollifiers: ηε ∈ C∞0 (Bε) such that 0 ≤ ηε ≤ c(n)/εn and

∫
Bε(0)

ηε dx =

1. Fixed εn as in Lemma 3.1, for every ε ∈ (0, εn) with in addition ε sufficiently
small to satisfy (3.14) let τε be the dilatation as in (3.4); notice that ε < 1/6 and

(3.9) (1− 2ε)−1 < 3/2 .

Let us define φ̃ε(x) = φ(τε(x)): we have φ̃ε ∈W 1,p
0 (B1), supp φ̃ε ⊂ B1−2ε and

(3.10)
(∫
B1

|Dφ̃ε(x)|p dx
)1/p ≤ 3

2

(∫
B1

|Dφ(y)|p dy
)1/p

.

Accordingly for x ∈ Rn we define ãε (x) = a (τε(x)); by changing variables and

(2.10) we obtain that ãε(x) |Dφ̃ε(x)|p log(e+ |Dφ̃ε(x)|) ∈ L1(B1).

Finally we consider the mollification φε = φ̃ε ∗ ηε ∈ C∞0 (B1−ε) and introduce
the auxiliary functions

(3.11) aε(x) := inf
y∈Bε(x)

ãε(y) and Hε(x, z) := |z|p + aε(x) |z|p log(e+ |z|) ,

for every x ∈ B1 and z ∈ Rn.
In order to prove (3.8) we want to apply the Lebesgue’s dominated convergence

theorem to a suitable subsequence of H(·, Dφε(·)). To this aim, for every x ∈ B1−ε,

by Jensen inequality, the definition of the function φ̃ε, (2.44) for Hε, (3.9), the
definition (3.11) of the function aε(·) and the definition of convolution we estimate

Hε(x,Dφε(x)) ≤
∫
Bε(x)

Hε(x,Dφ̃ε(y)) ηε(x− y) dy

≤ (1− 2ε)−(p+1)

∫
Bε(x)

Hε(x,Dφ(τε(y))) ηε(x− y) dy

≤ 2p+1

∫
Bε(x)

H(τε(y), Dφ(τε(y))) ηε(x− y) dy(3.12)

= 2p+1
[
H(τε(·), Dφ(τε(·))) ∗ ηε

]
(x) .
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By Hölder’s inequality with conjugate exponents p and p/(p−1) and (3.10) we may
control the gradient of φε:

|Dφε(x)| ≤
∫
Bε(x)

|Dφ̃ε(y)| ηε(x− y) dy

≤
(∫
Bε(x)

|Dφ̃ε(y)|p dy
)1/p (∫

Bε(x)

(ηε(x− y))p/(p−1) dy
)1−1/p

≤
(∫
B1

|Dφ̃ε(y)|p dy
)1/p c(n)

εn
|Bε|1−1/p ≤

c(n, p)‖Dφ‖Lp(B1)

εn/p
.(3.13)

Thus, if ε is sufficiently small to verify

(3.14) εn/p ≤ min{ c
e
,

1

c
}

where c = c(n, p)‖Dφ‖Lp(B1) is the constant in (3.13), using (3.13), (2.9) and (2.12),
we obtain that

log(e+ |Dφε(x)|) ≤ log(e+
c(n, p)‖Dφ‖Lp(B1)

εn/p
)(3.15)

≤ 2 log(
c(n, p)‖Dφ‖Lp(B1)

εn/p
)

≤ 4 log(
1

εn/p
) = 4

n

p
log(

1

ε
) .

In addition, by the definition (3.11) of the function aε(·), the concavity of ωa(·) and
(3.9), for every x ∈ B1−ε we can prove that

(3.16) |a(x)− aε(x)| ≤ 4ωa(ε)

since the distance between x and τε(y) is bounded by 4 ε for every y ∈ Bε(x).
Finally, from (3.16) and (3.15) we estimate

H(x,Dφε(x)) ≤ |a(x)− aε(x)| |Dφε(x)|p log(e+ |Dφε(x)|) +Hε(x,Dφε(x))

≤ c(n, p) ωa(ε) log(
1

ε
) |Dφε(x)|p +Hε(x,Dφε(x))

≤ c(n, p)L̃ Hε(x,Dφε(x))

recalling assumption (3.1) on ωa(·). Then (3.12) implies that

(3.17) H(x,Dφε(x)) ≤ c(n, p, L̃)
[
H(τε(·), Dφ(τε(·))) ∗ ηε

]
(x) ,

where

(3.18) H(τε(·), Dφ(τε(·))) ∗ ηε → H(·, Dφ(·)) strongly in L1(B1) as ε→ 0 .

Indeed Lemma 3.1, applied to f(·) = H(·, Dφ(·)) ∈ L1(Rn) with supp f ⊂ B1(0),
guarantees that H(τε(·), Dφ(τε(·))) → H(·, Dφ(·)) strongly in L1(B1) and (3.18)
follows by well-known properties of convolution.

It remains to select a suitable subsequence {εk} converging to zero such that,
setting φk := φεk , it results Dφk → Dφ a.e., so that

(3.19) H(x,Dφk(x))→ H(x,Dφ(x)) a.e. ;

then (3.17), (3.18) and (3.19) allow to apply a well-known variant of the Lebesgue’s
dominated convergence theorem to the sequence H(x,Dφk(x)) obtaining (3.8) and
the proof of the lemma is complete. To obtain (3.19), let us show that

(3.20) Dφε → Dφ strongly in L1(B1) .

As Dφε = Dφ̃ε ∗ ηε by well-known properties of convolution it is enough to prove
that Dφ̃ε → Dφ strongly in L1(B1). Since Dφ̃ε(·) = (1 − 2ε)−1Dφ(τε(·)) and
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Dφ(τε(·)) → Dφ(·) strongly in L1(B1) by Lemma 3.1 now applied to f = Dφ ∈
L1(Rn), by changing variables we estimate

‖Dφ̃ε −Dφ‖L1 ≤ 2ε‖Dφ‖L1 + ‖Dφ(τε(·)))−Dφ(·)‖L1

which proves (3.20). �

4. Gradient Hölder regularity

In this section we prove the last two assertions of Theorem 1.2.
In order to prove higher regularity results, as pointed out in the introduction,

from now on let us assume that also the coefficient b(·, ·) is uniformly continuous
and let ωb(·) be a modulus of continuity of b(· , ·) as defined in (1.13). First, we

prove, in Paragraph 4.3 below, that u ∈ C0,α
loc (Ω) for every α ∈ (0, 1) assuming that

l = 0 (with l defined in (1.14)). Then, in Paragraph 4.4, we shall finally prove the
Hölder gradient continuity of minimizers assuming that a(·) and b(·, ·) are Hölder
continuous.

4.1. Comparison lemma. In this paragraph we prove a comparison lemma (see
Lemma 4.2 below), where we estimate the distance between a minimizer of P and
a minimizer of a frozen functional obtained by freezing both variables x and w.

Before going on, let us premise a few basic facts on minimizers of frozen func-
tionals obtained by P and let us prove the validity of the weak formulation of the
Euler-Lagrange equation of such frozen functionals, specifying the class of admissi-
ble test functions.

Let u ∈ W 1,p(Ω) be a local minimizer of P and let BR ≡ BR(x0) b Ω be a ball
with radius R > 0. By Theorem 3.1 we have that u ∈ C0(BR) and we can denote
u0 := u(x0). Finally, let v̄ ∈ W 1,p(BR/2) and v ∈ W 1,p(BR/4) be the solutions of
the following Dirichlet problems:

(4.1)

 v̄ 7→ min
w

∫
BR/2

b(x, u0) H(x,Dw) dx

w ∈ u+W 1,p
0 (BR/2) ,

(4.2)

 v 7→ min
w

∫
BR/4

b(x0, u0) H(x,Dw) dx

w ∈ v̄ +W 1,p
0 (BR/4) .

Remark 4.1. Problems (4.1) and (4.2) are well-posed. The existence of a mini-
mizer follows from the Direct Methods of the Calculus of Variations: the functional
F defined in (1.9) is l.s.c. in the weak topology of W 1,p and coercive on the Dirich-

let classes u + W 1,p
0 (BR/2) and v̄+W 1,p

0 (BR/4). In addition, thanks to the bounds
(1.11) on b(·, ·) we get∫

BR/2

b(x, u0)H(x,Du) dx ≤ L
∫
BR

H(x,Du) dx <∞ ,

and this fact guarantees that problem (4.1) has a minimizer because the func-
tion u belongs to the class of competitors with finite energy in the Dirichlet class
u + W 1,p

0 (BR/2). Further, by the minimality of v̄ and again (1.11), we obtain∫
BR/4

H(x,Dv̄) dx ≤
∫
BR/2

H(x,Dv̄) dx ≤ 1

ν

∫
BR/2

b(x, u0)H(x,Dv̄) dx(4.3)

≤ 1

ν

∫
BR/2

b(x, u0)H(x,Du) dx ≤ L

ν

∫
BR

H(x,Du) dx <∞ ,



REGULARITY FOR MINIMIZERS OF DOUBLE PHASE FUNCTIONALS 19

thus also problem (4.2) has a minimizer because the function v̄ belongs to the class

of competitors with finite energy in the Dirichlet class v̄ +W 1,p
0 (BR/4).

Notice that the minimality of v and (4.3) imply that

(4.4)

∫
BR/4

H(x,Dv) dx ≤
∫
BR/2

H(x,Dv̄) dx ≤ L

ν

∫
BR

H(x,Du) dx <∞ ,

so both energies of v and v̄ can be estimated by the energy of the minimizer u; in
particular H(·, Dv(·)) ∈ L1(BR/4) and H(·, Dv̄(·)) ∈ L1(BR/2).

Remark 4.2. Let us remark that the minimizers v̄ and v of the Dirichlet problems
(4.1) and (4.2) are in particular local minimizers of the functional P defined in
(1.10) respectively on Ω = BR/2 with b(x,w(x)) = b(x, u0) and on Ω = BR/4 with
b(x,w(x)) = b(x0, u0). Thus, by Theorem 3.1 we have that v̄ and v are continuous
at every point in the interior of BR/2 and BR/4 respectively. In addition, we point
out that the function v is also a local minimizer of the functional Plog defined
in (1.6) on Ω = BR/4 and this fact allows us to apply the results in [4] to the
minimizer v.

Remark 4.3. We can show that the Euler-Lagrange equations

(4.5)

∫
BR/4

〈∂zH(x,Dv), Dφ〉 dx = 0

(4.6)

∫
BR/2

b(x, u0)〈∂zH(x,Dv̄), Dφ〉 dx = 0

are valid for every φ ∈ W 1,p
0 (BR/4) with H(·, Dφ(·)) ∈ L1(BR/4) for (4.5) and for

every φ ∈W 1,p
0 (BR/2) with H(·, Dφ(·)) ∈ L1(BR/2) for (4.6).

Let us prove (4.6) since with exactly the same arguments we can prove (4.5).
We argue by approximation since it is well known that the equation holds for
every φ ∈ C∞0 (BR/2). Let φ ∈ W 1,p

0 (BR/2) such that H(·, Dφ(·)) ∈ L1(BR/2): by
Lemma 3.2 there exists a sequence {φk} ⊂ C∞0 (BR/2) such that Dφk → Dφ a.e.
and

H(·, Dφk(·))→ H(·, Dφ(·)) strongly in L1(BR/2) .

Using (1.11) and (2.48), with z = Dv̄ and λ = Dφk, we estimate on BR/2

| b(x, u0)〈∂zH(x,Dv̄), Dφk〉 | ≤ Lc(p)
(
H(x,Dv̄) +H(x,Dφk)

)
and we can conclude the strong convergence in L1(BR/2) of

b(·, u0)〈∂zH(·, Dv̄(·)), Dφk(·)〉 → b(·, u0)〈∂zH(·, Dv̄(·)), Dφ(·)〉

by a well-known variant of the Lebesgue’s dominated convergence theorem. There-
fore, since every φk satisfies (4.6) also φ does.

For the solutions v̄ and v of the Dirichlet problems (4.1) and (4.2) a maximum
principle holds.

Lemma 4.1. Let u ∈ W 1,p(Ω) be a local minimizer of P and let v̄ ∈ W 1,p(BR/2)

and v ∈W 1,p(BR/4) be the solutions of the Dirichlet problems (4.1) and (4.2); then

min
∂BR/2

u ≤ v̄(x) ≤ max
∂BR/2

u for every x ∈ BR/2 ,(4.7)

min
∂BR/4

v̄ ≤ v(x) ≤ max
∂BR/4

v̄ for every x ∈ BR/4 .(4.8)



20 A. COSCIA

Remark 4.4. Recalling (2.2), from Lemma 4.1 it follows immediately that

(4.9) osc
BR/2

v̄ ≤ osc
BR/2

u and |v̄(x)− u(y)| ≤ osc
BR/2

u

for every x, y ∈ BR/2. In addition v̄ ∈ L∞(BR/2), v ∈ L∞(BR/4) and

‖v‖L∞(BR/4) ≤ ‖v̄‖L∞(BR/2) ≤ ‖u‖L∞(BR/2) .

Proof. Recalling that u is continuous on BR/2, let us set k = max
∂BR/2

u and define

φ := max{v̄ − k , 0}. By (2.5) we have that φ ∈W 1,p(BR/2) with

(4.10) Dφ =

{
Dv̄ a.e. on {v̄ > k}
0 a.e. on {v̄ ≤ k} .

Let us prove that φ ∈ W 1,p
0 (BR/2) by constructing a sequence in W 1,p

0 (BR/2) con-

verging to φ in W 1,p(BR/2). By assumption v̄− u ∈W 1,p
0 (BR/2), then there exists

a sequence {uh} ⊂ C∞0 (BR/2) such that uh → v̄−u strongly in W 1,p(BR/2), so the

sequence {vh = uh + u} ⊂ C0(BR/2) ∩W 1,p(BR/2) is such that vh → v̄ strongly in

W 1,p(BR/2) and vh(x) ≤ k for every x ∈ ∂BR/2. Therefore (see for instance [9, The-

orem 9.17]), we can consider in W 1,p
0 (BR/2) the sequence φh = max{vh−k, 0}: (2.6)

implies that φh → φ strongly in W 1,p(BR/2) and this proves that φ ∈W 1,p
0 (BR/2).

In addition, by (4.10) and (4.4) we get immediately that H(x,Dφ) ∈ L1(BR/2).
Testing Euler-Lagrange equation (4.6) with the function φ and using (1.11) and
(2.47) we obtain

0 =

∫
BR/2

b(x, u0) 〈∂zH(x,Dv̄), Dφ〉 dx

=

∫
BR/2∩{v̄ > k}

b(x, u0) 〈∂zH(x,Dφ), Dφ〉 dx

≥ ν p
∫
BR/2

|Dφ|p + a(x) |Dφ|p log(e+ |Dφ|) dx ≥ ν p
∫
BR/2

|Dφ|p dx ,

which means that Dφ = 0 a.e. on BR/2; as φ ∈ W 1,p
0 (BR/2) we obtain φ = 0

a.e. on BR/2. Since v̄ is continuous on BR/2 by Remark 4.2, we conclude that
max{v̄(x) − k , 0} = 0 for every x ∈ BR/2 and the right-hand estimate in (4.7)
is proven. Setting k = min

∂BR/2
u and testing with φ := min{v̄ − k , 0} analogous

calculations conclude the proof of (4.7).
Finally, by Remark 4.2 the function v̄ is continuous on BR/4 and if we set

k = max
∂BR/4

v̄ (k = min
∂BR/4

v̄) and define φ := max{v − k , 0} (φ := min{v − k , 0})

with exactly the same arguments we can prove (4.8) and the proof of the lemma is
complete. �

In the following L̃ denotes a finite constant such that (3.1) holds.
Every local minimizer u ∈ W 1,p(Ω) of the functional P is locally bounded by

Theorem 3.1. Since all our results are local in nature, without loss of generality
we assume for the rest of the paper that u ∈ L∞(Ω). Thus, by Theorem 3.1 and
Remark 3.1 we have that

(4.11) u ∈ C0,β
loc (Ω) ,

for an exponent β ∈ (0, 1) depending on n, p, ν, L, L̃, ‖u‖L∞(Ω).

Now, let us fix Ω′ b Ω, let us set d := dist(Ω′, ∂Ω) and consider the open set
Ω′d := {x ∈ Ω : dist(x,Ω′) < d/2}. Then u ∈ C0,β(Ω′d) and by Remark 3.1 we may
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assume that (2.3) holds with a constant Cβ ≥ 1 depending on n, p, ν, L, L̃, ‖u‖L∞(Ω),
dist(Ω′, ∂Ω). In particular for every ball BR(x0) with center x0 ∈ Ω′ and radius
R ≤ d/4 we have that

(4.12) |u(x)− u(y)| ≤ Cβ |x− y|β

for every x, y ∈ BR(x0) and a constant Cβ independent on the ball we consider.

Now we can state and prove our comparison lemma.

Lemma 4.2 (Comparison). Let u ∈ W 1,p(Ω) ∩ L∞(Ω) be a local minimizer of
P such that H(·, Du(·)) ∈ L1(Ω), let Ω′ b Ω, let d := dist(Ω′, ∂Ω) and let
BR ≡ BR(x0) be a ball with center x0 ∈ Ω′ and radius R ≤ min{1,d/4}. Let
ωa(·) and ωb(·) be the modulus of continuity of a(·) and b(·, ·) respectively as defined
in (1.12) and (1.13), with the only assumption (3.1), let β ∈ (0, 1) be the Hölder
exponent of u as in (4.11) and let v ∈ W 1,p(BR/4) be the solution of the Dirichlet
problem (4.2). Then the inequality∫

BR/4

(|Vp(Du)− Vp(Dv)|2 + a(x)|Vlog(Du)− Vlog(Dv)|2) dx

≤ c ωb(Rβ)

∫
BR

H(x,Du) dx(4.13)

holds for a constant c = c(n, p, ν, L, L̃, ‖u‖L∞(Ω),dist(Ω′, ∂Ω)).

Proof. The proof of the comparison lemma consists of two steps, by freezing one
variable at time: more precisely we consider the minimizer v̄ of the Dirichlet prob-
lem (4.1) and we prove two comparison estimates, the first one between v and v̄
and the second one between v̄ and u. We stress that in Step 1 we make use of
the Euler-Lagrange equations of v and v̄, while in Step 2 we will use Lemma 2.3
since, due to the lack of differentiability of the functional P, the Euler equation of
u cannot even be written.

Step 1 Let v̄ ∈W 1,p(BR/2) be the minimizer of the Dirichlet problem (4.1): the
following comparison estimate between v and v̄ holds:∫

BR/4

[
|Vp(Dv̄)− Vp(Dv)|2 + a(x)|Vlog(Dv̄)− Vlog(Dv)|2

]
dx

≤ c(p, ν, L)ωb(R)

∫
BR

H(x,Du) dx .(4.14)

Since both v and v̄ are minimizers, we can use the corresponding Euler-Lagrange
equations (4.5) and (4.6). We can test with φ = v̄ − v ∈ W 1,p

0 (BR/4) (extended to

0 on BR/2 \BR/4) since (2.45) and (4.4) guarantees that H(x,Dφ) ∈ L1(BR/4):∫
BR/4

b(x, u0)〈∂zH(x,Dv̄), Dv̄ −Dv〉 dx(4.15)

−
∫
BR/4

b(x0, u0)〈∂zH(x,Dv), Dv̄ −Dv〉 dx = 0 .

Using (2.48) of Lemma 2.2, with z = Dv̄(x) and λ = Dv̄(x) − Dv(x), and (2.45)
we may estimate

(4.16) |〈∂zH(x,Dv̄), Dv̄ −Dv〉| ≤ c(p)
(
H(x,Dv̄) +H(x,Dv)

)
,

thus in (4.15) we can add and substract the integral∫
BR/4

b(x0, u0)〈∂zH(x,Dv̄), Dv̄ −Dv〉 dx ,
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which is finite by (4.16) and (4.4), obtaining

D1 :=

∫
BR/4

b(x0, u0)〈∂zH(x,Dv̄)− ∂zH(x,Dv), Dv̄ −Dv〉 dx

=

∫
BR/4

[ b(x0, u0)− b(x, u0) ] 〈∂zH(x,Dv̄), Dv̄ −Dv〉 dx := D2 .

Since, by (2.33), we can compute

D1 = b(x0, u0)

∫
BR/4

〈∂f(Dv̄)− ∂f(Dv), Dv̄ −Dv〉

+ a(x)〈∂g(Dv̄)− ∂g(Dv), Dv̄ −Dv〉 dx ,
using (2.34) and (2.35), with z1 = Dv̄(x) and z2 = Dv(x), and the bounds (1.11)
on b(·, ·), we can estimate D1 from below obtaining that
(4.17)

ν

c(p)

∫
BR/4

[
|Vp(Dv̄)− Vp(Dv)|2 + a(x)|Vlog(Dv̄)− Vlog(Dv)|2

]
dx ≤ D1 = |D2| .

Recalling the definition (1.13) of ωb(·), by (4.16) and (4.4) we can estimate |D2| as

|D2| ≤
∫
BR/4

∣∣b(x0, u0)− b(x, u0)
∣∣ ∣∣〈∂zH(x,Dv̄), Dv̄ −Dv〉

∣∣ dx(4.18)

≤ c(p)ωb ( |x− x0| )
∫
BR/4

[
H(x,Dv̄) + H(x,Dv)

]
dx

≤ c(p, L, ν) ωb(R)

∫
BR

H(x,Du) dx .

Putting together (4.17) and (4.18) the proof of the comparison estimate (4.14)
is complete for a constant c ≡ c(p, ν, L).

Step 2 The following comparison estimate between v̄ and u holds:∫
BR/2

[
|Vp(Du)− Vp(Dv̄)|2 + a(x)|Vlog(Du)− Vlog(Dv̄)|2

]
dx

≤ c ωb(Rβ)

∫
BR

H(x,Du) dx ,(4.19)

where β is the Hölder exponent of u as in (4.11) and the constant c depends on

n, p, ν, L, L̃, ‖u‖L∞(Ω),dist(Ω′, ∂Ω).

All the integrals we will consider in the following calculations are finite by
(4.4). Using Lemma 2.3 with v = u0, z1 = Du(x), z2 = Dv̄(x), and the Euler-

Lagrange equation (4.6) for v̄ (tested with φ = u − v̄ ∈ W 1,p
0 (BR/2) such that

H(x,Dφ) ∈ L1(BR/2) by (2.45) and (4.4)), we obtain that

1

c(p, ν)

∫
BR/2

[
|Vp(Du)− Vp(Dv̄)|2 + a(x)|Vlog(Du)− Vlog(Dv̄)|2

]
dx

≤
∫
BR/2

[
h(x, u0, Du)− h(x, u0, Dv̄)− 〈∂zh(x, u0, Dv̄), Du−Dv̄〉

]
dx

=

∫
BR/2

[
b(x, u0)H(x,Du)− b(x, u0)H(x,Dv̄)

]
dx

−
∫
BR/2

b(x, u0) 〈∂zH(x,Dv̄), Du−Dv̄〉 dx

=

∫
BR/2

[
b(x, u0)H(x,Du)− b(x, u0)H(x,Dv̄)

]
dx(4.20)
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=

∫
BR/2

[ b(x, u0)− b(x, u(x)) ]H(x,Du) dx

+

∫
BR/2

[
b(x, u(x))H(x,Du)− b(x, v̄(x))H(x,Dv̄)

]
dx

+

∫
BR/2

[ b(x, v̄(x))− b(x, u0) ]H(x,Dv̄) dx

= I1 + I2 + I3 .

Since u is a local minimizer of the functional P defined in (1.10) we get I2 ≤ 0. Using
the definition (1.13) of the modulus of continuity ωb(·), the maximum principle (4.9)
and (4.4) we estimate

I1 + I3 ≤
∫
BR/2

∣∣b(x, u0)− b(x, u(x))
∣∣H(x,Du) dx

+

∫
BR/2

∣∣b(x, v̄(x))− b(x, u0)
∣∣H(x,Dv̄) dx(4.21)

≤
∫
BR/2

ωb(|u0 − u(x)|)H(x,Du) dx+

∫
BR/2

ωb(|v̄(x)− u0|)H(x,Dv̄) dx

≤ ωb( osc
BR/2

u)

∫
BR/2

H(x,Du) dx+ ωb( osc
BR/2

u)

∫
BR/2

H(x,Dv̄) dx

≤ (1 +
L

ν
) ωb( osc

BR/2
u)

∫
BR

H(x,Du) dx .

Recalling that (4.12) means that osc
BR/2

u ≤ Cβ R
β for a constant Cβ ≥ 1 depending

on n, p, ν, L, L̃, ‖u‖L∞(Ω),dist(Ω′, ∂Ω), and the concavity of ωb(·) we obtain

(4.22) ωb( osc
BR/2

u) ≤ ωb(Cβ Rβ) ≤ Cβ ωb(Rβ) .

From (4.20), (4.21) and (4.22) we deduce that the comparison estimate (4.19) holds

with a constant c = c(n, p, ν, L, L̃, ‖u‖L∞(Ω),dist(Ω′, ∂Ω)).

From (4.14) and (4.19), since R ≤ Rβ and ωb(·) is increasing, we deduce imme-
diately the comparison estimate (4.13). �

4.2. Decay estimate. Thanks to the previous comparison lemma, we deduce a
decay lemma for the minimizer of P.

Lemma 4.3 (Decay). Let u ∈ W 1,p(Ω) ∩ L∞(Ω) be a local minimizer of P such
that H(·, Du(·)) ∈ L1(Ω), let Ω′ b Ω, let d := dist(Ω′, ∂Ω) and let BR ≡ BR(x0)
be a ball with center x0 ∈ Ω′ and radius R ≤ min{1/8,d/4}. Moreover, let ωa(·)
and ωb(·) be as in (1.12) and (1.13) with the additional assumption (3.1), and let
β ∈ (0, 1) be the Hölder exponent of u as in (4.11). Then the inequality∫

B%

H(x,Du) dx ≤ cd
[( %
R

)n
+ ωa(R) log

(
1

R

)
+ ωb(R

β)

] ∫
BR

H(x,Du) dx(4.23)

holds for a constant cd ≡ cd(n, p, ν, L, L̃, ‖H(·, Du(·))‖L1(Ω), ‖u‖L∞(Ω),dist(Ω′, ∂Ω))
for every B% ≡ B%(x0) with 0 < % ≤ R.

Proof. Let us fix a ball BR ≡ BR(x0) with radius R ≤ min{1/8,d/4} and center
x0 ∈ Ω′ and let us denote by v the minimizer of the Dirichlet problem (4.2) on BR/4.
It suffices to prove (4.23) for 0 < % ≤ R/8, indeed for R/8 < % ≤ R the inequality
follows immediately from 8(%/R) > 1. Using estimates (2.27) from below and from
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above and the comparison estimate (4.13), for every 0 < % ≤ R/8 we deduce the
following chain of inequalities:∫

B%

H(x,Du) dx =

∫
B%

|Du|p + a(x)|Du|p log(e+ |Du|) dx

≤
∫
B%

|Vp(Du)|2 + a(x)|Vlog(Du)|2 dx

≤ 2

∫
B%

|Vp(Du)− Vp(Dv)|2 + a(x)|Vlog(Du)− Vlog(Dv)|2 dx

+ 2

∫
B%

|Vp(Dv)|2 + a(x)|Vlog(Dv)|2 dx

≤ c ωb(Rβ)

∫
BR

H(x,Du) dx+ c(p)

∫
B%

H(x,Dv) dx(4.24)

for a constant c depending on n, p, ν, L, L̃, ‖u‖L∞(Ω),dist(Ω′, ∂Ω). To estimate the
last term appearing in (4.24), let us recall (Remark 4.2) that the function v is a
local minimizer of the functional Plog defined in (1.6) on Ω = BR/4, thus we can
apply the decay estimate in [4, Lemma 5.3] to v on BR/8 obtaining that∫

B%

H(x,Dv) dx ≤ c
[(

%

R/8

)n
+ ωa(R/8) log

(
1

R/8

)]∫
BR/8

H(x,Dv) dx

for every 0 < % ≤ R/8 and for a constant c ≡ c(n, p, ν, L, L̃, ‖H(·, Du(·))‖L1(Ω)),
where we have assumed the dependence of the constant c on ν, L, ‖H(·, Du(·))‖L1(Ω)

instead of ‖Dv‖Lp(BR/4) thanks to Remark 3.2 and (4.4).

By the monotonicity of ωa(·), (2.12) with A = 8, and (4.4) we conclude that

(4.25)

∫
B%

H(x,Dv) dx ≤ c
[( %
R

)n
+ ωa(R) log

(
1

R

)]
L

ν

∫
BR

H(x,Du) dx .

From (4.24) and (4.25) we deduce the decay estimate (4.23) holds with a constant

cd ≡ cd(n, p, ν, L, L̃, ‖H(·, Du(·))‖L1(Ω), ‖u‖L∞(Ω),dist(Ω′, ∂Ω)). �

4.3. Hölder continuity of minima. In this paragraph we prove the second asser-
tion in Theorem 1.2. Therefore we consider local minimizers u ∈W 1,p(Ω)∩ L∞(Ω)
of the functional P defined in (1.10) with also H(·, Du(·)) ∈ L1(Ω) and we prove

that u ∈ C0,α
loc (Ω) for every α ∈ (0, 1). To get this result we need the additional

assumption

(4.26) lim sup
r→0

ωa(r) log

(
1

r

)
= 0

on the modulus of continuity ωa(·) of the coefficient a(·) (see (1.12)). Since by the
definition (1.13) of the modulus of continuity ωb(·) of the coefficient b(·, ·) we have
that limr→0 ωb(r) = 0, it follows that also

(4.27) lim
r→0

ωb(r
β) = 0 ,

where β is the Hölder exponent of the minimizer u which appears in the comparison
and decay estimates.

First, we prove the following Morrey type estimate.

Lemma 4.4. Let u ∈ W 1,p(Ω) ∩ L∞(Ω) be a local minimizer of P such that
H(·, Du(·)) ∈ L1(Ω), let the modulus of continuity ωa(·) of a(·) satisfy assump-
tion (4.26) and let ωb(·) be the modulus of continuity of b(·, ·). Then for every

Ω′ b Ω and every δ ∈ (0, n), there exist positive constants cdec ≡ cdec(n, p, ν, L, L̃,



REGULARITY FOR MINIMIZERS OF DOUBLE PHASE FUNCTIONALS 25

‖H(·, Du(·))‖L1(Ω), ‖u‖L∞(Ω),dist(Ω′, ∂Ω), δ) and R0 ≤ min{1/8,dist(Ω′, ∂Ω)/4}
with

(4.28) R0 ≡ R0(n, p, ν, L, L̃, ‖H(·, Du(·))‖L1(Ω), ‖u‖L∞(Ω),dist(Ω′, ∂Ω), δ) ,

such that the decay estimate

(4.29)

∫
B%

H(x,Du) dx ≤ cdec

( %
R

)n−δ ∫
BR

H(x,Du) dx

holds whenever 0 < % ≤ R ≤ R0 and B% ⊂ BR are concentric balls with center in
x0 ∈ Ω′.

Proof. Let us fix Ω′ b Ω and δ ∈ (0, n); let us set R̄ = min{1/8,dist(Ω′, ∂Ω)/4}
and for any x0 ∈ Ω′ consider the function φ : [0, R̄]→ [0,∞) defined as

φ(%) ≡
∫
B%

H(x,Du) dx .

Thanks to (4.23) we can apply Lemma 2.5 to the function φ with c0 = cd, obtain-

ing ε0 > 0 depending on (n, δ, cd) that is ε0 ≡ ε0(n, p, ν, L, L̃, ‖H(·, Du(·))‖L1(Ω),
‖u‖L∞(Ω),dist(Ω′, ∂Ω), δ). Since the conclusion of Lemma 2.5 holds only if ε ≤ ε0,
using (4.26) and (4.27) we have to fix 0 < R0 ≤ min{1/8,dist(Ω′, ∂Ω)/4} such that

ωa(R) log (1/R) + ωb(R
β) ≤ ε0 for every 0 < R ≤ R0

with R0 ≡ R0(n, p, ν, L, L̃, ‖H(·, Du(·))‖L1(Ω), ‖u‖L∞(Ω),dist(Ω′, ∂Ω), δ).
Therefore

φ(%) ≤ cd
[ ( %
R

)n
+ ε0

]
φ(R)

for every 0 < % ≤ R ≤ R0, so Lemma 2.5, together with the generality of x0, gives

(4.30) φ(%) ≤ c1
( %
R

)n−δ
φ(R)

whenever 0 < % ≤ R ≤ R0 and B% ⊂ BR are concentric balls with center in Ω′,
with a constant c1 ≡ c1(n, δ, cd). Inequality (4.30) is exactly (4.29) with a constant

cdec ≡ cdec(n, p, ν, L, L̃, ‖H(·, Du(·))‖L1(Ω), ‖u‖L∞(Ω),dist(Ω′, ∂Ω), δ) and the proof
of the lemma is complete. �

The Hölder regularity of u follows from the integral characterization of Hölder
continuity due to Campanato (see Lemma 2.4). Indeed, fixed Ω′ b Ω, by Poincaré
inequality and the decay estimate (4.29) we obtain∫

B%(x0)

∣∣∣∣u− (u)Bρ
ρ

∣∣∣∣p dx ≤ c(n)

∫
B%(x0)

|Du|p dx(4.31)

≤ c(n)

∫
B%(x0)

H(x,Du) dx ≤ c
( %
R

)n−δ ∫
BR(x0)

H(x,Du) dx

for every δ ∈ (0, n), every x0 ∈ Ω′, for every 0 < % ≤ R ≤ R0 and for a constant c ≡
c(n, p, ν, L, L̃, ‖H(·, Du(·))‖L1(Ω), ‖u‖L∞(Ω),dist(Ω′, ∂Ω), δ). Considering δ ∈ (0, p)
and α = 1− δ/p, inequality (4.31) can be rewritten as

(4.32)

∫
B%(x0)

∣∣u− (u)Bρ
∣∣p dx ≤ c 1

Rn−δ
%pα+n

∫
BR(x0)

H(x,Du) dx .

Thus, there exist positive constants %0 = R0 and c0 such that, using (4.32) with
R = %0

(4.33)

∫
B%(x0)

∣∣u− (u)Bρ
∣∣p dx ≤ [ c 1

%0
n−δ

∫
Ω

H(x,Du) dx
]
%pα+n = c0 %

pα+n
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for a constant c0 ≡ c0(n, p, ν, L, L̃, ‖H(·, Du(·))‖L1(Ω), ‖u‖L∞(Ω),dist(Ω′, ∂Ω), δ), for
every x0 ∈ Ω′ and every 0 < % ≤ %0. As Ω′ b Ω is arbitrary, Lemma 2.4 implies
that u ∈ C0,α

loc (Ω); since δ can be taken arbitrarily close to zero we can reach any

α ∈ (0, 1) and conclude that u ∈ C0,α
loc (Ω) for every α ∈ (0, 1).

In addition, fixed Ω′ b Ω, for every BR(x0) ⊂ Ω′ with R ≤ R0 and every
α ∈ (0, 1) we may estimate the Hölder seminorm of u (see (2.4)) as

(4.34) [u]C0,α(BR/2) ≤ c

(
Rp(1−α)

∫
BR

H(x,Du) dx

)1/p

for a constant c ≡ c (n, p, α, ν, L, L̃, ‖H(·, Du(·))‖L1(Ω), ‖u‖L∞(Ω),dist(Ω′, ∂Ω)). To
prove (4.34) we estimate [u]Lp,λ(BR/2) with λ = pα+n and then use (2.64). Indeed,

for every x̄ ∈ BR/2 and every 0 < % ≤ R/2, using (2.1), (4.32) in x̄ with R/2 instead
of R and the fact that BR/2(x̄) ⊂ BR(x0), we may estimate

%−λ
∫
BR/2(x0)∩B%(x̄)

|u− (u)BR/2(x0)∩B%(x̄)|p dx ≤ %−λ 2p
∫
B%(x̄)

|u− (u)B%(x̄)|p dx

≤ c Rp(1−α)−n
∫
BR/2(x̄)

H(x,Du) dx ≤ c Rp(1−α)

∫
BR(x0)

H(x,Du) dx .

Otherwise, if % > R/2, using (2.1) and (4.32) in x0 with % = R/2, we obtain

%−λ
∫
BR/2(x0)∩B%(x̄)

|u− (u)BR/2(x0)∩B%(x̄)|p dx

≤ 2p (R/2)−λ
∫
BR/2(x0)

|u− (u)BR/2(x0)|p dx ≤ c Rp(1−α)

∫
BR(x0)

H(x,Du) dx .

Remark 4.5. The fact that the minimizer u belongs to C0,α
loc (Ω) for every α ∈ (0, 1)

allows us to rewrite the comparison estimate (4.13) choosing any β ∈ (0, 1).

4.4. Hölder continuity of the gradient. Here we complete the proof of Theorem
1.2 demonstrating the validity of the third and last assertion, the one concerning
the gradient Hölder continuity of minimizers. Let u ∈W 1,p(Ω)∩L∞(Ω) be a local
minimizer of the functional P such that H(·, Du(·)) ∈ L1(Ω); we prove that, if

(4.35) ωa(R) ≤ L̃1R
σ1 , ωb(R) ≤ L̃2R

σ2 hold for every R ≤ 1

for some σ1, σ2 ∈ (0, 1) and L̃1, L̃2 ≥ 1, then there exists α ∈ (0, 1), depending only
on n, p, σ1, σ2 such that

(4.36) Du ∈ C0,α
loc (Ω,Rn) .

We start showing the following estimate of the excess.

Lemma 4.5. Let Ω′ b Ω and let us set d := dist(Ω′, ∂Ω).
For every ball BR ≡ BR(x0) with center x0 ∈ Ω′ the inequality

(4.37)

∫
B%

|Du− (Du)B% |p dx ≤ ce
[( %
R

)α̃p
+Rσ

(
R

%

)n ] ∫
BR

H(x,Du) dx

holds whenever 0 < % ≤ R ≤ min{1,d/4} and B% ⊂ BR are concentric balls, for an
exponent α̃ ∈ (0, 1) depending only on n and p, an exponent σ ≡ σ(p, σ1, σ2) and for

a constant ce ≡ ce(n, p, ν, L, L̃1, L̃2, σ1, ‖H(·, Du(·))‖L1(Ω), ‖u‖L∞(Ω),dist(Ω′, ∂Ω)).

Proof. Let us fix Ω′ b Ω and BR ≡ BR(x0) with center x0 ∈ Ω′ and radius
R ≤ min{1,d/4}. Let us prove the validity of (4.37) for radii 0 < % ≤ R/4; in the
case R/4 < % ≤ R the inequality follows easily and we discuss it at the end.
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Let v be the solution of the minimum problem (4.2) on BR/4(x0). For every
0 < % ≤ R/4, using (2.1) with z = (Dv)B% we obtain∫

B%

|Du− (Du)B% |p dx ≤ 2p
∫
B%

|Du− (Dv)B% |p dx

≤ 4p
∫
B%

|Dv − (Dv)B% |p dx+ 4p
∫
B%

|Du−Dv|p dx .(4.38)

To estimate the first term in the right-hand side of (4.38), let us recall (Remark 4.2)
that the function v is a local minimizer of the functional Plog defined in (1.6) on
Ω = BR/4(x0). Thanks to the Hölder continuity of a(·) as in the assumption (4.35),
we can apply the estimate (5.24) in [4] to the function v on BR/4(x0) (the assump-

tion R/4 ≤ 1/e is satisfied) with σ = σ1 , L̃ = L̃1, obtaining that there exist positive

constants α̃ ≡ α̃(n, p) ∈ (0, 1) and c ≡ c(n, p, ν, L, L̃1, σ1, ‖H(·, Du(·))‖L1(Ω)) such
that∫

B%

|Dv − (Dv)B% |p dx ≤ c

[(
4%

R

)α̃p
+ (R/4)σ1/4

(
R

4%

)n]∫
BR/4

H(x,Dv) dx ,

where we have assumed the dependence of the constant c on ν, L, ‖H(·, Du(·))‖L1(Ω)

instead of ‖Dv‖Lp(BR/4) thanks to Remark 3.2 and (4.4). Using again (4.4) we
conclude that

(4.39)

∫
B%

|Dv − (Dv)B% |p dx ≤ c
[( %
R

)α̃p
+Rσ1/4

(
R

%

)n] ∫
BR

H(x,Du) dx

for a constant c depending only on n, p, ν, L, L̃1, σ1, ‖H(·, Du(·))‖L1(Ω). As for the
second term in the right-hand side of (4.38), we have two different situations de-
pending on the value of p. If p ≥ 2, by (2.29), the comparison lemma 4.2 with

L̃ = L̃1 and β = 1/2 (see Remark 4.5), and the Hölder continuity of b(·, ·) as in
assumption (4.35), we obtain∫

B%

|Du−Dv|p dx ≤ 4−n
(
R

%

)n ∫
BR/4

|Du−Dv|p dx

≤ c(n, p)

(
R

%

)n ∫
BR/4

|Vp(Du)− Vp(Dv)|2 dx

≤ c

(
R

%

)n
ωb(R

1/2)

∫
BR

H(x,Du) dx

≤ cR
1
2σ2

(
R

%

)n ∫
BR

H(x,Du) dx(4.40)

for some constant c depending on n, p, ν, L, L̃1, L̃2, ‖u‖L∞(Ω),dist(Ω′, ∂Ω).
Instead, when 1 < p < 2, by (2.30), Hölder’s inequality applied with conjugate

exponents 2/p and 2/(2− p), the comparison lemma 4.2 with β = 1/2, again (4.4)
and the Hölder continuity of b(·, ·), we estimate

∫
B%

|Du−Dv|p dx ≤ 4−n
(
R

%

)n ∫
BR/4

|Du−Dv|p dx

(4.41)

≤ c(n, p)
(
R

%

)n ∫
BR/4

|Vp(Du)− Vp(Dv)|p(|Du|+ |Dv|)p(2−p)/2 dx

≤ c
(
R

%

)n(∫
BR/4

|Vp(Du)− Vp(Dv)|2 dx

)p/2(∫
BR/4

(|Du|+ |Dv|)p dx

)(2−p)/2
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≤ c
(
R

%

)n
(ωb(R

1/2))p/2
(∫

BR

H(x,Du) dx

)p/2 (∫
BR

H(x,Du) dx

)(2−p)/2

≤ c
(
R

%

)n
(L̃2R

1
2σ2)p/2

∫
BR

H(x,Du) dx

= cR
1
4pσ2

(
R

%

)n ∫
BR

H(x,Du) dx .

The above inequality again holds for some constant c depending on n, p, ν, L, L̃1L̃2,
‖u‖L∞(Ω),dist(Ω′, ∂Ω). Defining σ := min

{
1
4σ1,

1
2σ2,

1
4σ2p

}
, from (4.38), (4.39),

(4.40) and (4.41), we deduce that (4.37) holds in the case 0 < % ≤ R/4.
Since for R/4 < % ≤ R, using Jensen’s inequality and 4%/R > 1 we easily obtain∫

B%

|Du− (Du)B% |p dx ≤ 2p
∫
B%

|Du|p dx ≤ 2p
∫
B%

H(x,Du) dx

≤ 2p4n
∫
BR

H(x,Du) dx ≤ c(n, p)
( %
R

)α̃p ∫
BR

H(x,Du) dx

the proof of (4.37) is complete. �

Finally let us prove (4.36), that is Du ∈ C0,α
loc (Ω,Rn) for some exponent α ∈ (0, 1)

depending only on n, p, σ1, σ2. We choose

(4.42) ε =
σ

α̃p+ σ + n
∈ (0, 1) and α =

εα̃

2
=

α̃σ

2(α̃p+ σ + n)
∈ (0, 1)

where σ is defined in Lemma 4.5 and depends on p and on the Hölder exponents
σ1, σ2 in (4.35). Notice that ε is chosen in such a way that in (4.44) the exponents
[(1− ε)σ − ε n] and (ε α̃ p) coincide.

For every Ω′ b Ω we set d := dist(Ω′, ∂Ω), we choose δ = εα̃p/[2(1− ε)] ∈ (0, n)
and we determine R0 ≤ min{1/8,d/4} such that the decay estimate (4.29) holds
for every ball BR(x0) with center x0 ∈ Ω′ and 0 < % ≤ R ≤ R0. The value of δ is
chosen to get (1− ε)δ = εα̃p/2 in (4.45).

In order to apply Lemma 2.4 to the gradient Du we show that there exist positive

constants %0 = R
1/(1−ε)
0 ≤ R0 and c0 such that

(4.43)

∫
B%(x0)

|Du− (Du)B% |p dx ≤ c0 %pα+n

holds for every x0 ∈ Ω′ and every 0 < % ≤ %0.
First, notice that % ∈ (0, 1) thus 0 < % ≤ %1−ε ≤ R0, so we can apply (4.37)

between the radii % and R = %1−ε to estimate∫
B%

|Du− (Du)B% |p dx ≤ ce
[
%εα̃p + %(1−ε)σ−εn

] ∫
B%1−ε

H(x,Du) dx(4.44)

= 2 ce %
εα̃p

∫
B%1−ε

H(x,Du) dx

with the constant c = 2 ce ≡ c(n, p, ν, L, L̃1, L̃2, σ1, ‖H(·, Du(·))‖L1(Ω), ‖u‖L∞(Ω),

dist(Ω′, ∂Ω)). Then, by applying (4.29) between the radii %1−ε and R0 we deduce
that∫

B%

|Du− (Du)B% |p dx ≤ 2 ce %
εα̃p+n%−(1−ε)n

∫
B%1−ε

H(x,Du) dx

≤ 2 ce %
εα̃p+n%−(1−ε)n cdec

(%1−ε

R0

)n−δ ∫
BR0

H(x,Du) dx
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= 2 ce cdec
1

Rn−δ0

%εα̃p−(1−ε)δ+n
∫
BR0

H(x,Du) dx(4.45)

≤
[

2 ce cdec
1

Rn−δ0

∫
Ω

H(x,Du) dx
]
%εα̃p/2+n = c0 %

pα+n

with c0 ≡ c0(n, p, ν, L, L̃1, L̃2, σ1, σ2, ‖H(x,Du)‖L1(Ω), ‖u‖L∞(Ω),dist(Ω′, ∂Ω)) and
the exponent α defined in (4.42). As Ω′ b Ω is arbitrary, by Lemma 2.4 we conclude

that Du ∈ C0,α
loc (Ω,Rn). This completes the proof of (4.36) and the whole proof of

Theorem 1.2 is complete.

4.5. A result in a Sobolev-Orlicz space. About Orlicz spaces, Sobolev-Orlicz
spaces and Lp logL spaces we refer to [43, 30]. Given an open bounded set Ω ⊂ Rn
and a Young function ϕ : [0,∞[→ [0,∞[ (ϕ is convex, strictly monotone increasing,

limt→0
ϕ(t)
t = 0 and limt→∞

ϕ(t)
t = ∞) the Orlicz space Lϕ(Ω;Rk) is the set of

measurable maps f : Ω→ Rk such that
∫

Ω
ϕ(λ|f(x)|) dx <∞ for some λ > 0. The

natural Luxemburg type norm is then defined by

(4.46) ‖f‖Lϕ(·)(Ω) := inf

{
λ > 0 :

∫
Ω

ϕ

(
|f |
λ

)
dx ≤ 1

}
.

In particular if ϕ(t) = tp log(e + t), p > 1, the associated Orlicz space is denoted
by Lp logL(Ω) and it consists of the measurable functions such that∫

Ω

|f(x)|p log(e+ |f(x)|) dx <∞ .

It is known that

f ∈ Lq(BR) , q > p ⇒ f ∈ Lp logL(BR) ,(4.47)

fh → f in Lq(BR) , q > p ⇒ fh → f in Lp logL(BR) .(4.48)

If the Young function ϕ is allowed to depend also on the space variable x we obtain
a generalized Orlicz space, which is also called Musielak-Orlicz space. Thus, let
us consider ϕH : Ω × [0,∞[→ [0,∞[ defined as ϕH(x, t) = tp + a(x)tp log(e + t),
with a(x) satisfying assumption (3.1) on its modulus of continuity, and consider
the Musielak-Orlicz space LϕH(·)(Ω;Rk) which is defined as the set of measurable
maps f : Ω→ Rk such that∫

Ω

ϕH(x, |f(x)|) dx =

∫
Ω

H(x, f(x)) dx <∞ .

It results (see [30, Lemma 3.3.3]) that

(4.49) fh → f in LϕH(·)(Ω;Rk) ⇐⇒
∫

Ω

H(x, fh(x)− f(x)) dx→ 0 .

The Sobolev-Orlicz space W 1,ϕH(·)(Ω) can be defined by prescribing that a func-
tion f ∈ LϕH(·)(Ω) has its weak gradient Df ∈ LϕH(·)(Ω;Rn). Thanks to (3.1)
smooth functions are dense in W 1,ϕH(·)(Ω) (see [30, Lemma 6.4.7]), so we denote

by W
1,ϕH(·)
0 (Ω) the closure in W 1,ϕH(·)(Ω) of C∞0 (Ω); it results (see [32, Lemma

6.9] or [30, Lemma 6.1.6]) that

(4.50) W
1,ϕH(·)
0 (Ω) ⊂W 1,p

0 (Ω) ,

since W 1,ϕH(·)(Ω) convergence implies W 1,p(Ω) convergence.

Remark 4.6. By Sobolev inequalities every function f ∈ W 1,p(BR) belongs to
Lp
∗
(BR), thus (4.47) implies that W 1,p(BR) ⊂ LϕH(·)(BR) and (4.48)-(4.49) that

convergence in W 1,p(BR) implies convergence in LϕH(·)(BR). We want to stress
here that a local minimizer u of the functional P defined in (1.10) belongs to
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W 1,ϕH(·)(BR) for every BR b Ω since H(·, Du(·)) ∈ L1(BR) means that Du ∈
LϕH(·)(BR;Rn); the Sobolev-Orlicz space W

1,ϕH(·)
loc (Ω) shall be the natural space

for the functional P.

In this paragraph we want to point out that Lemma 3.2 allows to prove that

(4.51) W
1,ϕH(·)
0 (BR) = W 1,p

0 (BR) ∩W 1,ϕH(·)(BR) ,

under assumption (3.1) on the modulus of continuity ωa(·) of the function a(·).
This property does not hold for general domains Ω also in the case of standard
Sobolev spaces: it is proven in [34] that for 1 < p < q the relation W 1,q

0 (Ω) =

W 1,p
0 (Ω) ∩ W 1,q(Ω) holds only for sufficiently smooth domains Ω satisfying a q-

density condition; in particular the relation holds for Lipschitz domains. The result
of [34] has not been generalized for variable exponent or generalized Orlicz spaces,
but (4.51) shows that the result holds for W 1,ϕH(·) when Ω is a ball.

The inclusion ⊂ in (4.51) holds on every bounded open set Ω from (4.50); to

get the opposite inclusion let us consider φ ∈W 1,p
0 (BR) ∩W 1,ϕH(·)(BR) and let us

prove that φ ∈ W 1,ϕH(·)
0 (BR). As H(·, Dφ(·)) ∈ L1(BR), by Lemma 3.2 we obtain

a sequence {φk} ⊂ C∞0 (BR) such that Dφk → Dφ a.e., φk → φ in W 1,p(BR) (see
Remark 3.4), and H(·, Dφk(·))→ H(·, Dφ(·)) strongly in L1(BR).

From Remark 4.6 we have that φk → φ in LϕH(·)(BR), while to get Dφk → Dφ
in LϕH(·)(BR;Rn) by (4.49) it is enough to prove that∫

BR

H(x,Dφk(x)−Dφ(x)) dx→ 0 .

SinceH(x,Dφk(x)−Dφ(x)) ≤ 2p+1
(
H(x,Dφk(x))+H(x,Dφ(x))

)
withH(x,Dφk(x)−

Dφ(x))→ 0 a.e., the conclusion follows by a well-known variant of Lebesgue dom-
inated convergence theorem and (4.51) is proven.

Acknowledgments. We thank Paolo Baroni for some stimulating discussions.
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