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Abstract

In Abstract Interpretation, completeness ensures that the analysis does not
lose information with respect to the property of interest. In particular, for
dynamic languages like JavaScript, completeness of string analysis is a key
security issue, as poorly managed string manipulation code may easily lead
to significant security flaws. In this paper, we provide a systematic and con-
structive approach for generating the completion of string domains for dy-
namic languages, and we apply it to the refinement of existing string ab-
stractions. We also provide an effective procedure to measure the precision
improvement obtained when lifting the analysis to complete domains.

Keywords: Abstract Interpretation, String Analysis, Completeness

1. Introduction

Despite the growth of support for string manipulation in programming
languages, string manipulation errors still lead to code vulnerabilities that
can be exploited by malicious agents, causing potential catastrophic dam-
ages. This is even more true in the context of web applications, where com-
mon programming languages used for web-based software development (e.g.,
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JavaScript) offer a wide range of dynamic features that make string manip-
ulation dangerous.

String analysis is a static program analysis technique that computes, for
each execution trace of the program given as input, the set of the possi-
ble string values that may reach a certain program point. String analysis,
like any other non-trivial program analysis, is an undecidable task. Thus,
a certain degree of approximation is necessary to find evidence of bugs and
vulnerabilities in string manipulating code. In the recent literature, differ-
ent approximation techniques for string analysis have been developed, such
as [8]: automata-based [6, 11, 49, 48], abstraction-based [16, 2, 4, 15, 3, 50],
constraint-based [1, 42, 45, 32], and grammar-based [36, 47], and have been
used, in particular, to detect web application vulnerabilities [47, 48, 49].

In this paper1 we focus on string analysis by means of the Abstract In-
terpretation theory [17, 18]. Cousot and Cousot have proposed Abstract
Interpretation in the 70s as a theory of sound abstraction (or approxima-
tion) of the semantics of computer programs, and nowadays, it is widely
integrated in software verification tools, and it is used to prove approxima-
tions correctness by means of rigorous mathematical methods. Since the
introduction of the Abstract Interpretation theory, many abstract domains
representing properties of interest about numerical domains values have been
designed [17, 19, 25, 37, 10, 12, 38, 26, 43]. On the other hand, just in the
last few years, the scientific community has taken an interest in the develop-
ment of abstract domains for string analysis [16, 15, 2, 4, 34, 29, 39], some of
them language-specific, such as those defined as part of the JavaScript static
analysers: TAJS [27], SAFE [31], and JSAI [28].

Important features of Abstract Interpretation are soundness and com-
pleteness [18]. If soundness (or correctness), as a basic requirement, should
always be guaranteed by static analysis tools to avoid the presence of false
negatives, completeness is frequently not met. If completeness is satisfied, it
means that the abstract computations do not lose information, during the
abstraction process, with respect to a property of interest, and so the anal-

1This paper is a revised and extended version of [7]. Precisely, we have added an
auxiliary procedure to facilitate the reader in understanding the fundamentals theorems
of completeness. Moreover, we have introduced the analysis relative precision, which
quantifies the increment of the analysis precision gained by analysing a program with a
complete abstract domain with respect to when it is analysed with its original version.
Finally, we have presented an experimental evaluation.
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ysis can be considered optimal. In [24], Giacobazzi et al. highlighted the
fact that completeness is an abstract domain property, and they presented a
methodology to obtain complete abstract domains with respect to operations
by minimally extending or restricting the underlying domains.

1.1. Paper contribution

The goal of this paper is to provide a way-to-proceed in the context of
imprecise string abstractions. In particular, we exploit the complete shells’
theoretical framework, constructively showing how to improve the precision
of incomplete abstractions, without designing new string abstract domains.

We consider two JavaScript-specific string abstract domains defined as
part of TAJS [27] and SAFE [31] static analysers, focusing on their complete-
ness with respect to the main string-manipulating operations. We compute
their complete versions, and we discuss the benefits of guaranteeing com-
pleteness in the context of Abstract Interpretation-based string analysis of
dynamic languages. Finally, we present an effective procedure to measure
the precision increment when analysing a program with a complete abstract
domain.

1.2. Paper structure

Section 2 gives basics in mathematics and Abstract Interpretation. Sec-
tion 3 recalls relevant concepts related to the completeness property in Ab-
stract Interpretation that we will use throughout the whole paper. Moreover,
a motivating example is given to show the importance of guaranteeing com-
pleteness in an Abstract Interpretation-based analysis with respect to strings.
Section 4 defines our core language. Section 5 presents the completion of the
string abstract domains integrated into TAJS and SAFE static analysers
with respect to two operations of interest. Section 6 highlights the strengths
and usefulness of the completeness approach to static analysis of JavaScript
string manipulating programs. Section 7 defines the measurement procedure
of the analysis precision increment. Section 8 concludes.

2. Background: Foundations of Abstract Interpretation

Mathematical notation. Given a set S, we denote by S∗ the set of all the
finite sequences of elements of S. If s = s0 . . . sn ∈ S∗, we denote by si the i-th
element of s, and by |s| = n + 1 its length. We denote by s[x/i] the sequence
obtained replacing si in s with x. Given two sets S and T, we denote with P(S)
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the powerset of S, with SrT the set difference, with S ⊂ T the strict inclusion
relation, with S ⊆ T the inclusion relation and with S × T the Cartesian
product between S and T. We denote by Sn the n-ary Cartesian product
of a set S, with n ≥ 2. We denote by f : S → T a function from elements
of S (domain) to elements of T (image). Given f : S → T and g : T → Q
we denote with g ◦ f : S → Q their composition, i.e., g ◦ f = λx.g(f(x)).
When f is a function of arity n, i.e., f : Sn → T, with s ∈ Sn and i ∈ [0, n),
f is = λz.f(s[z/i]) : S → T is the same function where all the parameters but
the i-th are fixed by s, namely f is = f(s0, . . . , si−1, x, si+1, . . . , sn).

Ordered structures. A set L with a partial ordering relation v is a poset
and it is denoted by 〈L,v〉. Given a poset 〈L,v〉 and a X ⊆ L, an upper
bound of X is an element y ∈ L such that x v y, ∀x ∈ X. An upper bound
y for X is the least upper bound (lub) of X if and only if for every other
upper bound y' of X it holds that y v y'. The least upper bound, when it
exists, it is unique. Dually, a lower bound of X is an element y ∈ L such
that y v x, ∀x ∈ X. A lower bound y of X is the greatest lower bound
(glb) of X if and only if for every other lower bound y' of X it holds that
y' v y. A poset 〈L,v,t,u〉, where t and u are respectively the lub and
glb operators of L, is a lattice if ∀x, y ∈ L we have that x u y and x t y
belong to L, and we say that it is also complete when for each X ⊆ L we
have that

d
X,

⊔
X ∈ L. Given a poset 〈L,v〉 and S ⊆ L, we denote by

maxv(S) = {x ∈ S | ∀y ∈ S. x v y ⇒ x = y} the set of the maximal
elements of S in L w.r.t. v. As usual, a complete lattice L, with ordering
v, lub u, glb t, greatest element (top) >, and least element (bottom) ⊥ is
denoted by 〈L,v,t,u,>,⊥〉. An upper closure operator on a poset 〈L,v〉
is an operator ρ : L → L which is monotone (i.e., x v y ⇒ ρ(x) v ρ(y)),
idempotent (i.e., ρ(ρ(x)) = ρ(x)), and extensive (i.e., x v ρ(x)). The set of
all closure operators on a poset L is denoted by uco(L).

Abstract Interpretation. Abstract Interpretation [17, 18] is a theoretical frame-
work for sound reasoning about program semantic properties of interest, and
can be equivalently formalized either as Galois connections or closure oper-
ators on a given concrete domain [18]. In this paper, we shall assume that
the concrete domain D is a complete lattice w.r.t. to a certain partial order
vD. Observe that this condition is not restrictive, as if it is not matched it
is sufficient to lift the concrete domain to its powerset, yielding a complete
lattice w.r.t. the set inclusion partial order. This lifting operation in liter-
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>Sign

NotPos NotNeg

Zero

⊥Sign

Figure 1: Sign abstract domain

ature is applied in the construction of a collecting semantics starting from
any concrete semantics [17].

Let D and D be complete lattices, which respectively represent a concrete
and an abstract domain, a pair of monotone functions α : D → D and
γ : D → D forms a Galois Connection (GC) between D and D if for every
d ∈ D and for every d ∈ D we have α(d) vD d⇔ d vD γ(d). The function
α (resp. γ) is the left-adjoint (resp. right-adjoint) to γ (resp. α), and it is

additive (resp. co-additive). We denote a GC as D −−→←−−α
γ

D. Given D −−→←−−α
γ

D,

then γ ◦ α ∈ uco(D). In particular, an upper closure operator (over D)
uniquely identifies a GC, and viceversa. For example, let us consider the
abstract domain of Sign, abstracting integer sets (i.e., P(Z) is the concrete
domain) reported in Figure 1. We can also see the GC between P(Z) and Sign
by means of the corresponding upper closure operator ρSign : P(Z) → P(Z),
where its image can be either ∅, {0}, {n ≤ 0 | n ∈ Z}, {n ≥ 0 | n ∈ Z} or Z,
corresponding to the concretization of the abstract elements Zero, NotPos,
NotNeg, ⊥Sign and >Sign, respectively, of the abstract domain Sign.

If D is a complete lattice, then 〈uco(D),v,t,u, λd.D, id〉 forms a com-
plete lattice [46], which is the set of all possible abstractions of D, where the
bottom element is id = λd.d, and for every ρ,η ∈ uco(D), ρ is more concrete
than η iff ρ v η iff ∀d' ∈ D. ρ(d') v η(d'), and (ρ u η)(d) = ρ(d) u η(d)
and (ρ t η)(d) = d iff ρ(d) = η(d) = d. The operator ρ ∈ uco(D) is dis-
junctive when ρ(D) is a join-sublattice of D which holds iff ρ is additive
[18]. Let L be a complete lattice, then X ⊆ L is a Moore family of L if
X = M(X) = {uS | S ⊆ X}, where u∅ = >. The condition that any con-
crete element of D has the best abstraction in the abstract domain D, implies
that D is a Moore family of D. We denote by M(X) the Moore closure of
X ⊆ D, that is the least subset of D, which is a Moore family of D, and
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contains X. Given D −−→←−−α
γ

D, a concrete function f : D→ D may be not com-

putable. We use a function f] : D→ D to correctly approximate f, namely f]

must be sound.

Definition 1 (Soundness). Given D −−→←−−α
γ

D and a concrete function f : D→
D, an abstract function f] : D→ D is sound w.r.t. f if

∀d ∈ D. α(f(d)) vD f](α(d))

Among all the sound abstract functions f], we aim at the best one, namely
the one that loses less information when approximating the function f. This
property is captured by the notion of best correct approximation.

Definition 2 (Best correct approximation). Given D −−→←−−α
γ

D and a concrete

function f : D → D, the function α ◦ f ◦ γ : D → D is the best correct
approximation of f.

In Abstract Interpretation, there exist two notions of completeness. Back-
ward completeness property focuses on complete abstractions of the inputs,
while forward completeness [23, 22, 21] focuses on complete abstractions of
the outputs, both w.r.t. an operation of interest. In this paper, we focus
on the more typical and best known notion of completeness, i.e., the back-
ward completeness. In particular, the notion is obtained by enforcing the
equality in the soundness condition reported in Definition 1, as reported in
Definition 3.

Definition 3 (Backward completeness). Given D −−→←−−α
γ

D, a concrete func-

tion f : D→ D and an abstract function f] : D→ D, f] is backward complete
w.r.t. f if

∀d ∈ D. α(f(d)) = f](α(d))

Having backward complete abstract functions is a desirable property
since, when backward completeness is met, we have the guarantee that no
loss of information arises during the input abstraction process, w.r.t. an
operation of interest. For instance, the Sign numerical abstract domain, de-
picted in Figure 1, is backward complete w.r.t. the multiplication numerical
operation. Indeed, in order to compute the sign of the expression e1 ∗ e2 it is
enough to know the sign of e1 and e2, without any loss of information during
the abstraction of the operands.
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In the rest of the paper, when we will talk about completeness, we
mean backward completeness. While the best correct approximation al-
ways induces a sound abstraction, this is not the case of completeness. In-
deed, given a concrete function f : D → D', a pair of abstract domains
〈D,D'〉 ∈ uco(D) × uco(D'), with γD,D : D → D the concretization function
from D to D and αD',D' : D'→ D' the abstraction function from D' to D', then
there exists a complete function f] : D → D' iff the best correct approxima-
tion αD',D' ◦ f ◦γD,D : D→ D' is complete (and it is equal to f]) [24]. Given two
posets D and D' and a function f : Dn → D', we denote by Γ(D,D', f) the set
of pairs of abstract domains 〈ρ,η〉 ∈ uco(D) × uco(D') which are complete
for f. Hence, given a function f : Dn → D', we can have more than one pair
of complete domains 〈ρ,η〉 ∈ uco(D)× uco(D') for f.

3. Background: Making Abstract Interpretations complete

In this Section, we recall notions of methodologies introduced in [24]
that we will use through the whole paper, to constructively build, from an
initial abstract domain, a new abstract domain that is complete w.r.t. an
operation of interest. Finally, a motivating example showing the usefulness
of completion of abstract domains for string analysis is given.

As reported in [24], it is worth noting that completeness is a property
related to the underlying abstract domain. Starting from this fact, in [24],
authors proposed a constructive method to manipulate the underlying in-
complete abstract domain in order to get a complete abstract domain w.r.t.
a certain operation. In particular, given two abstract domains D and D' and
an operator f : D

n → D' with n ∈ N, the authors gave two different notions
of completion of abstract domains w.r.t. f: the one that adds the minimal
number of abstract points to the input abstract domain D and the other that
removes the minimal number of abstract points from the output abstract
domain D'. The first approach captures the notion of complete shell of D,
while the latter defines the complete core of D', both w.r.t. an operator f.

Complete shell vs complete core. We will focus on the construction of com-
plete shells of string abstract domains, rather than complete cores. This
choice is guided by the fact that a complete core for an operation f removes
abstract points from a starting abstract domain. So, even if it is complete
for f, the complete core could worsen the precision of other operations.
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Conversely, complete shells augment the starting abstract domains (adding
abstract points), and consequently, they cannot compromise the precision of
other operations.

Below, we recall two important theorems proved in [24] that provide a
constructive method to compute abstract domain complete shells, defined in
terms of an upper closure operator ρ. Precisely, the latter theorems present
two notions of complete shells: i. complete shells of ρ relative to η (where
η is an upper closure operator), meaning that they are complete shells of
operations defined on ρ that return results in η, and ii. absolute complete
shells of ρ, meaning that they are complete shells of operations that are
defined on ρ and return results in ρ.

Definition 4 (Complete shell of ρ relative to η [24]). Let 〈A,vA,tA〉 and
〈B,vB,tB〉 be two posets and f : An → B be a continuous function. Given
ρ ∈ uco(A) and η ∈ uco(B), then let S

η
f : uco(A) → uco(A) be the domain

transformer:

S
η
f (ρ)

def
=

⊔
uco(A)

{δ ∈ uco(A) | δ v ρ, 〈δ,η〉 ∈ Γ(A,B, f)}.

If 〈Sηf (ρ),η〉 ∈ Γ(A,B, f), then S
η
f (ρ) is called complete shell of ρ relative to

η with respect to an operation f.

As discussed in [24], Definition 4 does not offer a constructive methodol-
ogy to compute S

η
f (ρ). Theorem 1 reports a constructive characterization of

the complete shell of ρ relative to η w.r.t. f, making use of the Moore closure
operator defined in Section 2.

Theorem 1 ([24]). Let 〈A,vA,tA〉 and 〈B,vB,tB〉 be two posets and f :
An → B be a continuous function. Given ρ ∈ uco(A), η ∈ uco(B) and S

η
f (ρ)

as in Definition 4, the following equality holds:

S
η
f (ρ) = M(ρ ∪ (

⊔
A

i∈[0,n)
x∈An,y∈η

maxvA({z ∈ A | (f ix)(z) vB y}))).

As already mentioned above, the idea behind the complete shell of ρ
(input abstraction) relative to η (output abstraction) is to refine ρ adding the
minimum number of abstract points to make ρ complete w.r.t. an operation
f. By Theorem 1, this is obtained by adding to ρ the maximal elements in
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A, whose f image is dominated by elements in η, at least in one dimension
i. Clearly, the so-obtained abstraction may not be an upper closure operator
for A. Hence, the Moore closure operator is applied. On the other hand,
absolute complete shells are involved in the case in which the operator f of
interest has same input and output abstract domain, i.e., f : An → A. In this
case, given ρ ∈ uco(A), absolute complete shells of ρ can be obtained as the
greatest fix-point (gfp) of the domain transformer presented in Definition 4,
as stated below.

Definition 5 (Absolute complete shell of ρ [24]). Let 〈A,vA,tA〉 be a poset
and f : An → A be a continuous function. Given ρ ∈ uco(A), then let
Sf : uco(A)→ uco(A) be the domain transformer:

Sf(ρ)
def
=

⊔
uco(A)

{δ ∈ uco(A) | δ v ρ, 〈δ, δ〉 ∈ Γ(A,A, f)}.

If 〈Sf(ρ), ρ〉 ∈ Γ(A,A, f), then Sf(ρ) is called absolute complete shell of ρ with
respect to an operation f.

Theorem 2 ([24]). Let A be a poset and f : An → A be a continuous
function. For ρ ∈ uco(A), if S

ρ
f (ρ) is the complete shell of ρ relative to ρ

w.r.t. f, and if Sf(ρ) is the absolute complete shell of ρ w.r.t. f, then the
following equality holds:

Sf(ρ) = gfp(λρ.Sρf (ρ)).

In [24], Giacobazzi et al. have discussed the completeness and incomplete-
ness of the Sign abstract domain, approximating numerical values, depicted in
Figure 1. Sign is complete for the product operation. Let ∗ : P(Z)×P(Z)→
P(Z) be the concrete product operation and ∗Sign : Sign × Sign → Sign be
the corresponding abstract product operation, following the well known sign
rules (e.g., NotPos ∗Sign NotPos = NotNeg). Given the expression e1 ∗ e2, the
equality αSign(e1 ∗ e2) = αSign(e1) ∗Sign αSign(e2) holds, with αSign being the ab-
straction function of Sign. As an example, consider the concrete expression
{2, 5}∗{−1,−3}, then αSign({2, 5}∗{−1,−3}) = αSign({−2,−5,−6,−15}) =
NotPos is equal to αSign({2, 5}) ∗Sign αSign({−1,−3}) = NotNeg ∗Sign NotPos =
NotPos.

On the other hand, Sign is not complete for the sum operation. Let + :
P(Z)×P(Z)→ P(Z) be the concrete sum operation and +Sign : Sign×Sign→
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Algorithm 1: Relative complete shell procedure pseudo-code

Input: 〈A,vA〉, 〈B,vB〉 (posets),
ρ ∈ uco(A), η ∈ uco(B) (abstractions),
f : A n → B

Output: S
η
f (ρ)

1 X← ∅;
2 foreach i ∈ [0, n) and x ∈ A and y ∈ η do
3 let z ∈ A be the maximum element such that f ix(z) vB y;
4 add z to X;

5 let S
η
f (ρ) be the Moore closure of ρ ∪ X;

6 return S
η
f (ρ);

Sign be the corresponding abstract sum operation. Consider the concrete ex-
pression {2}+{−1,−2}, then αSign({2}+{−1,−2}) = αSign({0, 1}) = NotNeg
is not equal to αSign({2}) +Sign αSign({−1,−2}) = NotNeg +Sign NotPos = Z.

In [24], the absolute complete shell of Sign w.r.t. the sum operation has
been computed, which corresponds to the interval abstract domain [17].

Domain completion procedure. To improve the understanding about how to
obtain a complete domain w.r.t. an operation of interest we provide a step-
by-step reading of the formula in Theorem 1 (i.e., relative complete shell)
by means of the procedure reported in Algorithm 1. The algorithm takes
as input two posets 〈A,vA〉, 〈B,vB〉, two closures ρ ∈ uco(A), η ∈ uco(B),
which respectively correspond to the input and output abstraction, and a
continuous function f : An → B. The procedure returns the complete shell
of ρ relative to η w.r.t. f. Algorithm 1 follows Theorem 1 and collects in X,
for each dimension i and element of ρ, any element z ∈ A whose f image is
dominated by elements in η (lines 2-4). Then, the starting input abstraction
ρ is joined with the new elements collected in X and since the so obtained
result may not be a closure, the Moore closure operator is applied (line 5).
Finally, the complete shell of ρ relative to η is returned at line 6.

We reported the procedure only to improve the understanding of the com-
plete shell since, unfortunately, this is not an effective (decidable) procedure.
Indeed, Algorithm 1 might diverge (at lines 2-4) when A is an infinite set or
η is a not finite closure.
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(a)

>CS

IntBool Float StringNull

⊥CS

(b)

>CS
?

IntBool Float

String

StrFloatStrIntNull

⊥CS
?

Figure 2: (a) Coalesced Sum abstract domain for PHP. (b) Complete shell of Coalesced
Sum abstract domain w.r.t. the sum operation

3.1. Motivating example

A common feature of dynamic languages, such as PHP or JavaScript, is
to be weakly typed. Hence, in those languages, it is allowed to change the
variable type through the program execution. For example, in PHP, it is
completely legal to write fragments such as $x=1;$x=true;, where the type of
the variable x changes from integer to boolean. The first attempt for stat-
ically reasoning about variable types was adopting the so-called Coalesced
Sum abstract domain (CS) [5, 30], to detect whether a certain variable has
a constant type through the whole program execution. In Figure 2a, we re-
port the Coalesced Sum abstract domain for an intra-procedural version of
PHP [5], that tracks null, boolean, integer, float and string types2. Consider
the formal semantics of the sum operation in PHP [20]. When one of the
operands is a string, since the sum operation is feasible only between num-
bers, implicit type conversion occurs and converts the operand string to a
number. In particular, if the prefix of the string is a number, it is converted to
the maximum prefix of the string corresponding to a number, otherwise it is
converted to 0. For example, the expression e = "2.4hello" + "4" returns 6.4.
Let αCS and +CS be the abstraction function and the abstract sum operation
on the Coalesced Sum abstract domain respectively. The type of the expres-
sion e is given by: αCS({"2.4hello"}) +CS αCS({"4"}) = String +CS String = >CS.
The static type analysis based on the Coalesced Sum abstract domain re-
turns >CS (i.e., any possible value), since the sum between two strings may

2By closing the Coalesced Sum abstract domain with the powerset operation we get a
more precise domain called union type abstract domain [30], that tracks the set of types
of a certain variable during program execution.
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return either an integer or a float value. Precisely, the Coalesced Sum
abstract domain is not complete w.r.t. the PHP sum operation, since for
any string σ and σ', it does not meet the completeness condition, i.e.,
αCS(σ + σ') = αCS(σ) +CS αCS(σ'). Indeed, αCS({"2.4hello" + "4"}) = Float
is different from αCS({"2.4hello"}) +CS αCS({"4"}) = >CS.

Intuitively, the Coalesced Sum abstract domain is not complete w.r.t. the
sum operation due to the loss of precision that occurs during the abstraction
process of the inputs. Indeed, the domain is not precise enough to distinguish
between strings that may be implicitly converted to integers or floats.

Figure 2b shows the complete shell of the Coalesced Sum abstract domain
w.r.t. the sum (CS

?
). The latter adds two abstract values to the original

domain, namely StrFloat and StrInt, that correspond to the abstractions of the
strings that may be implicitly converted to floats and to integers, respectively.
Notice that the type analysis on the new abstract domain is now complete
w.r.t. the sum operation, e.g., αCS

?({"2.4hello" + "4"}) = Float that is equal
to αCS

?({"2.4hello"}) +CS
? αCS

?({"4"}) = StrFloat +CS
? StrInt = Float.

As pointed out above, guaranteeing completeness in Abstract Interpreta-
tion is a desirable property that an abstract domain should aim to, since it
ensures that no loss of precision occurs during the input abstraction process
of the operation of interest. It is worth noting that guessing a complete
abstract domain for a certain operation becomes particularly hard when the
operation has tricky semantics, such as in our example or, more in general, in
dynamic languages operations. For this reason, complete shells become im-
portant since they can mathematically guarantee completeness for a certain
operation, starting from an abstract domain of interest.

4. The core dymamic language µDyn

We define µDyn, an imperative toy language expressive enough to handle
some interesting behaviors related to strings in dynamic languages, e.g., im-
plicit type conversion, inspired by the JavaScript programming language [35].
µDyn syntax is reported in Figure 3. The µDyn basic values are represented
by the set

Val = Int ∪ Float ∪Bool ∪ Str

12



a ::= n | x | a + a | a - a | a * a | a \ a
| toNum(s) | length(s)

b ::= x | true | false | b && b | b || b | ! b

s ::= x | "s" | concat(s1,s2)

e ::= x | a | b | s

bl ::= { } | { S }

S ::= x = e; | if (b) bl1 else bl2 | while (b) bl | S1 S2

where x ∈ Id, s ∈ Σ∗, n ∈ Int ∪ Float

Figure 3: µDyn syntax

such that Int = Z denotes the set of signed integers, Float denotes the
set of signed decimal numbers3, Bool = {true, false} denotes the set of
booleans, and Str = Σ∗ denotes the set of strings over an alphabet Σ. Then,
we consider Σ∗ composed of two sets, Σ∗ = Σ∗Num ∪ Σ∗NotNum, where Σ∗Num
is the set of numeric strings (e.g., "42", "-7.2") Σ∗NotNum is the set of non
numeric strings (e.g., "foo", "-2a"). Moreover, we consider Σ∗Num additionally
composed of four sets:

Σ∗Num = Σ∗UInt ∪ Σ∗UFloat ∪ Σ∗SInt ∪ Σ∗SFloat

From left to right, they correspond to the set of unsigned integer strings,
unsigned float strings, signed integer strings, and signed float strings, respec-
tively.
µDyn programs are elements generated by S syntax rules. Program states

State = {ξ | ξ : Id → Val} are maps from identifiers to values. The
concrete semantics of µDyn statements follows4 [5], and it is given by the
function J·K· : Stmt×State→ State, inductively defined on the structure
of the statements, as reported in Figure 4. We abuse notation in defining the

3In general, floats are represented in programming languages in the IEEE 754 double
precision format. For the sake of simplicity, we use instead decimal numbers.

4Note that in this paper the semantics of the operations is detailed only for the ones
that are relevant for string analysis. The complete concrete semantics of µDyn can be
found in [5].
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Jx = e; Kξ = ξ[x← JeKξ]

Jif (b) bl1 else bl2Kξ =

{
Jbl1Kξ JbKξ = true

Jbl2Kξ JbKξ = false

Jwhile (b)blKξ = Jif (b) {bl while (b)bl} else {}Kξ
J{}Kξ = ξ J{S}Kξ = JSKξ

JS1S2Kξ = JS2K(JS1Kξ)

Jconcat(s, s')Kξ = JsKξ · Js'Kξ Jlength(s)Kξ = |JsKξ|

JtoNum(s)Kξ =

{
N(JsKξ) JsKξ ∈ Σ∗Num
0 otherwise

Figure 4: µDyn semantics

concrete semantics of expressions: J·K· : Exp×State→ Val. Figure 4 shows
the formal semantics of two relevant expressions involving strings we focus
on: concat, that concatenates two strings, and string-to-number operation,
namely toNum, that takes a string as input and returns the number that it
represents if the input string corresponds to a numerical strings, 0 otherwise.
Given σ ∈ Str, we denote by N(σ) ∈ Int ∪ Float the numeric value of a
given string. For example, toNum("4.2") = 4.2 and toNum("asd") = 0.

5. Making JavaScript string abstract domains complete

In this section, we study the completeness of two string abstract domains
integrated into two state-of-the-art JavaScript static analysers based on Ab-
stract Interpretation, namely TAJS [27] and SAFE [31]. Both the abstract
domains track important information on JavaScript strings, e.g., TAJS can
infer when a string corresponds to an unsigned integer, that may be used as
array index, and SAFE tracks numeric strings, such as "2.5" or "+5".

For the sake of readability, we recast the original string abstract domains
for µDyn, following the notation adopted in [4]. Figure 5 depicts them.
Notice that the original abstract domain part of SAFE analyser treats the
string "NaN" as a numeric string. Since our core language does not provide
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(a)

⊥SF

"0" "+2.7" . . .

Numeric

"foo" "NaN" . . .

NotNumeric

>SF

(b)

⊥TJ

"0" "1" "2" . . .

Unsigned

"foo" "bar" . . .

NotUnsigned

>TJ

Figure 5: (a) SAFE, (b) TAJS string abstract domains recasted for µDyn

the primitive value NaN, the corresponding string, i.e., "NaN", has no particular
meaning here, and it is treated as a non-numerical string.

For each string abstract domain D, we denote by αD : P(Σ∗) → D its
abstraction function, by γD : D → P(Σ∗) its concretization function, and by
ρD : P(Σ∗)→ P(Σ∗) ∈ uco(D) the associated upper closure operator.

5.1. Completing TAJS string abstract domain

Figure 5b depicts the string abstract domain TJ, the recasted version of
the domain integrated into the TAJS static analyser [27]. TJ splits the strings
into Unsigned, that denotes the strings corresponding to unsigned numbers,
and NotUnsigned, any other string. Hence, for example, αTJ({"9", "+9"}) =
>TJ and αTJ({"9.2", "foo"}) = NotUnsigned. Before reaching these abstract
values, TJ precisely tracks each string.

Here we focus on the toNum (i.e., string-to-number) operation. Since this
operation clearly involves numbers, in Figure 6 we report the TAJS numerical
abstract domain, denoted by TJN. The latter domain behaves similarly to
TJ, distinguishing between unsigned and not unsigned integers.

Below we define the abstract semantics of the string-to-number operation
for TJ. In particular, we define the function:

JtoNum(•)KTJ : TJ→ TJN

that takes as input a string abstract value in TJ, and returns an integer
abstract value in TJN.
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⊥TJN

0 1 2 3 . . . −5 +6−2.23.4 . . .

UnsignedInt NotUnsignedInt

>TJN

Figure 6: TAJS numerical abstract domain

JtoNum(s)KTJ =


⊥TJN

JsKTJ = ⊥TJ

JtoNum(σ)K JsKTJ = σ ∈ Σ∗

UnsignedInt JsKTJ = Unsigned

>TJN
JsKTJ = NotUnsigned ∨ JsKTJ = >TJ

When the input evaluates to ⊥TJ, the bottom is propagated, and ⊥TJN

is returned (first row). If the input evaluates to a single string value, i.e.,
a concrete string, the abstract semantics relies on its concrete one (second
row), as single strings are precisely captured by TJ. When the input evaluates
to the string abstract value Unsigned, the integer abstract value UnsignedInt
is returned (third row). Indeed, in the concrete scenario, an unsigned and
not float numeric string, which exactly represents the strings approximated
by Unsigned in TJ, is converted into the correspondent numeric value by
the string-to-number operation. Therefore, the abstraction in TJN of the
numeric value of all the strings approximated by Unsigned is UnsignedInt.
Finally, when the input evaluates to NotUnsigned or >TJ, the top abstract
value >TJN

is returned (fourth row). In the second case, i.e., when the input
is evaluated to >TJ, it is trivial to notice that the result of the abstract string-
to-number operation represents the best correct approximation. However, in
the first case, it is not straightforward. Note that NotUnsigned approximates
not numeric strings and signed and/or float numeric strings. Thus the only
safe abstraction of the numeric value of strings approximated by NotUnsigned
is >TJN

.

Lemma 1. The TJ abstract domain is not complete with respect to the
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toNum operation. In particular5, ∃S ∈ P(Σ∗) such that:

αTJN
(JtoNum(S)K) Ĺ JtoNum(αTJ(S))KTJ

Proof of Lemma 1. As a counterexample to completeness, consider the set
S = {"2.3", "3.4"}. We can show that αTJN

(JtoNum(S)K) 6= JtoNum(αTJ(S))KTJ.
Indeed,

• αTJN
(JtoNum(S)K) = NotUnsignedInt

• JtoNum(αTJ(S))KTJ = JtoNum(NotUnsigned)KTJ = >TJN
.

The completeness condition does not hold because the TJ string abstract
domain loses too much information during the abstraction process, and the
latter information cannot be retrieved during the abstract toNum operation.
In particular, when non-numeric strings and unsigned integer strings are con-
verted to numbers by toNum, they are mapped to the same value, namely 0.
Indeed, TJ does not differentiate between non-numeric and unsigned integer
string values, and this is the principal cause of the TJ incompleteness w.r.t.
toNum. Additionally, more precision can be obtained if we could differentiate
numeric strings holding float numbers from those holding integer numbers.
Thus, to make TJ complete w.r.t. toNum, we have to derive the complete
shell of the TJ string abstract domain relative to the TJN numerical abstract
domain, by applying Theorem 1.

Definition 6 (Complete shell of TJ). Let ρTJ ∈ uco(P(Σ∗)) and ρTJN
∈

uco(P(Int ∪ Float)) be the upper closure operators related to TJ and TJN

abstract domains respectively. Given JtoNum(•)KTJ : TJ→ TJN, we define by

TJ
?

the transformer S
ρTJN
toNum(ρTJ).

By Definition 4, TJ
?

is the complete shell of ρTJ relative to ρTJN
with

respect to the toNum operation. As already argued in Section 5, to compute
TJ

?
we use the constructive characterization given by Theorem 1.

Figure 7 depicts TJ
?
. In particular, the abstract points inside dashed

boxes are the abstract values added during the computation of TJ
?
, the

5We abuse notation denoting with J·K the additive lift to set of basic values of the
concrete semantics, i.e., the collecting semantics.
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"0" "1" "2" . . . "foo" "bar" . . . "1.2" "-5" "+6.1" . . .

Unsigned NotNumeric SignedOrFloats

UnsignedOrNotNumeric NotUnsigned

>TJ
?

⊥TJ
?

Figure 7: Complete shell of ρTJ relative to ρTJN
w.r.t. toNum

point inside the solid box is instead obtained by the Moore closure of the
other points of the domain, while the remaining abstract values were already
in TJ. A non-intuitive point added in TJ

?
is SignedOrFloats, namely the

abstract value s.t. its concretization contains any float string and the signed
integers. This abstract point is added during the computation of TJ

?
. In

particular, following Algorithm 1, instantiated with A = P(Σ∗) and η =
ρTJN

, this abstract point is computed at lines 2-4 at the iteration when y is
γTJN

(NotUnsignedInt), namely

SignedOrFloats ∈ max⊆({Z ∈ P(Σ∗) | JtoNum(Z)K ⊆ γTJN
(NotUnsignedInt)})

Informally: which is the maximal set of strings Z s.t. toNum(Z) is domi-
nated by NotUnsignedInt? To obtain from toNum(Z) only values dominated
by NotUnsignedInt, the maximal set doing so is exactly the set of the float
strings and the signed strings. Other strings, such that: unsigned integer
strings or not numerical strings are excluded, since they are both converted
to unsigned integers, and they would violate the dominance relation. Sim-
ilarly, the abstract point UnsignedOrNotNumeric is added to the complete
shell TJ

?
. Following again Algorithm 1, instantiated with A = P(Σ∗) and

η = ρTJN
, the above abstract element is computed at lines 2-4 at the iteration

when y is γTJN
(UnsignedInt), namely

UnsignedOrNotNumeric ∈ max⊆({Z ∈ P(Σ∗) | toNum(Z) ⊆ γTJN
(UnsignedInt)})

To obtain from toNum(Z) only values dominated by UnsignedInt, the maximal
set doing so is exactly the set of the unsigned integer strings and the non-
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numerical strings, since the latter are converted to 0. Any other string, such
as a signed or float string, would violate the dominance relation.

The last point added in the complete shell is NotNumeric. In particu-
lar, this abstract point is added by the Moore closure between Unsigned and
UnsignedOrNotNumeric. The remaining abstract points, namely Unsigned and
NotUnsigned, were already present in the original TAJS string abstract do-
main, and they are leaved unaltered in its complete shell w.r.t. toNum.

Example 1. Consider again the string set S = {"2.3", "3.4"} of Example 5.1.
We can show that in TJ

?
, αTJN

(JtoNum(S)K) = [[toNum(αTJ
?(S))]]TJ

?

. Indeed,
αTJN

(JtoNum(S)K) = NotUnsignedInt and,

[[toNum(αTJ
?(S))]]TJ

?

= [[toNum(SignedOrFloats)]]TJ
?

= NotUnsignedInt

Note that, the new abstract semantics JtoNum(•)KTJ
?

, handling the ab-
stract points added by the complete shell, corresponds to the best correction
approximation, namely αTJ

?◦JtoNum(•)K◦γTJ
? : TJ

? → TJN (see Definition 2).

5.2. Completing SAFE string abstract domain

Figure 5a depicts the string abstract domain SF, i.e., the recasted version
of the domain involved into SAFE [31] static analyser. It splits strings into
the abstract values: Numeric (i.e., numerical strings) and NotNumeric (i.e., all
the other strings). As for TJ, before reaching these abstract values, SF pre-
cisely tracks single string values. For instance, αSF({"+9.6", "7"}) =Numeric,
and αSF({"+9.6", "bar"})= >SF.

We study the completeness of SF w.r.t. concat operation. Figure 8
presents the abstract semantics of the concatenation operation for SF, that
is:

Jconcat(•, •)KSF : SF× SF→ SF

In particular, when both abstract values correspond to single strings, the
standard string concatenation is applied (second row, second column). In the
case in which one abstract value, involved in the concatenation, is a string and
the other is Numeric (third row, second column and second row, third column)
we distinguish two cases: if the string is empty or corresponds to an unsigned
integer we can safely return Numeric, otherwise NotNumeric is returned. This
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Jconcat(s1, s2)KSF

Js1KSF

Js2KSF

⊥SF σ2 ∈ Σ∗ Numeric NotNumeric >SF

⊥SF ⊥SF ⊥SF ⊥SF ⊥SF ⊥SF

σ1 ∈ Σ∗ ⊥SF σ1 · σ2


Numeric σ1 = "" or

σ1 ∈ Σ∗UInt
NotNumeric otherwise

>SF >SF

Numeric ⊥SF


Numeric σ2 = "" or

σ2 ∈ Σ∗UInt
NotNumeric otherwise

>SF >SF >SF

NotNumeric ⊥SF >SF >SF NotNumeric >SF

>SF ⊥SF >SF >SF >SF >SF

Figure 8: SAFE concat abstract semantics

happens because, when two float strings (hence numerical strings) are con-
catenated, a non-numerical string is returned (e.g., concat("1.1", "2.2") =
"1.12.2"). For the same reason, when both input abstract values are Numeric,
the result is not guaranteed to be numerical. Indeed, [[concat(Numeric,Nu-
meric)]]SF = >SF.

Lemma 2. The SF abstract domain is not complete with respect to the
concat operation. In particular, ∃S1, S2 ∈ P(Σ∗) such that:

αSF(Jconcat(S1, S2)K) Ĺ Jconcat(αSF(S1),αSF(S2))KSF

Proof of Lemma 2. As a counterexample to completeness, consider the sets
S1 = {"2.2", "2.3"} and S2 = {"2", "3"}. Then, in SF, αSF(Jconcat(S1, S2)K) 6=
Jconcat(αSF(S1),αSF(S2))KSF. Indeed, αSF(Jconcat(S1, S2)K) = Numeric and,

Jconcat(αSF(S1),αSF(S2))KSF = Jconcat(Numeric,Numeric)KSF = >SF

The SF abstract domain loses too much information during the abstrac-
tion process, which can not be retrieved during the abstract concatenation.
Intuitively, to gain completeness w.r.t. concat operation, SF should improve
the precision of the numerical strings abstraction, e.g., discriminating be-
tween float and integer strings.
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⊥SF
?

"" "1" "2" . . . "1.3""2.5". . . "-0.2""+2" . . . "foo" "bar" . . . ""

UInt UFloat SignedNum NotNumNotEmpty

UIntε UNum NotUnsignedNotEmpty NotNumeric

NumericUNumε NotUIntNotEmpty

>SF
?

Figure 9: Absolute complete shell of ρSF w.r.t. concat

Definition 7 (Complete shell of SF). Let ρSF ∈ uco(P(Σ∗)) be the upper
closure operator related to SF abstract domain. Given Jconcat(•, •)KSF :
SF× SF→ SF, we define by SF

?
the transformer Sconcat(ρSF).

By Definition 5, SF
?

is the absolute complete shell of ρSF with respect to
the concat operation.

By Theorem 2, the transformer Sconcat(ρSF) is equal to the Moore clo-
sure of the union between SF and the binary operator defined in Table 1.
Table 1 depicts the first iteration of the fix-point computation of Theo-
rem 2, where ⊥SF and >SF rows and columns are omitted for space limi-
tations; note that Table 1 also corresponds to the whole fix-point result
of Theorem 2, since the fix-point is reached at the next step. In particu-
lar, ∀X ∈ P(Σ∗). max⊆({Z ∈ P(Σ∗) | [[concat(Z,X)]] ⊆ γSF(⊥SF)}) = ⊥SF,
max⊆({Z ∈ P(Σ∗) | [[concat(X,Z)]] ⊆ γSF(⊥SF)}) = ⊥SF and max⊆({Z ∈
P(Σ∗) | [[concat(X,Z)]] ⊆ γSF(⊥SF)}) = >SF, when X 6= ⊥SF, max⊆({Z ∈
P(Σ∗) | [[concat(Z,X)]] ⊆ γSF(⊥SF)}) = ⊥SF, when X 6= >SF. The complete
shell SF

?
is depicted in Figure 9.6 In particular, the points inside dashed

boxes are the abstract values added during the iterative computations of
SF

?
, the points inside solid boxes are instead obtained by the Moore closure

of the other points of the domain, while the remaining abstract values were

6The empty strings ("") at the most-left and most-right sides of Figure 9 are not
distinct elements but they are only duplicated in order to declutter the figure.
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X

Y
Numeric NotNumeric "n" ∈ Z "f" ∈ F "s" ∈ NotNum

[NotNum \ {""}]

Numeric {""} ∪ UInt ∪ NotUInt ⊥SF ⊥SF ⊥SF

∪ NotUFloat

NotNumeric ⊥SF NotNumeric ⊥SF ⊥SF ⊥SF

{""} [NotNum \ {""}]

"n" ∈ Z ∪ UInt ∪ NotUInt ⊥SF ∨ str ⊥SF ∨ str ⊥SF ∨ str

∪ UFloat ∪ NotUFloat

[NotNum \ {""}]

"f" ∈ F {""} ∪ UInt ∪ Float ⊥SF ⊥SF ∨ str ⊥SF ∨ str

∪ NotUInt

"s" ∈ NotNum ⊥SF NotNumeric ⊥SF ⊥SF ⊥SF ∨ str

Table 1: First iteration of max⊆({Z ∈ P(Σ∗) | Jconcat(X,Z)K ⊆ γSF(Y)})

already in SF. The meaning of abstract values in SF
?

is intuitive. In order to
satisfy the completeness property, SF

?
splits the Numeric abstract value, al-

ready taken into account in SF, into all the strings corresponding to unsigned
integer (UInt), unsigned floats (UFloat), and signed numbers (SignedNum).
Moreover, particular importance is given to the empty string since the new
abstract domain specifies whether each abstract value contains "". Indeed,
the UIntε abstract value represents the strings corresponding to unsigned in-
teger or the empty string. The UNumε abstract value represents the strings
corresponding to unsigned numbers or the empty string. An unexpected
abstract value considered in SF

?
is NotUnsignedNotEmpty, such that:

γSF?(NotUnsignedNotEmpty) = {σ | σ ∈ Σ∗SInt ∪ Σ∗SFloat ∪ (Σ∗NotNum r {""})}

Namely, the abstract point whose concretization corresponds to the set
of any non-numerical string, except the empty string, and any string corre-
sponding to a signed number. This abstract point has been added to SF

?
,

following Theorem 2. Since the absolute complete shell is the greatest fix-
point of the relative one (that in our case is reached after one iteration), the
corresponding procedure is the greatest fix-point of Algorithm 1, instantiated
with A = P(Σ∗) and η = ρSF. In particular, the abstract element is computed
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at lines 2-4 at the iteration when y is γSF(NotNumeric), x is γSF(Numeric) and
i = 1, namely

NotUnsignedNotEmpty ∈ max⊆(Z ∈ P(Σ∗) | [[concat(γSF(Numeric),Z)]] ⊆
γSF(NotNumeric))

Informally: which is the maximal set of strings s.t. concatenated to any
possible numerical string will produce any possible non-numerical string?
Indeed, to be sure to obtain non-numerical strings, the maximal set doing
so is exactly the set of any non-numerical non-empty string, and any string
corresponding to a signed number, that is NotUnsignedNotEmpty.

Example 2. Consider again the string sets S1 = {"2.2", "2.3"} and S2 =
{"2", "3"} of Example 5.2. We can show that in SF

?
, αSF

?(Jconcat(S1, S2)K) =
Jconcat(αSF

?(S1),αSF
?(S2))KSF

?

. Indeed, αSF
?(Jconcat(S1, S2)K) = UFloat and

Jconcat(αSF
?(S1),αSF

?(S2))KSF
?

= Jconcat(UFloat,UInt)KSF
?

= UFloat.

As in the TAJS case, the new abstract semantics Jconcat(•, •)KSF
?

, han-
dling the abstract points added by the complete shell, corresponds the best
correct approximation, namely αSF

? ◦ Jconcat(•, •)K ◦ γSF
? : SF

?×SF? → SF
?

(see Definition 2).

6. What do we gain from using a complete abstract domain?

Now, we discuss and evaluate the benefits of adopting the complete shells
reported in Section 5 and, more in general, complete domains, w.r.t. a certain
operation. In particular, we compare the µDyn versions of the string abstract
domains adopted by SAFE and TAJS with their corresponding complete
shells. We discuss the complexity of the complete shells, and finally we argue
how adopting complete abstract domains can be useful into static analysers.

Precision. In the previous section, we focused on the completeness of the
string abstract domains integrated into SAFE and TAJS, for µDyn, w.r.t.
two string operations, namely concat and toNum, respectively. While string
concatenation is common in any programming language, toNum assumes crit-
ical importance for dynamic languages, where implicit type conversion is
provided. It is worth noting that, in this paper we have only considered
toNum operation but the completion construction of other implicit type con-
version operations (e.g., toBool or toString) is similar to the one reported in
Section 5.1. Since type conversion is often hidden from the developer, aim
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1 var obj = {
2 "foo" : 1,
3 "bar" : 2,
4 "1.2" : 3,
5 "2.2" : "hello"
6 }
7

8 y = obj[idx];

Figure 10: JavaScript object access example

to completeness of the analysis increases the precision of such operations.
For instance, let x be a variable, at a certain program execution point. x

may have concrete value in the set S = {"foo", "bar"}. If S is abstracted into
the original TAJS string abstract domain, its abstraction will corresponds to
NotUnsigned, losing the information about the fact that the concrete value of
x surely does not contain numerical values. Hence, when the abstract value of
S is used as input of toNum, the result will return >TJN

, i.e., any possible con-

crete integer value. Conversely, abstracting S in TJ
?

(the absolute complete
shell of TJ relative to toNum discussed in Section 5.1) leads to a more precise
abstraction, since TJ

?
is able to differentiate between non-numerical and nu-

merical strings. In particular, the abstract value of S in TJ
?

is NotNumeric,
and JtoNum(NotNumeric)KTJ

?

will precisely return 0.
Adopting a complete shell w.r.t. a certain operation does not compromise

the precision of the others. For example, the JavaScript fragment reported in
Figure 10 and let us analyze it with the domain of TAJS. Suppose that the
value of idx is the abstraction, in the starting TAJS string abstract domain,
of the string set S = {"foo", "bar"}, namely the abstract value NotUnsigned.
The variable idx is used to access the property of the object obj at line 8 and,
to guarantee soundness, it accesses all the properties of obj, including the
fields "1.2" and "2.2", introducing noise in the abstract computation, since
"1.2" and "2.2" are false positives values introduced by the abstraction of the
values of idx. If we analyse the same JavaScript fragment with the absolute
complete shell (w.r.t. toNum operation) of the TAJS string abstract domain
defined in Section 5.1, we obtain more precise results. Indeed, in this case,
the value of idx corresponds to the the abstract value NotNumeric, and when
it is used to access the object obj at line 8, only "foo" and "bar" are accessed,
since they are the only non-numerical string properties of obj.
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Qualitative evaluation of complete shells. We evaluate the complete shells we
have provided in the previous section from a qualitative point of view. As
usual in static analysis by Abstract Interpretation, there is a trade-off be-
tween precision and efficiency: choosing a more precise abstract domain may
compromise the efficiency of the abstract computations. A representative
example is reported in [24]: the complete shell of the sign abstract domain
w.r.t. addition is the interval abstract domain. Hence, starting from a finite
height abstract domain (signs) we obtain an infinite height abstract domain
(intervals). In particular, fix-point computations on signs converge, while
on intervals may diverge. Indeed, after the completion, the interval abstract
domain should also be equipped with a widening operator [17] to still guar-
antee termination. A worst-case scenario is when the complete shells w.r.t.
a certain operation exactly corresponds to the collecting abstract domain,
i.e., the concrete domain. Clearly, we cannot use the concrete domain due to
undecidability reasons, but this suggests us to change the starting abstract
domain, since it is not able to track any information related to the operation
of interest. An example is the suffix abstract domain [16] with substring op-
eration: since this abstract domain tracks only the common suffix of a strings
set, it can not track the information about the indexes of the common suffix,
and the complete shell of the suffix abstract domain w.r.t. substring would
lead to the concrete domain. Hence, if the focus of the abstract interpreter
is to improve the precision of the substring operation, we should change the
abstract domain with a more precise one for substring, such as the finite
state automata [6] abstract domain.

Consider now the complete shells reported in Section 5. The obtained
complete shells still have finite height, hence termination is still guaran-
teed without the need to equip the complete shells with widening operators.
Moreover, the complexity of the string operations of interest is preserved
after completion. Indeed, in both TAJS and SAFE starting abstract do-
mains, concat and toNum operations have constant complexity, respectively,
and the same complexity is preserved in the corresponding complete shells.
It is worth noting that also the complexity of the abstract domain-related
operations, such as least upper bound, greatest lower bound and the ordering
operator, is preserved in the complete shells. Hence, to conclude, as far as the
complete shells we have reported for TAJS and SAFE are concerned, there is
no worsening when we substitute the original string abstract domains with
the corresponding complete shells, and this leads, as we have already men-
tioned before, to completeness during the input abstraction process w.r.t. the
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relative operations, namely concat for SAFE and toNum for TAJS.

False positives reduction. In static analysis, a certain degree of abstraction
must be added in order to obtain decidable procedures to infer invariants
on a generic program. Clearly, using less precise abstract domains lead to
an increase of false positive values of the computed invariants. In particular,
after a program is analysed, this burdens the phase of false positive detection:
when a program is analysed, the following phase consists in detecting which
values of the invariants derived by the static analyser are spurious, namely
those values that certainly are not computed by the concrete execution of
the program of interest.

In particular, using imprecise (i.e., not complete) abstract domains clearly
increases the number of false positives in the abstract computation of the
static analyser, burdening the next phase of detection of the spurious values.
Conversely, adopting (backward) complete abstract domains w.r.t. a certain
operation reduce the numbers of false positives introduced during the ab-
stract computations, at least in the input abstraction process. Clearly, in
this way, the next phase of detecting false positives will be lighter since less
noise has been introduced during the abstract computation of the invariants.
For example, let us consider the following simplified example, inspired by
[41].

if (valid(in))
safeOnlyIfValid(in);

else
safeOnlyIfInvalid(in);

It is common, in web developing, to check and sanitize user inputs before
performing some action in a secure way, e.g., for preventing XSS or injec-
tions attacks. For instance, we can suppose that the function valid in the
above example checks whether the input string in does not contain the string
” < script”: if so, it returns true, false otherwise. Hence, if in is valid,
some safe action with valid inputs is performed (true branch), otherwise an-
other safe action with non-valid input is performed (false branch). Let us
suppose that the value of in may be one of the strings set S = {"+1", "+2"}.
Note that, in any case, the program execution always lead to the execution
of the true branch, since all the possible strings of in are valid, i.e., do not
contain the string ” < script”. The abstract value of in, using the start-
ing TAJS abstract domain, is NotUnsigned. Hence, the if-guard cannot be
statically determined, since a NotUnsigned string may be contain or not the
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string ” < script”. Consequently, both if branches must be taken into ac-
count, leading to false alarms both in the true and false branches. Using
the complete shell of TAJS w.r.t. toNum instead leads to a more precise ab-
stract value for in, namely SignedOrFloat. In this case, the if boolean guard
is satisfied (since any string approximated by SignedOrFloat does not contain
the string ” < script”) and no false alarms are raised during the execution
of the program.

7. Relative Precision

In this section, we recall the notion of pseudo-distance on abstract do-
mains, firstly defined in [33], which takes into account the order relation
between abstract elements (together with the fact that different abstract ele-
ments might approximate the same set of concrete values) and their possible
incomparability. Then we formalise the increment of the precision obtained
when analysing a program with a complete abstract domain with respect to
the original version of the domain.

7.1. Abstract domains precision: an overview

It is well known that abstract domains precision can be qualitatively com-
pared by exploiting the information they are able to capture [13, 14]. How-
ever, quantitatively evaluating the precision of abstract domains has been
proven to be quite challenging and frequently resulted in ad hoc measures.

Di Pierro and Wiklicky [40], introduced the notion of probabilistic Ab-
stract Interpretation, used to numerically estimate the incompleteness of
numerical abstract domains. Sotin [44] presented the notion of precision
of a numerical abstract value, measuring the volume it describes, with the
purpose of quantitatively comparing the precision of numerical abstract do-
mains. Finally, Casso et al. [9] wanted to compare the precision of different
analyses on logic programs. Thus, they proposed distances in two abstract
domains used in constraint logic programming and they extended them to
distances between the results of different analyses of a given program.

Logozzo et al. [33] gave a more general definition of pseudo-distance be-
tween abstract domain elements that allows quantifying the error of approx-
imating a concrete element in an abstract domain.

Definition 8 (Pseudo-distance [33]). Let 〈D,vD,⊥D,>D,uD,tD〉 be an ab-
stract domain. A function δ : D× D→ R ∪ {+∞} is a pseudo-distance over
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the abstract domain D if and only if, for any d, d', d'' ∈ D, it satisfies the
following axioms:

• non-negativity : δ(d, d') ≥ 0

• if-identity : d =D d'⇒ δ(d, d') = 0

• symmetry : δ(d, d') = δ(d', d)

• weak triangle inequality : d vD d'' vD d'⇒ δ(d, d'') ≤ δ(d, d')+δ(d', d'')

We recall the path length distance definition.

Definition 9 (Path length distance [33]). Let 〈D,vD,⊥D,>D,uD,tD〉 be an
abstract domain. The path length distance δplen : D × D → R ∪ {+∞} is
defined as

δplen(d, d') =


plen(d, d') d vD d'
plen(d', d) d' vD d

+∞ otherwise

where plen(d, d') computes the distance between two abstract values d, d' ∈
D, when they are comparable, and it is defined as follows.7

plen(d, d') = min{n ∈ N | {d0, d1, . . . , dn} ∈ P(D), d0 = d, dn = d',

∀i ∈ [0, n).di vD di+1 ∧ @d'' ∈ Dr {di, di+1}. di vD d'' vD di+1}

Observe that, if d vD d', plen(d, d') corresponds to the length of the
minimal path from d to d' in the Hasse diagram representation of D w.r.t. vD.
For instance, let us consider the Sign abstract domain reported in Figure 1
and suppose to compute the path length distance between ⊥Sign and >Sign.
In the abstract domain, two paths exist between ⊥Sign and >Sign, namely
{⊥Sign,NotPos,>Sign} and {⊥Sign,NotNeg,>Sign}. Following the definition of
plen reported above, we have to take the minimum path length of the paths
set, hence plen(⊥Sign,>Sign) = 2 (path length distance starts counting from
0).

7Notice that the original definition of plen in [33] contains a typo, as it refers to the
partial order in a chain by disregarding its transitive closure.
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1nums = "";
2notnums = "";
3i = 0;
4while (i < length(s)) {

5if (toNum(charAt(str , i)) == 0) {
6notnums = concat(notnums , charAt(s, i));7

} else {
8nums = concat(nums , charAt(s, i));9

}
10i = i + 1;11

}12

Figure 11: Example of µDyn annotated program

7.2. Measuring precision gained by complete shells

We aim at computing the distance and, in turn, the increment of precision,
between abstract points of an abstract domain D and its complete shell, w.r.t.
a certain operation of interest f, noting that the abstract values of D are all
contained in its complete shell. In order not to clutter the notation, given
an abstract domain D, we denote by Shellf(D) its complete shell w.r.t the
function f.

Let P be a µDyn program and let denote by Lab(P) the program points
of P. We denote by li ∈ Lab(P) its i-th program point and by Vars(P)
the program variables. An example of program annotated with its program
points is reported in Figure 11. Given such a program, as usual in static
program analysis, the goal is to compute the abstract values associated to
each variable x ∈ Vars(P) at each program point l ∈ Lab(P). We denote by
ξD : Vars(P)→ D the abstract state associating each variable to an abstract
value of D. When it is clear from the context, we denote the abstract state
by ξ. Hence, given an abstract domain D and a program P, the result of the
analysis of P using the abstract domain D (and the corresponding abstract
semantics J·KD) is defined by

Analysis(P,D, ξ∅) = {(li, ξi) | li ∈ Lab(P), ξi = JPKDξ∅ at program point li}

where ξ∅ is the (initial) empty abstract state. For example, let us analyse the
µDyn program with the original TAJS abstract domain reported in Figure 5b.
The abstract state holding at program point 12 (namely the exit program
point) is ξ12 = {i 7→ UnsignedInt, nums 7→ >TJ, notnums 7→ >TJ}, indeed the
pair (12, ξ12) ∈ Analysis(P,TJ, ξ∅).
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We can exploit the definition of path length distance reported in Defini-
tion 9 to define, for each program point l ∈ Lab(P), the distance from ⊥D and
each abstract value associated with each x ∈ Vars(P).

Definition 10 (Set of ⊥-distances). Let P be a µDyn program, D an abstract
domain and δplen the path length distance defined in Definition 9. The set of
⊥D-distances for a given l ∈ Lab(P) is defined as follows.

Φl(P,D) = {(x, δplen(⊥D, ξ(x))) | (l, ξ) ∈ Analysis(P,D, ξ∅), x ∈ Vars(P)}

For example, let us consider again ξ12, previously defined, that is the abstract
state holding at the program point 12 of the program reported in Figure 11
analyzing it with TJ abstract domain. Hence, the set of the ⊥TJ-distances at
program point 12 is Φ12(P,TJ) = {(i, 2), (nums, 3), (notnums, 3)}.

Note that, by the weak triangle inequality, given two abstract elements
d, d' ∈ D, if d vD d' ⇒ δplen(⊥D, d) ≤ δplen(⊥D, d'). Moreover, since ⊥D is
comparable with any abstract value a ∈ D, δ(⊥D, d) 6=∞.

Definition 11. [Precision entropy at a program point] Let P be a µDyn
program and D an abstract domain. Given a program point l ∈ Lab(P), the
precision entropy of D for the program P at l is defined as

Pl(P,D) =
∑

(xi,di)∈Φl(P,D)

di

where di is the path length distance from ⊥D to the abstract value of xi at
the program point l.

We can use Definition 11 to define the precision entropy of an analysis
for a given program.

Definition 12. [Precision entropy] Let P be a µDyn program and D be an
abstract domain. The precision entropy P(P,D) of the abstract domain A
for the program P is defined as

P(P,D) =
∑

l∈Lab(P)

Pl(P,D)

The precision entropy P(P,D) says how much information the analysis
based on the abstract domain D is able to express: the more P(P,D) is low,
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the more the analysis based on D is precise for the program P. Using this
metric, we are able to compare the analysis results based on a certain abstract
domain and its corresponding complete shell. As we have already mentioned
at the beginning of Section 7, any abstract point of D is contained in its
complete shell. Moreover, it is worth noting that, given a variable x ∈ Vars(P)
and a certain program point l ∈ Lab(P), the abstract value computed by the
analysis on D associated to x is always comparable with the abstract value
computed by the analysis on Shellf(D) associated to x. Formally, let consider
(l, ξ) ∈ Analysis(P,D, ξ∅) and (l, ξ') ∈ Analysis(P, Shellf(D), ξ∅), for some
program point l ∈ Lab(P), we have that ∀x ∈ Vars(P). ξ'(x) vShellf(D) ξ(x).
This can be expressed by the following predicate

P(P, Shellf(D)) ≤ P(P,D).

Informally speaking, for a program point l, the analysis result of x on
Shellf(D) is always dominated (i.e., less than or equal to) by the analysis
result of x on D (contained in Shellf(D)). This fact directly comes from
the dominance relation involved in the definition of complete shells given
in Theorems 1 and 2. For this reason, we can always compare the analysis
results produced by D and Shellf(D) for any variable and any program point.

This leads us to an automatic procedure to compute how much the anal-
ysis performed by Shellf(D) is better than the one performed by D.

The Clam static analyzer. The Clam static analyzer for µDyn programs8

implements the TAJS and SAFE string abstract domains and their corre-
sponding complete shells discussed in Section 5. The abstract interpreter
is parametric, as it can be tuned by selecting the string abstract domain
to analyze a given program. Other string abstract domains can be easily
plugged into our static analyzer, without re-implementing the underlying
abstract interpreter. Moreover, it is possible to check the precision entropy,
discussed in Section 7, of an abstract domain and its complete shell. In this
way, it is possible to check at which program point and for which variables
the complete shell-based analysis gains precision w.r.t. the analysis on the
original abstract domain. In the following, we will consider TAJS and its
complete shell: note that, in our analyzer, both the domains specify the
path length distances, as defined in Definition 9, from the bottom element to

8Available at https://github.com/VincenzoArceri/clam
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Variable TJ TJ
?

P12(P,TJ)− P12(P,TJ
?
)

s UnsignedStr UnsignedStr 0

i UnsignedInt UnsignedInt 0

nums >TJ UnsignedOrNotNumeric 1

notnums >TJ UnsignedOrNotNumeric 1

Table 2: Analysis output results with TJ and TJ
?

each of their abstract points (that are computed off-line and hard-coded) by
computing all the lengths of the complete chains linking the bottom element
with that points and picking the minimal one.

Let us consider the µDyn program reported in Figure 11, where the value
of s is statically unknown. The program takes the strings s and puts its
non-zero numerical characters into nums and the others into notnums. If the
variable s is initialized as ”24kobe8”, at the program point 12 the value
of nums is ”248” and the value of of notnumbs is ”kobe”. Let us consider
TAJS and its complete shell and let analyze the program with both the
abstract domains. When the variable s is initialized with the abstract value
UnsignedStr, the analysis output, for the exit point is reported in Table 2,
where the second and third columns correspond to the result analysis of TJ
and TJ

?
for the corresponding variable, respectively, and the last column is

the increment precision gained by performing the analysis on TJ
?
. Observe

that, for the variables s and i, we have no precision improvement, as stated
by the last column of Table 2. Concerning variables nums and notnumbs, the
analysis on TJ returns the top values, whereas the analysis on TJ

?
leads to a

precision increment since it returns the abstract value UnsignedOrNotNumeric,
for both variables. The precision increment is stated by the last column
of Table 2 for the variables nums and notnumbs, since their abstract values
(UnsignedOrNotNumeric) on the analysis on TJ

?
is distant 1 from the abstract

values of the analysis on TJ (>TJ). The total precision entropy of the analysis
on TJ and the analysis on TJ

?
is 54 and 44, respectively, so the overall

precision increment when considering the complete shell, in this case, is equal
to 10.

32



8. Conclusion

This paper focused on backward completeness in JavaScript-specific string
abstract domains, and provided in particular the complete shells of TAJS and
SAFE string abstract domains w.r.t. toNum and concat operations, together
with an effective procedure to measure the precision improvement of the anal-
ysis when moving to the complete shell. Our results can be easily applied
also to JSAI string abstract domain [28], as it can be seen as an extension
of the SAFE domain. The next challenge is to investigate forward com-
pleteness [24], the property that guarantees that no loss of precision occurs
during the output abstraction process of a given operation. We aim to in-
tegrate the two completeness methodologies within an industrial JavaScript
static analyzer to deeply evaluate their actual cost and overall impact.

Acknowledgment. Special thanks to the very professional reviewers, that con-
tributed to improve the technical quality of the submitted manuscript.
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