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We define a new consistent estimator of the integrated volatility of volatility based only on a pre-

estimation of the Fourier coefficients of the volatility process. We investigate the finite sample prop-

erties of the estimator in the presence of noise contaminations by computing the bias of the estimator

due to noise and showing that it vanishes as the number of observations increases, under suitable as-

sumptions. In both simulated and empirical studies, the performance of the Fourier estimator with high

frequency data is investigated and it is shown that the proposed estimator of volatility of volatility is

easily implementable, computationally stable and even robust to market microstructure noise.

Keywords: stochastic volatility, volatility of volatility, high frequency data, microstructure, Fourier

analysis
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1. Introduction

Motivated by empirical studies showing the patterns of volatilities in financial time series, in the

last decades many stochastic volatility models have been proposed: such models are able to re-

produce some stylized facts as variance heteroscedasticity, predictability, volatility smile, negative

correlation between asset returns and volatility; very recently, Barndorff-Nielsen and Veraart (2013)

propose a new class of stochastic volatility of volatility models, introducing an extra source of ran-

domness. The estimation of all these models is rather complicated, the main difficulties are due to

the fact that some factors are unobservable (e.g. the volatility in a standard stochastic volatility

model or even more, the stochastic volatility of volatility in the stochastic volatility of volatility

models), thus we have to handle them as latent variables.

In this paper, we focus on the estimation of integrated stochastic volatility of volatility using

high frequency data and we define a consistent non parametric estimator based on the Fourier

∗Corresponding author. Email: simona.sanfelici@unipr.it
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series methodology introduced in Malliavin and Mancino (2002, 2009), which works both in the

case of classical stochastic volatility models and in the context of stochastic volatility of volatility

models. The proposed estimator needs only to pre-estimate the Fourier coefficients of the volatility

process from the observations of a price process and does not require a preliminary estimation of

the instantaneous volatility.

An early application of the Fourier methodology to identify the parameters (volatility of volatility

and leverage, i.e., the covariance between the stochastic variance process and the asset price process)

of stochastic volatility models, including classical models such as Heston (1993), Hull and White

(1987), Stein and Stein (1991), has been developed in Barucci and Mancino (2010). However,

the problem of robustness with respect to microstructure noise is not addressed by the authors;

hence, the numerical simulations assessing the performance of the method employ low frequency

observations.

The issue of estimating the volatility of volatility in the presence of jumps is studied in Cuchiero

and Teichmann (2015): firstly, the authors combine jump robust estimators of integrated realised

variance and the Fourier-Fejer inversion formula to get an estimator of the instantaneous volatility

path; secondly, they use again jump robust estimators for integrated volatility in which they plug

the estimated path of the volatility process in order to obtain an estimator of the volatility of

volatility. Barndorff-Nielsen and Veraart (2013) define a class of stochastic volatility of volatility

models and show that it can be estimated non-parametrically by means of the quadratic variation of

the preliminarly estimated squared volatility process, which they name pre-estimated spot variance

based realised variance. Vetter (2011) proposes an estimator for the integrated volatility of volatility,

which is also based on increments of the pre-estimated spot volatility process and attains the

optimal convergence rate. The common feature of these estimators is that they first estimate

the volatility path using some consistent estimate of the instantaneous volatility; secondly, they

estimate the volatility of volatility using the estimated volatility process as a proxy of the unknown

paths. However, these estimators do not take into account the microstructure noise effects, which

would seriously affect the accuracy of the estimation as the spot volatility estimators are quite

sensitive to noise.

In the present work we define the Fourier estimator of volatility of volatility, we prove its con-

sistency and we claim the efficiency of our method when applied to compute the volatility of the

volatility in the presence of microstructure noise. To this end, we compute the bias due to noise

of the proposed estimator of volatility of volatility and we show that it converges to zero, as the

number of observations increases, by suitably cutting the highest frequencies in the Fourier expan-

sions. This result is due to the intrinsic robustness of the Fourier estimator of volatility; in fact, the

finite sample properties of the Fourier estimator of integrated volatility in the presence of market

microstructure noise have been studied in Mancino and Sanfelici (2008), where the authors find

that, even without any bias correction of the estimator, the bias of a finite sample can be made

negligible by suitably cutting the highest frequencies in the Fourier expansion. Our procedure can

be extended without any conceptual difficulties to the multidimensional setting.

We stress the point that the Fourier estimator of the volatility of volatility is notably different

from the other proposed volatility of volatility estimators: in fact, they all use some estimated

instantaneous volatility path in order to define the volatility of volatility estimators by means of

some numerical differentiation (more or less in spirit they are quadratic or power variation of the
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estimated spot volatilities). On the contrary, our approach relies only on integrated quantities,

i.e. the Fourier coefficients of the volatility. As it was early observed in Malliavin and Mancino

(2002), this is a peculiarity of the Fourier estimator that renders the proposed method easily

implementable, computationally stable and even robust to market microstructure noise.

The finite sample performance of the Fourier estimator of volatility of volatility is tested in

extensive numerical simulations, using both classical stochastic volatility models, where the spot

variance follows a mean-reverting square-root process, and models with stochastic volatility of

volatility, namely where the volatility of the variance process is driven by a second source of

randomness. Our analysis is threefold. We first show the sensitivity of the Fourier estimator to

the choice of the cutting frequencies, to which the consistency of the estimator is related, and

we test the robustness of the estimator with respect to several noise settings. Then, we test the

performance of the Fourier estimator using as a benchmark the pre-estimated spot variance based

realised variance of Barndorff-Nielsen and Veraart (2013) and the bias corrected realised variance

estimator of Vetter (2011). Finally, we address the issue of parameter identification of stochastic

volatility models and we consider an empirical application to S&P 500 index futures.

The paper is organized as follows. Section 2 reviews the Fourier methodology for estimating

volatilities. In Section 3, we define the Fourier estimator of volatility of volatility and prove its

consistency. The asymptotically unbiasedness of the estimator with respect to (some kind of)

microstructure noise is proved in Section 4. In Section 5, we test its performance in several scenarios.

Section 6 concludes. The technical proofs are contained in the Appendix.

2. The Fourier method for computing volatilities

We consider a fairly general class of stochastic volatility models. Suppose that the log price-variance

processes satisfy

(A.I)

{
dp(t) = σ(t)dW (t) + a(t)dt

dv(t) = γ(t)dZ(t) + b(t)dt

where p(t) is the logarithm of the asset price and v(t) := σ2(t) is the variance process. Let W

and Z be correlated Brownian motions on a filtered probability space (Ω, (Ft)t∈[0,T ], P ), satisfying

the usual conditions. Assume that σ(t), γ(t) are non-negative adapted processes and a(t), b(t) are

adapted processes such that

(A.II)

E[
∫ T

0 a2(t)dt] <∞, E[
∫ T

0 b2(t)dt] <∞

E[
∫ T

0 σ4(t)dt] <∞, E[
∫ T

0 γ4(t)dt] <∞.

Therefore, our stochastic volatility models assume the variance process to be a continuous Brow-

nian semimartingale, but the volatility of the variance process might have jumps. Further, we will

show in Section 5 that the proposed estimator of volatility of volatility works well also in the

stochastic volatility of volatility models by Barndorff-Nielsen and Veraart (2013). In the sequel

we will often refer to the process v(t) as the volatility, as it is usually done in the econometric

literature.
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We briefly recall the Fourier volatility estimation method by Malliavin and Mancino (2009). By

rescaling the unit of time, we can always reduce ourselves to the case where the time window [0, T ]

becomes [0, 2π]. Then, define the k-th Fourier coefficient of the price process

ck(dp) :=
1

2π

∫ 2π

0
exp(−ikt) dp(t) ,

and consider for all integers k the Bohr convolution product

lim
N→∞

2π

2N + 1

∑
|s|≤N

cs(dp)ck−s(dp). (1)

In Malliavin and Mancino (2009) it is proved that the limit (1) exists in probability and it is equal

to the k-th Fourier coefficient of the volatility process v, which we denote as ck(v).

The knowledge of the Fourier coefficients ck(v) of the unobservable instantaneous volatility pro-

cess v(t) allows to handle this process as an observable variable and we can iterate the procedure

in order to compute the volatility of the volatility process: given the price-variance model in (A.I),

the k-th Fourier coefficient of the volatility γ2(t) of the volatility process can be computed as the

following limit in probability

ck(γ
2) = lim

M→∞

2π

2M + 1

∑
|s|≤M

cs(dv)ck−s(dv), (2)

where we can use the integration by parts formula to write the Fourier coefficients of dv, that is,

for any integer k, k 6= 0,

ck(dv) = ikck(v) +
1

2π
(v(2π)− v(0)).

We start from this key property of Fourier estimation method, namely the possibility of iterat-

ing the Bohr convolution procedure, and we propose an estimator of the integrated volatility of

volatility, indeed the zero Fourier coefficient of the process γ2(t), which is easily implementable

with high frequency market data.

The idea of using the estimated Fourier coefficients of the volatility as building blocks to obtain

results for other related quantities has been applied in Malliavin and Mancino (2002a) to compute

the price-volatility feedback-rate, in Mancino and Sanfelici (2012) to estimate the quarticity and

in Curato and Sanfelici (2015) for the estimation of the leverage, i.e., the covariance between the

stochastic variance process and the asset price process.

In this paper, we claim the effectiveness of Fourier estimation method when applied to compute

the volatility of the volatility in the presence of microstructure noise, a result that is due to the

intrinsic robustness of the Fourier estimator of volatility. In fact, Mancino and Sanfelici (2008)

analyse the finite sample properties of the Fourier estimator of integrated volatility in the presence

of market microstructure noise and find out that, even without any bias correction of the estimator,

the bias on a finite sample can be made negligible by suitably cutting the highest frequencies in

the Fourier expansion. In this paper, we analytically compute the bias of the Fourier estimator of

the volatility of volatility due to the presence of noise and we show that this bias is asymptotically

vanishing, under a suitable choice of the number of Fourier frequencies.
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3. The Fourier estimator of volatility of volatility

In this section we define the Fourier estimator of the volatility of volatility which relies on the

convolution formulae (1) and (2); then we prove that it is consistent in probability.

For any positive integer n, let Sn := {0 = t0 ≤ · · · ≤ tn = 2π} be the set of (possibly unequally-

spaced) trading dates of the asset, i.e., the observation times of the asset price. Denote ρ(n) :=

max0≤i≤n−1 |ti+1− ti| and suppose that ρ(n)→ 0 as n→∞. Moreover, let δi(p) := p(ti+1)− p(ti).
For any integer k, |k| ≤ 2N , let

ck(dpn) :=
1

2π

n−1∑
i=0

exp(−ikti)δi(p), (3)

then for any integer j, |j| ≤ N , let

cj(vn,N ) :=
2π

2N + 1

∑
|k|≤N

ck(dpn)cj−k(dpn). (4)

The following result states the consistency of the estimator (4) of the Fourier coefficients of the

volatility process. The proof can be found in Malliavin and Mancino (2009).

Theorem 3.1 Under the assumptions (A.I) and (A.II) and the condition ρ(n)N → 0, then, for

any integer j, the following convergence in probability holds

lim
n,N→∞

cj(vn,N ) = cj(v).

Given the estimated Fourier coefficients of the volatility process (4), we construct an estimator

of the second order quantity (i.e. the volatility of volatility) starting from (2). More precisely, we

define the Fourier estimator of the (integrated) volatility of volatility
∫ 2π

0 γ2(t)dt as

γ̂2
n,N,M :=

(2π)2

M + 1

∑
|j|≤M

(
1− |j|

M

)
j2 cj(vn,N )c−j(vn,N ). (5)

In (5) we have chosen to add a Barlett kernel, which improves the behavior of the estimator for

very high observation frequencies.

We emphasize the fact that the estimator (5) does not require the preliminary estimation of the

instantaneous volatility, but only the estimated Fourier coefficients of the volatility.

As far as we know, all the recently proposed estimators of volatility of volatility need the estimated

volatility path in order to estimate the volatility of volatility, the ratio being that the reconstructed

(estimated) path of the volatility is plugged into an estimator of integrated volatility, e.g. the

realised volatility (see, for instance, Barndorff-Nielsen and Veraart (2013), Cuchiero and Teichmann

(2015), Vetter (2011)). Therefore, a large number of observations for the price process is necessary,

as it is statistically clear that the integrated variance of the volatility process can be estimated

only on a larger time scale than the one used for estimating the volatility path from the observed

prices. This yields a huge loss of information contained in the original dataset. On the other

side, it is well known that spot volatility estimation is quite unstable, especially in the presence
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of microstructure effects as it happens with high frequency data. On the contrary, the Fourier

estimator can reconstruct the integrated volatility of volatility using as input the Fourier coefficients

of the observable log-returns, in other words using only integrated quantities from the whole dataset.

In order to prove the consistency of the proposed estimator we add a further assumption on the

values of the volatility at the end points (see Barndorff-Nielsen and al. (2008) for a similar idea):

(A.III) we redefine the two end values v(0) and v(2π) to be respectively equal to v(0+)+v(0−)
2

and v(2π+)+v(2π−)
2 . Equivalently, we can use an average of m distinct observations in the intervals

(−ε, ε) and (2π − ε, 2π + ε). This jittering is used to eliminate end-effects that would otherwise

appear.

The following result proves that (5) is a consistent estimator of the integrated volatility of

volatility and gives the growth rates between the highest Fourier frequencies N and M , which

are needed for the construction of the estimators cj(vn,N ) and γ̂2
n,N,M , respectively, and the initial

mesh width ρ(n) of the price process observations.

Theorem 3.2 Under the assumptions (A.I), (A.II), (A.III) and the conditions Nρ(n) → 0 and
M4

N → 0, then the following convergence in probability holds

lim
n,N,M→∞

γ̂2
n,N,M =

∫ 2π

0
γ2(t)dt.

Remark 3.3 The multivariate extension of our results to obtain a high frequency estimator of

the covariance of the covariance matrix is essentially contained in the proposed theory. In fact,

the Fourier method was originally introduced by Malliavin and Mancino (2002) for the estimation

of multivariate volatility in order to overcome the difficulties intrinsic in the use of the quadratic

covariation formula on true return data, due to the non-synchronicity of observed prices on different

assets. We do not intend to develop this theory in the present paper, but we claim that the availability

of a multivariate extension is an added important advantage of our estimator of second order

quantities.

4. Robustness to microstructure noise

In this section we derive the analytical expression of the bias of the Fourier estimator of volatility of

volatility due to the presence of microstructure noise, for a given sample size n and a given number

of Fourier coefficients N and M included in the estimation and we prove that the bias of the Fourier

estimator converges to zero, for n,N,M increasing at suitable rates. Therefore, even if we do not

proceed to any bias correction of the estimator, a suitable cutting of the highest frequencies can

make the finite sample bias negligible.

We suppose that the logarithm of the observed price process is given by

p̃(t) = p(t) + η(t) (6)

where p(t) is the efficient log price in equilibrium and η(t) is the microstructure noise.

6
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The following assumptions hold:

(M.I) the random shocks {η(ti)}0≤i≤n, for all n, are independent and identically distributed

with mean zero and bounded fourth moment;

(M.II) the shocks {η(ti)}0≤i≤n are independent of the price process p, for all n.

Remark 4.1 We consider here the simple case where the microstructure noise displays an MA(1)

structure with a negative first-order autocorrelation. The MA(1) model is typically justified by

bid-ask bounce effects, see Roll (1984). The hypothesis that the random noises are independent

of the returns (see the discussion in Hansen and Lunde (2006)) is assumed here with the aim to

obtain simple analytic expressions for the bias. Nevertheless, we expect that similar results would be

observed under more general microstructure noise dependence, as a consequence of the robustness

of the Fourier volatility estimator proved in Mancino and Sanfelici (2008) under general dependent

noise structure. A specific simulation study confirming this intuition is developed in Section 5.

To simplify the notation, in the sequel we will write ηi instead of η(ti). Denote δi(p̃) := p̃(ti+1)−
p̃(ti), where p̃ is defined in (6). Then δi(p̃) = δi(p) + εi, where εi := ηi+1 − ηi.

We focus on the estimator of integrated volatility of volatility in the presence of microstructure

noise defined by:

γ̃2
n,M,N =

(2π)2

M + 1

∑
|j|≤M

(1− |j|
M

)j2 cj(ṽn,N )c−j(ṽn,N ) (7)

where

cj(ṽn,N ) =
2π

2N + 1

∑
|k|≤N

ck(dp̃n)cj−k(dp̃n),

is the estimated j-th Fourier coefficient of the volatility, given price observations contaminated by

microstructure noise.

The following result contains the computation of the bias induced by the noise. For simplicity

we assume equally spaced data in the following theorem.

Theorem 4.2 Under the assumptions (A.I), (A.II) and (M.I), (M.II), let γ̂2
n,M,N and γ̃2

n,M,N be

defined respectively by (5) and (7). Then, it holds

E[γ̃2
n,M,N − γ̂2

n,M,N ]

= 2E[η2]E[

∫ 2π

0
σ2(t)dt] Λ(n,N,M) + 2(E[η4] + 3E[η2])Γ(n,N,M) + 2E[η2]Ψ(n,N,M),

where Λ(n,N,M), Γ(n,N,M) and Ψ(n,N,M) are deterministic functions that go to 0 as

n,N,M →∞, under the conditions M2N2

n → 0 and M2

N → 0.

Remark 4.3 From Theorem 3.2 and Theorem 4.2, the growth conditions ensuring both the con-

sistency of the Fourier estimator of volatility of volatility (7) and its asymptotically unbiasedness

7
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in the presence of microstructure noise are that N = O(nα) and M = O(nβ) with 0 < α < 1
2 and

0 < β < α
4 .

5. Numerical results

In this section, we simulate discrete data from a continuous time stochastic volatility model with

and without microstructure contaminations. From the simulated data, Fourier estimates of the

integrated volatility of volatility can be compared to the value of the true quantity and to estimates

obtained with other methods proposed in the literature. However, to the best of our knowledge,

only very recently the literature has been focused specifically on the analysis of estimators for

integrated volatility of volatility. We refer to the works of Barndorff-Nielsen and Veraart (2013),

Vetter (2011), Cuchiero and Teichmann (2015). None of these contributions, however, consider the

issue of microstructure effects which may be problematic in empirical applications and therefore

they do not apply to a real high frequency setting.

Another aspect that is worth mentioning is that, by their nature, all existing estimators of volatil-

ity of volatility rely on a preliminary estimation of the spot volatility path. It is well known that

spot volatility estimation is particularly difficult and quite unstable, especially in the presence of

microstructure effects. On the contrary, the Fourier estimator can reconstruct the Fourier coeffi-

cients of the volatility of the variance process starting from the observable log-prices. Therefore,

our estimate is obtained by iterated convolutions of the Fourier coefficients of the log-returns,

without resorting explicitly to any proxy of the latent spot variance of returns. We think that

this can represent a strength of our approach, as it will be highlighted by the following numerical

simulations.

As a benchmark for our estimator, we use the pre-estimated spot variance based realised vari-

ance of Barndorff-Nielsen and Veraart (2013), that we call realised variance in the following. This

estimator is consistent in the absence of microstructure frictions. To obtain roughly unbiased and

valid estimates of the integrated volatility of volatility when microstructure effects play a role,

we can resort to low frequency sampling. However, the well known bias-variance trade off comes

up as sparse sampling eliminates information contained in the available data. For the reader’s

convenience, we recall the construction of the realised variance estimator.

Hypothetically, let us assume that we observe the volatility process σ2 at equally spaced times

i∆n, i = 0, 1, 2, . . . , bT/∆nc, for some ∆n > 0 such that ∆n → 0, as n→∞. The realised variance

at time t is then defined as the sum of squared increments over the time interval [0, t], for 0 ≤ t ≤ T ,

i.e.

RV n
t (σ2) =

bt/∆nc∑
i=1

(∆n
i σ

2)2,

where ∆n
i σ

2 = σ2(i∆n) − σ2((i − 1)∆n). Standard arguments assure that RV n
t (σ2) converges in

probability, uniformly on compacts, to the integrated volatility. However, since volatility is unob-

servable, we have to replace the squared volatility process by a consistent spot variance estimator.

8
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Barndorff-Nielsen and Veraart (2013) propose to use the locally averaged realised variance

σ̂2
s =

1

Knδn

bs/δnc+Kn/2∑
i=bs/δnc−Kn/2

δni (p)2,

where now δni (p) = p(iδn)−p((i−1)δn) is the i-th log-return computed on a different time scale at

which we observe the logarithmic asset price p, with mesh size δn > 0. This estimator is constructed

over a local window of size Knδn, where we require Kn → ∞ such that Knδn → 0. However, this

only works when we estimate spot volatility on a finer time scale than the one used for computing

the realised variance. Then we must assume δn < ∆n. In particular, we can take

∆n = O(δCn ), for 0 < C < 1,

and

Kn = O(δBn ), for − 1 < B < 0.

In the presence of microstructure effects in the price process, besides sparse sampling, we can

choose locally pre-averaged variance estimator to reduce the noise-induced bias as in Jacod et al.

(2009). However, we limit our analysis to the realised variance estimator.

Vetter (2011) proposes a similar spot variance based estimator and shows that it is possible

to take ∆n = Knδn preserving convergence at the optimal rate, provided that a bias correction

is introduced. We will consider this estimator for integrated volatility of volatility as well in our

analysis and we will call it Corrected realised variance.

In both cases, the necessary condition imposed on the choice of the time scales δn and ∆n

represents a limit for the efficiency of such procedures. On one side, it requires using huge datasets

of high frequency returns, where market microstructure effects likely become manifest. On the

other side, the choice of the second level time scale ∆n implies a loss of the information contained

in the original time series.

Our simulation exercise is conducted using mainly two different stochastic volatility models.

The first one is a classical stochastic volatility model, where the spot variance follows a mean-

reverting square-root process. The second one is a model with stochastic volatility of volatility,

namely the volatility of the variance process is driven by a second source of randomness. Our

analysis is threefold. In Section 5.1, we show the sensitivity of the Fourier estimator to the choice

of the parameters M and N , to which the consistency of the estimator is related and we test

the robustness of the estimator with respect to several noise settings. In Section 5.2, we test the

performance of the Fourier estimator with respect to the realised variance and the bias corrected

realised variance estimators both on a standard stochastic volatility model and on a model with

stochastic volatility of volatility. Finally, in Sections 5.3 and 5.4, we address the issue of parameter

identification of stochastic volatility models and we consider an empirical application to S&P 500

index futures.
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5.1. Parameter sensitivity and robustness to microstructure effects

The definition of the Fourier estimator of volatility of volatility depends on the choice of two

parameters characterizing the highest frequency Fourier coefficients of returns and of volatility,

respectively, that enter in our estimator. We call these parameters the cutting frequencies at which

the sums in (4) and (5) are truncated. Therefore, it is important to analyze the sensitivity of the

estimator to the choice of the parameters M and N .

Let us consider a stochastic volatility model where the spot variance follows a mean-reverting

square-root process. We simulate second-by-second return and variance paths over a daily trading

period of T = 6 hours, for a total of 250 trading days and n = 21600 observations per day.

The infinitesimal variation of the true log-price process and spot volatility is given by the CIR

square-root model, see Cox et al. (1985)

{
dp(t) = σ(t) dW (t)

dσ2(t) = α(β − σ2(t))dt+ νσ(t) dZ(t),
(8)

where W , Z are two possibly correlated Brownian motions, with constant instantaneous correlation

ρ. The parameter values used in the simulations are taken from the unpublished Appendix to Bandi

and Russell (2005) and reflect the features of IBM time series: α = 0.01, β = 1.0, ν = 0.05. We

take ρ = −0.5. The initial value of σ2 is set equal to one, while p(0) = log 100. Moreover, when

microstructure effects are considered, we assume that the logarithmic noises η are Gaussian i.i.d.

and independent from p; this is typical of bid-ask bounce effects in the case of exchange rates and,

to a lesser extent, in the case of equities. We consider noise-to-signal ratios ζ = std(η)/std(r) equal

to 0 in the no-noise case and to 2.5 for noisy data, where r are the 1-second returns.

In Figure 1, we plot the real MSE of the Fourier estimator averaged over 250 days as a function

of M and N , respectively, and of any combination (M,N) in the absence of microstructure effects.

We notice that the Fourier estimator turns out to be on average quite robust to the choice of M

in the interval [0, 12]. For larger values of M , both the MSE and bias rapidly increase. As regards

to N , except for the lowest values up to about N = 250 and depending on M , the MSE exhibits

small variability as well.

Figure 2 shows the average MSE in the presence of i.i.d. noise, with ζ = 2.5. The plots are

qualitatively the same as in Figure 1. We notice that the addition of noise does not seem to affect

much the variability of the MSE as a function of N and the quality of estimation. However, the

estimator seems to be more sensitive to the choice of M in the presence of noise than in the pure

diffusive case. This is reflected by the MSE and bias, which show higher values for M ≥ 10.

Usually, the minimum MSE is achieved for values of the cutting frequency N which turn out

to be much smaller than the Nyquist frequency (i.e. N � n/2) both in the absence and in the

presence of noise. Moreover, in complete agreement with the theory developed in Section 3, the

optimal value of M is very small. In these two simulations, we get that the optimal values of the

cutting frequencies are N = 995, M = 8 and N = 1230, M = 7, respectively, and the minimum

attained MSE is 5.75e-8 and 6.63e-8, respectively. As the noise-to-signal ratio increases, the choice

of the parameter M has a more critical impact on the MSE and smaller values of M should be

considered. We remark that the Fourier estimator makes use of all the n observed prices, because

it reconstructs the signal in the frequency domain and therefore it can filter out microstructure

10
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Figure 1. Real MSE and bias of the Fourier estimator of volatility of volatility averaged over the whole dataset (250

days) as a function of M and N , for the purely diffusive price process (8). True Integrated volatility of volatility

6.24e-4.

Figure 2. Real MSE and bias of the Fourier estimator of volatility of volatility averaged over the whole dataset (250

days) as a function of M and N , in the presence of microstructure effects, with ζ = 2.5. True Integrated volatility of

volatility 6.24e-4.

effects by a suitable choice of M and N instead of reducing the sampling frequency.

Finally, we test the robustness of the Fourier estimator with respect to more general microstruc-

ture settings. Therefore, we relax both the assumptions (M.I) and (M.II) and analyse the behavior

of the Fourier estimator as a function of the sampling frequency. We consider again the model

(8), with data featuring the IBM time series. Besides the case of pure diffusion, we consider three

different microstructure models: the first one, denoted by UNC is the basic i.i.d. Gaussian model

satisfying (M.I) and (M.II); in the second one, denoted by COR, we relax assumption (M.I) and

allow first order autocorrelation of the random shocks; in the third one, denoted by DEP, we re-

lax assumption (M.II) and allow the random shocks η(ti) to be linearly dependent on the return

δi−1(p), i.e. ηi = αηδi−1(p) + η̂i with η̂i Gaussian i.i.d. random variables.

Table 1 lists the MSE of the Fourier estimates of the volatility of volatility as a function of the

sampling frequency ranging from 1 second to 4 minutes. The parameters N and M of the Fourier

estimator must be chosen conveniently. One possible criterion is the minimization of the true MSE.

11
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Fourier estimator MSE ×1.0e− 6

sampling freq. 1 s 15 s 30 s 1 m 2 m 3 m 4 m

NO NOISE 0.0547 0.0814 0.1010 0.1485 0.2001 0.1869 0.2680

UNC 0.0675 0.1060 0.1241 0.1609 0.2044 0.1792 0.2836

COR 0.0806 0.1224 0.1403 0.1675 0.1778 0.1931 0.2782

DEP 0.0679 0.1073 0.1237 0.1611 0.2043 0.1794 0.2851
Table 1. MSE of the Fourier volatility of volatility estimates under general noise settings. Parameter values:

α = 0.01, β = 1.0, ν = 0.05, ρ = −0.5, σ2(0) = 1, p(0) = log 100. When microstructure effects are considered, we

consider a noise-to-signal ratio ζ = 2.5. Moreover, in the case of autocorrelated noise we assume a first order

autocorrelation coefficient ρη = 0.5, while in the case of dependent noise we assume αη = 0.1. True Integrated

volatility of volatility 6.240255e-4.
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Figure 3. Optimal cutting frequencies M and N as a function of the number of observations n and of the sampling

interval ρ(n). ’data1’ corresponds to pure diffusion; ’data2’ corresponds to UNC and DEP noise settings; ’data3’

corresponds to COR noise setting.

This procedures is unfeasible when applied to empirical data, where the actual volatility path is

not observed. However, to evaluate the robustness of the estimator to different noise settings, we

select the optimal parameters N and M by minimizing the true average MSE over 250 days. We

notice that in all the settings the optimal choice of the cutting frequencies M and N keeps the

MSE low. In particular, the lowest MSE is always achieved at the highest frequency (1 s). This is

due to the robustness of the Fourier estimator to microstructure effects which allows the method

to use high frequency data without resorting to sparse sampling.

Figure 3 shows the optimal cutting frequencies M and N as a function of the number of observa-

tions n and of the sampling interval ρ(n). The presence of microstructure noise of any kind yields

optimal values of both N and M that are lower than for the pure diffusive model. However, it has

a larger effect on the choice of M rather than N . By inspecting both the MSE in Table 1 and the

optimal choice of M and N in Figure 3, we notice that the most problematic setting is provided

12
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Fourier-Fejer Realised Variance C-Realised Variance

Noise to signal ratio MSE BIAS MSE BIAS MSE BIAS

ζ = 0.0 1.39e-4 -4.21e-3 1.00e-4 -3.58e-3 9.68e-4 -1.33e-3

ζ = 0.5 1.37e-4 -5.93e-3 1.46e-4 -3.77e-3 4.60e-3 -1.05e-2

ζ = 1.5 1.26e-4 -5.43e-3 1.69e-4 -2.17e-3 5.55e-3 -1.32e-2

ζ = 2.5 5.88e-5 -1.61e-3 9.79e-5 -3.08e-3 7.82e-3 -1.53e-2

ζ = 3.5 7.32e-5 -8.66e-4 1.15e-4 -2.14e-3 1.26e-2 -1.37e-2
Table 2. Optimization procedures based on the minimization of the true average MSE (250 days, n = 10, 000

observations per day). True Integrated Vol of Vol 4.091552e-2.

by the case of correlated noise (COR), which entails smaller values of M and N in order to filter

the microstructure effects.

5.2. Fourier method efficiency

Let us now consider the classical Heston model, see Heston (1993){
dp(t) = (µ− σ2(t)/2)dt+ σ(t) dW1(t)

dσ2(t) = α(β − σ2(t))dt+ νσ(t) dW2(t),
(9)

where we assume the same data as in Vetter (2011), i.e. α = 5, β = 0.2, ν = 0.5, µ = 0.3 and

ρ = −0.2, which corresponds to a moderate leverage effects. Furthermore, we set p(0) = 0 and

σ2
0 = β. The trading period is set to T = 1 day. We generate n = 10, 000 daily observations,

corresponding to a trading frequency of 8.64 seconds.

The sampling frequency δn and the other parameters M , N , Kn contained in the definition of

the estimators considered in our analysis must be chosen conveniently, especially in the presence

of noise. One possible criterion is the minimization of the true MSE. Another possible choice is the

minimization of the expected asymptotic error variance. Both these procedures are unfeasible when

applied to empirical data, where the actual volatility path is not observed. However, to evaluate

the highest efficiency level that can be achieved by the analyzed estimators, we select optimal

parameters by minimizing the average MSE over 250 days. Table 2 displays the results of our

analysis.

First, let us consider the case with no microstructure effects, i.e. ζ = 0.0. The Fourier estimator

is optimized with respect to M and N by minimizing the true MSE over a grid of discrete values

of these parameters. Similarly, the optimal MSE-based realised variance estimator is obtained by

choosing δn = 1/n, ∆n = δnKn/2 and letting Kn vary in a suitable range of integer values around

2
√
n. More precisely, the spot volatility trajectory is estimated using tick-by-tick observations, while

the realised variance of volatility is estimated at the frequency ∆n corresponding to Kn/2 ticks,

where the parameter Kn is chosen in order to minimize the daily MSE. The bias-corrected realised

variance is constructed by choosing Kn =
√
n, as in Section 4 of Vetter (2011). The Fourier and

the realised variance estimators both provide low MSE and bias. The Corrected realised variance

performance is slightly worse in terms of MSE, although still acceptable, and provides the smallest

bias. The optimal cutting frequency for the Fourier estimator are N = 322 e M = 48, while the

optimal value for the window size in the realised variance estimator is Kn = 240 which entails

13
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∆n = 120δn ∼= 17 m.

The case with microstructure effects is reported in Table 2 as well. We consider four different

levels of noise-to-signal ratio ζ = 0.5, 1.5, 2.5, 3.5 and ρ = −0.2. The Fourier estimator is again

optimized with respect to M and N by minimizing the true MSE over a grid of discrete values of

these parameters. The realised variance estimator is not robust to microstructure noise, therefore

we have to resort to sparse sampling to keep the bias due to market microstructure low. The

daily MSE is optimized with respect to both Kn and the sampling frequency δn at which the spot

volatility path is estimated. However, we remark that sparse sampling may produce a loss of the

rich information contained in the original high-frequency dataset. On the contrary, the Fourier

estimator uses all the available data and seems to be invariant to the presence of increasing levels

of noise.

As the noise to signal ratio increases, the optimal sampling frequency δn for the realised variance

estimator δn passes from 276 to 492 seconds. The corresponding values for the second level sampling

interval ∆n range from approximately 74 to 98 minutes. This keeps the bias of the realised variance

estimator quite small, at the expenses of a slightly larger MSE. However, for ζ = 2.5 and ζ = 3.5

its performance gets worse than with the Fourier estimator.

The bias-corrected realised variance estimator shows a very poor performance. Using all the

available data at the highest frequency would produce completely unreliable estimates, due to

microstructure effects; for instance, in the case ζ = 1.5 we would get an average MSE equal to

2.63 with average bias equal to 1.43. When the estimator is optimized in terms of the MSE, then

the log-prices are optimally sampled at the frequency of 467 seconds and Kn is chosen accordingly

as the square root of the number of data in the sample; however, both bias and MSE of the bias-

corrected realised variance estimator are still very large compared to the Fourier and Realised

Variance estimators.

Finally, we consider a model with stochastic volatility of volatility, namely the volatility of the

variance process is driven by a second source of randomness. This model expresses the possibility

or fact that there is greater variability in the data structure that cannot be described by classical

stochastic volatility models. We consider the following data generating process
dp(t) = σ(t)dW1(t)

dv(t) = αv(βv − v(t))dt+ γ(t) dW2(t),

dγ2(t) = αγ(βγ − γ2(t))dt+ νγγ(t) dW3(t),

(10)

where W1,W2 are Brownian motions with correlation ρ, i.e. d〈W1,W2〉t = ρdt and W3 is a third

independent Wiener process. The process (γ2
t )t≥0 is driven by a CIR process and can be interpreted

as the stochastic variability of variance. The Feller condition guarantees that both processes v = σ2

and γ2 stay positive. The parameter values used in the simulations are: αv = 1.0, βv = 1.0,

αγ = 0.01, βγ = 0.01, νγ = 0.0005. We take ρ = −0.5. The initial value of σ2 is set equal to

one, while p(0) = 0 and γ2(0) = βγ . The trading period is set to T = 1 day and we generate

n = 10, 000 daily observations, corresponding to a trading frequency of 8.64 seconds. We assume

no microstructure effects and therefore no sparse sampling is needed when estimating the spot

volatility path at the first level (i.e. δn = 1/n). Numerical results are shown in Table 3.

We notice that the Fourier estimator provides good estimates both in terms of bias and MSE.
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Fourier-Fejer Realised Variance C-Variance

No microstructure MSE BIAS MSE BIAS MSE BIAS

ζ = 0.0 1.51e-5 -1.71e-3 9.81e-5 5.86e-3 5.16e-1 -1.55e-1

Parameter values N = 1180 M = 8 Kn = 1686 Kn = 100
Table 3. Stochastic volatility of volatility model. Optimization procedures based on the minimization of the true

average MSE (250 days, n = 10, 000 observations per day). True Integrated Vol of Vol 1.000018e-2.
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Figure 4. Stochastic volatility of volatility model. Histograms of the Relative Error (γ̂2
n,N,M −∫ 2π

0
γ2(t)dt)/

∫ 2π

0
γ2(t)dt.

The optimal selected value of N is larger than for the Heston model, while the optimal value

of M is smaller. The realised variance estimator seems to provide rather good estimates as well,

but less efficient than the Fourier estimator. However, this is achieved by choosing a huge value

of the parameter Kn = 1686, namely the time scale at which the second level realised variance

is computed is around δnKn/2 seconds, i.e. two hours. This has strong effects on the efficiency

of the estimator, as it can be seen from Figure 4 showing the histograms of the Relative Error

(γ̂2
n,N,M −

∫ 2π
0 γ2(t)dt)/

∫ 2π
0 γ2(t)dt. The mean and standard deviation of the relative Error for the

Realised Variance is much larger than for the Fourier estimator.

Finally, looking again at Table 3, the non optimized bias-corrected realised variance estimator

with Kn = 100 shows a very poor performance. The inefficiency of both the realised variance

estimators can be ascribed to the necessary condition imposed on the choice of the time scales δn

and ∆n. As already observed, the choice of the second level time scale ∆n implies a loss of the

information contained in the original time series.

5.3. Parameter identification of SV models

Let us consider now the issue of parameter identification of stochastic volatility models. Suppose

that the Data Generating Process for the log-price dynamics is the Heston model{
dp(t) = µdt+ σ(t) dW (t)

dσ2(t) = α(β − σ2(t))dt+ νσ(t) dZ(t),

where W and Z are two possibly correlated Brownian motions. Then, we can use our estimates to

identify parameters of the stochastic volatility model from a finite sample. Using simple tools of
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Fourier-Fejer Realised Variance

ν̂ Rel. Error Rel. Bias Rel. RMSE ν̂ Rel. Error Rel. Bias Rel. RMSE

ζ = 0.0 0.0972 2.79e-2 -4.35e-2 2.16e-1 0.1059 5.94e-2 1.52e-1 4.11e-1

ζ = 1.5 0.0964 3.60e-2 -6.10e-2 2.07e-1 0.0921 7.92e-2 -1.35e-1 2.81e-1
Table 4. Stochastic volatility model calibration. True value ν = 0.1.

Itô calculus, we can derive the following identity

ν2σ2(t) = γ2(t).

Therefore,

ν2

∫ T

0
σ2(t)dt =

∫ T

0
γ2(t)dt.

Using the Fourier analysis methodology, we get the following estimate of the parameter ν

ν̂ =
( γ̂2

n,N,M

2πc0(vn,N )

) 1

2

,

where γ̂2
n,N,M is defined by (5) and c0(vn,N ) by (4).

Therefore, by using the provided Fourier estimates of the integrated volatility and of the volatility

of volatility, we can obtain estimations of the parameter ν identifying the diffusion component. This

parameter does not change under equivalent measure changes and can be used to specify a model

for purposes of pricing, hedging and risk management.

The data used in our simulations are taken from Barucci and Mancino (2010): α = 0.03, β = 0.25,

ν = 0.1, µ = 0 and ρ = −0.2. We simulate second-by-second return and variance paths over a daily

trading period of T = 6 hours, for a total of 100 trading days and n = 21600 observations per day.

Numerical results are shown in Table 4.

The table lists the estimated value of ν̂, obtained with the Fourier and the Realised variance

estimator, together with the relative error of the estimate, denoted by Rel. Error. Moreover, the

table shows the Relative Bias and Relative RMSE of the estimate γ̂2
n,N,M , defined as

Rel. Bias = E

[
γ̂2
n,N,M −

∫ 2π
0 γ2(t)dt∫ 2π

0 γ2(t)dt

]
, Rel. RMSE =

E
( γ̂2

n,N,M −
∫ 2π

0 γ2(t)dt∫ 2π
0 γ2(t)dt

)2
1/2

.

We consider two different simulations: the first one with no microstructure effects and the second

one with a noise-to-signal ratio ζ = 1.5. In both cases, the performance of the Fourier estimator

is better than the one of the Realised variance estimator. In particular, the relative bias achieved

with the Fourier estimator is one order of magnitude less than with the Realised variance and the

relative error over the Fourier estimated ν̂ is half the value obtained by the Realised variance. We

notice that, as in the previous section, in the case of no microstructure effects the optimal value of

the parameter Kn is equal to 1680, namely the time scale at which the realised variance is computed

is around Kn/2 seconds, i.e. 14 minutes, while the Fourier estimator uses second-by-second returns.
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Variable Mean Std. Dev. Min Max

S&P 500 index futures 893.97 366.24 295.60 1574.00

N. of ticks per minute 7.0433 3.5276 1 56
Table 5. Summary statistics for the sample of the traded CME S&P 500 index futures in the period January 2,

1990 to December 29, 2006 (11,611,297 trades). “Std. Dev.” denotes the sample standard deviation of the variable.

5.4. An empirical application: the S&P 500 index futures

We consider now a case study based on tick-by-tick data of the S&P 500 index futures recorded

at the Chicago Mercantile Exchange (CME). The sample covers the period from January 2, 1990

to December 29, 2006, a period of 4,274 trading days, having 11,611,297 tick-by-tick observations.

Table 5 describes the main features of our data set.

High frequency returns are contaminated by transaction costs, bid-and-ask bounce effects, etc.,

leading to biases in the variance measures. Therefore, data filtering is necessary. Days with trading

period shorter than 5 hours have been removed. Jumps have been identified and measured using the

Threshold Bipower Variation method (TBV) of Corsi et al. (2010), which is based on the joint use

of bipower variation and threshold estimation of Mancini (2009). This method provides a powerful

test for jump detection, which is employed at the significance level of 99.9%. We refer the reader

to Mancino and Sanfelici (2012) for further details on the jump removal procedure. The number of

days remaining after jump removal and filtering is 3,078, for a total of 8,575,527 tick-by-tick data.

The contribution coming from overnight returns is neglected.

Sparse sampling needed for the Realised variance estimator can be performed either in calendar

time, for instance with prices sampled every 5 or 15 minutes, or in transaction time, where prices

are recorded every m-th transaction. When we sample in calendar time, the x-minute returns are

constructed using the nearest neighbor to the x-minute tag. Figure 5 shows the average Realised

variance over the full sample period constructed for different sampling frequencies in calendar

(Panel A) and transaction time (Panel B).

The volatility signature plots clearly indicate that the bias induced by market microstructure

effects is relatively small for the highly liquid S&P 500 index futures, and dies out very quickly.

Note that with a transaction taking place on average about every 8.57 seconds, the 1-minute sam-

pling interval corresponds to around the 7-th tick presented in the figure, with large variability

across the whole dataset. The impact of market microstructure effects on the five-minute realised

volatility measure for the S&P 500 index futures over the period from 1990 to 2006 can therefore

be regarded as negligible. However, the estimates obtained by calendar time sampling are quite

unstable and variable as the sampling frequency decreases. When sampling in transaction time,

the most stable estimates are obtained for frequencies between 20 and 70 ticks that roughly corre-

spond to 3-10 minutes. In both cases, for low frequencies the realised variance estimator becomes

downwards biased because sparse sampling has a severe impact on the cardinality of the database.

In particular, for any value of n we choose Kn = 2
√
n. This implies that most of the data are

neglected when estimating the second order quantities so that the volatility of volatility estimates

are poor, especially when we start from sparse sampled data.

In Figure 6, we plot the volatility signature plot as computed by means of γ̃2
n,N,M using tick-by-

tick data, as a function of the parameter N . The value of the parameter M is set to 3. We can see

that for N larger than 150 the estimates become much stable. Taking into account the mathematical
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Figure 5. Realised variance: volatility signature plot of the S&P 500 index futures constructed over the full sample

period. The graph shows average integrated volatility of volatility constructed for different frequencies measured in

minutes (Panel A) and in number of ticks (Panel B). Note that there are about 8.57 seconds on average between

trades, so that the average annualized 5-minute based realised volatility corresponds to around the 35th tick.
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Figure 6. Fourier estimator: volatility signature plot of the S&P 500 index futures constructed over the full sample

period. The graph shows average integrated volatility of volatility computed by means of the Fourier estimator, using

tick-by-tick data, as a function of the parameter N . M is set equal to 3.

properties of the Fourier estimator, when the trading period is T = 6.5 hours, a parameter value of

say N = 200 corresponds to sampling frequencies of T/(2N) = 390/400 = 0.9750 min, in the sense

that the spectral decomposition in the frequency space allows to detect phenomena happening at

the frequency of about 1 minute, much higher than with the realised variance estimator.

6. Conclusions

We have introduced a new non parametric estimator of the stochastic volatility of volatility which

is particularly suited to work with high frequency data. Our estimator is obtained in two steps:
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first we compute the Fourier coefficients of the volatility process using high frequency observations

of the log-returns, then we iterate the procedure with a convolution of the Fourier coefficients of

the volatility process. An advantage of our method lies in the fact that it does not resort to the

estimation of the path of the latent variance of returns, but it needs only integrated quantities.

A theoretical and numerical study of the properties of our estimator highlights that cutting the

highest frequencies in the Fourier expansion makes this estimator robust to the presence of high-

frequency noise components.

In conclusion, our discussion and numerical simulations show that the Fourier estimator of the

volatility of volatility is robust to microstructure effects and efficient in finite sample.

7. Acknowledgements

We wish to thank Frederi Viens and an anonymous referee for their insightful comments and

remarks. We thank the participants in the 5th Annual Modeling High Frequency Data in Finance

conference at Stevens Institute, NJ, USA, in October 2013, for their interesting and stimulating

discussion.

References

Bandi, F.M. and Russell, J.R. (2005). Microstructure noise, realized variance and optimal sampling. Working

paper, Univ. of Chicago http://faculty.chicagogsb.edu/federicobandi.

Barndorff-Nielsen, O.E., Hansen, P.R., Lunde, A. and Shephard, N. (2008) Designing realized kernels to

measure the ex post variation of equity prices in the presence of noise. Econometrica, 76 (6), 1481–

1536.

Barndorff-Nielsen, O.E. and Veraart A.E.D. (2013) Stochastic Volatility of Volatility and Variance Risk

Premia. Journal of Financial Econometrics, 11 (1), 1–46.

Barucci, E. and Mancino, M.E. (2010) Computation of volatility in stochastic volatility models with high

frequency data. International Journal of theoretical and Applied Finance, 13 (5), 1–21.
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8. Appendix: Proofs

Along the proofs, C will denote a constant, not necessarily the same at the different occurrences.

Proof of Theorem 3.2. Under the model assumption (A.I)− (A.II) it is not restrictive to assume

that the volatility process v(t) is a.s. bounded.

We split

γ̂2
n,N,M −

∫ 2π

0
γ2(t)dt

as

(2π)2

M + 1

∑
|j|≤M

(1− |j|
M

)j2 [cj(vn,N )c−j(vn,N )− cj(v)c−j(v)] (11)

+
(2π)2

M + 1

∑
|j|≤M

(1− |j|
M

)j2 cj(v)c−j(v)−
∫ 2π

0
γ2(t)dt. (12)

Consider (11). For any |j| ≤M

E[|cj(vn,N )c−j(vn,N )− cj(v)c−j(v)|2]

≤ 2
(
E[| cj(vn,N )(c−j(vn,N )− c−j(v))|2] + E[|c−j(v)(cj(vn,N )− cj(v))|2]

)
.
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By the definition (4) we write cj(vn,N )− cj(v) as the sum of the following two terms

1

2π

∫ 2π

0
e−ijφn(t)v(t)dt− 1

2π

∫ 2π

0
e−ijtv(t)dt (13)

+
1

2π

∫ 2π

0

∫ t

0
e−ijφn(u)DN (φn(t)− φn(u))dp(u)dp(t) + e−ijφn(t)DN (φn(t)− φn(u))dp(u)dp(t), (14)

where φn(t) = sup{tk : tk ≤ t} and DN (x) is the rescaled Dirichlet kernel defined by DN (x) =
1

2N+1

∑
|k|≤N e

ikx.

Consider (13)

E[| 1

2π

∫ 2π

0
e−ijt(1− e−ij(φn(t)−t))v(t)dt|2]

≤ (ess sup ‖v‖∞)2 1

2π

∫ 2π

0
|1− e−ij(φn(t)−t)|2dt ≤ (ess sup ‖v‖∞)2j2ρ(n)2.

Consider (14)

E[| 1

2π

∫ 2π

0

∫ t

0
e−ijφn(u)DN (φn(t)− φn(u))dp(u)dp(t)|2]

≤ (ess sup ‖v‖∞)2 1

(2π)2

∫ 2π

0

∫ t

0
D2
N (φn(t)− φn(u))dudt ≤ (ess sup ‖v‖∞)2 1

2π

1

2N + 1
.

Therefore

E[|cj(vn,N )− cj(v)|2] ≤ 2(ess sup ‖v‖∞)2{j2ρ(n)2 +
1

π

1

2N + 1
}.

Finally, for any |j| ≤M

E[|c−j(v)(cj(vn,N )− cj(v))|2] ≤ 2(ess sup ‖v‖∞)4{M2ρ(n)2 +
1

π

1

2N + 1
}. (15)

Consider now

E[|cj(vn,N )(c−j(vn,N )− c−j(v))|2] (16)

≤ 2(E[|c−j(vn,N )− c−j(v)|4] + E[|cj(v)(c−j(vn,N )− c−j(v))|2]).

The second addend has been estimated in (15). For the first addend consider the decomposition

of c−j(vn,N ) − c−j(v) into (13) and (14): then a similar argument using Burkholder-Davis-Gundy

inequality for the estimation of the fourth moment gives

E[|c−j(vn,N )− c−j(v)|4] ≤ C(ess sup ‖v‖∞)4{j4ρ(n)4 +
1

π

1

2N + 1
}.
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Therefore, for any |j| ≤M

E[|cj(vn,N )(c−j(vn,N )− c−j(v))|2] ≤ C(ess sup ‖v‖∞)4{M4ρ(n)4 +M2ρ(n)2 +
1

2N + 1
}. (17)

By (15) and (17), for any |j| ≤M

E[|cj(vn,N )c−j(vn,N )− cj(v)c−j(v)|2] ≤ C(ess sup ‖v‖∞)4

(
M2ρ(n)2 +M4ρ(n)4 +

1

2N + 1

)
.

Finally, the L2 norm of (11) is less or equal to

CM4 (ess sup ‖v‖∞)4

(
M2ρ(n)2 +M4ρ(n)4 +

1

2N + 1

)
,

which goes to 0 under the hypothesis ρ(n)N → 0 and M4

N → 0.

Consider (12). Using assumption (A.III), the periodic extension of v(t) to IR with period 2π

(which we still denote by v(t)) satisfies v(2π)− v(0) = 0 a.s.. Therefore, applying Itô formula, we

have

(2π)2

M + 1

∑
|j|≤M

(1− |j|
M

)j2cj(v)c−j(v)−
∫ 2π

0
γ2(t)dt = 2

∫ 2π

0

∫ t

0
FM (s− t)dv(s)dv(t),

where FM (x) denotes the rescaled Fejer kernel FM (x) = 1
M+1

∑
|j|≤M (1− |j|M )eijx.

Then, we have

E[(

∫ 2π

0

∫ t

0
FM (s− t)dv(s)dv(t))2] = E[

∫ 2π

0
(

∫ t

0
FM (s− t)dv(s))2γ2(t)dt]

≤ E[

∫ 2π

0
γ4(t)dt]

1

2E[

∫ 2π

0
(

∫ t

0
FM (s− t)dv(s))4dt]

1

2 .

Applying Burkholder-Davis-Gundy inequality, we get

E[

∫ 2π

0
(

∫ t

0
FM (s− t)dv(s))4dt] ≤ C

∫ 2π

0

∫ t

0
F 4
M (s− t)ds dt E[

∫ 2π

0
γ4(s)ds]

≤ C 1

M + 1
E[

∫ 2π

0
γ4(s)ds].

Finally, the L2 norm of (12) is less or equal to

C
1√

M + 1
E[

∫ 2π

0
γ4(s)ds]. •

Proof of Theorem 4.2. For any fixed j, |j| ≤M , we have

E[cj(ṽn,N )c−j(ṽn,N )− cj(vn,N )c−j(vn,N )]
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= E[
2π

2N + 1

∑
|h|≤N

ch(εn)cj−h(dpn)
2π

2N + 1

∑
|l|≤N

cl(εn)c−j−l(dpn)] (18)

+E[
2π

2N + 1

∑
|h|≤N

ch(εn)cj−h(dpn)
2π

2N + 1

∑
|l|≤N

cl(dpn)c−j−l(εn)] (19)

+E[
2π

2N + 1

∑
|h|≤N

ch(εn)cj−h(dpn)
2π

2N + 1

∑
|l|≤N

cl(εn)c−j−l(εn)] (20)

+E[
2π

2N + 1

∑
|h|≤N

ch(dpn)cj−h(εn)
2π

2N + 1

∑
|l|≤N

cl(εn)c−j−l(dpn)] (21)

+E[
2π

2N + 1

∑
|h|≤N

ch(dpn)cj−h(εn)
2π

2N + 1

∑
|l|≤N

cl(dpn)c−j−l(εn)] (22)

+E[
2π

2N + 1

∑
|h|≤N

ch(dpn)cj−h(εn)
2π

2N + 1

∑
|l|≤N

cl(εn)c−j−l(εn)] (23)

+E[
2π

2N + 1

∑
|h|≤N

ch(εn)cj−h(εn)
2π

2N + 1

∑
|l|≤N

cl(εn)c−j−l(dpn)] (24)

+E[
2π

2N + 1

∑
|h|≤N

ch(εn)cj−h(εn)
2π

2N + 1

∑
|l|≤N

cl(dpn)c−j−l(εn)] (25)

+E[
2π

2N + 1

∑
|h|≤N

ch(εn)cj−h(εn)
2π

2N + 1

∑
|l|≤N

cl(εn)c−j−l(εn)] (26)

The terms (18), (19), (21), (22) are similar. Consider (18): it is equal to

E[
1

2π

∑
u,u′

DN (tu − tu′)e−ijtu′εuδu′(p)
1

2π

∑
v,v′

DN (tv − tv′)eijtv′εvδv′(p)].

By using the independence between price and noise process, it can be written as

1

2π

∑
u,u′

DN (tu − tu′)e−ijtu′
1

2π

∑
v,v′

DN (tv − tv′)eijtv′E[εuεv]E[δu′(p)δv′(p)]. (27)

Observe that

E[δu′(p)δv′(p)] = 0 if u′ 6= v′
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and

E[ε2
u] = 2E[η2], E[εuεv] =

−E[η2] if |v − u| = 1

0 if |v − u| > 1.

Therefore (27) is equal to (every term is multiplied by ( 1
2π )2)∑

u,u′

∑
v

DN (tu − tu′)DN (tv − tu′)E[εuεv]E[(δu′(p))
2]

= (
∑
u,u′

D2
N (tu − tu′)E[ε2

u] + 2
∑
u,u′

DN (tu − tu′)DN (tu+1 − tu′)E[εuεu+1])E[(δu′(p))
2]

= 2E[η2]
∑
u,u′

(D2
N (tu − tu′)−DN (tu − tu′)DN (tu+1 − tu′))E[(δu′(p))

2].

Using the inequality |DN (tu+1 − tu′) − DN (tu − tu′)| ≤ 1 − DN (2π
n ) and the following limit in

probability

lim
N→∞

∫ 2π

0
du

∫ 2π

0
DN (u− u′)σ2(u′)du′ = C

∫ 2π

0
σ2(u)du,

we obtain for (27) the asymptotic

2E[η2]E[

∫ 2π

0
σ2(u)du] n(1−DN (

2π

n
)).

Therefore, the sum over j in the definition of γ̃2
n,M,N gives a term

2E[η2]E[

∫ 2π

0
σ2(u)du]Λ(n,N,M),

where

Λ(n,N,M) =
M(M + 1)

3
n(1−DN (

2π

n
)),

which is O(M
2N2

n ).

Now compute (20). Note that the terms (23), (24), (25) are similar. For the independence between

noise and price, it is equal to

(
2π

2N + 1
)2
∑
|h|≤N

∑
|l|≤N

E[ch(εn)cl(εn)c−j−l(εn)]E[cj−h(dpn)] = 0,

as E[cj−h(dpn)] = 0 for any j, h and n.
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It remains to calculate (26), which is equal to

1

(2π)2

∑
v,v′

∑
u,u′

e−ij(tv′−tu′ )DN (tv − tv′)DN (tu − tu′)E[εvεv′εuεu′ ]. (28)

We need the fourth moments for the noise process:

E[ε4] = 2E[η4] + 6E[η2]2 (29)

E[ε3
uεv] =

−E[η4]− 3E[η2]2 if |u− v| = 1

0 if |u− v| > 1

E[ε2
uε

2
v] =

E[η4] + 3E[η2]2 if |u− v| = 1

4E[η2]2 if |u− v| > 1

E[ε2
uεvεv+1] = −2E[η2]2 if v ≥ u+ 1 or v ≤ u− 2

E[εuε
2
u+1εu+2] = 2E[η2]2

E[εuεu+1εvεv+1] = E[η2]2 if |u− v| ≥ 2.

In order to compute (28) we proceed as follows (each term has to be multiplied by 1/(2π)2):

I) firstly, we add the terms with coefficient E[η4] + 3E[η2]2∑
u

E[ε4
u] + 8

∑
u

cos(j(tu+1 − tu))DN (tu − tu+1)E[ε3
uεu+1]

+6
∑
u

cos(j(tu+1 − tu))E[ε2
uε

2
u+1]

= 2(E[η4] + 3E[η2]2) n [(1− cos(j
2π

n
)) + 4 cos(j

2π

n
)(1−DN (

2π

n
))].

Therefore, the sum over j in the definition of γ̃2
n,M,N gives

2(E[η4] + 3E[η2]2)
1

M + 1

∑
|j|≤M

(1− |j|
M

)j2 n [(1− cos(j
2π

n
)) + 4 cos(j

2π

n
)(1−DN (

2π

n
))]

= 2(E[η4] + 3E[η2]2)Γ(n,N,M),
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where Γ(n,N,M) = O(M
4

n ) +O(M
2N2

n ) (we used: cosx = 1− x2

2 +O(x4)).

II) Secondly, we add the terms with coefficient 2E[η2]2 and only one summation. We omit to

consider a constant factor c = 30 which multiply each addend, then we have:∑
u

cos(j(tu+2 − tu))DN (tu+2 − tu+1)E[ε2
uεu+1εu+2]

+
∑
u

cos(j(tu+2 − tu+1))DN (tu+2 − tu+1)DN (tu − tu+1)E[εuε
2
u+1εu+2]

+
∑
u

cos(j(tu+2 − tu+1))DN (tu − tu+1)E[εuεu+1ε
2
u+2]

+2
∑
u

cos(j(tu+3 − tu+1))DN (tu+3 − tu+2)DN (tu − tu+1)E[εuεu+1εu+2εu+3]

= 2E[η2]2n

{
− cos(j

4π

n
)DN (

2π

n
)(1−DN (

2π

n
))− cos(j

2π

n
)DN (

2π

n
)(1−DN (

2π

n
))

}

= 2E[η2]2DN (
2π

n
)(1−DN (

2π

n
))n

{
−2(1− 10(j

π

n
)2 +O(

j

n
)4)

}
.

Finally, consider the sum over j

2E[η2]2n (1−DN (
2π

n
))

1

M + 1

∑
|j|≤M

(1− |j|
M

)j2(1− 10(j
π

n
)2 +O(

j

n
)4)

= 2E[η2]2Ψ1(n,N,M),

where Ψ1(n,N,M) = O(N
2M2

n ).

III) Thirdly, we add the terms with coefficient 2E[η2]2 and a double summation. We omit to

write a constant c = 6 which multiplies each term, then we have∑
u,v

cos(j(tv − tu))E[ε2
uε

2
v] + 2 (2

∑
u,v

cos(j(tv+1 − tu))DN (tv+1 − tv)E[ε2
uεvεv+1])

+4
∑
u,v

cos(j(tv+1 − tu+1))DN (tu − tu+1)DM (tv − tv+1)E[εuεu+1εvεv+1]

=
∑
u,v

cos(j(tv − tu))4E[η2]2 + 4
∑
u,v

cos(j(tv+1 − tu))DN (
2π

n
)(−2E[η2]2)
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+4
∑
u,v

cos(j(tv+1 − tu+1))D2
N (

2π

n
)E[η2]2

= 4E[η2]2
∑
u,v

{
cos(j(tv − tu))− 2 cos(j(tv+1 − tu))DN (

2π

n
) + cos(j(tv+1 − tu+1))D2

N (
2π

n
)

}

= 4E[η2]2(1−DN (
2π

n
))2O(n2).

Then, considering the sum over j, we get a term

2E[η2]2Ψ2(n,N,M),

where Ψ2(n,N,M) = O(M
2N4

n2 ). Finally denote Ψ := Ψ1 + Ψ2. •
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