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Abstract: Repetitive space-learning controls are designed for current-fed uncertain permanent
magnet step motors with non-sinusoidal flux distribution (the family of permanent magnet
synchronous motors with cogging torque is allowed as a special case). Either semi-global rotor
speed tracking is asymptotically achieved or local rotor position tracking is asymptotically
guaranteed without requiring the time-periodicity of the corresponding reference signals.
Simulation results illustrate the effectiveness of the presented approach in a typical electric drive
control scenario, even in the presence of stator current dynamics which have been neglected at
the design stage.
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1. INTRODUCTION

Permanent magnet motors are used in a wide range of
drive applications including machine tools and industrial
robots: their high efficiency, high torque to inertia ratio,
high power density, absence of rotor windings, absence of
external rotor excitation constitute definite advantages.
Hybrid stepper (permanent magnet) motors are generally
operated in an open-loop fashion while being used for
simple point-to-point positioning tasks: the performance
is however degraded by speed oscillations/torque ripples
which are related to the non-sinusoidal flux distribution
in the air-gap. Even though improvements in motor de-
sign are effective in ripple minimization ([29]), production
process complexity and machine costs increase so that
compensation of torque pulsations by feedback actions
becomes a rather effective solution ([14]). The use of
feedback is particularly crucial in high-precision tracking
control problems in which reference signals for the rotor
position or speed are required to be precisely tracked in
the presence of severe uncertainties in the motor dynamics
([40]). In this regard, adaptive control techniques can be
generally applied to guarantee asymptotic tracking (see
to this purpose [8], [29], [33]): uncertainties are, however,
linearly parameterized and - in contrast to this paper
- the involved number of uncertain coefficients (or at
least an upper bound on this number) is required to be
known (see the subsequent role played by the uncertain
integer m in the motor model). Analogously, standard
adaptive or extended-state observer-based controls (see for

instance [15], [19], [18], [27], [28], [34]) restrictively require
the disturbances appearing in the rotor speed dynamics
to be modeled by finite-dimensional linear or nonlinear
exosystems of known dimension (see for instance [29] for
the case of a well-designed permanent magnet synchronous
motor with negligible reluctance and cogging torque). On
the other hand, when the position reference signals are
periodic with known period T∗ (trivially including con-
stant reference values), the undesirable uncertain distur-
bances become periodic with the same period T∗, so that
classical (global) adaptive and repetitive learning control
techniques apply (see [2], [12], [24], [25], [36], [38] for the
fundamental ideas). They are successfully used in [7], [10],
[24] (see [5] for experimental comparisons and discussions)
to exponentially reduce or asymptotically annihilate the
position tracking error in uncertain current-fed permanent
magnet step motors (see [24] and [6] for theoretical exten-
sions to full order model- permanent magnet step motors
and [4], [13], [26], [30], [31], [35], [37] for experimental
applications of standard iterative learning control tech-
niques to torque and speed control in permanent magnet
synchronous motors). The repetitive learning design prob-
lem is, however, yet to be solved in the presence of: i) a
speed tracking problem with rotor speed reference signals
θ̇∗(t) which are always greater than a positive constant
value; ii) position tracking with rotor position reference
signals θ∗(t) (as in [8]) which are strictly time-increasing
and non time-periodic. Only partial solutions - in terms
of theoretical validity - have been provided in [22], [23]
in the case of simplified disturbance models (see also [3]



and [39] for related theoretical and implementation issues).
The fact that a trial (in time) might be truncated early or
late by events which depend on the state of the system
is in fact a general limitation of (time-) learning controls
requiring uniform trial time length (see [1], [9], [20], [32]
and references therein).
The aim of this paper is to mathematically state and
solve through recent repetitive learning control techniques
the aforementioned rotor speed/position tracking prob-
lems for uncertain current-fed permanent magnet step
motors when the load torque is a periodic function of the
rotor position (constant load torques are allowed as sim-
ple degenerative cases). The family of permanent magnet
synchronous motors with cogging torque are included as a
special case. The key-idea of this paper relies on resorting
to the recent theoretical developments in [11] while taking
advantage, as in [22], [23], [33], from the position-periodic
structure of the uncertain disturbance functions which
holds in place of the aforementioned time-periodic one.
The results in [22] and [23] are thus generalized: the rotor
position reference signal θ∗(t) - and not the rotor position
θ as in [22] and [23] - is here crucially involved in the
key change of time scale, i.e. from t to θ∗(t). Semi-global
asymptotic results are achieved in the case of the rotor
speed tracking through a P type (proportional-type) learn-
ing control, while local asymptotic convergence properties
are obtained in the case of the rotor position tracking
through a PD type (proportional-derivative type) learning
control. Anyway, both the control algorithms incorpo-
rate suitable repetitive space-learning estimation schemes,
playing the role of asymptotically rejecting the effects
of position-periodic disturbances, with the advantageous
features of a classical robust controller being completely
preserved as in [7]. The paper is organized as follows.
The motor dynamic model is reported in Section 2. The
rotor speed tracking problem is semi-globally solved in
Section 3. A local solution to the rotor position tracking
problem is presented in Section 4. Realistic simulation
results are finally reported in Section 5: they illustrate the
closed loop performance while showing the effectiveness of
the proposed approach in a typical electric drive control
scenario, even in the presence of stator current dynamics
which have been neglected at the design stage.

2. DYNAMIC MODEL

The dynamics of a current-fed permanent magnet step mo-
tor with two phases in the (d, q) reference frame rotating
at speed Nrω and identified by the angle Nrθ in the fixed
(a, b) reference frame attached to the stator [θ is the rotor
position, ω is the rotor speed and Nr is the number of
rotor teeth] are given by (see [16] and [7]) [m ≥ 4 is any
(uncertain) integer]

dθ(t)
dt

= ω(t)

dω(t)
dt

=−D
J
ω(t) + 2NrL1id(t)iq(t)

+
ifNr

J

m∑
j=1

jLmj cos[(1− j)Nrθ(t)]iq(t)

+
ifNr

J

m∑
j=2

jLmj sin[(1− j)Nrθ(t)]id(t)

−
Nri

2
f

2J

m∑
j=4

jLfj sin[jNrθ(t)]−
TL(θ(t))

J

where (id, iq) are the stator current vector (d, q) com-
ponents [which constitute the control inputs], D is the
friction coefficient, J is the motor+load inertia, TL(θ)
is the load torque which is assumed to be θ-periodic
with period 2π/kl (kl is a known positive integer) 1 , if
is the fictitious constant rotor current provided by the
permanent magnet, L1 is a non-negative parameter, the
harmonics Lmj cos[jNrθ] and Lmj cos

[
jNrθ − π

2

]
model

the non-sinusoidal flux distribution in the airgap, while the

term
Nri2f

2

∑m
j=4 jLfj sin[jNrθ] represents the disturbance

torque due to cogging. The above model highlights the fact
that geometric imperfections determine non-sinusoidal gap
saliency so that inductances, in real motors, contain phase
shifts and high order harmonics. The above current-fed
model is obtained by neglecting the stator current dynam-
ics and by allowing for L1 6= 0 in the full-order model of
the permanent magnet step motor described in [17] and
reported in Section 5. Its derivation involves the compu-
tational steps in [8] under the assumptions that: i) the
magnetic field is linear with respect to the currents (that
is no magnetic saturation occurs); ii) the self inductances
and the mutual inductance of the two windings are con-
stant with respect to θ. In practice, the parameters Lmj ,
2 ≤ j ≤ m (which are zero under the standard assumption
of sinusoidal flux distribution) are much smaller than Lm1

(see for instance [17] and [8]), so that (for all t ≥ 0)∑m
j=1 jLmjcj(t) = Lm1 +

∑m
j=2 jLmjcj(t) ≥ ah > 0 with

cj(t) = cos[(1− j)Nrθ(t)]. The previous motor model can
be thus rewritten as 2

dθ(t)
dt

= ω(t)

h(θ(t))
dω(t)

dt
=−α(θ(t))− β(θ(t))ω(t) + iq(t)

+χ(θ(t), iq(t), id(t)) (1)
with while

h(θ) =
J

ifNr

 m∑
j=1

jLmj cos[(1− j)Nrθ]

−1

α(θ) =
h(θ)
J

TL(θ) +
Nri

2
f

2

m∑
j=4

jLfj sin[jNrθ]


β(θ) =

Dh(θ)
J

1 Even though position/speed dependent load torques TL(θ, ω) can
be considered in general electric motor applications, this paper
considers the wide family of positioning applications for permanent
magnet step motors in which the load torque periodically depends
on the rotor position. Constant load torques are trivially allowed.
2 Model (1) even describes, in the rotating (d, q) reference frame, the
dynamics of a permanent magnet synchronous motor with cogging
torque, provided that the number of rotor teeth Nr is replaced by
the number of pole pairs p. In this case, simplifications drastically
occur with β(·) and h(·) simply reducing to positive constant values
and α(·) only describing the effect of load and cogging torques.



are uncertain functions (owing to the uncertainties in all
system parameters), which are periodic with known period
T = 2γπ/Nr (γ is the minimum positive integer such that
γkl/Nr is a positive integer). The following assumptions
(typically being satisfied in the practice) will be used in the
subsequent sections. A.1) Nr is a known parameter; A.2)
the function α(θ) (namely TL(θ)) is of class Csα (sα ≥ 2);
A.3) there exist known positive reals hm, hM , kh, kα1, kα2,
kβ1, kβ2 ∈ R+ such that, for all θ ∈ R: i) h(θ) ∈ [hm, hM ];

ii)
∣∣∣∂h(θ)

∂θ

∣∣∣ ≤ kh; |α(θ)| ≤ kα1;
∣∣∣∂α(θ)

∂θ

∣∣∣ ≤ kα2; |β(θ)| ≤ kβ1;∣∣∣∂β(θ)
∂θ

∣∣∣ ≤ kβ2.

3. SEMI-GLOBAL SPEED TRACKING

In this section we preliminarily provide a semi-global
solution to the rotor speed tracking problem. Let θ̇∗(t) .=
ωr(t) be an assigned speed reference signal and denote by
η = ω − ωr the corresponding speed tracking error. Since,
according to the motor torque expression in (1), a non-
zero id only contributes to torque ripples, it is desirable to
set id = 0 while choosing iq to produce the desired torque
reference (see for instance [8]). System (1) becomes

θ̇= ωr + η (2)

η̇ = h(θ)−1(−α(θ)− β(θ)(ωr + η)− h(θ)ω̇r + h(θ)iq)

= h(θ)−1([α(θ), β(θ), h(θ)][−1,−η − ωr,−ω̇r]T + iq)

which can be compactly rewritten (with an unambiguous
notation) in the more general form

θ̇= ωr + η

η̇ = g(θ)
(
δ∗(θ)Tf(θ, η, t) + iq

)
, (3)

where δ∗ : R → Rm and g : R → R are uncertain T -
periodic functions of class C2, whereas f : R3 → Rm is a
known function of its arguments. Namely, system (2) takes
on form (3) by setting δ∗(θ) = [α(θ), β(θ), h(θ)]T , g(θ) =
h(θ)−1, f(·, η, t) = [−1,−η−ωr(t),−ω̇r(t)]T . Note that, in
the specific case of (2), function f does not depend on θ.
However, our problem formulation and design strategy will
even allow for a more generally θ-dependent f(·). The aim
of this section is to design a feedback learning controller
for the input iq, such that the rotor speed tracking error η
asymptotically converges to 0, despite the fact that δ and
g are uncertain. On the basis of A.1)-A.3) we formalize the
assumptions for this section.
Assumption 3.1. There exist known positive constants g−,
δ+, ω−, ω+ and a known function f+ : R+ → R+ such
that: g(θ) > g−; ‖δ∗(θ)‖ ≤ δ+ ∀ θ ∈ R; ω− ≤ ωr(t) ≤ ω+

∀ t ∈ R; ‖f(θ, η, t)‖ ≤ f+(|η|) ∀ θ, η, t ∈ R.

Namely, the above assumption requires the term g(·) to be
bounded from below by a positive constant: it guarantees
that system (3) has a well defined relative degree of 2
with respect to output θ. Moreover, the uncertain function
δ∗(·) needs to be bounded in norm by a known value δ+,
which can be computed on the basis of the h(·), α(·),
β(·)- expressions and of assumptions A.1)-A.3). Further,
the reference velocity ωr(t) needs to be bounded from
below and from above by positive constants. Finally,
the known function f(·) must be bounded by a positive

function that depends only on the absolute value of η.
Note that this last assumption, in the specific case of (2),
is satisfied if function |ω̇r|, in addition to |ωr|, is bounded.
As we shall see, the knowledge of the bounds g−, ω+, δ+
and f+ will be involved in the choice of control gain k
characterizing the proportional action of the control on
the rotor speed tracking error. The proposed input law is
a P-type repetitive space-learning control that reads 3 :

iq =−kη − δ(θ)Tf(θ, η, t)

δ(θ) = satδ+(δ(θ − T )) + µηf(θ, η, ·)q(θ̇, η), (4)

where k, µ ∈ R are gain terms, η̄ < ω− is a positive
constant, δ : R → Rm is a learning estimation term,
while q : R2 → R is defined as q(θ̇, η) = θ̇−1, if |η| <
η̄ and q(θ̇, η) = 0 otherwise. Function satδ+ : Rm →
Rm is the component-wise saturation function, that is if
(y1, y2, . . . , ym) = satδ+((x1, x2, . . . , xm)), then yi = xi if
|xi| < δ+ and yi = δ+sgn(xi) otherwise. Note that the
closed-loop system (3)+ (4) is a delay differential equation.
Its initial condition is given by θ(0), η(0) together with
δ|[−T,0] (i.e. the restriction of δ in the interval [−T, 0]).
The following theorem constitutes the main result of this
section.

Theorem 3.1. If assumption 3.1 is satisfied, then for any
initial condition and for each positive real constant η̄ <
ω−, there exist known real values for the gains k, µ
such that the solution of system (3) with controller (4)
satisfies the following properties: a) for any initial condi-
tion θ(0), η(0), δ|[−T,0], there exists t̄ such that |η(t)| ≤
η̄, ∀ t ≥ t̄; b) θ̇(t) asymptotically converges to ωr(t), that
is limt→∞ η(t) = 0.

Proof. Since g(·) is a periodic C2-function of its argument
and assumption 3.1 holds, there exist constants g+, gd such
that

|g(θ)| ≤ g+, |(g−1)′(θ)| ≤ gd, ∀ θ ∈ R.
If we set W (η) = 1

2η
2 and define the estimation error

δ̃ = δ − δ∗, then the derivative of W along the solutions
of (3)+(4) satisfies

Ẇ (θ, η) = ηg(θ)(−δ̃(θ)Tf(θ, η, ·)− kη) ≤W+(η),

with

W+(η) =
{
AW (η) if |η| > η̄
BW (η) if |η| ≤ η̄,

and

AW (η) =−kg−η2 + 2g+δ+f+η

BW (η) =−kg−η2 + g+(2δ+ + µ|η|(ω− − η̄)−1)f+|η|.
In the previous inequality, we have used: i) the definition
of δ in (4); ii) assumption 3.1; iii) ‖δ(θ)‖ ≤ δ++µηf+|q(t)|
(see the second equation in (4)); |q(t)| ≤ (ω− − η̄)−1 for

3 No clear approach is available, when the entire learning update
rule is saturated, to determine the stability of the closed loop error
system through a Lyapunov-like based approach (see [12]).



|η| ≤ η̄. Choose k sufficiently large such that BW (η̄) ≤ 0,
namely set

k >
g+(2δ+ + µη̄(ω− − η̄)−1)f+η̄

g−η̄2

so that W+(η) < 0 for any η ≥ η̄ and property a) holds.
Note that, for any t ≥ t̄, η(t) ≤ η̄; it implies θ̇(t) > 0
for any t ≥ t̄ so that, in the control law (4) [which is
therefore well-defined], q(t) = θ̇−1(t), for any t ≥ t̄. Define
the functional on R2 × L2,loc(R)m

V (θ, η,∆) =
1
2

g−1(θ)η2 + µ−1

θ∫
θ−T

‖∆(θ)‖2

 ,

where ∆(θ) = satδ+(δ(θ))− δ∗(θ). Note that the quantity

It =
d
dt

θ(t)∫
θ(t)−T

‖∆(y)‖2dy

satisfies (here f(·) denotes f(θ(t), η(t), t))

It = θ̇(t)
(
‖satδ+(δ(θ(t)))− δ∗(θ(t))‖2

−‖satδ+(δ(θ(t)− T ))− δ∗(θ(t))‖2
)

≤ θ̇(t)
(
‖δ(θ(t))− δ∗(θ(t))‖2 − ‖ − µη(t)f(·)θ̇(t)−1

+δ(θ(t))− δ∗(θ(t))‖2
)

≤ µη(t)f(·)T(2δ̃(θ(t))− µη(t)f(·)θ̇(t)−1)

≤ 2µη(t)δ̃(θ(t))Tf(·)
according to the fact that ‖satδ+(δ(θ(t)) − δ∗(θ(t))‖2 ≤
‖δ(θ(t))− δ∗(θ(t))‖2 as well as to the property

‖a‖2 − ‖b‖2 = aTa− bTb = (a+ b)T(a− b), ∀ a, b ∈ Rm .

The derivative of V along the solutions of (3)+(4) thus
satisfies for any t ≥ t̄:

V̇ (θ, η, δ̃)≤−kη2 +
1
2
ġ−1(θ)θ̇η2. (5)

Since θ̇ ≤ ω+ + |η| ≤ ω+ + η̄ for any t ≥ t̄, it follows that

V̇ (θ, η, δ̃)≤−
(
k − gd

2
(η̄ + ω+)

)
η2.

If necessary, the value of the gain k is increased such that
k > gd(η̄+ω+)/2 so that V is definite negative for |η| ≤ η̄.
Let Z(t) = V (θ(t), η(t),∆(t)), where θ, η, ∆ are evaluated
along the solution of (3)+(4). Barbalat’s Lemma finally
applies so that property b) holds.

4. LOCAL POSITION TRACKING

In this section we slightly modify the previously used
arguments in order to achieve a local solution to the
rotor position tracking problem. As in the previous section
and in contrast to [7], we will use to our advantage the
aforementioned θ-periodicity of the uncertain functions
α(θ), β(θ), h(θ). However, in contrast with the previous

section as well as to [22], [23] (and even [11]), the state-
dependent (namely, θ-dependent) periodicity will be here
explicitly expressed in terms of the corresponding state
reference (namely θ∗), which is always guaranteed to
be strictly time-increasing. This strictly time-increasing
nature will be crucial in presenting - in this section - an
alternative, equivalent stability proof which involves an
explicit change of time-scale and avoids the computation
of t̄ in the definition of the switching function q(·) in
(3). In the following we will use the symbol g to denote,
as in [7], a new quantity since no ambiguity occurs.
Furthermore we will adopt the same symbols as in [7]
to denote the bounds on the rotor speed reference. Let
θ∗(t) be the smooth, strictly time-increasing, non-time-
periodic reference signal for the rotor position whose time
derivative θ̇∗(t) is assumed to belong to the following class:
A.4) θ̇∗(t) for any t satisfies θ̇∗(t) ≥ cω > 0 with cω being
a positive real and

∣∣∣θ̇∗(t)∣∣∣ ≤ cθ1,
∣∣∣θ̈∗(t)∣∣∣ ≤ cθ2, with cθ1,

cθ2 being known positive reals. Let θ∗(t) be written as
the strictly increasing integral function θ∗(t) = θ∗(0) +∫ t

0
θ̇∗(τ)dτ and let θ̃ = θ − θ∗ be the corresponding rotor

position tracking error. Since θ∗(t) .= ψ(t) is a strictly
increasing time function on R, its inverse function ψ−1(θ∗)
exists. It is of class C1 and strictly increasing on R. In
the reminder of this section we consider the generic time
function x(t) and define the corresponding θ∗-function

xs(θ∗) = x(ψ−1(θ∗))

with its θ∗-derivative dxs(θ∗)
dθ∗ denoted by x′s(θ

∗) satisfying

x′s(θ
∗) =

ẋ(ψ−1(θ∗))
θ̇∗(ψ−1(θ∗))

.

The control input iq in (3) is modified as follows (kθ,
kω and kv are positive control parameters, v(·) is the
robustifying term as in [7], µα, µβ , µh are the learning
gains, kα1, kβ1, hM - similarly to δ+ for δ∗ - are the known
bounds for |α(θ∗)|, |β(θ∗)|, |h(θ∗)|) 4

iq(t) =−kωω̃(t)− kv θ̃tg(t)− v(ω(t))ω̃(t) + îqr(t)

ω̃ = ω + kθ θ̃tg − θ̇∗

θ̃tg =−atan2
(

sin(θ∗)cos(θ)− sin(θ) cos(θ∗)
cos(θ∗)cos(θ) + sin(θ) sin(θ∗)

)
îqrs(θ∗) = α̂(θ∗) + β̂(θ∗)θ̇∗s(θ∗) + ĥ(θ∗)θ̈∗s(θ∗) (6)

α̂(θ∗) = satkα1(α̂(θ∗ − T ))− µα

θ̇∗s(θ∗)
ω̃s(θ∗)

β̂(θ∗) = satkβ1(β̂(θ∗ − T ))− µβω̃s(θ∗)

ĥ(θ∗) = sathM
(ĥ(θ∗ − T ))− µhθ̈

∗
s(θ∗)

θ̇∗s(θ∗)
ω̃s(θ∗).

Here we have used back-stepping techniques to add to the
design of the previous section, a rotor position tracking
control loop 5 , in which the error θ̃tg = −atan2(tg(−θ̃))
4 As in the previous section, no continuity correction functions (see
details in [25]) are here used for the sake of simplicity and clarity.
5 The choice of ω̃ in (6) is motivated as follows. The rotor position

tracking error dynamics accordingly read
˙̃
θ = ω − θ̇∗ = −kθ θ̃tg + ω̃;

simultaneously guaranteeing limt→+∞ θ̃(t) = 0 and limt→+∞ ω̃(t) =



coincides with θ̃ for sufficiently small θ̃ ∈ (−π/2, π/2). In
contrast to [8], the advantage of using, in the feedback
action, θ̃tg in place of θ̃ relies on the necessity of using
the θ|2π-measurements which are typically provided by an
encoder while avoiding the computation of θ|2π − θ∗|2π,
which may lead to time-discontinuities when θ or θ∗ go
out of the set [0, 2π). The price to be paid, as stated by
the following theorem, is, however, the local nature of the
resulting control (which can be removed when θ̃ replaces
θ̃tg).

Theorem 4.1. Consider the current-fed permanent magnet
motor (1) under assumptions A.1)-A.3) in closed loop with
the robust repetitive learning control algorithm (6). Let
θ∗(t) be the rotor position reference signal whose time
derivative belongs to the class A.4). Then, for sufficiently
small initial conditions θ̃(0), ω̃(0) and sufficiently large
learning gains µα, µβ , µh, the following properties hold:
i) the error variables (θ̃(t), ω̃(t)) and the control inputs
(id(t), iq(t)) are bounded on [0,+∞); ii) asymptotic ro-

tor position/speed tracking limt→∞

[
θ̃2(t) + ω̃2(t)

]
= 0 is

achieved.

Proof. If we change the time-scale and rewrite the (θ̃, ω̃)-
error equations with respect to the new time-variable θ∗,
then we obtain for sufficiently small θ̃ ∈ (−π/2, π/2) the
dynamic equations

θ̃′s =
1
θ̇∗s

[
−kθ θ̃s + ω̃s

]
h(θs)ω̃′s =

1
θ̇∗s

[
− kωω̃s − kv θ̃s − g(θ̃s, ω̃s, ωs)− v(ωs)ω̃s

−α− βθ̇∗s − hθ̈∗s + îqrs

]
where g(·) is defined 6 as in [7], while îqrs is the estimate
of the input reference iqrs = α + βθ̇∗s + hθ̈∗s . Properties i)
and ii) thus follow on considering the quadratic-integral
Lyapunov-like function (see function V in the previous
section as well as [12] and [25] for the related ideas)

0 implies the desired convergence properties: limt→+∞[θ(t)−θ∗(t)] =
0, limt→+∞[ω(t)− θ̇∗(t)] = 0.
6 In particular g(·) reads

g(θ̃, ω̃, ω) = −h(θ)kθω̃ + h(θ)k2
θ θ̃ + α(θ)− α(θ∗)

+β(θ∗)(ω̃ − kθ θ̃) + [β(θ)− β(θ∗)]ω + [h(θ)− h(θ∗)]θ̈∗

and satisfies, according to A.1)-A.4),

|g(θ̃, ω̃, ω)| ≤
[
khcθ2 + kβ1kθ + kβ2|ω|+ kα2 + hMk2

θ

]
|θ̃|

+
[
kβ1 + hMkθ

]
|ω̃| .

= s1(ω)|θ̃|+ g2|ω̃|,

with s2
1(ω) ≤ g1(ω) and g1(·) and g2 being explicitly defined as

g1(ω) = 5h2
Mk4

θ + 5k2
hc2θ2 + 5k2

β1k2
θ + 5k2

β2ω2 + 5k2
α2

g2 = kβ1 + hMkθ

in the expression for v in [7] as (k and k̄ω are positive control
parameters)

v(ω) =
g1(ω)

2kθkv
+ g2 +

k

4
+

k̄ω

4
+

k2
hω2

4k̄ω
.

Vs(θ∗) =
1
2

[
kv θ̃

2
s(θ∗) + h(θs(θ∗))ω̃2

s(θ∗)
]

+
∑

q=α,β

1
2µq

θ∗∫
θ∗−T

[
q(τ)− satkq1(q̂(τ))

]2 dτ

+
1

2µh

θ∗∫
θ∗−T

[
h(τ)− sathM

(ĥ(τ))
]2

dτ

along with its θ∗-derivative which satisfies along the tra-
jectories of the closed loop system - expressed in the new
time variable θ∗ - the inequality (complete the squares
and use the definition of the learning estimation schemes
in (6))

V ′s (θ∗)≤− 1
θ̇∗s(θ∗)

[kvkθ

2
θ̃2s(θ∗) +

(
kω +

k

4

)
ω̃2

s(θ∗)
]
. (7)

Since θ̃s(θ∗) and ω̃s(θ∗) are bounded on [θ∗(0),+∞),
îqrs(θ∗) is bounded on [θ∗(0),+∞) and therefore iqs(θ∗)
is bounded on [θ∗(0),+∞). Since θ̃′s(θ

∗) and ω̃′s(θ
∗) are

bounded on [θ∗(0),+∞), θ̃2s(θ∗) and ω̃2
s(θ∗) are uniformly

continuous on [θ∗(0),+∞) and therefore, by Barbalat’s
Lemma, we can write

lim
θ∗→∞

[
θ̃2s(θ∗) + ω̃2

s(θ∗)
]

= 0,

which implies 7

lim
t→∞

[
θ̃2(t) + ω̃2(t)

]
= 0.

It is clear that the above result holds for sufficiently small
initial conditions θ̃(0), ω̃(0) and sufficiently large learn-
ing gains µα, µβ , µh guaranteeing for any t - through
Vs(θ∗) ≤ Vs(θ∗(0)) - sufficiently small θ̃(t) in the open
set (−π/2, π/2).

The following comments are in order.

• The above control input iq in (6) incorporates the PD
position control (with gains kp and kd):

−kωω̃(t)− kv θ̃(t) =−(kv + kωkθ)θ̃(t)− kω
˙̃
θ(t)

along with the plug-in signal îqr(t) which generalizes
the integral action −ki

∫ t

0
θ̃(τ)dτ , which is typically

used to compensate the effects of (time-) constant
disturbances.

• When θ̇∗ is constant, the whole disturbance func-
tion q(·) reduces to αe(·) = α(·) + θ̇∗β(·) which is
θ∗-periodic with only one space-learning estimation
scheme being sufficient to guarantee the asymptotic
rotor position tracking. In this case, θ∗(t) = θ∗(0) +
θ̇∗t defines a different time scale involving the stretch
of the time-variable t: the resulting space-learning
control is equivalent to a time-learning one since
αe(θ∗(t)) is also time-periodic.

7 Through arguments similar to those previously used, we can
establish that if the resulting îqrs(θ∗) is an uniformly continuous
function on [θ∗(0), +∞) (and this necessarily implies ω̃(0) = 0 in

our case), then limt→∞
[
iqr(t)− îqr(t)

]
= 0.



• Permanent magnet synchronous motors with cogging
torque exhibit constant β and h, so that the last two
repetitive learning estimation schemes in (6) can be
either implemented with any sufficiently small T or
simply replaced by integral actions (with only the
estimation law for β̂(·) surviving when θ̇∗ is constant).

• If the adaptive learning approach of [24] is applied in
the new time coordinate, then results similar to the
ones presented in [8] can be obtained with residual
steady-state tracking errors however appearing due to
truncation errors in the corresponding Fourier series
expansions.

• The above repetitive learning approach (in (4) and
(6)) apparently uses, to generate the signal to be
exerted in each trial, the input recorded during the
previous trial in conjunction with the actual tracking
error being weighted through a learning gain and a
gain function. The presence of the saturation as well
as of filtering actions as in [7] may be useful to avoid,
in practice, long term instability problems owing to
noise accumulation over periods ([21]).

5. A TYPICAL ELECTRIC DRIVE SIMULATION

A simplified discrete-time version (with sampling time
Ts = 100 µs) of the controller (6) of Section 4 (with
i∗d and i∗q in place of id and iq) in conjunction with a
PI (proportional-integral) current loop (with SI units-
proportional and integral gains KpI = 1 and KiI = 500,
respectively) relying on the stator current tracking errors
id and (iq − i∗q) is derived (see Figure 1). As usual in
standard electric drives, a saturation for the iq-reference
is inserted, with values respectively equal to 15 A and
−15 A. The angle and speed control loops are realized,
as in most industrial electric drives, using the electrical
angle and speed, obtained by multiplying the mechanical
quantities by the number Nr of rotor teeth. The controller
of Figure 1 is simulated with reference to the voltage-
fed permanent magnet stepper motor described in [17]:
stator current dynamics, which have been neglected at the
design stage, are taken into account. The full-order motor
model reads [(ud, uq) are the stator voltage vector (d, q)
components, R and L0 are the stator windings resistance
and the self inductance, respectively]:

dθ(t)

dt
= ω(t)

dω(t)

dt
= −

D

J
ω(t) +

if Nr

J

n∑
j=2

jLmj sin[(1− j)Nrθ(t)]id(t)

−
Nri2f

2J

n∑
j=4

jLfj sin[jNrθ(t)]−
TL(θ(t))

J

+
if Nr

J

n∑
j=1

jLmj cos[(1− j)Nrθ(t)]iq(t)

did(t)

dt
= −

R

L0
id(t) + Nriq(t)ω(t) +

1

L0
ud(t)

+
if Nr

L0

n∑
j=2

jLmj sin[(j − 1)Nrθ(t)]ω(t)

diq(t)

dt
= −

R

L0
iq(t)−Nrid(t)ω(t) +

1

L0
uq(t)

−
if Nr

L0

n∑
j=1

jLmj cos[(j − 1)Nrθ(t)]ω(t).

The load torque is TL(θ) = NT sin(θ) while the motor
parameters are: J = 0.0733 kgm2, m = 4, Lm1 = 5
mH, Lm2 = 0.5 mH, Lm3 = 0.166 mH, Lm4 = 0.0625
mH, Lf4 = 1.766 mH, Nr = 50, if = 1 A, D = 0.002
kgm2/s, NT = 1.7201 kgm2/s2, R = 1 Ohm, L0 = 0.7
mH. In the considered robotic application, the load torque
TL = NT sin(θ) models the position-dependent single link
robotic load represented by a metal bar link attached to
the rotor shaft and a brass ball attached to the free end and
required to track the aforementioned rotor position/speed
references. In order to validate the space-learning strategy,
the frequency modulation speed reference signalNr θ̇

∗(t) =
15 + 5 ∗ sin(2πt + sin(πt)) is chosen (see Figure 2). The
electrical angle reference signal is the integral of Nr θ̇

∗(t)
with zero initial condition. The time function Pt(t), which
satisfies θ∗(t − Pt(t)) = θ∗(t) − T (see [22], [23] for an
analogous interpretation), is computed, in the considered
simulation, through the differential equation (with the
stabilizing positive gain kpp = 10 and initial condition
Pt(0) = 3 s)

Ṗt(t) = 1− θ̇∗(t) + kpp(θ∗(t)− T − θ∗(t− Pt(t))
θ̇∗(t− Pt(t))

which is obtained from the relationship d
dt [θ

∗(t− Pt(t))−
θ∗(t)+T ] = −kpp

[
θ∗(t−Pt(t))−θ∗(t)+T

]
being satisfied

by a correctly initialized Pt(t). The gains for the classical
closed loop position control are (in SI units): kθ=5 (k in
the block diagram), kω=5 (kpω in the block diagram),
kIω=50 (integral action gain). It is important to put
in evidence that these constants are tuned in order to
obtain the best performance for the traditional closed
loop position control. The space-learning compensation
term îqr(t) is applied to the system at the time instant
t = 5 s. From this time instant the gains µα, µβ , µh

are increased, starting from the null value to their final
values 250, 0.1 and 0.1, respectively, with a ramp of 1
s. At the same time, t = 5 s, the integral gain kIω of
the angle/speed PI regulator is gradually annihilated with
the same 1 s- ramp. After the time instant t = 5 s, the
role played by the integral action of the traditional closed
loop control is played by the space-learning compensation
action. The advantageous effect of such a space-learning
compensation action on the electric rotor speed and angle
tracking errors is apparently highlighted by Figure 3: after
short transients - when the time crosses the value t = 5
s -, the peak-to-peak speed tracking error passes from the
value 0.72 rad/s to the smaller one 0.081 rad/s, while the
peak-to-peak angle tracking error passes from the value
0.03 rad to the smaller one 0.006 rad. Figure 4 shows
the time histories of the uncertain input reference signal
iqr(t) (not periodic in time) with its estimate îqr(t). The
time history of the time-function Pt(t) is also reported
in Figure 4. The persisting non-zero value for the angle
tracking error θ̃(t) (and consequently for the tracking error
ω̃(t) = ω(t) − θ̇∗(t) + kθ θ̃(t)) for t ∈ [5, 7] s is due to the
transient behaviour of the iqr(t)-input-reference recovering
action by the iq(t)-current, as shown by the related Figure
5. In summary, satisfactory input reference estimation



(even in the presence of digital implementation, numerical
integration errors and additional current dynamics) and
rotor speed/angle tracking are achieved after t = 5 s, while
stator currents in the rotating (d, q) reference frame (see
Figure 6) are within physical limits and satisfactorily track
their reference signals i∗d(t) and i∗q(t).

Fig. 1. Block diagram for the realistic simulation (P
denotes Nr, ω∗ff denotes θ̇∗, θm denotes θ, ωm denotes
ω).

Fig. 2. Electric rotor speed and angle reference signals
Nr θ̇

∗(t) and Nrθ
∗(t).

6. CONCLUSIONS

Space-learning controls are designed for current-fed un-
certain permanent magnet step motors (1) with non-
sinusoidal flux distribution and uncertain position-depen-
dent load torque. The corresponding stability analyses
show that semi-global/local asymptotic rotor speed/posi-
tion tracking is achieved by only relying on the position-
periodic structure of the uncertain position-functions char-
acterizing the motor dynamics. Realistic simulation results
finally illustrate the effectiveness of the presented approach
in a typical electric drive control scenario in which stator

Fig. 3. Electric rotor speed and angle tracking errors
Nr(ω(t)− θ̇∗(t)) and Nr(θ(t)− θ∗(t)).

Fig. 4. Function iqr(t) and its estimate îqr(t); ”time-
varying” period Pt(t).

current dynamics - neglected at the design stage - are
explicitly taken into account.

REFERENCES

[1] H.-S. Ahn and Y.-Q. Chen. State-dependent friction force
compensation using periodic adaptive learning control. Mecha-
tronics, 19:896-904, 2009.

[2] H.-S. Ahn, Y.Q. Chen, and K.L. Moore. Iterative learning
control: brief survey and categorization. IEEE Transactions
on Systems, Man, and Cybernetics - Part C: Applications and
Reviews, 37:1099–1121, 2007.

[3] H.-S. Ahn, Y.Q. Chen, and H. Dou. State-periodic adaptive
compensation of cogging and coulomb friction in permanent-
magnet linear motors. IEEE Transactions on Magnetics, 41:
90–98, 2005.

[4] F. Betin, D. Pinchon, and G.-A. Capolino. Fuzzy logic applied
to speed control of a stepping motor drive. IEEE Transactions
on Industrial Electronics, 47:610–622, 2000.

[5] S. Bifaretti, V. Iacovone, A. Rocchi, P. Tomei, and C.M.
Verrelli. Global learning position controls for permanent magnet
step motors. IEEE Transactions on Industrial Electronics, 58:
4654–4663, 2011.



Fig. 5. Stator current iq(t) and function iqr(t).

Fig. 6. Stator current vector (d, q) components and their
references.

[6] S. Bifaretti, V. Salis, P. Tomei, and C.M. Verrelli. Repetitive
learning position control for full order model- permanent mag-
net step motors. Automatica, 63:274–286, 2016.

[7] S. Bifaretti, P. Tomei, and C.M. Verrelli. A global robust
iterative learning position control for current-fed permanent
magnet step motors. Automatica, 47:227–234, 2011.

[8] D. Chen and B. Paden. Adaptive linearization of hybrid step
motors: stability analysis. IEEE Transactions on Automatic
Control, 38:874–887, 1993.

[9] C.-L. Chen and Y.H. Yang. Position-dependent disturbance
rejection using spatial-based adaptive feedback linearization
repetitive control. International Journal of Robust and Non-
linear Control, 19:1337-1363, 2009.

[10] W.D. Chen, K.L. Yung, and K.W. Cheng. A learning scheme for
low-speed precision tracking control of hybrid stepping motors.
IEEE Transactions on Mechatronics, 11:362–365, 2006.

[11] L. Consolini and C.M. Verrelli. Learning control in spatial
coordinates for the path-following of autonomous vehicles. Au-
tomatica, 50:1867–1874, 2014.

[12] W.E. Dixon, E. Zergeroglu, D.M. Dawson, and B.T. Costic.
Repetitive learning control: a Lyapunov-based approach. IEEE
Transactions on Systems, Man, and Cybernetics, 32:538–545,
2002.

[13] J. Holtz. Identification and compensation of torque ripple in
high-precision permanent magnet motor drives. IEEE Trans-
actions on Industrial Electronics, 43:309–320, 1996.

[14] T.M. Jahns and W.L. Soong. Pulsating torque minimization
techniques for permanent magnet AC motor drives - A review.
IEEE Transactions on Industrial Electronics, 43:321–330, 1996.

[15] H. Jin and J. Lee. An RMRAC current regulator for permanent-
magnet synchronous motor based on statistical model interpre-
tation. IEEE Transactions on Industrial Electronics, 56:169–
177, 2009.

[16] F. Khorrami, P. Krishnamurthy, and H.Melkote. Modeling
and Adaptive Nonlinear Control of Electric Motors. Springer-
Verlag, Berlin, 2003.

[17] P. Krishnamurthy and F. Khorrami. Robust adaptive voltage-
fed permanent magnet step motor control without current mea-
surements. IEEE Transactions on Control Systems Technology,
11:415–425, 2003.

[18] Y.-S. Kung and M.-H. Tsai. FPGA-based speed control IC for
PMSM drive with adaptive fuzzy control. IEEE Transactions
on Power Electronics, 22:2476–2486, 2007.

[19] S. Li and Z. Liu. Adaptive speed control for permanent-magnet
synchronous motor system with variations of load inertia. IEEE
Transactions on Industrial Electronics, 56:3050–3059, 2009.

[20] X. Li, J.-X. Xu, and D. Huang. Iterative learning control
for nonlinear dynamic systems with randomly varying trial
lengths. International Journal of Adaptive Control and Signal
Processing, 29:1341–1353, 2015.

[21] R.W. Longman. Iterative learning control and repetitive control
for engineering practice. International Journal of Control, 73:
930–954, 2000.

[22] Y. Luo, Y.Q. Chen, H.-S. Ahn, and Y. Pi. Dynamic high
order periodic adaptive learning compensator for cogging effect
in permanent magnet synchronous motor servo system. IET
Control Theory and Applications, 5:669–680, 2011.

[23] Y. Luo, Y.Q. Chen, and Y. Pi. Cogging effect minimization
in PMSM position servo system using dual high-order periodic
adaptive learning compensation. ISA Transactions, 49:479–488,
2010.

[24] R. Marino, P. Tomei, and C.M. Verrelli. Robust adaptive
learning control for nonlinear systems with extended matching
unstructured uncertainties. International Journal of Robust
and Nonlinear Control, 22:645–675, 2012.

[25] R. Marino, P. Tomei, and C.M. Verrelli. Learning control
for nonlinear systems in output feedback form. Systems and
Control Letters, 61:1242–1247, 2012.

[26] Y.A.-R.I. Mohamed. A hybrid-type variable-structure instanta-
neous torque control with a robust adaptive torque observer for
a high-performance direct-drive PMSM. IEEE Transactions
on Industrial Electronics, 54:2491–2499, 2007.

[27] Y.A.-R.I. Mohamed. Design and implementation of a robust
current-control scheme for a PMSM vector drive with a simple
adaptive disturbance observer. IEEE Transactions on Indus-
trial Electronics, 54:1981–1988, 2007.

[28] F. Morel, J.-M. Rétif, X. Lin-Shi, and C. Valentin. Permanent
magnet synchronous machine hybrid torque control. IEEE
Transactions on Industrial Electronics, 55:501–511, 2008.
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