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Abstract

The life annuity business is heavily exposed to longevity risk. Risk transfer solutions
are not yet fully developed, and when available they are expensive. A significant part
of the risk must therefore be retained by the life insurer.

So far, most of the research work on longevity risk has been mainly concerned with cap-
ital requirements and specific risk transfer solutions. However, the impact of longevity
risk on shareholder value also deserves attention. While it is commonly accepted that
a market-consistent valuation should be performed in this respect, the definition of a
fair shareholder value for a life insurance business is not trivial.

In this paper we develop a multi-period market-consistent shareholder value model for
a life annuity business. The model allows for systematic and idiosyncratic longevity
risk and includes the most significant variables affecting shareholder value: the cost of
capital (which in a market-consistent setting must be quantified in terms of frictional
and agency costs, net of the value of the limited liability put option), policyholder
demand elasticity and the cost of alternative longevity risk management solutions,
namely indemnity-based and index-based solutions. We show how the model can be
used for assessing the impact of different longevity risk management strategies on life
insurer shareholder value and solvency.
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1. Introduction

Life insurers writing products that guarantee a retirement income, including life an-
nuities, are increasingly recognizing the need to manage the risk of unanticipated
improvements in longevity. This risk results from the uncertain mortality downward
trend, impacting all lives in the portfolio to a greater or lesser extent. Traditionally,
life insurers have been concerned mainly with idiosyncratic longevity risk, which is
reduced through pooling lives in an insurer’s portfolio. Many years of mortality im-
provements and increased uncertainty about future mortality developments require a
change in the management of longevity risk. The decision about the risk management
strategy needs to account for the impact on the value of the business.

Basically, the value of the business consists of the present value of current and future
profits taking into account cost of capital. Assessing the impact of risk management
on business value is a complex task, due to several conflicting effects. For example,
the costs of risk transfer solutions clearly reduce potential profits; on the other hand,
they improve the level of solvency and reduce frictional costs, thus reducing the cost
of capital. Zanjani (2002), Krvavych and Sherris (2006), Froot (2007), Yow and Sherris
(2008) suggest that risk management strategies for insurers result in an increase of
shareholder value when reducing efficiently frictional costs.

Profits mainly come from the loadings charged to policyholders in excess of the actu-
arially fair premium rate. Higher premium loadings, and hence higher prices, reduce
demand depending on policyholder price sensitivity. On the other hand, higher levels
of solvency should keep the level of demand high. This trade-off between solvency,
price and demand is an important factor in determining value maximizing risk man-
agement strategies. This aspect is not well understood in the assessment of longevity
risk management.

A number of previous studies have recognised the impact on insurer value of product
pricing and consumers’ preferences for an insurer’s solvency. Zanjani (2002), Froot
(2007), Yow and Sherris (2008), Griindl et al. (2006), Zimmer et al. (2011), Nirmalendran
et al. (2013) incorporate consumer preferences for solvency in an insurer’s value max-
imization model. Zimmer et al. (2009) and Zimmer et al. (2011) are the first to provide
estimates of consumers’ reactions to insurance default risk. Zimmer et al. (2011) incor-
porate the demand curve into a single-period shareholder value maximization model
for a non-life insurance company. Nirmalendran et al. (2013) incorporate consumers’
preferences for an insurer’s solvency in annuity demand and use a shareholder value
maximization model for an annuity provider to assess optimal product pricing and
capitalization strategies under different solvency capital requirements. Risk manage-
ment and its impact on solvency and shareholder value has not been considered in this
setting.

A life insurer writing annuity business will most often use reinsurance to manage its
longevity risk, although capital market securitization is also of increasing interest.
Blake and Burrows (2001) proposed survivor bonds as a hedge for longevity risk,
where the coupon payment each year is proportional to the number of survivors in
a cohort. Dowd et al. (2006) proposed survivor swaps, as an exchange of cash flows
based on the outcome of a survivor index. Reinsurance is indemnity-based, whereas
securitization is index-based, which includes basis risk between the index and the
annuity portfolio of the insurer. Basis risk is higher for higher levels of idiosyncratic
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mortality risk since smaller portfolios of lives produce more variability between the
actual experience of an insurer’s portfolio of lives and the survivor index used. This
increases the risk of life insurer insolvency, especially in the older ages of the annuit-
ants, often referred to as tail risk.

The market for longevity risk securitization is growing (Tan et al., 2015). The first
longevity bond was announced by the European Investment Bank, BNP Paribas and
PartnerRe in November 2004, but failed to attract sufficient investor interest (Blake
et al., 2006). Survivor, or longevity, swaps have been more successful than secur-
itization of longevity risk through survivor, or longevity, bonds. The first survivor
swap took place between Swiss Re and the UK life office Friends” Provident in 2007.
Although legally an insurance contract, this was a pure longevity risk transfer of £1.7
billion on a closed portfolio of annuitants. In 2008, the first derivative transaction,
based on a ‘g-forward’, took place between JPMorgan and Lucidia (Coughlan et al.
(2007)). Also in 2008, the first capital market survivor swap was executed. Canada
Life hedged £500 million of its UK annuity book, with JPMorgan acting as the interme-
diary (Blake et al. (2010)). Between 2007 and 2014, twenty nine survivor swaps were
completed in the UK. The largest to date was a £16 billion survivor swap arranged for
the British Telecom Pension Scheme by the Prudential Insurance Co of America in July
2014 (Tan et al., 2015).

Longevity risk management using securitization is considered in several studies, in-
cluding Cowley and Cummins (2005), Wills and Sherris (2010), Biffis and Blake (2010),
Gupta and Wang (2011), along with a small number of studies on the reinsurance
of longevity risk in Olivieri (2005), Olivieri and Pitacco (2008), Levantesi and Men-
zietti (2008). Risk management solutions using reinsurance and securitization have
been compared for risks other than longevity, including mortality risks (MacMinn
and Richter (2011)), insurable risks in general (Cummins and Trainar (2009)) and cata-
strophe risks (Lakdawalla and Zanjani (2012)). Gupta and Wang (2011) assess securit-
ization and natural hedging strategies for the management of longevity risk in a multi-
period shareholder maximization framework. MacMinn and Richter (2011) compare
index-based and indemnity-based hedging for the mortality risk inherent in a life book
in a two-period shareholder value framework. The use of survivor swaps and bonds
has not been compared in a multi-period stochastic shareholder value model.

In this paper we investigate the impact of longevity risk management on life insurer
shareholder value and solvency for a life annuity portfolio, using reinsurance and
securitization. Capital management is also considered based on a recapitalization
and dividend strategy that maintains regulatory capital requirements as defined under
Solvency II. Frictional and agency costs are included, as well as the limited liability put
option and the policyholder demand. We design a rather comprehensive stochastic
valuation model, using a multi-period framework that allows us to examine the impact
on profit volatility as well as solvency over the full time-horizon of the business. The
framework is market-consistent, and then all risk margins are assessed based on fair
value principles. Future mortality rates are modeled using the multi-factor affine term
structure mortality model developed by Blackburn and Sherris (2013), a framework
which allows efficient simulation of future scenarios.

To keep the complexity of the investigation at a reasonable level, we disregard risks
other than the longevity risk. Thus, in particular, interest rates are assumed to be



deterministic. The impact of both systematic and idiosyncratic longevity risk over the
full term of the life annuity portfolio is included.

We assess shareholder value in terms of Economic Value (EV) and Market-Consistent
Embedded Value (MCEV). The main difference between these two valuation frame-
works relates to when profit is reported: completely at the time of policy issue for the
assessment of the EV, and gradually over time according to the MCEV assumptions.
While in a fair valuation setting, the EV seems to be the natural way for assessing the
business value, the MCEV extends, along fair value principles, a traditional actuarial
valuation structure of the insurance business, still popular in insurance practice. The
different approaches to profit reporting have significant implications for the volatility
of shareholder value, as we show in our discussion.

This paper makes two main contributions. (i) We describe a multi-period stochastic
shareholder value model for a life annuity business that can be used to assess the im-
pact of different longevity risk management strategies on life insurer shareholder value
and solvency. Indeed, despite the practical importance of such an assessment, the
required formal setting has not yet been adequately discussed in the existing literature.
(ii) We demonstrate how longevity risk management strategies significantly reduce
the volatility of shareholder value, mainly through the reduction of the probability of
insolvency. Important new insights into the effective management of longevity risk are
provided.

The structure of the paper is as follows. Section 2 presents the stochastic shareholder
valuation model, along with the longevity risk management solutions, including the
survivor swap and bond. Section 3 presents the multi-period stochastic mortality
model used for systematic and idiosyncratic longevity risks, and the interest rate model
used for valuation of cash flows. Section 4 presents the results of the numerical invest-
igation, while Section 5 concludes.

2. Cash Flows, Liability Reserve, Capital Management and Shareholder Value

2.1. Shareholder value

In this paper we assess the shareholder value for a life insurer writing life annuity
business, and hence exposed to longevity risk. We consider alternative longevity risk
management solutions, so to identify which one is more beneficial to shareholder
value.

We adopt a market-consistent valuation approach, and assess shareholder value al-
ternatively using an Economic Value (EV) and a Market-Consistent Embedded Value
(MCEV) approach. The EV structure is usual in a fair valuation setting, while the
MCEYV extends (in a market-consistent manner) a traditional actuarial valuation ap-
proach, popular in insurance practice. Basically, the main difference between the EV
and MCEV structures relates to when profit is reported: while the EV is based on
an asset-liability logic, so that profit is fully reported at policy issue, the MCEV is
based on a deferral-and-matching logic, according to which profit is gradually released
in time. These different logics affect the volatility of the shareholder value and the
determination of insurer solvency.

Whatever the valuation structure, shareholder value results from the contribution of
several quantities: portfolio cashflows (premiums, benefits, expenses), net of the cash-
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flows from risk transfer arrangements (either reinsurance or securitization), capital
allocated and the related cost. Such quantities are specified in detail in the following
sections. Then, we will formally define the shareholder value, alternatively in terms of
EV and MCEV.

2.2. The portfolio

We refer to a life annuity portfolio consisting of a single cohort of 7 individuals from
a homogeneous population aged x = 65 at time-0. The case of multiple cohorts is not
addressed in this paper, to keep the complexity of the overall model at a manageable
level and to obtain results easier to understand. The portfolio is examined until run-
off. A single premium 7t (as defined in Section 2.7) is paid at time-0 by all individuals
and the annuity payments are in arrears. Each annuity is for an annual payment of
b = $1,000 as long as the annuitant is alive. The ultimate age at which the contract
terminates is age 100.

The number of annuitants at time-f is denoted as I(#;x), and then the total annual

payment for the insurer at time-t is b - I(t;x). (Here and in the following we use a

tilde to indicate when a variable is random.) We assume that the number I(¢; x), and
then the total annual payment b - I(; x), are affected by systematic and idiosyncratic
longevity risk. To this purpose, the numbers I(t;x) are generated according to the

stochastic mortality model described in Section 3.

2.3. Survivor Swaps and Bonds
We consider the transfer of the insurer’s longevity risk through either a survivor (or
longevity) swap or a survivor (or longevity) bond as a static hedge.

The survivor swap takes the form of a reinsurance contract with no counter-party
default risk. Each party agrees to make periodic payments until the maturity of the
swap at time-T, or until the insurer defaults. Similar to an interest rate swap, there is a
tixed and a floating leg. The fixed leg are payments based on an agreed survivor curve
at time-0, S(0, t; x), while the floating leg payments are based on the actual survivors
I(t; x) in the annuity portfolio for each period. The survivor curve S(0,t; x) is defined
in Section 3; we assume that it is based on the best-estimate assumption about the
longevity of the cohort. We assume that a swap premium is included in the annual
swap payments, and we denote by 7X the relevant coefficient. The net swap payment
at time-t cashed by the insurer is:

NSP(t) = b- (’f(t;x) —(1+98)-3(0, t;x)). (1)

For the survivor bond we adopt an arrangement similar to Blake and Burrows (2001),
who propose a bond structured as an interest bearing bond with an initial purchase
price at time-0 and regular interest payments proportional to the population survivor
index. We design the longevity bond as an annuity bond with floating rate payments
similar to the cash flows for the survivor swap. The main difference between these is
that the survivor bond has floating payments based on a population survivor index
I(t; x) which is free from idiosyncratic longevity risk; see Section 3 for details in this
respect. To allow comparison between the longevity swap and the longevity bond, we
assume that I(t; x) is obtained in a population of 1y individuals aged x = 65 at time-
0. Further, we assume that the same premium coefficient is adopted for the longevity
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swap and the longevity bond and that the size of the bond is proportional to the annual
amount b. The net bond payment cashed by the insurer at time-t is then:

NBP(t) = b- (I(t;x) —(1+9%)-3(0, t;x)). )

The longevity bond involves basis risk; this basis risk is greater for smaller portfolio
sizes.

The hedging strategy consists of underwriting a proportion wy, 0 < wy, < 1, of the
survivor swap (h = S) or a proportion wy, 0 < wy, < 1, of the survivor bond (h =
B) payments. Since the hedge is static, the proportion wy, is stated at time-0 and is
kept until run-off. A strategy involving a mix of survivor swap and bond will not be
considered (so that wg = 0 if wg > 0, and vice versa).

2.4. Annuity Portfolio Cash Flows

The annuity portfolio cash flow at time-0, CF(0), is the premiums less the initial ex-
penses, E(0):

CF(0) = ng - 7w — E(0). 3)
Clearly, CF(0) is a flow certain.

Conversely, the annuity portfolio cash flow CF (t) at time-t, t > 0, is random, and is
an outflow. It is the annuity payment plus the (random) recurrent expenses E(t), net

of the payments received under the underwritten proportion of the survivor swaps or
bonds. We have:

CE(t) = —b-1(tx) — E() + ws - NSP(t) + wp - NBP(#). (4)

The insurer’s expenses consist of acquisition costs, asset management costs, overhead
and other general expenses. Acquisition costs are assumed to be proportional to the
annuity single premium and are paid at time-0:

EQ) =ell . ng -7, @)

where elll is the proportion of initial acquisition costs.

Recurrent expenses are asset management costs, overhead and other general expenses,
and are charged to the portfolio in each period. We express such expenses as a propor-

tion of the technical provision, V(t) (which is defined in Section 2.5). Therefore, the
expenses incurred at time-t, t > 0, are defined as follows:

Et)=ell.-v(p) (6)
where el'l denotes the proportion of recurrent expenses.

2.5. Technical Provisions and Required Capital

Here we describe the calculation of the technical provisions and capital that are re-
quired to back the insurer’s obligations.



The amount of the technical provision must correspond to the value of liabilities, in-
cluding a margin for longevity risk. We aim at performing a market-consistent valu-
ation of the liabilities, and then adopt a market approach for the assessment of the risk
margin. This means, in particular, that the risk margin accounts for systematic, while
disregarding idiosyncratic, longevity risk

There have been a number of approaches proposed to price the longevity risk. Milevsky
et al. (2005) values a pure endowment contract using an instantaneous Sharpe ratio.
Bauer et al. (2010) use a forward mortality framework, as presented in Bauer et al.
(2008), for pricing a zero coupon longevity bond and show how the Sharpe ratio co-
incides with a change of probability measure assuming a constant market price of
longevity risk. Biffis et al. (2010) use a change of measure approach to generate risk-
adjusted survivor curves based on a generalized Lee-Carter model.

In this paper, we calibrate the market prices of risk in the mortality model for liability
valuation to be consistent with the reinsurance loading; we assume that there is no ex-
plicit profit loading in the reinsurance contract. See Section 3 for details and Section 4.8
for a discussion of the impact on the results.

We denote with a(t; x) the market value at time-t of a life annuity with annual benefit
b = $1. Then:

V,(t) =b-1(tx) - a(tx) (7)

is the technical provision required at time-t for the portfolio for which no hedging has
been underwritten.

For a fully hedged portfolio, using either the survivor swap or survivor bond, the
liability of the insurer is in respect of the agreed survivor curve §(0, t; x), set at time-0
for defining the fixed leg payments. Then, the technical provision that the insurer must
hold at time-t is defined as follows:

Vi(t) =b-ny-S(0,t;x) -a(0,t;x) (8)

where ng - E(O, t;x) represents the expected number of survivors based on the agreed
survivor curve, while a(0, t; x) represents the forward market value of a life annuity
with annual benefit b = $1, also based on the survivor curve 3(0, t; x). The quantities
a(t;x) and a(0,t; x) are defined in detail in Section 3. We note that V}(¢) is a value
certain, as for a fully hedged portfolio the longevity risk is fully transferred. However,
if hedging is realized through the longevity bond, idiosyncratic risk remains with the
insurer, and this is not accounted for in the assessment of V;,(t). This is in line with the
fair valuation principles: we should include a margin for idiosyncratic risk but, as we
have already noted, the market approach only accounts for systematic risks.

Considering that a proportion wy, 0 < wy, < 1, of the portfolio is hedged, the technical
provision that the insurer must hold at time- is:

V(t) = (1—wy) - Vy(t) + wy - Vi(b). 9)

A technical provision must be set up also in respect of future expenses. The expense



reserve at time-f is defined as follows:

Ve(t) = Y el V(s) - v(ts), (10)

s>t

where v(t,s) is the discount factor at time-t for a payment of $1 at time-s from the for-
ward interest rate curve; see Section 3 for a detailed definition. Note that all technical
provisions are deterministic at time-0 (and then their value will be denoted without
the tilde on the top).

As to the capital required (or solvency capital reserve), we adopt the Solvency II stand-
ard (see QIS5'). According to this standard, the required capital corresponds to the
decrease that would be recorded by the Net Asset Value of the insurer in face of a 20%
longevity shock, i.e. a permanent 20% decrease in mortality rates for each age. It is
possible to show (see, for example, Olivieri and Pitacco (2003)) that this reduces to the
difference between a technical provision based on the shocked mortality rates and the
actual technical provision. For a portfolio with no hedging, we then assess the capital
required at time-¢ as follows:

M,(t) =b-1(;x) - [a[_o'z](t;x) - a(t,-x)}, (11)

where al =02 (¢; x) is the market value of the life annuity based on the shocked mortality
rates.

Similarly to the technical provision, we assume that if the portfolio is hedged, the
required capital is reduced in the same proportion of the hedging. Further, it is possible
that a capital relief is admitted when the longevity risk is hedged. Assuming that for
a fully hedged portfolio, a reduction w, of the required capital is admitted, the capital
required for a fully hedged portfolio is:

M(t) :Mp(t) (1= we). (12)

The solvency capital reserve reflecting the proportion hedged and the extent of capital
relief is then

M(t) =(1 = wy) - Mp(t) + wy - My (t) (13)
=(1—wy,- wC)Z\Zp(t). (14)

Finally, we refer to the following quantity as the total liability reserves:
Vi(t) = V() + Ve(t) + M(1). (15)

We note that, similarly to the technical provision, also the liability reserve is determin-
istic at time-0.

IThe  European  Insurance and  Occupational = Pensions  Authority  (EIOPA)
publishes  documents  relating to the  Quantitative Impact Study (QIS) at
http://archive.eiopa.europa.eu/consultations/qis/insurance/quantitative-impact-study-
5/index.html
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2.6. Dividend and Recapitalisation Strategy

When considering a multi-period time-horizon, a dividend and recapitalization strategy
should not be disregarded. Indeed, such a strategy has an impact on the insurer
solvency and shareholder value.

We assume that the insurer strategy is to always meet the Solvency II capital require-
ment. However the insurer will not subscribe new capital if the available assets are less
than the technical provision; in this case, a situation of unfunded liabilities emerges,
and shareholders accept the default. Otherwise the insurer will either subscribe cap-
ital to restore Solvency II requirements or withdraw a dividend if capital exceeds the
Solvency II requirements (even if, for brevity, we use the terms capital subscriptions
and dividends, these capital flows can be meant simply as transfers of capital between
the excess capital of the insurance company and the assets of the portfolio; thus, not
necessarily they correspond to money received from or paid to shareholders).

The insurer starts with assets at time-0 from the premiums less initial expenses, i.e.
with CF(0) (see (3)). The initial assets must be sufficient to meet the total liability
reserve at time-0, i.e. V;(0) (see (15)). In our setting (one cohort, entering at time-
0), if the premium loading is higher than the required capital, then CF(0) > V;(0),
and some profit can be released immediately. Vice versa, if CF(0) < V;(0), then an
additional capital (in respect of the regulatory requirement) must be subscribed for the
portfolio. Thus, at time-0 we have

A(0) = Vi(0) = CF(0) + R(0) — D(0), (16)

where A(0) is the amount of assets at time-0, R(0) is any initial shareholder capital
subscribed and D(0) is any excess capital paid as dividends to shareholders. We note
that all the quantities in (16) are certain, as they are observed at time-0.

The asset value at time-t, t > 0, is random, and is given by

A(t) = A(t—1)- (1 +i(t)) + CE(t) + R(t) — D(¢t), (17)

where R(t) is any additional capital required at time- from shareholders for the insurer
to remain solvent and meet reserving requirement, D(t) represents the capital released
at time-t to shareholders as dividends and i(t) is the investment return in year (f —1,¢).

At time-t, t > 0, the dividend and recapitalisation strategy is determined by the
financial position of the insurer as follows:

e A(t) < V(t): there are insufficient assets to cover the technical provision at time-
t, and the insurer defaults.

o A(t) > V(t),but A(t) — Vj(t) < 0: the insurer is not in default, but does not have
enough capital to meet regulatory obligations. The shortfall, R(t), is recapitalised
from shareholders, R(t) = Vj(t) — A(t).

o A(t) — Vj(t) > 0: the insurer is solvent and has enough capital to meet regulatory
requirements. The excess capital is distributed to shareholders as a dividend,
B(t) = A(t) - V(t).

We recall that the only risk that we are addressing is longevity risk; hence, the possible



financial positions mentioned above originates only because of longevity losses or
longevity profits.

2.7. Annuity demand

Before moving to the definition of the shareholder value, we describe the model we
adopt for setting the initial portfolio size.

The number of policies initially sold is the result of a demand whose main determ-
inants are the price, or loading, and the insolvency risk of the insurer. These are
quantities that contribute to shareholder value not only indirectly, through the de-
mand, but also directly. Instead of setting exogenously the initial portfolio size, it is
then appropriate to model a demand function explicitly depending on them. We base
our demand function on Zimmer et al. (2011) and Nirmalendran et al. (2013).

Zimmer et al. (2011) use experimental data and find that an exponential demand func-
tion provides an overall best fit with functional form

¢(m,dy) = el P, (18)

where ¢(7t,d1) represents the percentage of individuals, in respect of the maximum
potential market size, willing to purchase at price 77 from an insurer with 1-year default
probability dy; a is the default sensitivity parameter (« < 0), f is the price sensitivity
parameter (8 < 0) and 6 is a constant.

The exponential demand function developed by Zimmer et al. (2011) was modified in
Nirmalendran et al. (2013) to reflect price and default risk preferences in the annuity
market. In particular, based on the results of Babbel and Merrill (2006), Nirmalendran
et al. (2013) assume that annuity demand is not very sensitive to increases in premium
loadings of up to 30%, but very sensitive to increases in the default risk of the annuity
provider. Also, annuity demand is assumed to be less than 100% even when both
the premium loading and the default probability are zero to account for other factors
driving individuals” annuity demand such as bequest motives. Nirmalendran et al.
(2013) calibrate the parameters of the demand function to reflect the Australian life

annuity market using premium loading estimates provided by Ganegoda and Bateman
(2008).2

We use a similar annuity demand function as in Nirmalendran et al. (2013). This is
modified so that policyholders’ price sensitivity is a function of the premium loading
factor, 4", rather than the premium rate 71, and the cumulative default probability
over the full run-off of a cohort, d, instead of the 1-year probability, d;. These minor
modifications are introduced to ease computations and to reflect the long-term nature
of annuity liabilities. We calibrate the price-default annuity demand curve to reflect
the Australian annuity demand using a similar approach as Nirmalendran et al. (2013),
and both specifications give comparable results.> We use the following demand func-

2The Australian market for lifetime annuities is dominated by a single provider, who reports lifetime
annuity sales of AUD 389.4 million in 2015 and AUD 662.1 million in 2014 (http://www.challenger.
com.au/group/1H16_Analyst_Pack.pdf).

3We are not aware of an empirical study that provides estimates of the price and default risk
sensitivity of the demand for life annuities.
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tion:

where ¢* (7", d) represents the percentage of individuals willing to buy the annuity.

4)* (,)/P, d) :e(a-d+ﬁ~’yp+9)

—3.8328-d—9.7089-vF —0.4689)

4

(19)
(20)

Figure 1 shows the sensitivity of demand due to changes in price and changes in
default risk in our model.
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Figure 1: Price and default sensitivity of the demand for annuities.

A maximum potential market size of 1, = 25,000 is assumed for the representative life
annuity provider. This reflects the number of males aged 65 and the market share of
Australia’s largest life insurer. The number 1 of annuities sold at time 0 is determined
by multiplying the level of demand with the assumed maximum potential market size,
M

ny =ty - ¢* (7%, d). (21)

The single premium 7t paid at time-0 by each individual (see Section 2.2) is based on the
best-estimate survivor curve at time-0, S(0, ¢; x), and a premium loading 'yp is applied.
Thus, the single premium 77 is defined as follows:

T=b- (1 + 71’) .a(0; %), 22)

where 7(0; x) is the actuarial value at time-0 of a life annuity, with annual benefit b =
$1, based on the best-estimate survivor curve S(0, {; x); see Section 3.2 for details.

2.8. Frictional costs, agency costs and limited liability put option

In a fair value setting, frictional and agency costs, as well as the so-called limited
liability put option must be accounted for.

Frictional costs arise from a variety of sources, including taxation and agency costs, as
well as the costs of raising capital in the market to recapitalize the insurer. We address

11



two types of frictional costs in the model: frictional cost on shareholder capital arising
from the principal-agent problem in the shareholder-management relationship (Yow
and Sherris, 2008) and frictional costs in the event of a recapitalization.

The annual frictional cost on shareholder capital is defined as a proportion p of the
capital held over and above the technical provision. The insurer holds no capital above

V(t), since we assume that the excess is distributed to shareholders (see Section 2.6).
Thus:

FC(t) =p - [Vi(t) = V(1)]
=p - [M(t) + Ve(t)]. (23)

The present value at time ¢ of frictional costs is:

PVrc(t) = Y FC(s) - v(t,s). (24)

s>t

In the event of recapitalization, additional frictional costs arise, which we refer to as
recapitalization costs. These costs are assumed to be proportional to the additional
capital R(t) subscribed at time-t. Thus, recapitalization frictional costs are defined as
follows:

FCr(t) = ¢ - R(t). (25)
Their present value at time ¢ is given by:

PVycr(t) = Y FCr(s) - v(t,s). (26)

s>t

In the event of insolvency at time-s, i.e. if A(s) < V(s), the shareholders are not
required to cover the shortfall between the assets of the company and its liability. The
annuitants receive only the residual assets, namely less than the market value of the
future guaranteed annuity benefits. The pay-off of this Limited Liability Put Option at
the insolvency time-s is therefore max{0, V(s) — A(s)}. We denote the value at time-

t, t < s, of this pay-off with LLPO(t). This value is assessed through the simulation
procedure described in Section 3.2. In particular, the pay-off of the option is discounted
back to time-t using the forward interest rate curve and its value is assessed counting
the number of trajectories in which there is a default.

2.9. Shareholder Value According to the Economic Valuation Approach

According to the economic valuation approach, the shareholder value is obtained com-
paring the value of assets to that of liabilities net of the cost of capital, in a fair value
setting. In such a setting, assets are those accumulated with premiums net of the bene-
tits and expenses, while liabilities are represented by the technical provision (assessed
on a fair value basis) and expenses. Frictional and agency costs, net of the limited
liability put option, measure the cost of capital.

In our setting (immediate life annuity, one cohort), the shareholder Economic Value at
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time-0 is defined as follows:

EV/(0) = CF(0) — V(0) — Ve(0) — PV¢c(0) — PVpcr(0) + LLPO(0).  (27)

2.10. Shareholder Value According to the Market-Consistent Embedded Value Approach

In the MCEV approach, shareholder value is assessed as the present value of future
profits, net of the cost of capital, plus any capital held in excess of the regulatory
requirement. This follows a deferral-and-matching logic for profit reporting, with total
profit released over time. The timing of the emergence of profit is determined by the
total liability reserve, as the annual profit is defined as follows:

AP(t) = CF(t) — (V(5) = V(t=1)) +i- V(t—1). (28)

The present value at time-t of future profits is then:

FP(t) = Y AP(s) - v(t,s). (29)

s>t

We note that in the traditional Embedded Value structure, the present value of future
profits is based on industrial profits only, i.e. assessed considering the technical provi-
sions (and not the total liability reserve, as we do in (28)). Referring to the total liability
reserve is consistent with the market approach we have adopted for the assessment of
the technical provision; indeed, part of the risk margin which in market practice must
be included in the technical provision, in our setting is included in the required capital.

In a market-consistent setting, the cost of capital is measured by the frictional and
agency costs, net of the value of the limited liability put option. We define the Value of
the In-Force business (VIF) at time ¢ as

VIE(t) = FP(t) — PVc(t) = PV per(t) + LLPO(). (30)

We note that according to definition (28) for the annual profit, the VIF accounts also for
the required capital. We then define the MCEV of the business at time-t as

———

MCEV(t) = VIF(t) + EQ(t), (31)

where EQ(t) is the time-t total equity of the insurer held in excess of the required
capital.

In our case, at time-0 there are no carried forward profits and no current equity in
excess of the required capital, so E2(0) = 0. At any future time-t, t > 0, no capital is
held in excess of the total liability reserving requirement V;(t); then, E2(t) = 0 at any
time-t, t > 0. The shareholder value at time-t, t > 0 is then simply given by Vﬁ:(t)

Comparing EV(0), as defined in (27), with VIF(0), as defined in (30), the difference
between the two valuation approaches emerges clearly: while under the EV structure,
the present value of future profits (namely, CF(0) — V(0) — V,(0)) is fully reported
at time-0, under the MCEYV structure this total profit is progressively released in time,
where its timing is driven by the total liability reserve. In a fair value setting, this differ-
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ent timing of the profit reporting does not affect significantly the expected shareholder
value, while having an impact on its volatility, as we comment in Section 4.

3. The Longevity Risk Multi-Period Model

3.1. Stochastic Mortality Model. Interest Rate Model. Market Value of Survivor Benefits

The mortality model we adopt is in the framework of the forward rate models pro-
posed by Heath et al. (1992) (HJM) for interest rates. This framework, adapted to
mortality rates, is well suited for the multi-period analysis of an insurer’s liability
and regulatory capital requirements. In contrast to short rate mortality models, the
forward rate structure allows us to determine the distribution of each annuitant’s un-
certain lifetime at all time points in the future and to value future liabilities along any
simulated path of future mortality rates. This approach to mortality modeling has been
considered, amongst others, by Plat (2011), Dahl (2004), Miltersen and Persson (2005),
Cairns et al. (2006), and Bauer et al. (2008).

We use, in particular, the affine mortality framework presented in Blackburn and Sher-
ris (2013), which avoids the need for simulations within simulations at future time
periods when valuing the future liabilities. We use the estimation and forecasting
results from Blackburn (2013) for the Australian male population. The parameters of
the mortality term structure are estimated from historical mortality rates available in
the Human Mortality Database. The model specification is relatively simple and al-
lows multiple mortality risk factors to be either non-mean reverting or mean reverting
processes under a risk-neutral measure. The non-mean reverting process corresponds
to an exponentially increasing mortality rate with age and a simple HJM volatility
function. Our risk-neutral measure is defined as the best-estimate cohort survivor
curve used to value the fair value of annuity cash flows, i.e. the annuity value without
loadings. We also estimate a market pricing measure that is used for market valuation
that is consistent with the assumed survivor swap premiums.

Following Milevsky and Promislow (2001) and Biffis et al. (2010), we assume a continuous-
time framework that defines mortality rates equivalent to a credit risk defaultable
intensity process. The approach is similar to that of Lando (1998), Schonbucher (1998)
and Duffie and Singleton (1999) for pricing defaultable bonds. We use the 2-factor
mortality model calibrated in Blackburn (2013) with a deterministic volatility function
and Gaussian dynamics.

We define a filtered probability space (€3, F, F, Q), where F = (Fi);~0 and Qis a
martingale measure and is based on the best-estimate survivor probability. We define
two sub-filtrations G and H such that F = G VvV H. The sub-filtration G = (G;)=0
contains all financial and actuarial information, while the sub-filtration H = (#;);~0
captures the occurrence of death. A counting process, N(t; x), counts the number of
deaths in a given cohort, N (t;x) = Z?ﬁl 11, <t, where 7; is a [F-stopping time and admits
an intensity process yu(t; x), where yu(t; x) is a predictable process with f(; (s; x)ds < oo.

The survivor index for the cohort of 1 individual in the portfolio at time-0, initial age x
using population mortality rates is the proportion of survivors at time-f and is denoted
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by S(t; x). The survivor index at time ¢ is given by

ng — N( x)

S(t;x) = o~

(32)

The stochastic forward interest and mortality rates are given by

F(ts) = £(0,5) + /O vp(u,s)du + /O o (1, 5)d, () (33)

u(t,s;x) =wu(0,s;x) + /S vy (u,s;x)du +/ ay(u,s;x)dv_\fy(u), (34)
0 0

where f(t,s) and pu(t,s; x) are the [F-adapted interest and mortality forward processes
at time-t, and (0, t; x) is the best-estimate initial forward mortality curve. With the

meaning of the other parameters in Eq. (33) and (34) as commonly used in these mod-
els.

The martingale measure is not unique, hence we define an equivalent Q-measure with
Radon-Nikodym density,

d_g _ o= RAGWL(5) -] 3 INs) s (35)
dQ'F

where A(s) are the market prices of longevity risk. We assume no change to the mor-
tality hazard rate process under the measure change. This new measure is the pricing
and market valuation measure. We restrict A(s) to a constant price of longevity risk;
Milevsky and Promislow (2001) defines A as the instantaneous Sharpe ratio. A constant
price of longevity risk in the forward mortality model does not affect the volatility
function, but scales the initial forward mortality curve. The stochastic forward interest
and mortality rates under the market measure are given by

f(t,s) = f(0,s) + /OS vr(u,s)du + /OS or(u,8)dW, (u) (36)

u(t,s;x) = u(0,sx) + /S vy (u,s; x)du +/ oy (u,8;x)dW, (1), (37)
0 0

where 1(0, t; x) is the risk-adjusted initial forward mortality curve. There is no change
to the interest rate process under this measure change.

The time-t market value of $1 paid at time-T in case of survival is given by

P(t,T;x) = EX [e‘liTr(s)dSS(T;x))ft} = S(t; x)EQ [ = J{ r(s)+p(six) s gt] (38)
where the survivor index under the market measure is
S(tx) = ”0_—N(t"x), (39)
no

with a clear meaning of the quantities N (¢; x) and r(s) in Eq. (39) and (38), respectively.
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Assuming that interest rates and mortality rates are independent, and using the for-
ward mortality and interest rate model, the market value can also be written as,

P(t,T;x) = S(t; x)e~ i o) +nltsiolds, (40)
At time-0 we define the forward market value of $1 paid at time-T in case of survival,
for0 <t <T,as

P(0,T; x)
P(0,t;x)
— o= Ji [F(05)+(0,5%) s , (41)

P(0,t,T;x) =

and the forward survivor probability as
5(0,t, T; x) = eli’ mOsi)ds, (42)

The forward survivor probability is the probability of surviving from ¢ to T, uncondi-
tional on surviving to f, and based on the cohort information at time 0. We assume
interest rates are deterministic by setting o¢(t,s) = 0. Blackburn (2013) provides a
more extensive coverage of the model.

Given the processes in equations (36) and (37), the discounted value of $1 payable on
survival for an individual aged x at time-t is a Q-martingale for all T and given by

P(t,T;x ft (t,8)+u(t,s;x)]ds
P*(t, T;x) = (Bt ): S(t;x)e E, , (43)

where B; is the money market account value, defined as dB; = Byr(t)dt.

For P*(t, T; x) to be a Q-martingale, the interest rate and mortality rate drift conditions
must satisfy

T !
ve(t, T) =0yt T) / o (t,5) ds (44)
t . ,
vu(t, T;x) =0y (t, T;x)/t ou(t,s; x) ds, 45)

where ay(t, T; x) is the deterministic volatility function defined in equation (46), and
c¢(t, T) is the volatility function of the interest rate process (which is set to 0 in this

paper).

Using the forward modelling framework, we specify, under the Q-measure, a multi-
factor stochastic mortality model for each cohort. Each initial forward mortality curve
is a risk-adjusted version of the best-estimate mortality curve, and the volatility func-
tion for the 2-factor model is

ou(t, T x) = [Ule_él(T_t“L(x_xO)), ope 2Tt (x—x0)) (46)

where x is the cohort age at time-0 and x is the lowest assumed age in the affine model.
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di(x—x0)

The term e~ scales the volatility function by the initial cohort age.

The estimated parameters of the 2-factor mortality model are shown in Table 1. The
mortality model is estimated from historical Australian male population data obtained
from the Human Mortality Database, for the years 1965 to 2009 and ages 50 to 99.

51 52 (o] (%)
-0.1014 -0.1307 1.923e-4 5.742e-5

Table 1: Fitted Risk-Neutral Parameters; Years 1965-2009, Ages 50-99

3.2. Model Implementation

The mortality model is implemented as a discrete time version of the HJM model
using Monte Carlo simulation based on Glasserman (2003). The model uses discrete
time points tfp = 0 < t; < --- < t,, where t, = T is the time corresponding
to the oldest age when all the annuity contracts have terminated. We generate the
mortality rates to give a survivor index for each simulation path, each simulated path
includes systematic longevity risk. From these mortality rates, the actual deaths in the
portfolio are generated by sampling from an exponential distribution. The number of
simulations, M, is set to 10,000.

-~

The time-0 forward interest rates for these discrete time points are denoted by £(0,0),

-~ ~

f(0,t1), - -+, f(0,t,_1). These are the discrete time values of the initial forward curve
£(0,t) given by

o~ 1 titq

f(or ti) =

£(0,s)ds (47)
tiv1 —ti Jy,

(here and in the following, the discrete-time version of the quantities used in the as-

sessment of the shareholder value are denoted with a hat on the top).

Similarly, the initial forward mortality rates are denoted by 7(0,0; x), (0, t;x), - - -,
j1(0,t,_1; x), and these discrete forward mortality rates are given by

1 titve
(0, ;%) = [ nosxs (48)
tiv1 —ti Jy,

Parameters for the forward interest rate curve are based on Nirmalendran et al. (2013),
who calibrated the models to Australian market data. The same interest rate term
structure is used to price annuities, determine investment returns, value liabilities and
discount cash flows. The fitted yield curve assumes the following interest rates: 1-year
maturity: 3.0%, 5-years: 3.4%, 10-years: 3.8%, and 30-years: 4.7%.

The forward mortality curve evolves according to the dynamics

Wt t;x) = p(tiog, b x) + (i, tp ) [t — i +ou(ticu tp )Vt —tiaZy, j=1i,-

(49)
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where Z; are normal N(0,1) random variables. The drift term is given by

2 , 2
_ 1 (2
Uy (tio1, ti %) [t — (Z Outio1 b %) [ly1 — t > —5 (Z Ou(tion b x) [ty — tk]) ,
k=i

(50)
where 7, (¢, j; x) is the volatility function defined in equation (46) evaluated at discrete
times ¢; and ¢;.
At time-0, the market value of $1 survivor benefit in the discrete time model is

tiq

P(0,t; x) = exp(— y [f(o, ty) + 710, tu;x)] : [t,m - tD (51)

tu=tg

and the survivor curve is

5(0,t;; x) —exp< Z (0, ty; x) - u+1—tu]>, (52)

ty= tO
with the forward market price of $1 survivor benefit, for ty < t; < t; <t,, given by

fs—1

POt tsx) = exp (= 1 [F(0 ) + (0,0 )] - [fusr — 1)) (59

tu=t;

and the forward survivor curve assessed as

5(0,t; ts; x) —exp< Z (0, tu; x) - Hl—tu]). (54)

ty=t;

We generate M forward mortality curves at each discrete time point ¢;. We define the
expected number of survivors in the portfolio at time-t; (disregarding idiosyncratic
risk) as,

I(t; x) = ng - exp < Z u ) (b, t; %) [Ea — ts]>, (55)

ts=to
wherem =1,2,--- , M, and where ny is the initial portfolio size.

To generate idiosyncratic longevity risk, random death times for individuals are de-
termined by the first time the mortality hazard rate is above a random level ¢o. The
random death time is determined as

mf{ : ti ut" ) (ts; x Q}, (56)

ts=tg

where ¢ is an exponential random variable with parameter 1.
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The number of survivors at time-t; for path m, is 1) (t;; x) = ng — N (t;; x), where
tz,x 21{T1<f b7 (57)

and I (0; x) = ng. Fora large portfolio the idiosyncratic risk will be low and 10 (£ x) ~
10" (t;; x), and from our model definition, the law of large numbers gives us

~ ~

— Z 1) (t;; x) — E[I(t;x)] = 5(0,t;;x) = S(0, tj; x) (58)

Figure 2 plots the distribution of 10 (t; x) for two different portfolio sizes of 65 year
old policyholders. Smaller portfolio sizes generate much more uncertainty even in the
early years.

SRS y i ' —+Pricing Distribution
oo ©99% Cl - Portfolio Size 10,000}
+%99% CI - Portfolio Size 100

Figure 2: Portfolio Survivors 11" (t; x) for portfolios of 65 year olds
Using the simulated mortality paths we can determine the market value of an annuity

that pays $b per year to surviving annuitants in a cohort. For those aged x at time-0
this is given by

-y b-exp(—tg (F(O0,8) + 0, 15%) - 11 — 1]))- (59)

ts=1

At time-0 we can also determine forward market values of the annuity given by
b1

a(0,t; x) = Z b- exp( 2 ( (O,tj)—i-ﬁ(O,tj;x)-[tjﬂ—t]-])). (60)

ts=titq ti=to

At future times, for a given simulation path, m, the market value of the annuity at
time-t is,

)(ti;x) = Z b- eXP( Z (F (1) + RO (8, 65) - [t41 — tj]))- (61)

ts=tis1 ti=t;
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The annuity premium paid by annuitants at time 0 is based on the best-estimate sur-
vivor curves under the Q-measure and not the pricing and market valuation measure.
The actuarial value of an annuity that pays $b per year to each annuitant in a cohort
age x at time-0 is given by

ts—1

a(0;x) = 2 b-exp ( — Y (FO.t) +7(0,£;%)) - [tj1 — tj])r (62)

ts=1 ti=to

where (0, t j; x) is the best-estimate cohort forward survivor curve.

Swap payments to the reinsurer are fixed at time-0 and are based on the best-estimate
forward survivor curve, given as

ti1

A~

§(O, tl-;x) = exp ( — Z ‘u(O, t]';x) . [t]'—i-l — t]]> (63)

ti=to

The value of the fixed payments for the survivor swap value at time-0 are equated un-
der the actuarial value with the reinsurance loading and the market valuation measure
to give

th—1

tn—l _
Y PO t;x) =Y (1+ YRP(0, t; x), (64)
ti=tg ti=to

There is no change in the interest rate process under this measure change, and equation
(64) can be reduced to

th1 th—1 . —
Y SO0 t;x) =Y e Jii pu 1)y (sau) ldsdug 4. )
t;=tg ti=0

tp—1 .
= Y oM o losa) s, ;) (65)
ti=to

We have assumed A to be a constant price of longevity risk, the same value for each
factor in the mortality model. With A = [A1, A7] set so that A; = A,, we solve equa-
tion (65) for A using a method of least squares. This gives an instantaneous Sharpe
ratio of A = 0.1555.%. We assume that the maturity of the swap and longevity bond
corresponds to the maximum possible duration of the portfolio.

Figure 3 shows the market pricing and best-estimate survivor curves, S(to, f,—1;65)

and é(to, t,—1;65) respectively, with 99% confidence intervals for a cohort aged 65
at time-0. The market valuation survivor curve is shifted upwards along with the

“Fama and French (2002) report Sharpe ratios of 0.15 - 0.44 (depending on whether dividend growth,
earning growth or real returns are used to calculate the equity premium) for the S&P 500 index over the
period 1951-2000 (see Table I in Fama and French, 2002). Bauer et al. (2010) compare different methods
for estimating the market price of longevity risk and calculate Sharpe ratios of 0.0371 - 0.1209 based on
UK pension annuity data (see Table 1 in Bauer et al., 2010).
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confidence intervals.
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Figure 3: Cohort Survival Distribution Aged 65 in 2010

The forward survivor curves, for different ages of the cohort, are shown in Figure 4.
Each curve shows the forward distribution for the survivor index. As the future age
increases the uncertainty also increases substantially. This highlights the extent to
which systematic longevity risk is prevalent at the older ages.
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Figure 4: Forward Survival Distributions, Cohort Aged 65 in 2010
4. Results

4.1. Economic Value and Market-Consistent Embedded Value

Tables 2 and 3 illustrate the shareholder values assessed following the EV and the
MCEYV approach, with a 15% loading on policyholder annuity premiums and a run-off
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solvency equivalent to a 1 year default probability of 0.79%, resulting in a portfolio size
of 1,399 policies based on the annuity demand function specified in Section 2.7. The
mortality model is calibrated as described in Section 3. Referring to a report by Swiss
Re (2005) suggesting frictional costs of holding capital of 2%, we assume a proportion
of the annual frictional cost on shareholder capital p = 1%, while the proportion of
the annual recapitalization frictional cost is set to ¢ = 3%. No hedging is adopted in
Tables 2 and 3.

To interpret the results, note that the market value of the annuity is $12,790 and the
best-estimate actuarial value of the annuity is $12,180. The premium charged to the
policyholder with a 15% loading is $14,708. Initial expenses are 3% of the premium
and the value of recurrent expenses is $640 per policy, which is 5% of the total liability
reserve. The frictional costs are 0.8% of the technical provision, and the LLPO almost
zero. This reflects the high level of solvency of the life insurer resulting from a premium
loading of 15%, even without risk transfer.

The most striking result is the volatility of the present value of future profits under the
MCEV. Because the initial premium loading, which has zero volatility in present value
terms, is re-spread and accounted for as part of the annual insurer profit in the MCEYV,
this gives rise to volatility in accounting results. Risk management will be shown to be
a very effective way of reducing this volatility.

Economic Value

Portfolio Size 1,399
1-Year Default Probability 0.79%

Expected Value

Expected Value CoV per policy

Total Assets $19,597,515 $14,008
Technical provisions $17,893,499 $12,790.00
Expenses $896,093 5.7% $640.52
Frictional Costs $142,612 12.7% $101.94
Recapitalization costs $27,164  69.1% $19.42
LLPO $4,131  961% $2.95
EV $642,277 16.42% $459.10
Total Liabilities $19,597,515 $14,008.23

Table 2: Economic value without hedging

MCEV
Portfolio Size 1,399
1-Year Default Probability 0.79%

Expected Value

Expected Value CoV per policy

Future Profits $807,598 116.5% $577.27
Frictional Costs $142,612 12.7% $101.94
Recapitalization costs $27,164 69.1% $19.42
LLPO $4,131 961% $2.95
VIF $641,952 148.24% $458.87

Table 3: VIF without hedging
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We point out that with deterministic interest rates, the two approaches produce almost
the same shareholder values, assuming the insurer does not default. This is because
CF(0) — V(0) =~ FP(0), i.e. the reserve does not affect total profit, but just the timing
of its emergence.

In the following, we consider the situation where policyholder demand is based on the
insurer always meeting the Solvency II requirement of a 1-year default probability of
0.5%. We determine the optimal premium loading. We consider different combinations
of longevity risk transfer and relief from solvency capital requirements. Levels of
reinsurance transfer, wy, are set either to 50% or 100%. Levels of capital relief, w,,
are set either to 50% or 100%. The findings are compared to the case of no hedging.
This allows us to assess the impact of both risk management and capital relief on
shareholder value.

4.2. Demand Function for a Solvency II Default Probability

We use a default probability in the demand function equivalent to 0.5% per year. The
demand function in this case is given in Figure 5. Using the market size of 25,000
annuitants, a premium loading of 5% results in a portfolio of 5,195 annuitants based
on the annuity demand function. A premium loading of 30% reduces the size of the
portfolio to 459. Because of this reduction in demand and the resulting increase in
idiosyncratic longevity risk, premium loadings have significant impacts on solvency.
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Figure 5: Portfolio Size vs. Premium Loading

Figure 6a shows the sensitivity of the insurer’s actual annualised 1-year default prob-
ability to the premium loading for the no hedging case. The default probability is
determined from the simulation results; the number of defaulting paths divided by
the total number of paths. Default can occur at any time during the annuity contract,
thus we annualise the default probability for easier comparison. The increasing default
probability with premium loading results only from the reduced portfolio size. When
the premium loading reaches 15%, or a portfolio size of 1,968, the default probability
is above the Solvency II requirement of 0.5%.

Figure 6b shows the default probabilities with age for a number of premium loadings.
Without hedging, defaults occur in the early years and also the later years of the
annuity contract, especially for the higher premium loadings. For most years the
insurer holds sufficient capital to avoid insolvency. For the 30% premium loading case
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the default probability is above the 0.5% Solvency II requirement until the age of 70. In
the 17.5% loading case the default probability is above 0.5% in the first year only, while
the 5% loading case is below the required 0.5% for all years except the final year of the
contract. This is determined by the portfolio size and the resulting idiosyncratic risk,
especially at the older ages. For an insurer charging higher premiums a swap agree-
ment will be more desirable because it is indemnity-based and hedges this insolvency
risk.

Figures 7a and 7b show the annualised 1-year default probability with the survivor
bond and survivor swap respectively. For the bond, a higher premium loading also cor-
responds to having higher default probabilities, reflecting the smaller portfolio sizes.
For the survivor swap this effect does not occur since the idiosyncratic risk is hedged.
In all cases the default probability is below the Solvency II requirement for all premium
loadings with hedging. Capital relief has no effect when the insurer is fully hedged.

Capital relief can have an adverse effect on solvency with less than full hedging of
longevity risk. This is because capital relief reduces the amount of capital too much
and a simple one-to-one offset for the hedged risk is not optimal.
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Figure 6: 1-Year Default Probability
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Figure 7: 1-Year Default Probability

4.3. Shareholder Value and Volatility

Figures 8a and 8b show the expected VIF and EV respectively, with alternative hedging
solutions and capital relief assumptions. A premium loading of 11% or greater is
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VIF (Million $)

required to generate a positive expected value for shareholders on a risk-adjusted
basis. The shareholder value is increasing until a 20% premium loading, based on the
price elasticity of the demand function.’For any fixed premium loading, there are small
gains to the expected VIF and EV values when the insurer transfers longevity risk.
This reflects the low level of frictional costs for the life insurer. The VIF is increasing
in reinsurance weight and capital relief, with the survivor swap and survivor bond
producing similar results. Although risk management can reduce frictional costs, the
value of this for a life insurer with long term business is not major.
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Figure 8: VIF and EV, Expected Value

Figure 9 shows the impact of hedging on the VIF and the EV volatility. Figures 9a and
9b show the significant benefits of transferring longevity risk in the reduced volatility
of the VIF. Once again, capital relief at 100% of the hedged risk is not optimal when only
partially hedged. There is little difference between the two for the economic value.
However volatility is very different as shown in Figures 9c and 9d. Note the much
smaller scale used for EV in the figures.

5A similar hump-shaped relationship between premium loading and shareholder value was found
by Nirmalendran et al. (2013) in a multi-period cash flow model for a life insurer offering lifetime
guaranteed annuities calibrated using Australian market data. The estimated optimal range of premium
loadings compares with premium loadings estimated for the Australian annuity market. For nominal
life annuities sold to 65-year-old males, assuming general population mortality rates, the results of James
and Vittas (2001) indicate a premium loading of 8.6% , while the findings of Doyle et al. (2004) suggest a
premium loading of 12.1%, and Ganegoda and Bateman (2008) report a 24% premium loading.
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4.4. Shareholder Dividend and Recapitalization Strategy

Figure 10 shows the present value and volatility of dividends distributed to share-
holders over the life of the annuity contract for varying premium loadings, and for
alternative hedging solutions. There is a point between a premium loading of 13%
and 16%, where the value no longer reduces as shown in 10a. Figure 11 shows that
this point corresponds to where the premium loading is sufficient to meet reserving
and regulatory requirements, with no initial shareholder capital required. For lower
premium loadings, the initial shareholder capital is returned as dividends in addition
to the profits from the annuity premiums. The benefits of risk management on the
volatility of dividends is shown in Figure 10b. Hedging longevity risk results in a
significant reduction in dividend volatility.

The shareholder recapitalisation amounts, excluding initial shareholder capital, are
shown in Figure 12. Recapitalisation is reduced by hedging longevity risk, regardless
of premium loading. The volatility of recapitalisation also reduces significantly. The
extent of capital relief does not have a significant impact on recapitalization require-
ments.
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4.5. Frictional Costs

Figure 13 shows the reduction in expected value and volatility of frictional costs. Fric-
tional costs are based on the difference between the total reserves, 171 (t), and the market
value of the annuity liability, V(t). The expected value of frictional costs are reduced
with hedging. Since insurer defaults occur mainly in the older ages, this has a minimal

effect on the time-0 expected value. The benefits of hedging occur in the reduction in
the volatility of frictional costs as seen in Figure 13b.
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butions, but only ongoing recapitalisation costs.

4.6. Expenses
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Figure 14 shows a reduction in the expected value and volatility of recapitalization
costs with hedging. These figures do not include the time-0 initial shareholder contri-

The insurer’s expenses are shown in Figure 15. Hedging does not reduce the expected
value of expenses, but does reduce the volatility.
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4.7. Impact of solvency probability

Although the results assume that policyholder demand is determined by the Solvency
II default probability, risk management using any amount of hedging will reduce the
default probabilities. This increases demand. The results with the actual default prob-
abilities are not shown here, but give the same conclusions as presented. In these cases
shareholder values as a percentage of the total assets do not change significantly.

4.8. Impact of hedging costs and financial risks

Our model uses the market price of longevity risk for a consistent valuation of in-
surance liabilities and of the two longevity risk transfer arrangements. We do not
allow for additional profit loadings on the prices of the survivor swap and the survivor
bond imposed by the counterparties involved in these transactions. Introducing such
profit loadings would reduce the annuity provider’s annual profits, resulting in a
lower shareholder value (VIF and EV) and higher default probabilities. This would
make longevity risk transfer less attractive to the shareholders of the annuity provider
than the ‘No Reinsurance’-strategy where longevity risk is retained by the annuity
provider. Loadings that differ across longevity risk transfer arrangements would of
course determine the comparison between the survivor swap and the survivor bond.
While this aspect must not be disregarded in practice, the main conclusions of our
investigation, and in particular the valuation approach, remain important also in view
of a practical assessment of longevity risk management strategies.

We disregard risks other than longevity risk to focus on this risk and to keep the
model’s complexity at a reasonable level. In practice, annuity providers need to identify,
assess and manage all relevant risks, including financial risks such as interest rate risk,
when developing their risk management strategy. In practice they hedge interest rate
risks through investment strategies such as immunization so that this risk is minimal
leaving only the longevity risk to be hedged. But the market for this is limited and
usually this is done with reinsurance using a longevity swap. There are papers that
consider the hedging of longevity risk and interest rate risk including Luciano et al.
(2012), Ngai and Sherris (2011), Liu and Sherris (2015) but do not consider the impact
of pricing and solvency along with the modelling and hedging of these risks. Our
aim has been to incorporate these pricing and solvency issues into the model with an
emphasis on the risks that cannot readily e hedged with financial instruments. Hence
the focus on longevity risk and its hedging and impact on solvency and pricing.

5. Conclusions

We investigate the impact of longevity risk management on shareholder value for a life
insurer issuing life annuities. We develop a rather comprehensive stochastic model, in
order to address the main drivers of the solvency and value of a life annuity business.
We focus on longevity risk only and we perform the assessment based on a single
cohort. This allows us to make clearer a number of important aspects of the valuation
of a business exposed to longevity risk.

We analyse how longevity risk management is successful in reducing the default prob-
ability of the insurer. We show that this results from a reduction in the volatility of
cash flows. We use an Economic Value (EV) and a Market Consistent Embedded Value
(MCEV) approach; while the former is the natural approach in a fair value setting, the
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embedded value is a traditional and popular actuarial model for the valuation of the
life insurance business. It is therefore important to develop it in a market-consistent
manner (and in some respects this is already performed in actuarial practice), and
make appropriate comparisons. We show that the MCEV approach generates volatility
in future profits in a stochastic model because of the re-spreading of the initial annuity
premium to match future outgoes. This volatility can be significantly reduced when
hedging longevity risk.

For the hedging solutions, we show that both survivor swaps and bonds reduce volat-
ility. Survivor swaps provide an indemnity-based hedge and are most effective in
reducing risk. The index-based survivor bond does not hedge the idiosyncratic risk.
This is an important factor, especially in the older ages of a cohort, and has a significant
impact on solvency. Capital relief for hedged risk should be carefully assessed. Taking
too much capital relief reduces capital to the extent that it has an adverse impact on the
solvency of the insurer.

We incorporate a dividend strategy that maintains the solvency capital requirements
under Solvency II along with market consistent risk margins. We show that an import-
ant benefit of hedging is the reduction in the volatility of the dividends. Since share-
holders will value the stability of dividends, this is a benefit of hedging not captured in
standard shareholder valuation models. We also demonstrate how Solvency II capital
requirements are inadequate at the older ages of a cohort because of idiosyncratic risk.

The multi-period stochastic shareholder value model developed in this paper deals
with important practical aspects such as the trade-off between solvency and premium
loading and the valuation of the limited liability put option which so far have not been
considered appropriately in the longevity risk management literature.
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