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Abstract  8 

Multi-generation energy systems could mitigate global energy consumption, carbon emissions and economic costs. 9 
The promising energy, environmental and economic advantages of these systems are greatly dependent on their 10 
design and operational strategy. Consequently, methods and guidelines for the optimal design and operation of 11 
such systems, also taking into consideration their life cycle, are needed to fully exploit their potential. This paper 12 
proposes a general methodology for the simultaneous optimization of the design and operation of multi-13 
generation energy systems by considering life cycle energy and economic assessment. The design optimization 14 
problem is solved by means of surrogate modeling and the operation optimization problem by means of dynamic 15 
programming. The multi-generation energy system considered in this paper comprises renewable energy systems, 16 
fossil fuel energy systems and energy storage technologies. Different multi-objective optimizations were 17 
performed by considering the minimization of fossil cumulative energy demand, and total investment and 18 
operational costs. The validity of the proposed methodology is demonstrated by using the campus of the University 19 
of Parma (Italy) as a case study. Compared to a conventional plant, the optimal solution allows a life cycle energy 20 
saving of about 17% and total cost reduction of about 18%. Moreover, compared to an optimization method based 21 
on particle swarm optimization and dynamic programming, the proposed methodology provides comparable 22 
results, but the computation time is 78% lower. The proposed methodology outperforms commonly used 23 
optimization algorithms and provides an effective and flexible framework for the optimal design and operation of 24 
multi-generation energy systems. 25 

Keywords: Design optimization; Life cycle assessment; Multi-generation energy systems; Operation optimization.26 

Nomenclature 

Abbreviations  

AC absorption chiller 

ASHP air source heat pump 

CC compression chiller 

CHP combined heat and power 

COP coefficient of performance 

CP conventional plant 

DP dynamic programming 

EER energy efficiency ratio 

FCED 
fossil cumulative energy 

demand 

GA genetic algorithm 

GB gas boiler 

IC investment cost 

ISO 
international organization 

for standardization 

LCA life cycle assessment 

LCI life cycle inventory 

LCIA 
life cycle impact 

assessment 

MES 
multi-generation energy 

system 

MILP 
mixed integer linear 

programming 

OF objective function 

PV photovoltaic system 

SMO 
surrogate modeling 

optimization 

STC solar thermal collector 

TC total cost 

TES thermal energy storage 

TOC total operational cost 

Symbols 

A area 

c dissipation coefficient 

d sample 

E energy 
G solar irradiance 

h 
intermediate cost 

function 

l generic energy system 
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m mass 

N time period 

P power 

q polynomial 

s interpolation function 

T temperature 

u control variable 

V volume 

W weight 

x state variable 

Z cost function 

α 
weight of the energy 

objective 

λ number 

Ф radial basis function 

β 
weight of the economic 

objective 
𝛿 share of material flow 

η efficiency 

Subscripts and superscripts 

Al allocation 

amm amortized 

BoS balance of system 

cool cooling 

D dimension 

diss dissipation 

el electrical 

f material flow 

GN gas network 

grid national grid 

i generic material flow 

in entering 

int interest rate 

k time variable 

M module 

n number of samples 

nom nominal 

out outgoing 

op optimal 

p amortization period 

ref reference 

sent sent to the grid 

taken taken from the grid 

th thermal 

tot total 

1. Introduction 1 

1.1 Problem statement and literature review 2 

Global primary energy consumption is expected to grow exponentially over the next few years due to the 3 
increase in energy demands for heating, cooling and lighting [1]. For instance, buildings are responsible for about 4 
32% of global final energy consumption and 30% of global greenhouse gas emissions [2]. Multi-generation energy 5 
systems (MESs) [3] have emerged as one of the most effective solutions for the reduction of energy consumption, 6 
energy costs and CO2 emissions of buildings, universities, districts, and communities [4]. However, the promising 7 
energy, environmental and economic advantages of these systems are greatly dependent on their design and 8 
operational strategy. Consequently, methods and guidelines for the optimal design and operation of such systems, 9 
also taking account of their life cycle, are needed to fully exploit their potential. 10 

Compared to separate energy production by means of conventional plants, MESs could mitigate the crisis of 11 
carbon emissions and achieve sustainable development by combining several energy technologies fed by 12 
renewable and fossil energy sources in a unique energy system, to supply heating, cooling and electrical energy 13 
[5]. Indeed, the proximity of MESs to the end-users reduces energy transmission losses and increases energy 14 
efficiency. Furthermore, the integration of multiple energy technologies, such as combined heat and power (CHP) 15 
systems, heat pumps, absorption chillers (ACs) and energy storage technologies, allows heating, cooling and 16 
electricity to be combined with the benefits of initiating new business opportunities [4]. Hassoun et al. [6] 17 
investigated a MES comprising a photovoltaic (PV) panel, wind turbine, diesel generator and battery bank system 18 
for power, freshwater, and cooling. The energy and exergy analyses of the system showed that an exergy efficiency 19 
equal to 49% may be achieved. Khalid et al. [7] presented a solar-biomass plant composed of a concentrated solar 20 
collector, organic Rankine cycle, gas turbine and AC to supply space heating, cooling, power and hot water. They 21 
found that the proposed system is more efficient and more cost-effective than using individual solar and biomass 22 
energy systems. Chitgar et al. [8] proposed a novel MES based on a solid oxide fuel cell integrated with a Kalina 23 
cycle, thermoelectric generator, and reverse osmosis desalination for power and freshwater production. The 24 
results showed that the energy and exergy efficiencies increase as the pressure in the Kalina turbine increases. A 25 
solar-based MES for greenhouse application has been analyzed by Mahmood et al. [9]. The thermodynamic 26 
analysis revealed that solar radiation may significantly affect the overall performance of the system. 27 

The energy and economic performance of MESs are greatly dependent on their design and operational strategy. 28 
Therefore, implementing methods for design and operation optimization is a key factor to achieve the expected 29 
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benefits from MESs with minimal energy consumption and economic costs [10]. The presence of several energy 1 
technologies in a single plant that supplies energy to one or multiple users, the use of different sources of energy, 2 
and the connection to different energy networks make the optimization of MESs a very complex task. Several 3 
methods have been presented in the literature to identify the integrated optimal design and operation of MESs 4 
[11]. Fakhari et al. [12] optimized the operating conditions of a novel biomass-based MES comprising a gasification 5 
unit, a fuel cell, a multi-effect desalination unit, and a series two-stage organic Rankine cycle using various 6 
zeotropic mixtures for the use of waste heat for heat, power, and freshwater production. The multi-objective 7 
optimization results revealed that, at best, the exergy efficiency is 23.43%, the produced freshwater is 162.86 8 
m3/day, and the total cost rate equals 64.91 $/h. Furthermore, a hydrogen-based fuel cell integrated with an 9 
organic Rankine cycle with zeotropic mixtures has been also investigated by the same authors in [13]. The system 10 
has been optimized by using a genetic algorithm (GA) and performing multi-objective optimizations. The results 11 
of the multi-objective optimization showed that it is more efficient to use a low-temperature fuel cell than a high-12 
temperature fuel cell. Urbanucci et al. [14] presented an optimization procedure for the integrated design and 13 
operation optimization of CHP systems. They defined the operation strategy of the systems by using rule-based 14 
methods and they did not consider the option of integrating renewable energy systems. A more complex system 15 
composed of a CHP, PV, wind turbine and battery storage was considered in [15]. The study aimed to find the 16 
optimal sizes of the system components by using a Grey Wolf optimization algorithm, while the operational 17 
strategy of the system components was defined by a rule-based energy management strategy. The design problem 18 
of a hybrid renewable energy system composed of PV, wind turbine, diesel generator and battery storage 19 
technologies was addressed in [16]. The design variables were optimized by using the software Homer Pro®, while 20 
the traditional electrical load following strategy was used to control the different systems. Alirahmi et al. [17] 21 
proposed and optimized the design variables of a multi-generation system using an evolutionary algorithm to 22 
maximize the exergy efficiency and minimize the cost rate. Vojdani et al. [18] implemented multi-objective 23 
optimizations to determine the best operating conditions of an integrated energy system comprising a solid oxide 24 
fuel cell, gas turbine and multi-effect desalination unit for power and freshwater production. The optimization was 25 
performed by considering the exergy efficiency, production cost and environmental impact as objectives. The 26 
results showed that the exergy efficiency of the optimal solution is 69.70%, the production cost is 29.33 $/MWh, 27 
while the environmental impact is 299.23 kgCO2/MWh.  28 

Even though the works mentioned above add a significant contribution to the literature, none of them considers 29 
the simultaneous optimization of the design and operational strategy of the employed technologies. Indeed, these 30 
two issues are deeply interrelated and must be addressed simultaneously because the definition itself of an 31 
optimal operation strategy strongly depends on the optimal design of the energy plant and vice versa. This 32 
problem has been addressed by Evins et al. [19] who investigated the design and operation optimization problem 33 
of an energy plant and presented a multi-level optimization approach based on a GA and mixed-integer linear 34 
programming (MILP). The plant design and operational variables were optimized by minimizing capital costs, 35 
running costs and carbon emissions. Fonseca et al. [20] presented a multi-criteria optimization method for the 36 
design and operation of distributed energy plants. The results showed that, compared to a decentralized scenario, 37 
emissions can be reduced up to 89%. However, the optimization was performed by considering a time step of 12 38 
h and ignoring the intraday variation of solar radiation. A two-phase collaborative optimization method has been 39 
proposed by Liu et al. [21] to determine the optimal design of a distributed energy system. The optimal sizes of 40 
the different systems considered in the plant have been determined under different operation strategies and by 41 
minimizing primary energy consumption and annual costs. The optimization results showed that the proposed 42 
system is reliable and feasible in providing a nearly zero-energy community with various energy sources. Luo et 43 
al. [22] presented a two-stage optimization approach to simultaneously optimize the capacities and operation of a 44 
MES by using a GA. To reduce computational time, the optimization problem has been solved by considering the 45 
winter week and summer week with the highest heating and cooling load, respectively. Compared to the capacity 46 
optimization following electricity load, the proposed approach can reduce the year-round biomass consumption 47 
by about 14%. Moreover, Piacentino et al. [23] proposed a MILP model for the design and operation optimization 48 
of tri-generation systems to minimize the net present cost. Similarly, the design and operation optimization 49 
problem of a MES with high renewable penetration has been solved by Zhang et al. [24]. They linearized the 50 
constraints and solved the problem as a MILP showing that the model proposed is suitable for the design and 51 
planning of MESs. Furthermore, Urbanucci et al. [25] presented a methodology for the simultaneous design and 52 
operation optimization of CHP systems with thermal energy storage (TES) and auxiliary boiler. The design 53 
problem was solved using GA, while the operation is optimized by using a MILP. To overcome the challenge of 54 
computational complexity, the authors decomposed the original optimization period of one year into several sub-55 
periods. Despite the effectiveness of MILP-based methods in solving the design and operation optimization of 56 
energy plants, they are only suitable for linear problems [26]. Yet, the general problem of the simultaneous design 57 
and operation optimization of MESs usually results in a non-linear problem. Moreover, complex systems require 58 
a very large computation time due to the very large number of decision variables [27]. Therefore, to use MILP 59 
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methods, assumptions have to be made to achieve the linearity of the problem and reduce the computational 1 
complexity.  2 

The long-running time is one of the major obstacles to energy system optimization. Among the various 3 
optimization methods proposed in the literature, several researchers have focused on the implementation of 4 
surrogate models or meta-models to overcome the computational complexity of expensive objective functions. 5 
The basic idea of the surrogate modeling approach is to approximate the original computationally expensive 6 
objective function through tractable functions, which have well-known properties, such as the radial basis function 7 
[28]. Zhang et al. [29] used a surrogate model to find out the influencing factors of a hybrid battery thermal 8 
management system for electric vehicles, such as heat dissipation performance, and performed multi-objective 9 
optimization to determine the optimal design parameters. The results showed that the optimized system can 10 
dissipate heat and maintain temperature uniformity. Likewise, Beykal et al. [30] implemented surrogate models 11 
for multi-objective optimization of an energy market design problem. The proposed method outperformed other 12 
available algorithms. Perera et al. [31] developed a surrogate model by using neural networks to optimize both 13 
design and dispatch strategy of an energy plant composed of wind turbines, PV, a battery bank and an internal 14 
combustion generator. The proposed algorithm is able to reduce the computational time by up to 84%. In addition 15 
to surrogate modeling, dynamic programming (DP) has also recently attracted lots of research in the area of energy 16 
system optimization due to its ability to deal with non-linear optimization problems and identify globally optimal 17 
solutions in the discrete state space [32]. The DP method is mainly used to optimize the operational strategy of 18 
energy systems where the behavior of the plant is described by means of state variables [33]. In our recent study 19 
[34], we found that the operation strategies defined by DP always outperform commonly used operation 20 
strategies. The application of DP to solve energy management problems has also been addressed by several 21 
studies. For instance, Facci et al. [35] presented a methodology to determine the optimal operation strategy of a 22 
tri-generation plant based on fuel cell technology. They applied the DP method by considering the energy and 23 
economic objective functions and the hourly electrical, thermal and cooling energy demands for a small hotel. The 24 
optimized control strategy allowed a reduction in the primary energy consumption and operational costs of the 25 
plant. Moradi et al. [36] demonstrated the effectiveness of a DP optimization method for the energy management 26 
of multi-source microgrids. They examined two operational scenarios that differ in the possibility of accessing 27 
battery storage, concluding that access to the battery may allow a further reduction in system cost and produced 28 
emissions.  29 

When integrating renewable energy systems in MESs, optimization must also be performed by considering the 30 
entire life cycle of these systems and not only their useful life [37]. In fact, it is generally considered that the energy 31 
consumption and emissions of renewable energy systems amount to zero. However, there is considerable energy 32 
consumption and environmental emissions during their manufacturing and disposal. Multiple studies have 33 
addressed the design optimization of energy systems from a life cycle perspective. A renewable MES composed of 34 
a PV, solar thermal collector (STC), biomass CHP and AC was optimized in [38]. Life cycle primary energy 35 
consumption, economic cost and carbon emissions were considered as objectives. A linear scaling approach to 36 
evaluate the effect of the rated capacities of the system on the life cycle performance of the plant has been followed. 37 
Yan et al. [39] evaluated the environmental and economic impact of a system composed of micro-turbines, PVs 38 
and batteries by using an optimization method based on a parametric LCA framework. Compared to conventional 39 
power generation, the proposed system, which is operated by following the thermal load has less environmental 40 
impact. Mayer et al. [40] proposed an optimization method based on a GA for the design of a hybrid renewable 41 
energy plant considering the life cycle cost and environmental footprint. Due to the scarcity of data, they 42 
extrapolated the inventory data linearly with capacities of the plant components. The study demonstrated the 43 
relevance of life cycle assessment (LCA) in the design of hybrid renewable energy systems and the superiority of 44 
renewables to fossil fuels from an environmental point of view. 45 

With the support of optimization methods, among different options, designers can effectively select the energy 46 
system configuration that has the best energy, cost and environmental performance from the viewpoint of its life 47 
cycle. The technical specifications and limitations of each system integrated in the plant have to be modeled with 48 
an appropriate level of details without compromising the computational complexity. Moreover, the life cycle 49 
inventory (LCI) data for each system need to be available in a range of sizes because energy technologies could 50 
vary in size and thus experience scale effects [41].  51 

1.2 Contribution of this paper 52 

This paper tackles an all-embracing challenge. In fact, despite the number of studies already published about 53 
the design of MESs, to the authors’ knowledge, very few studies have been published on the simultaneous design 54 
and operation optimization of MESs. In particular, this is the first attempt to combine surrogate modeling and DP 55 
for energy system optimization. The MES considered in this paper comprises STC, PV, CHP, air source heat pump 56 
(ASHP), gas boiler (GB), AC, compression chiller (CC) and TES, since they are widely used to meet the thermal, 57 
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cooling and electrical energy demands. A case study consisting of a University Campus is considered to 1 
demonstrate the validity of the proposed methodology. The design and operational strategy of the MES are 2 
optimized by considering the life cycle of fossil cumulative energy demand (FCED) and total costs (TCs) (i.e., 3 
investment and operational) in a single weighted-sum objective function. Compared to the studies available in the 4 
literature, the main contributions of this paper are as follows: 5 

• a novel methodology combining surrogate modeling optimization (SMO) and DP is developed for the 6 
optimization of MESs. The proposed methodology is general and thus can be applied to any case study, such 7 
as buildings, universities and districts;  8 

• instead of being limited to system design only, the design and operation problems, which are intrinsically 9 
related, are solved simultaneously. Moreover, the non-linear characteristics of the investigated energy 10 
technologies are also considered;  11 

• multi-objective optimizations of a MES are performed to obtain the best design and operation strategy from a 12 
life cycle energy and economic perspective;  13 

• the methodology provides design and operational results by considering one year of operation (instead of 14 
clustered days) in a reasonable computational time. 15 

The paper is organized as follows: Section 2 presents the methodology, illustrates the energy plant, introduces 16 
the life cycle assessment of the considered energy systems, discusses the inventory scaling, and presents the 17 
impact indicators and economic assessment. Section 2 also highlights the optimization method. Section 3 outlines 18 
the case study. Section 4 discusses the results while the last section draws the conclusions.  19 

2. Methodology 20 

2.1 Multi-generation energy system modeling  21 

As shown in Fig. 1, several types of energy systems fed by different energy sources are considered, namely a PV, 22 
STC, CHP system based on an internal combustion engine, ASHP, GB, AC, CC and TES. These technologies are 23 
suitable for applications as both single components and aggregate systems and are available on the market in a 24 
wide range of sizes (see Appendix A). Each system of the MES (including solar energy systems) is modeled by 25 
following a grey-box modeling approach. These steady-state models are defined by means of power and efficiency 26 
curves and are implemented in Matlab®. Moreover, in order to consider the seasonal efficiency variation of the 27 
different systems, the efficiency of all systems (except the GB and AC) is corrected as a function of the ambient 28 
temperature by following the approach reported in Barbieri et al. [42]. The simulation of the MES is performed 29 
throughout one year and the analysis is conducted on an hourly basis. For the sake of brevity, the system models 30 
are not reported in this paper. More details about these models have been described in our previous work [37].  31 

 32 

Fig. 1. Layout of the MES. 33 

The optimal design and operation strategy of the MES is conducted by fulfilling user energy demands. Equations 34 
(1) through (6) represent the energy balance constraints and the energy flows of the energy systems included in 35 
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the MES [42]. In particular, the user’s thermal demand at time step k can be met by the STC, CHP, ASHP, GB and 1 
TES, the cooling demand can be met by the ASHP, AC and CC, while the user’s electrical demand, the heat pump 2 
and the chiller are fulfilled by the PV, CHP and grid. 3 

Euser,th,k=ESTC,th→user,k + ECHP,th→user,k + EASHP,th,k + EGB,th→user,k + ETES,th,out→user,k    (1) 4 

Euser,cool,k=EASHP,cool,k + EAC,cool,k + ECC,cool,k         (2) 5 

Euser,el,k + EASHP,el,k + ECC,el,k = EPV,el,k + ECHP,el,k + Egrid,el,taken,k      (3) 6 

ECHP,th,k=ECHP,th→user,k+ECHP,th→AC,k + ECHP,th→TES,k        (4) 7 

ESTC,th,k=ESTC,th→user,k+ESTC,th→AC,k + ESTC,th→TES,k        (5) 8 

EAC,th,in,k = ESTC,th→AC,k + ECHP,th→AC,k + ETES,th→AC,k + EGB,th→AC,k       (6) 9 

2.2 Life cycle assessment 10 

The energy and environmental performance of products is one of the concerns of today’s world. LCA is a 11 
methodology that evaluates energy consumption, environmental impact and the resources used by analyzing all 12 
stages of the product life cycle, i.e., from raw material extraction, via production and use phases, to end-of-life. LCA 13 
helps to compare different products with the same functional unit and to select the product that has the least 14 
energy and environmental impact. The International Organization for Standardization (ISO) developed global 15 
technical standards for LCA, i.e., ISO 14040 [43] and ISO 14044 [44]. The LCA process is a systematic approach 16 
that includes four separate phases: Goal and scope definition, Inventory analysis, Impact assessment and Results 17 
interpretation. 18 

2.2.1 Goal and scope definition 19 

Goal definition is the phase of LCA that defines the purpose of the study. In this study, the purpose is the 20 
quantification of the FCED through a cradle-to-gate LCA for various types of energy systems in a range of sizes. 21 
The LCA results are useful for MES design optimization that includes different energy technologies with different 22 
sizes. Moreover, they are helpful for designers as a decision support to easily assess whether or not an option is 23 
favorable in terms of energy consumption and the environmental impact.  24 

The functional unit of CHP, GB, ASHP, CC and AC is defined by the respective nominal power (i.e., thermal, 25 
cooling or electrical power). Instead, the functional unit of PV and TES is represented by the corresponding area 26 
and volume, respectively. This choice of the functional unit is helpful to assess the FCED of the systems in a range 27 
of sizes. 28 

As shown in Fig. 2, the impact related to the production of the investigated technologies is assessed by means 29 
of a cradle-to-gate LCA approach. The dismantling phase of the considered systems is ignored in this paper because 30 
no consolidated information is available. Thus, as highlighted in Fig. 2, the LCA study carried out in this paper 31 
includes raw material extraction and the processing, transportation and manufacturing of the final system. The 32 
energy consumption during the use phase is quantified by considering a case study (Section 3). 33 

Since the LCA study is conducted on market available energy systems with a focus on the European market, 34 
standard distances of 100 km in lorry and 200 km in freight train are assumed [45] for the manufacturing of the 35 
different systems. Moreover, the schemes of the European energy and electricity mix are adopted for the 36 
evaluation of the demanded energy and electricity.  37 

 38 

Fig. 2. Boundaries of the investigated energy system. 39 
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2.2.2 Inventory analysis and scaling 1 

LCI consists of creating an inventory of input and output flows according to the system boundary defined at the 2 
goal and scope phase. The inventory flows include inputs of water, energy, raw materials and emissions to air, soil 3 
and water.  4 

Figure 3 highlights the general procedure for the scaling of the LCI as a function of system size. By following the 5 
approach proposed by Caduff et al. [46], in a previous paper by the same authors [47], the scaling of the inventory 6 
of materials and energy use was made by considering the variation of the weight with system size, assuming that 7 
material composition (i.e., steel, aluminum, chromium, copper, etc.) is independent of system size. This was done 8 
because information about the dry weight of the system is usually available from the manufacturers, while data 9 
about material composition are rarely shared for confidentially reasons. Thus, the material composition of all 10 
systems was considered independent of size. Data about material composition and energy consumption for the 11 
manufacturing of the energy systems investigated were taken from the Ecoinvent 3.4 database [48] and the 12 
literature [49]. 13 

For each system, a market analysis was conducted and information about its weight was taken from the 14 
technical reports of the main manufacturers. The results of the market analysis, reported in [47], are summarized 15 
in Appendix A. As can be seen from Figs. A1 through A5, the relationship between the weight and the size of the 16 
system allows its scaling behavior (i.e., scaling laws) to be explored. Finally, given the scaling laws and material 17 
composition for each system, the inventory flows can be scaled at different sizes. In fact, the mass of each flow 18 
(mf,i) of the inventory is determined by multiplying its share (𝛿i) by the total weight (W) of the system. Once the 19 
inventory is scaled, an LCA model can be constructed and the impact can be assessed.  20 

 21 

 22 

Fig. 3. Procedure for the inventory scaling of energy systems in a range of sizes. 23 
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• Characterizing and evaluating the environmental impact of each category. 31 

In this paper, the considered impact is the FCED which is calculated by the method developed by the Ecoinvent 32 
center [51]. The LCA models of the investigated systems are implemented by using the software openLCA® 1.10.3 33 
[52]. 34 

2.3 Economic assessment 35 

As summarized in Table 1, the total investment cost (equipment and installation costs) is considered 36 
dependent on unit size. In particular, an economic assessment was preliminarily carried out by analyzing different 37 
sources with a focus on the European market and a scaling formula for the investment cost was obtained. The cost 38 
unit is expressed in € (Euro), which is the currency used in the European Union. The investment cost is calculated 39 
as a function of the installed area A for the STC and PV systems, as a function of the nominal electrical power Pel,nom 40 
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for the CHP, as a function of the nominal thermal power Pth,nom for the ASHP and GB, as a function of the nominal 1 
cooling power Pcool,nom for the AC and CC, and as a function of the maximum thermal capacity Eth,max for the TES. 2 
Fixed and variable operational costs associated with the operation and maintenance of the energy systems are also 3 
considered. Regarding the PV, STC and TES, the fixed and operational costs are ignored because no moving parts 4 
are present in these systems. For instance, the operational costs for STC plants are lower than 1 €/MWh [53]. 5 

The fixed operational costs are expressed in [€/(kW·year)] and are independent of the running time of the 6 
system and how the system is operated. These costs include periodic operation and maintenance service, 7 
administration, insurance and operational staff. The variable costs are expressed in [€/kWh] and are calculated as 8 
a function of energy production. Fixed and variable operational costs do not include fuel and CO2 emission costs. 9 
The fuel and CO2 emission costs are accounted for separately, as reported in Section 3. 10 

Table 1. Investment costs and fixed and variable operational costs for the different energy systems.  11 

Technology System size Total investment costs [€] Fixed costs 

[€/(kW·year)] 

Variable costs 

[€/kWh] 

Reference 

STC A [m2] 635.4  𝐴0.869  - -  [53-56] 

PV A [m2] 291  𝐴 (Residential scale)  

239  𝐴 (Commercial scale) 

172  𝐴 (Utility scale) 

- -  [57] 

CHP Pel,nom [kWel] 2795.3  𝑃el nom
0.769   9 0.007  [53, 58, 59] 

ASHP Pth,nom [kWth] 1049.6  𝑃th nom
0.946   3 0.0018  [53, 56, 58] 

GB Pth,nom [kWth] 
356.8  𝑃th nom

0.829   
3 0.0005  [53, 55, 58, 

60] 

AC Pcool,nom [kWcool] 1684.7  𝑃cool nom
0.796   2 0.00028  [58, 61] 

CC Pcool,nom [kWcool] 587.8  𝑃cool nom
0.946   3 0.0018  [53, 56, 58] 

TES Eth,max [kWh] 25  𝐸th max (𝐸th max <= 3000 kWh) 

11  𝐸th max (𝐸th max > 3000 kWh) 

 

- -  [55, 58] 

2.4 Optimization approach 12 

Unlike the optimization methodologies exploited by the authors in previous works [10, 47], the optimization 13 
approach proposed in this paper combines design optimization (upper level) with operation optimization (lower 14 
level) in a single optimization problem that includes design and operational variables. Additionally, the 15 
optimization model is able to select the best combination of technologies that minimizes the objective function. 16 
The optimization is carried out by considering one full year and plant operation is simulated on an hourly basis. 17 

The simultaneous optimization of the design and operational strategy addresses problems where the design 18 
optimization depends on the results of the operation optimization, which determines energy consumption and 19 
operational costs at each time-step, and consequently the total yearly energy consumption and economic costs. 20 
Moreover, the identification of the optimal operational strategy depends on the results of the design level, since 21 
this determines the available energy supplies of the different technologies.  22 
The flowchart of the optimization approach proposed in this work is shown in Fig. 4. The design variables of the 23 
MES are optimized by using the SMO algorithm, while the operational variables are optimized by using the DP 24 
method. 25 
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 1 

Fig. 4. Flowchart of the simultaneous design and operation optimization of the MES. 2 

2.4.1 Design optimization 3 

As outlined in Fig. 4, the design optimization problem is solved by means of a SMO algorithm. Generally, in 4 
surrogate-based optimization, a surrogate model is constructed to approximate a time-consuming objective 5 
function which may be discontinuous, non-differentiable and non-linear [62]. Surrogate-based optimization is of 6 
particular interest for the optimization of complex energy plants, where the optimization process would be 7 
computationally demanding, as in the case of MESs. Moreover, when considering the operational optimization 8 
problem, the computational complexity becomes higher and consequently, solving the design and operation 9 
optimization in one single step becomes very challenging. Therefore, an option to reduce the computational 10 
complexity is to build a surrogate model which emulates the behavior of the original model. As highlighted in Figs. 11 
4 and 5, the optimization process starts by generating a set of samples {𝑑1 …  𝑑n}  ∈  ℝ

D in the design space, where 12 
n and D are the number of samples and dimension of the design space, respectively. 13 

 14 
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 1 

Fig. 5. Surrogate-based design optimization. 2 

Once the expensive objective function values {𝑓1̂ …  𝑓n̂}  ∈  ℝ at these points are evaluated, a surrogate model is 3 
constructed by interpolating a radial basis function. The interpolant can be represented as follows [63]: 4 

𝑠(𝑑) = ∑ 𝜆  Ф
n
 =1 (‖𝑑 − 𝑑 ‖) + 𝑞(𝑑)         (7) 5 

Where 𝑠(𝑑) interpolates the data (𝑑1 𝑓1̂) …  (𝑑n 𝑓n̂), 𝜆  Є ℝ for i = 1 …  n, ∥∙∥ is the Euclidean norm, 𝑞(𝑑) is a 6 
linear polynomial tail, and Ф denotes the radial basis function evaluated at the Euclidean distances. Different 7 
choices of radial basis functions are available, such as linear (Ф(𝑟) = 𝑟), cubic (Ф(𝑟) = 𝑟3), and thin plate spline 8 
(Ф(𝑟) = 𝑟2  log 𝑟). In this study, cubic radial basis functions are used since they are simpler and work better than 9 
other forms, such as the thin plate spline [64]. Moreover, cubic radial basis functions are already implemented in 10 
the surrogate optimization solver of Matlab. As demonstrated by Powel et al. [65], constructing an interpolator 11 
based on radial basis functions involves solving an n-by-n linear system of equations (more details about the 12 
mathematical formulation of the problem can be found in Regis [64] and Powel [65]). 13 

Once the initial surrogate model is optimized and their global solutions are found. The global solutions of the 14 
surrogate model are then used as new sampling points, the original problem is simulated at these points and the 15 
initial surrogate model is then updated using the new adaptive samples. Finally, this process is repeated until the 16 
best solution is found. As demonstrated in [63], the proposed algorithm was proven to converge to a global 17 
solution. 18 

At design optimization level, the decision variables are defined as the optimal combination of systems among 19 
the considered candidates (i.e., STC, PV, CHP, ASHP, AC, GB, CC, TES) and the optimal sizes. Moreover, a decision 20 
variable (between 0 and 1) that defines the total available area for the PV and STC is also considered. The design 21 
optimization problem is solved by minimizing the following weighted sum objective function (OF) [26]: 22 

𝑂𝐹SMO=α  (
𝐹𝐶𝐸𝐷

𝐹𝐶𝐸𝐷CP
)+β  (

𝑇𝐶

𝑇𝐶CP
)          (8) 23 

As reported in Eq. (8), the OF includes two potentially conflicting objectives, the FCED and TC, both normalized 24 
to the case of a conventional plant (CP) composed of boilers, chillers, gas network and electric grid. Different 25 
scenarios are investigated by considering two weights, α and β, which assume values between 0 and 1.  26 

Equation (9) represents the total FCED calculated as follows [66]: 27 

FCED=FCEDMES+FCEDgrid(Egrid el taken year)+FCEDGN(Vfuel CHP year Vfuel GB year) − 𝐹𝐶𝐸𝐷CHP Al(𝐸CHP el sent year) −28 

𝐹𝐶𝐸𝐷PV Al(𝐸PV el sent year)          (9) 29 

where; 30 

FCEDMES=∑
𝐹𝐶𝐸𝐷l

l  et mel

S
l=1            (10) 31 
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𝐹𝐶𝐸𝐷CHP Al = 𝜂CHP el avg year  
𝐸CHP el sent year

𝐸CHP el tot year
 (𝐹𝐶𝐸𝐷CHP + 𝐹𝐶𝐸𝐷GN CHP year)    (11) 1 

𝐹𝐶𝐸𝐷PV Al =
𝐸PV el sent year

𝐸PV el tot year
 𝐹𝐶𝐸𝐷PV         (12) 2 

From Eq. (9), FCEDgrid, which refers to the Italian electricity mix, is calculated as a function of the electrical 3 
energy taken from the grid, while FCEDGN, which refers to the Italian gas network, depends on the volume of natural 4 
gas taken from the gas network, both during one year of operation. Moreover, from Eq. (10), FCEDMES corresponds 5 
to the cradle-to-gate life cycle of the MES. This is calculated by following the procedure of inventory scaling and 6 
impact assessment reported in Section 2.2. From Eqs. (11) and (12), the electrical energy sent to the grid is 7 
allocated to the users which benefit from this energy [66]. In other words, the impact must be allocated to the 8 
users that benefit from the excess of electrical energy from the CHP and PV.  9 

The total cost (TC) is defined as the sum of the amortized investment cost (IC) and the total operational cost 10 
(TOC) [11]: 11 

𝑇𝐶 = 𝐼𝐶amm + 𝑇𝑂𝐶           (13) 12 

where; 13 

𝐼𝐶amm = 𝐼𝐶MES  [
 𝑛𝑡 (1+ 𝑛𝑡)𝑝

(1+ 𝑛𝑡)𝑝−1
]          (14) 14 

𝑇𝑂𝐶 = 𝑇𝑂𝐶  xed + 𝑇𝑂𝐶var able + 𝑇𝑂𝐶 uel + 𝑇𝑂𝐶em ss on + 𝑇𝑂𝐶gr d el taken − 𝑇𝑂𝐶gr d el sent   (15) 15 

The amortized investment cost is calculated by considering an interest rate int of 5.2% and an amortization 16 
period p of 10 years. 17 

2.4.2 Operation optimization  18 

At operational optimization level, the optimal operation strategy of the MES components is found by using a DP 19 
algorithm. This optimization method is based on the principle of optimality developed by Bellman [32]. The DP 20 
algorithm was exploited by the same authors in previous works [34]. In this study, the DP algorithm is nested 21 
within the SMO algorithm and the operation optimization problem is therefore simultaneously solved with the 22 
design optimization. The DP method requires the representation of the MES model in the state space, where the 23 
system is represented by state variables and control variables as follows [32]: 24 

xk+1=y(xk, uk)            (16) 25 

Ek=g(xk  uk)            (17) 26 

Equations (16) and (17) describe the state of the plant and its energy production at each time-step of the time 27 
horizon. 28 

Equation (16) is a discrete-time dynamic system. The term x denotes the state variables which are used to 29 
describe the state of the MES and the term u denotes the decision variables that are used to control the MES 30 
components. Finally, Eq. (17) describes the energy production of MES components at each time interval of the time 31 
horizon. 32 

Equation (18) defines the cost function of the operation optimization to be minimized [32]: 33 

Z(x0)=∑ hk(xk uk)
N−1
k=0 +hN(xN)          (18) 34 

with hk being the intermediate cost, and hN the final cost. Let the optimal cost function be as follows [32]: 35 

𝑍op(x0)=min
u∈U

Z(x0)            (19) 36 

where U denotes the space of all admissible control policies. Equation (19) can be rewritten as [32]: 37 

𝑍op(x0)=∑ 𝑍k
opN-1

k=0 +𝑍N
op

           (20) 38 

where; 39 

𝑍k
op
= min
uk∈Uk

{hk(xk uk k)+𝑍𝑘+1
op
}          (21) 40 

Equation (21) is called the Bellman equation and represents the principle of optimality. This cost function is 41 
solved by dividing the original problem into simple sequences of sub-problems and by moving backward in time. 42 
The optimal control policy of the original problem is determined by tracking back the optimal policies which were 43 
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found for the tail sub-problems. At the end of the recursion, the optimal operation strategy that minimizes the cost 1 
function is tracked [32]: 2 

𝑢op={𝑢0
op(x0) … 𝑢N−1

op (xN-1)}           (22) 3 

 In this study, the MES state is represented by the TES state of charge, which is updated by taking into account 4 
the energy released to the environment [34]: 5 

xTES k+1=(1 − cdiss)  (xTES k+ETES th in k − ETES th out k)        (23) 6 

Four decision variables u are used to control the energy production of the CHP, ASHP, AC and TES. The 7 
production of the PV and STC generally depends on the renewable energy sources, thus the energy produced by 8 
these systems is exploited first. Equations (24) through (32) express the energy production of the energy systems 9 
considered in the energy plant [34]. 10 

ESTC th k=Gk  ASTC  ηSTC k  Δk          (24) 11 

EPV el k=Gk  APV  ηPV k  Δk          (25) 12 

ECHP th k=uCHP k  PCHP th nom(𝑇k)  Δk         (26) 13 

ECHP el k=ηCHP el(uCHP k Tk)  
ECHP th(uCHP k  Tk)

ηCHP th(uCHP k  Tk)
         (27) 14 

EASHP th/cool k= {
uASHP k  PASHP th nom(Tk)  Δk   In winter  

uASHP k  PASHP cool nom(Tk)  Δk In summer
      (28) 15 

EAC cool k=uAC k  PAC cool nom  Δk          (29) 16 

ETES th out k=uTES k  xTES k           (30) 17 

In Eqs. (31) and (32), the GB and CC are used as back-up systems to meet the remaining thermal and cooling 18 
energy demands which may not be fulfilled by the other systems. 19 

EGB th k=EGB fuel k  ηGB k           (31) 20 

ECC cool k=ECC el k  EERCC k          (32) 21 

Finally, the performance of the CHP is corrected according to both load and ambient conditions, while the 22 
performance of the ASHP and CC is corrected according to the ambient temperature, as reported in [42]. 23 

The operation optimization problem is solved by minimizing the following objective function [26]: 24 

𝑂𝐹DP(x0)=α  (
𝑃𝐸𝐶(x0)

𝑃𝐸𝐶CP
)+β  (

𝑂𝐶(x0)

𝑂𝐶CP
)         (33) 25 

At the design optimization level, Eq. (33) is a weighted sum objective function, where the term PEC stands for 26 
the primary energy consumption, while the term OC stands for the operational cost, both normalized to the 27 
primary energy consumption and operational costs of a conventional plant. The annual PEC is expressed as 28 
reported in Eq. (34) [34]: 29 

PEC(x0)= min
u∈U

∑ PECHP,k(xk,uk)+PEGB,k(xk,uk)
N-1
k=0 +PEgrid,el,taken,k(xk,uk)     (34) 30 

The PEC is defined as the sum of the primary energy consumed by the CHP, the GB and the primary energy 31 
related to the electrical energy taken from the grid. Moreover, the annual OC associated with the operation of the 32 
MES is defined as follows [34]: 33 

OC(x0)=OCfixed+min
u∈U

∑ OCvariable(xk,uk)
N-1
k=0 +OCfuel(xk,uk)+OCemission(xk,uk)+OCgrid,el,taken(xk,uk) − OCgrid el sent(xk,uk) 34 

(35) 35 

3. Case study 36 

In this paper, the campus of the University of Parma (Italy) is considered as the case study. The campus is 37 
located over an area of about 77 ha and it comprises 21 buildings used for research and educational activities [67]. 38 
At present, the plant used to meet the thermal and cooling energy demands on the Campus is composed of GB and 39 
CC units, while the electricity demand is provided by the national grid. The goal is to simultaneously determine 40 
the optimal design and operational strategy of a MES composed of several energy technologies. The normalized 41 
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hourly thermal, cooling and electrical energy demands are reported in Fig. 6. The energy demands were 1 
normalized with respect to their corresponding peak values for confidentially reasons. The energy demand 2 
profiles were both experimentally collected and obtained by means of physical models [68]. For the sake of brevity, 3 
environmental data (ambient temperature and solar radiation) are not reported here. However, further 4 
information can be found in [67]. Finally, the key nominal technical specifications of the energy technologies 5 
considered in this work are reported in Table 2. 6 

 7 

Fig. 6. Nondimensional a) thermal, b) cooling and c) electrical energy demands. 8 

Table 2. Technical specifications of the considered energy systems at nominal conditions. 9 

Technology Nominal specifications Lifetime (years) Reference 

STC ηSTC=0.8 25  [69] 

PV ηPV,M=0.19; ηPV,BoS=0.9 30  [70, 71] 

CHP 
η

CHP,el,nom
=0.251×PCHP,el,nom

0.073  

PCHP,th,nom=3.027×PCHP,el,nom
0.863  

20 
[72] 

 

ASHP 
COP=3.2 
EER=3.2 

20 [73, 74] 

GB ηGB,th,nom=0.93 20 [75] 

AC EER=0.75 20  [76] 

CC EER=3.2 20  [73, 74] 

TES cdiss=0.5% 20  [72] 

 10 
In Fig. 7, the price of electricity of the Italian electricity market in 2019 [77] is reported. As can be seen, the 11 

price of electricity changes throughout the year because the market price for electricity is usually determined 12 
according to the supply and demand bids of market participants. It should be mentioned that the revenue from 13 
selling electricity to the grid [€/MWh] is lower than the electrical energy price by a fixed amount which is specific 14 
to the considered country (i.e., 95 €/MWh in Italy).  15 

 16 

Fig. 7. Hourly profile of the price of electricity [77]. 17 
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Regarding the Italian gas market, the cost of natural gas for electricity production and heat production in a 1 
district heating network is assumed equal to 0.23 €/Stdm3 [78] (VAT excluded; cost at 2019). Moreover, the cost 2 
for CO2 emissions is considered equal to 22 €/tCO2 [79]. 3 

4. Results and discussion 4 

This section presents and discusses the results of the design and operation optimization of the MES. Table 3 5 
summarizes the results in terms of selected technologies and optimal sizes for different combinations of weights 6 
𝛼 and β. The case (α=1; β=0) corresponds to life cycle energy optimization, while the case (α=0; β=1) corresponds 7 
to life cycle cost optimization. For confidentiality reasons, the values of the PV and STC area are normalized with 8 
respect to the available area, CHP size is normalized with respect to the electrical peak power of the campus, GB 9 
and ASHP sizes are normalized with respect to the thermal peak, and the CC and AC sizes are normalized with 10 
respect to the cooling peak. Moreover, the capacity of the TES is expressed in hours by dividing its capacity by the 11 
thermal peak power.  12 

From the analysis of Table 3, as the weight of the life cycle energy consumption objective α decreases, the area 13 
covered by the PV increases and reaches its maximum if α=0.50 and β=0.50; then it starts decreasing in favor of 14 
the STC. If weight α is equal or lower than 0.50, the CHP is selected for cogeneration of thermal and electrical 15 
energy. On the other hand, the size of the ASHP decreases as weight α decreases and the option of using a reversible 16 
ASHP is discarded when life cycle costs are minimized (α=0; β=1). Since the AC is activated by the thermal energy 17 
produced by the STC and recuperated from the CHP, its size is influenced by the STC and CHP sizes. For instance, 18 
the size of the AC almost equals the cooling peak power of the campus for the case (α=0; β=1). 19 

Table 3. Optimal design results for the different cases. 20 

Technology Normalized sizes α=1; 

β=0 

α=0.75; 

β=0.25 

α=0.5; 

β=0.5 

α=0.25; 

β=0.75 

α=0;  

β=1 

STC A/Aavailable,tot [-] 0.53 0.35 0.27 0.58 0.82 

PV A/Aavailable,tot [-] 0.47 0.65 0.73 0.42 0.18 

CHP [kWe] Pel,nom/Pcampus,el,peak [-] 0 0 0.52 0.51 0.40 

ASHP [kWth] Pth,nom/Pcampus,th,peak [-] 0.35 0.26 0.13 0.01 0 

GB [kWth] Pth,nom/Pcampus,th,peak [-] 0.50 0.85 0.62 0.71 0.57 

AC [kWc] Pcool,nom/Pcampus,cool,peak [-] 0.67 0.26 0.61 0.55 0.99 

CC [kWc] Pcool,nom/Pcampus,cool,peak [-] 0.40 0 0.01 0.41 0.01 

TES [m3] Eth,max/Pcampus,th,peak [h] 2.99 1.23 1.20 0.97 1.52 

 21 
Figure 8 reports the optimization results in terms of FCED and TEC for the different combinations of weights α 22 

and β. The FCED and TEC are normalized with respect to the values of a conventional plant (CP) composed of 23 
boilers, chillers and the national grid. By decreasing weight α and increasing weight β, the objective of reducing 24 
the TC becomes predominant over the reduction of the FCED. Indeed, compared to the case (α=1, β=0), the case 25 
(α=0, β=1) allows the total costs to be reduced by about 37%. However, since the case (α=0, β=1) corresponds to 26 
cost optimization, this reduction in total costs leads to an increase in energy consumption of about 47%. 27 

For the cases reported in Table 3, CHP efficiency is 77% for (α=0.50, β=0.50), 73% for (α=0.25, β=0.75) and 28 
70% for (α=0, β=1). Thus, passing from energy consumption optimization to economic optimization, CHP 29 
efficiency drops. However, according to the European directives [80], CHP efficiency must be higher than 75%. In 30 
Fig. 8, the increase in weight β from 0.25 to 0.5 leads to a drastic drop in life cycle costs. Thus, in order to explore 31 
potential solutions between these two cases, an additional optimization case with (α=0.70, β=0.30) is also 32 
investigated. Indeed, for this case, CHP efficiency is 82%, which is the highest value among all the other cases. 33 
Moreover, this solution is preferable because it provides the best compromise between the FCED and TC, while 34 
maintaining CHP efficiency above the minimum threshold. Compared to the case of a CP (composed of boilers, 35 
chillers, gas network and electric grid), the case (α=0.70, β=0.30) allows a life cycle energy saving of about 17% 36 
and total cost reduction of about 18%. 37 

 38 
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 1 
Fig. 8. Nondimensional FCED and TC for the different cases. 2 

Figure 9 shows how the total FCED is split between the MES, national grid and gas network and how the TC is 3 
split between operational and investment costs. From Fig. 9a, the FCED for the MES accounts for its cradle-to-gate 4 
life cycle, while the FCED for the grid and the gas network accounts for their cradle-to-gate life cycle including the 5 
electricity and gas consumed throughout the useful life of the MES. The CP is considered as a baseline to which the 6 
FCED and TC results are compared. From the results, the FCED of the MES is about 10 times higher than the CP, 7 
which is mainly due to the higher complexity of the MES which includes several renewable and non-renewable 8 
energy systems. Passing from energy optimization (α=1, β=0) to economic optimization (α=0, β=1), the fraction of 9 
the FCED related to the gas network becomes much higher, while the fraction related to the grid becomes smaller. 10 
This is mainly due to the fact that the option of using ASHP (fed with electricity), which is more favorable in terms 11 
of energy consumption, is replaced by the option of using CHP (fed with natural gas), which is economically more 12 
favorable (see Fig. 9b). In Fig. 9b, the amortized investment costs of the MES are higher than a CP. However, the 13 
operational and running costs of a CP are higher than the ones of the MES. This may be due to the integration of 14 
renewable energy systems (i.e., PV and STC), partially renewable systems (i.e., ASHP) and CHP. 15 

 16 

 17 
Fig. 9. Split of a) FCED and b) TC for the different cases. 18 

Figure 10 shows the contribution of the MES components to the thermal, cooling and electrical energy demands. 19 
The thermal energy production is used to meet the thermal demand of the campus and the energy required by the 20 
AC. Figure 10a shows that, in order to reduce the life cycle energy demand (α=1, β=0), the thermal demand must 21 
be met by STC and ASHP. On the other hand, if the goal is to reduce life cycle costs (α=0, β=1), it is better to meet 22 
the thermal demand by means of STC and CHP. The maximum contribution of the CHP is reached for (α=0.7, β=0.3), 23 
i.e., where the higher CHP efficiency and best compromise between the two objectives are achieved. Finally, for all 24 
cases, the GB supports the energy systems to meet the thermal demand during peak periods. 25 

Since it is reversible, ASHP meets a fraction of the cooling demand. In all cases, the AC is the system that is 26 
mostly used for cooling energy production, by exploiting the thermal energy recuperated from the STC and CHP 27 

Technology Normalized sizes  =0.70;
β=0.30

STC A/Aavailable,tot [-] 0

PV A/Aavailable,tot [-] 1

CHP [kWe] Pel,nom/Pcampus,el,peak [-] 0.59

ASHP [kWth] Pth,nom/Pcampus,th,peak [-] 0.23

GB [kWth] Pth,nom/Pcampus,th,peak [-] 0.64

AC [kWc] Pcool,nom/Pcampus,cool,peak [-] 0.33

CC [kWc] Pcool,nom/Pcampus,cool,peak [-] 0

TES [m3] Eth,max/Pcampus,th,peak [h] 0.54
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systems. The CC meets a small fraction of the cooling demand (less than 5%) and it is activated when the ASHP is 1 
working in heating mode or when the AC is turned off. 2 

In Fig. 10c, the electrical energy demand accounts for the demand of the campus and the electricity required by 3 
the heat pump and chiller. For the cases with α>0.7, most of the electrical load is met by the grid, while the 4 
remaining part is met by the PV. The fact that the CHP system is not integrated in the MES when α>0.7 may be due 5 
to the absence of thermal energy demand during summer. From an energy efficiency point of view, its activation 6 
to meet the cooling and electrical demands of the campus does not provide a better option than using heat pumps 7 
and taking electricity from the grid. However, this share noticeably changes when the CHP is selected to be 8 
included in the MES (α≤0.7). Indeed, when α≤0.7, the CHP meets a high fraction of the electrical energy demand, 9 
which reduces the amount of electrical energy taken from the grid. This is mainly due to the high cost associated 10 
with the electricity taken from the Italian grid. 11 

 12 
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 1 
Fig. 10. Annual a) thermal, b) cooling and c) electrical energy contribution of the MES components for the different cases. 2 

In addition to the comparison of the optimization results of the SMO-DP method to the case of a CP (Figs. 8 and 3 
9), the performance of the proposed method is also tested by carrying out a comparison to a particle swarm 4 
optimization (PSO) algorithm, which is widely used in the literature for the design optimization of energy systems. 5 
In order to perform the simultaneous design and operation optimization of the MES, the PSO is combined with DP. 6 
PSO is a population-based optimization algorithm and shares many similarities with evolutionary algorithms, such 7 
as the GA. At each iteration of the optimization process PSO generates a number of individuals in the design space; 8 
consequently, when DP is combined with PSO, the computational complexity becomes very high. In fact, at each 9 
iteration, the operation optimization problem must be solved for each individual of the current population. For 10 
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this reason, the comparison between the SMO-DP and PSO-DP algorithms is made by considering only the two 1 
cases of single objective optimization, i.e., (α=1, β=0) and (α=0, β=1). Table 4 reports the comparison between the 2 
two algorithms in terms of energy consumption (for α=1, β=0), total costs (for α=0, β=1) and runtime. The results 3 
are normalized with respect to the results of the PSO-DP method. As can be noted, for the case (α=1, β=0), the SMO-4 
DP algorithm estimates a slightly lower energy consumption compared to the PSO-DP method, while for the case 5 
(α=0, β=1) the PSO-DP identifies a slightly lower TC (about 2%). However, there is a huge difference in 6 
computation time between the two algorithms. The optimizations were carried out on a personal computer with 7 
4 cores and 16 GB RAM. The time taken by the SMO-DP method to solve the simultaneous optimization problem is 8 
about 18 hours (i.e., the wall-clock time), while the time taken by the PSO-DP is about 82 hours. Therefore, the 9 
adoption of the SMO-DP algorithm allows computation time to be reduced by about 78%. Finally, as clearly 10 
highlighted in Table 4, the proposed SMO-DP method allows results to be obtained that are comparable to those 11 
obtained by a PSO-DP method with much less effort. This is mainly due to the fact that, unlike the PSO algorithm, 12 
the SMO approximates the simulation model by means of a function that is computationally less expensive and 13 
converges to the optimal result of the problem with a lower number of iterations. 14 

Table 4. Comparison between the PSO-DP and SMO-DP methods. 15 

 Optimization case PSO-DP SMO-DP  

FCED [GJ] (α=1; β=0) 121,880 118,685 

TC [k€] (α=0; β=1) 2,761 2,806 

Runtime [hours]  82 18 

 16 
The surrogate modeling approach achieves a good level of accuracy and at the same time helps to reduce the 17 

computational costs. A key limitation of surrogate models is that they may be subject to the so-called curse of 18 
dimensionality. In general, a higher number of decision variables translates into higher computational complexity 19 
for any optimization method [64]. Regarding the surrogate modeling approach, the higher the number of decision 20 
variables, the more objective function evaluations (more function evaluations result in more information that can 21 
be incorporated into the surrogate model) needed to build an accurate surrogate model [28]. Currently, one way 22 
to overcome this limitation is to limit the ranges of the decision variables so that the surrogate model is sufficiently 23 
simple to be approximated with a reasonable number of function evaluations. Despite this limitation, the 24 
computational results in this paper indicate that the SMO-DP algorithm is a promising algorithm and performs 25 
better than commonly used optimization algorithms, such as PSO. The same findings were also discovered by 26 
Müller et al. [81], where the surrogate modeling algorithm outperformed other algorithms. Finally, the proposed 27 
methodology is general and thus can be applied to other MESs with different energy technologies and to any case 28 
study, such as buildings, universities and districts.  29 

5. Conclusions 30 

This paper presented a general methodology for the simultaneous optimization of the design and operation of 31 
multi-generation energy systems taking into consideration life cycle energy and economic assessment. The 32 
optimal sizes of the system components were determined by using surrogate modeling optimization, while the 33 
operation strategy was optimized by means of dynamic programming. Energy systems like the solar thermal 34 
collector, photovoltaic panel, combined heat and power, gas boiler, air source heat pump, compression chiller, 35 
absorption chiller and thermal energy storage technologies were considered. Life cycle and economic assessments 36 
for the investigated systems were carried out by gathering inventory and economic data of commercially available 37 
systems of various sizes. The proposed methodology was applied to the campus of the University of Parma (Italy), 38 
where a multi-generation energy system was optimally designed and operated by carrying out weighted sum 39 
multi-objective optimizations. Moreover, the proposed methodology was able to deal with the dynamics (due to 40 
the presence of the storage) and non-linearity associated with the variation in system performance with load and 41 
ambient conditions. Unlike other literature studies that use a number of selected days, in this work the 42 
simultaneous design and operation optimization was performed by considering one entire year of operation. 43 

The methodology proposed in this paper obtained different solutions based on the weighted sum objectives. 44 
The optimization results revealed that the best option from an energy consumption point of view is to use heat 45 
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pumps and take electricity from the grid. However, if the objective is to reduce the economic costs, the use of 1 
cogeneration systems is economically more favorable. Compared to the case of a conventional plant composed of 2 
boilers, chillers and the grid, the preferred solution, which reaches the best compromise between energy 3 
consumption and economic cost, allowed a life cycle energy saving of about 17% and total cost reduction of about 4 
18%.  5 

Finally, the comparison of the methodology presented in this paper to a methodology based on particle swarm 6 
optimization showed that it is possible to obtain comparable results, while reducing the computational time by 7 
about 78%.  8 
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Appendix A. Market analysis and scaling laws of the considered energy systems [47] 26 

  27 
Fig. A1. Dry weight of market available combined heat and power systems as a function of the size. 28 
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  1 
Fig. A2. Dry weight of market available gas boilers as a function of the size. 2 

 3 
Fig. A3. The a) dry weight and b) refrigerant weight of market available heat pumps/chillers as a function of the size. 4 

 5 
Fig. A4. The a) dry weight and b) LiBr solution weight of market available absorption chillers as a function of the size. 6 
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  1 
Fig. A5. Dry weight of market available thermal energy storages as a function of the size. 2 
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