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ABSTRACT

We study the optimal dynamic portfolio exposure to predictable default risk, taking inspiration

from the search for yield by means of defaultable assets observed before the 2007-2008 crisis and

in its aftermath. Under no arbitrage, default risk is compensated by an �yield pickup�that can

strongly attract aggressive investors via an investment-horizon e¤ect in their optimal non-myopic

portfolios. We show it by stating the optimal dynamic portfolio problem of Kim and Omberg (1996)

for a defaultable risky asset and by rigorously proving the existence of nirvana-type solutions. We

achieve such a contribution to the portfolio optimization literature by means of a careful, closed-

form-yielding adaptation to our defaultable-asset setting of the general convex duality approach of

Kramkov and Schachermayer (1999, 2003).
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1 Introduction

The massive risk taking observed before the 2007-2008 �nancial crisis did not shun defaultable

assets. A chief example is o¤ered by the banking industry�s course of action during the bullish

years up to early 2007. A large quantity of assets exposed to default risk did �nd its way into

commercial and investment banks�portfolios, the corresponding escalation of which was mainly

backed by short-term wholesale funding. More broadly, before and after the market turmoil of

2007-2008, sophisticated investors with possibly long investment horizons have been quite sensitive

to the higher yield provided by defaultable assets (e.g. Rajan (2005), Diamond and Rajan (2009),

and Gennaioli, Martin, and Rossi (2014)). Such a reaching-for-yield behavior involving defaultable

assets has been especially pronounced at times of low volatility and of surging markets. What does

optimal dynamic portfolio theory have to say about the search for yield carried out by means of

defaultable assets?

We o¤er a novel closed-form optimal portfolio analysis of non-myopic speculation on predictable

default risk, which is inspired by the reaching-for-yield behavior that has been involving assets

exposed on predictable default risk in the years preceding and following the 2007-2008 crisis. We

show that the ability of a default-prone asset to provide an �yield pickup�(an excess expected return

that endures at times of subdued volatility and of high market value) can lead an aggressive investor

(he/she is less averse to risk than a log-utility agent) to take signi�cant long geared positions in

the asset through an investment-horizon e¤ect. We assume a Cox and Ross (1976) defaultable

asset value process, for which no-arbitrage comes from the balance between �yield-pickup� and

predictable default risk. Such a balance is rooted in the inverse relationship between asset returns

and their subsequent volatility: upward asset-value paths that enjoy tremendous Sharpe ratios

(paths characterized by shrinking volatility) are counteracted by downward asset-value paths that

end up with predictable default (paths characterized by swelling volatility). In our model, Sharpe-

ratio risk is intimately linked to predictable default risk. The aggressive investor non-myopically

speculates on Sharpe-ratio risk by going long the asset (the investor seeks more wealth in the states

coupled with a high productivity of wealth). The aggressive investor places a non-myopic (possibly

geared) bet on the upward asset-value paths to unfold before his/her investment maturity. A clear

investment-horizon e¤ect emerges. The longer the maturity is, the more muscular and geared

non-myopic speculation becomes: the bet has more time to make good.

Our paper is related to the search for yield literature, as we use optimal dynamic portfolio

theory to assess why non-conservative long-term �nancial institutions like banks could engage in

conspicuous levered reaching-for-yield activities that expose them to default risk. We contribute
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to the important debate on banks�risk taking and search for yield (e.g Dell�Ariccia, Laeven, and

Marquez (2014), Buch, Eickmeier, Prieto (2014), Jiménez, Ongena, Peydró, and Saurina (2014),

and Ioannidou, Ongena and Peydró (2015)) by emphasizing that banks�long investment horizon

is a distinct optimal-portfolio channel of momentous exposure to default risk. On the other hand,

our optimal portfolio analysis o¤ers a precise market-timing rationale for the yield-seeking e¤orts

observed even for less aggressive investors. Kacperczyk and Schnabl (2013) show that relevant

segments of the shadow banking system like the money funds have been reaching for yield by

increasing their portfolio exposure to default-prone commercial paper and bank obligations in the

run-up to the crisis. Di Maggio (2013), Chodorow-Reich (2014), and Di Maggio and Kacperczyk

(2016)) show a similar behavior for the money funds in the years following the crisis. Consistently,

our optimal portfolio results imply that conservative �nancial institutions with short investment

horizons increase their optimal exposure to defaultable assets at times of low volatility and of surging

market value while their hedging demand is minor. We also show that conservative investors with

longer horizons exhibit the same optimal portfolio response to low volatility and high valuations

while their hedging demand remains bounded albeit stronger (Becker and Ivashina (2015) document

insurance companies�portfolio tilt toward higher yield bonds exposed to corporate default risk).

Our paper is linked to the dynamic asset allocation literature that examines the optimal non-

myopic portfolio implications of Sharpe-ratio risk. Related studies include e.g. Merton (1971),

Kim and Omberg (1996), Bekaert and Ang (2002), Wachter (2002), Lioui and Poncet (2003),

Guidolin and Timmermann (2007), Liu (2007), Guidolin and Hyde (2012), Della Corte, Sarno,

and Tsiakas (2012), Larsen and Munk (2012), and Branger, Larsen, and Munk (2013), who have

however focused on non-defaultable risky assets only. Our analysis of non-myopic speculation on

predictable default risk is associated with the so-called nirvana solution to optimal dynamic portfolio

problems. Nirvana optimal portfolio solutions grow to large levels over suitably long investment

horizons and they have been originally conjectured by Kim and Omberg (1996) for dynamic asset

allocation problems characterized by subdued levels of risk aversion and by feeble mean-reversion in

the Sharpe-ratio process. Kim and Omberg (1996) consider a non-defaultable asset and assume its

Sharpe ratio to be a stationary Gaussian process. Battauz, De Donno, and Sbuelz (2015) provide

a convex-duality based derivation of the nirvana solutions in the original Kim and Omberg setting.

In this paper, we prove the existence of nirvana solutions in the presence of a defaultable asset and

of a non-stationary non-Gaussian Sharpe ratio. We argue that frail/absent mean reversion makes

the unfolding of paths with swelling Sharpe ratios a plausible event to punt on for non-myopic

aggressive investors.

Our paper is also related to the literature on the analytical/numerical solution techniques for
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optimal dynamic portfolio problems. Kim and Omberg (1996) do not provide veri�cation theo-

rems for their Hamilton-Jacobi-Bellman approach results and in particular for their nirvana-case

conjecture. Such a challenge for the Hamilton-Jacobi-Bellman approach remains open because the

unbounded nirvana-case value function lacks the usual di¤erentiability requirements (see e.g. Gozzi

and Russo (2006)). An alternative route is the use of duality-based solution methods. Since our

�nancial market is complete, one would be tempted to employ the standard martingale method of

Cox and Huang (1989). However, our setting does not meet the Cox and Huang (1989) price-system

assumptions1. We overcome this di¢ culty by using the more general convex duality approach of

Kramkov and Schachermayer (1999, 2003), which is expressly designed to solve optimal dynamic

asset allocation problems for a very broad class of abitrage-free risky markets. Our closed-form op-

timal portfolio results contribute a signi�cant example of the �exibility of such a general approach,

thus introducing a useful technical toolkit to the �nancial-economics readership. Numerical mar-

tingale methods for optimal dynamic portfolio problems are discussed by e.g. Detemple, Garcia,

and Rindisbacher (2003, 2005).

The paper is organized as follows. Section 2 details the features of the defaultable asset value.

Section 3 shows that large long geared positions can be the rational outcome of the dynamic

portfolio problem. Section 4 draws the conclusions and an Appendix collects the proofs of the

propositions in Section 3.

2 The defaultable asset

Given a terminal investment date T (0 < T < +1), there are essentially two properties we want
the value process (Pt)0�t�T of the risky defaultable asset to have: (i) it must be arbitrage-free; (ii) it

must support an �yield pickup�(a positive excess expected return that endures at times of subdued

volatility). Property (i) is meant to rule out the possible emergence of extreme portfolios due to

the existence of free lunches. Property (ii) is meant to bestow the asset with a glamor similar to

the one defaultable assets seemed to possess in the years straddling the crisis.

The Cox and Ross (1976) value process parsimoniously meets the two properties of interest. Its

1Cox and Huang (1989) require the global Lipschitz continuity of the di¤usive coe¢ cient for the risky asset value

process (see Conditions A and B at p. 46 in Cox and Huang (1989)). By contrast, the di¤usive coe¢ cient in our

setting is the square root of the risky asset value.
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dynamics is

dPt = Pt

�
r +

p
Yt�t

�
dt+ Pt�tdZt; �t � Pt

� 1
2 ; P0 = p � 0; (2.1)

Yt �
�
�

�t

�2
= �2Pt (squared Sharpe ratio), (2.2)

where the excess expected return on the asset is � > 0 and the riskfree rate is r > 0. (Zt)0�t�T is a

Wiener process under the objective probability measure P. The riskless security with value Bt = ert

is the money market account. From the boundary classi�cation, the point 0 is an attainable state

for the process (Pt)0�t�T . The point 0 is an an exit boundary2 (bankruptcy) and is consistent with

zero recovery at default3.

Predictable default becomes possible only if the asset returns� local volatility in�ates as the

asset value deteriorates. Importantly, what makes predictable default possible also engenders what

we refer to as the asset�s �yield pickup�: the excess expected return � is positive and constant no

matter how small, along upward asset-value paths, the local volatility P�
1
2 is. The Cox and Ross

(1976) value process naturally possesses property (ii).

The Cox and Ross (1976) value process does enjoy property (i), as the following proposition

maintains.

Proposition 2.1 The value process with dynamics described by (2.1) complies with the no-arbitrage

assumption. In particular, there exists a unique equivalent martingale measure, with Radon-

Nikodym density

� = exp

�
�
Z T

0

p
YsdZs �

1

2

Z T

0

Ysds

�
: (2.3)

Proof. Theorem 2.3 in Delbaen and Shirakawa (2002) holds.

Under no arbitrage, predictable default risk balances the presence of bullish asset-value paths

along which the Sharpe ratio
p
Y bloats. If no free lunches are to emerge, predictable default

risk must counteract the �yield pickup�o¤ered by the defaultable asset. This is borne out by the

following proposition.

Proposition 2.2 Consider the positive value process with dynamics described by (2.1), that is

(Pt)0�t�T under the conditional objective probability measure P [ � j PT > 0 ]. For such a positive
value process there always exist arbitrage opportunities.

2See for instance Davidov and Linetsky (2001), p. 952, �rst paragraph, with St = Pt and p = 1
2 :

3The objective probability of the asset defaulting within the date T > 0 is P [Ph = 0; 0 � h � T j P0 = p ] =
�
�

2(r+�)p
1�e�(r+�)T ; 1

�
; where � (k; l) =

R +1
k

ul�1e�udu; k � 0 is the incomplete gamma function (see e.g. the

Proposition 1 in Campi and Sbuelz (2005)).
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Proof. Theorem 4.2 of Delbaen and Shirakawa (2002) holds.

Weitzman (1998, 2009), Gollier (2002), and Martin (2012) show that the no-arbitrage value of

a long-dated asset may be dictated by extreme outcomes. In our Cox and Ross (1976) setting the

no-arbitrage value of the defaultable asset comes from the balance between the predictable default

event and the extreme outcome represented by exploding Sharpe ratios. In the next section, we

show that the fair pricing of such an extreme outcome does not deter rational aggressive investors

with a su¢ ciently long investment maturity from massively gambling on it. The allure of the asset-

value paths along which the Sharpe ratio
p
Y in�ates can become supreme for aggressive investors,

making them �rationally forget�about the balancing force of default risk.

3 A duality approach to dynamic asset allocation

The investor seeks to maximize the expected utility from his/her terminal wealth by allocating

his/her capital to two assets, the riskfree asset and the defaultable asset introduced in Section 2.

There is no intermediate consumption or income. The investor has Constant-Relative-Risk-Aversion

(CRRA) utility from terminal wealth,

U (z) =

(
z1��= (1� �) for z > 0 ,

�1 for z � 0 ,

where the level of relative risk aversion equals the parameter � > 0.

By construction (see De�nition 2.2), the squared Sharpe ratio (Yt)0�t�T of the defaultable asset

is always non-negative and has square-root-type dynamics deprived of mean-reversion,

dYt = Yt (r + �) dt+ �
p
YtdZt , Y0 = y � 0 . (3.1)

The correlation between its innovations and the defaultable-asset value innovations is 1. The initial

squared Sharpe ratio y supplies all the available information on the investment opportunities.

Indeed, Nielsen and Vassalou (2006) show that, in typical continuous-time portfolio problems, the

only time-variation that matters for portfolio choice is the time-variation in the slope (the Sharpe

ratio) and the intercept (the riskfree rate) of the instantaneous capital market line.

Let W = (Wt)0�t�T be the value process of a self-�nancing portfolio, given the the investor�s

initial wealth w. The discounted process is given by

~Wt = e�rtWt = w +

Z t

0

Hsd ~Ps
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where ~Pt = Pte
�rt and the adapted portfolio quantity Ht represents the units of the defaultable

asset held at time t. We call the strategy H = (Ht)0�t�T admissible if there exists some constant

C > 0 such that
R t
0
Hsd ~Ps � �C almost surely for any t 2 [0; T ]. Admissibility rules out doubling

strategies. The discounted monetary investment in the defaultable asset at time t is

 t = Ht
~Pt.

We collect in the set W (w) all the non-negative self-�nancing portfolios4 with initial value w, and

denote with ~W(w) the set of the corresponding discounted portfolios, namely

~W 2 ~W(w) () ~Wt = w +

Z t

0

Hsd ~Ps � 0 almost surely for any t 2 [0; T ] .

Kramkov and Schachermayer (1999, 2003) consider the general problem of expected terminal-wealth

utility maximization in a market where arbitrage-free asset prices are semimartingales. They solve

it by employing a �exible duality approach based only on the �niteness of the value function

and on the non-emptiness of the set of martingale measures, which is implied by the absence of

arbitrage opportunities. The following proposition uses the duality approach of Kramkov and

Schachermayer (1999, 2003) to express the investor�s value function in our Cox and Ross (1976)

setting5. The �ltration representing the investor�s information meets the usual assumptions, so

that the conditional expectation at time t = 0 coincides with the unconditional expectation.

Proposition 3.1 If E
h
�1�

1
�

i
< +1, the investor�s value function is

J(w; T; y) =
�
erT
�1��

sup
~W2 ~W(w)

E[U( ~WT )]

and admits the representation

J(w; T; y) = U(werT )F (T; y) ;

F (T; y) =

�
E

�
exp

�
1� �

�

Z T

0

p
YtdZt +

1� �

2�

Z T

0

Ytdt

����
.

Proof. See the appendix.
4The non-negativity requirement is innocuous in our setting as the utility function U is �1 for negative wealth

levels.
5Battauz, De Donno, and Sbuelz (2015) apply the Kramkov and Schachermayer (1999, 2003) approach to the

standard Kim and Omberg (1996) portfolio problem with a non-defaultable risky asset.
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F (T; y) equals
�
E
h
�1�

1
�

i��
and is the key ingredient of the value function as it summarizes

the dependence on the state variable y of the investor�s indirect utility. The next proposition makes

sure that the assumption E
h
�1�

1
�

i
< +1 in Proposition 3.1 holds true for any risk-averse investor

(� > 0) and provides an explicit characterization of F (T; y).

Proposition 3.2 Assume

T < T � =
1
p
q
ln

�
b+

p
q

b�pq

�
for 0 < � < 1:

One has

F (T; y) = exp

 
y

a (e
p
qT � 1)

p
q + b+

�p
q � b

�
e
p
qT

!
;

with

a =
1

�
� 1;

b = (r + �) + a� = r +
�

�
> 0;

c =
�2

4�
> 0;

q = b2 � 4ac = r2 +
1

�

�
(r + �)2 � r2

�
> 0:

Proof. See the appendix.

Proposition 3.2 implies that, for investors less risk averse than the log-utility agent (0 < � < 1),

the value function U
�
werT

�
F (T; Y ) is a nirvana solution in the sense of Kim and Omberg (1996)

since it diverges to +1 as the investment horizon T tends to the positive �nite time T � from the

left. Notice that the value function for the investors with 0 < � < 1 remains bounded if T < T �,

whereas the value function for the investors with � > 1 remains bounded for any T .

F (T; y) enters the investor�s marginal indirect utility of wealth and plays a major role in the

optimal dynamic portfolio, which is quali�ed in detail by the following proposition.

Proposition 3.3 The optimal monetary investment in the defaultable asset is  �0 =  � (w; T; y),

where

 � (w; T; y) = w

�
y

��
+
lnF (T; y)

�

�
:

Proof. See the appendix.
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Proposition 3.3 states that the optimal fraction of wealth invested in the defaultable asset

contains two components. The �rst component,

y

��
,

is the myopic demand for the defaultable asset. It is the allocation that an investor optimally holds

if the investment maturity T shrinks to zero-the investor does not care about future investment

opportunities. The second component,

lnF (T; y)

�
,

is the intertemporal non-myopic demand (see for instance Merton (1971)). The reason the investor

forms non-myopic demands is to deal optimally with changes in future investment opportunities.

Since an unexpected drop in the asset value implies a deterioration in the investment oppor-

tunities o¤ered by the asset (the Sharpe ratio drops), a non-log-utility and su¢ ciently risk-averse

investor hedges against such an adverse e¤ect by shorting the asset to pro�t from the unexpected

drop in the asset value6. The following proposition highlights a standard investment-horizon e¤ect:

the longer the maturity T is, the more energetic the hedging act becomes7.

Proposition 3.4 Given a conservative investor (� > 1), the non-myopic component

w lnF (T; y)

�

of  � (w; x; T ) in Proposition 3.3 is negative and strictly decreasing in the investment maturity T .

Proof. If � > 1, then a < 0 and
p
q > b.

Conversely, when the investor is less averse to risk than the log-utility agent, optimal non-myopic

speculation on the Sharpe-ratio risk ensues.

Proposition 3.5 Given an aggressive investor (0 < � < 1), the non-myopic component

w lnF (T; y)

�

of  � (w; x; T ) in Proposition 3.3 is positive and strictly increasing in the investment maturity T .

6There are parameter values that make the investor with � > 1 take a net short position in the risky defaultable

asset.
7Similar investment-horizon e¤ects have been found in the literature on dynamic portfolio choice with a risky

non-defaultable asset characterized by a mean-reverting drift and a constant volatility (see for example Koijen,

Rodriguez, and Sbuelz (2009)).
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Proof. If 0 < � < 1, then a > 0 and
p
q < b.

Proposition 3.5 shows that the aggressive investor non-myopically speculates on Sharpe-ratio

risk by buying the defaultable asset, in contrast with the conservative investor who non-myopically

hedges against Sharpe-ratio risk by shorting the asset. Importantly, the conservative investor�s

optimal non-myopic demand remains bounded in the investment maturity T , whereas this is not

the case for 0 < � < 1. The aggressive investor uses the defaultable asset to seek pro�ts in the

states that come with a high productivity of wealth, that is, with high Sharpe ratios. Hence, it is

optimal for the aggressive investor to make a non-myopic gamble on the upward asset-value paths

to unfold before his/her investment maturity T (upward asset-value paths go along with swelling

Sharpe ratios). If T stretches out, non-myopic gambling becomes increasingly hefty and levered:

the bet has more time to succeed.

[ Figures 1 and 2 about here ]

Figures 1 and 2 visualize the optimal portfolio results in Proposition 3.5 for an aggressive

investor with a coe¢ cient of relative risk aversion of � = 0:5. Given a riskfree rate of 1% and a

risk premium of 4%, a 15-year-horizon investor borrows to invest in the defaultable asset 172% of

his/her initial capital when the Sharpe ratio
p
y is about 14% (100% is the myopic allocation), as

shown by the left-hand panel of Figure 1. He/she assigns 86% of his/her capital to the defaultable

asset when
p
y is 10% (50% is the myopic allocation).

The right-hand panel of Figure 1 illustrates the impact of a higher riskfree rate (r = 4%).

There is a drift e¤ect, which is the drop in the probability of default caused by a higher drift r+ �.

The drift e¤ect results stronger and non-myopic risk taking is encouraged. The 15-year-horizon

investor allocates 200% of his/her initial capital to the defaultable asset when
p
y is about 14%.

Figure 2 shows the optimal portfolio impact of changing the risk premium (r is �xed at 1%). An

increase in � fosters non-myopic risk taking more than an increase in r does. There is a stronger

drift e¤ect that decidedly strengthens the incentive of placing the non-myopic bet on the upward

asset-value paths. A higher � tends to lift every Sharpe-ratio path while shrinking the probability

of default. Given � = 5%, the 15-year-horizon investor devotes 178% of his/her initial capital to

the defaultable asset when
p
y is about 14% (80% is the myopic allocation).

Figures 1 and 2 show that a surging market for the defaultable asset does entice the aggres-

sive investor via his/her optimal tactical and strategic market timing. A mounting Sharpe ratio

pushes up quadratically the optimal total exposure to the defaultable asset. Importantly such an

optimal market-timing activity involves also the conservative investors, as it can be seen in Figures

3 and 4 for which the coe¢ cient of relative risk aversion is � = 3. Consistently with the observed
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reaching-for-yield behavior, our optimal portfolio results imply that aggressive as well as conserva-

tive investors increase their optimal exposure to the defaultable asset at times of low volatility and

of surging market value.

[ Figures 3 and 4 about here ]

Figures 5 and 6 show the optimal non-myopic exposure to predictable default risk vis-à-vis the

myopic benchmark, as the ratio  �(w;T;y)
 �(w;0;y) is plotted against the relative risk aversion parameter �

for a 10-year-horizon investor. The �gures con�rm our discussion of the optimal portfolios choosed

by non-log-utility, non-myopic investors.

[ Figures 5 and 6 about here ]

4 Conclusions

There is extensive evidence that, before the 2007-2008 crisis and in its aftermath over the following

years, �nancial institutions have been embarking in reaching-for-yield behavior by taking conspic-

uous long positions in defaultable assets. What does optimal dynamic portfolio theory have to

say about the search for yield accomplished by means of defaultable assets? Our answer to this

important question is a novel closed-form optimal portfolio analysis of non-myopic speculation on

predictable default risk.

Our paper takes inspiration from the search for yield literature. We employ optimal dynamic

portfolio theory to draw attention to a possible reason why long-term �nancial intermediaries like

banks may take on major levered reaching-for-yield acts that load predictable default risk. Our

analysis is related to the debate on the sources of banks�risk taking and search for yield as we

highlight that banks�long investment horizon may largely amplify the optimal portfolio exposure

to default risk. On the other hand, our optimal portfolio analysis goes towards o¤ering a market-

timing rationale for the search for yield observed even among less aggressive investors like money

funds and insurance companies.

Our analysis of optimal dynamic portfolio exposure to predictable default risk contributes to

the dynamic asset allocation literature that deals with Sharpe-ratio risk. We prove the existence of

nirvana optimal-portfolio solutions in the case of a defaultable risky asset and of a non-stationary

non-Gaussian Sharpe ratio. We point out that frail/absent mean reversion makes the unfolding of

paths with swelling Sharpe ratios a plausible event to punt on for non-myopic aggressive investors.
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Our paper also contributes to the literature on the solution methods for optimal dynamic port-

folio problems. Our technical focus is the explicit solution of an optimal dynamic asset allocation

problem in an abitrage-free defaultable risky market. As the viability of the Hamilton-Jacobi-

Bellman and Cox and Huang (1989) approaches is impaired in our setting, we use the convex

duality theory of Kramkov and Schachermayer (1999, 2003) who aim at solving optimal dynamic

portfolio problems in very general arbitrage-free risky markets. Our closed-form optimal portfolio

�ndings are a signi�cant illustration of how �exible and e¤ective the Kramkov and Schachermayer

(1999, 2003) approach is, thus presenting a valuable technical toolkit to the �nancial-economics

readership.

In this paper we have sought the most parsimonious model to study the non-myopic bets on

predictable default risk made by rational aggressive investors and to examine the market-timing

portfolio decisions expressed by them and by more conservative investors. We expect the introduc-

tion of an additional non-defaultable risky asset (say a lognormal security) to leave our core results

unchanged. Aggressive investors are very likely to keep making non-myopic bets on the only asset

that o¤ers the default-compensating prospect of a rising Sharpe ratio. However, a careful study

of the optimal portfolio composition and of its time variation in a multiple risky asset setting are

surely interesting avenues of future research.
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A Appendix

A.1 Proof of Proposition 3.1

The problem of utility maximization can be written as J(w) =
�
erT
�1��

u(w) where u is de�ned as

u(w) = sup
~W2 ~W(w)

E[U( ~WT )]: (A.1)

We apply to problem (A:1) the duality approach developed by Kramkov and Schachermayer (1999,

2003). To this aim, we observe that the utility function U satis�es Inada conditions (equation

(2.4) in Kramkov and Schachermayer (1999)). Let V denote the conjugate function8 of U , that is

V (y) = �
1��y

� 1��
� ; and de�ne

v(y) = E [V (y�)]

where � is given by (2.3). Kramkov and Schachermayer (2003) show that if v(y) < 1 for all

y > 0, then u(w) <1 for all w > 0 and u and v are conjugate. They also prove that the optimal

solution ~W � 2 ~W (w) to (A.1) exists and is unique. Moreover, taking y = u0(w) (or equivalently

w = �v0(y)), they provide the dual relation for the optimizer ~W � = �V 0(y�) (see Theorems 1,2

and Note 3).

Assuming that E
h
��

1��
�

i
< +1, from the condition w = �v0(y), we get

y =

0@ w

E
h
��

1��
�

i
1A��

and

~W � = �V 0(y�) =

0B@
0@ w

E
h
��

1��
�

i
1A��

�

1CA
� 1
�

= w
��

1
�

E
h
��

1��
�

i :
8The functions U and V are conjugate if and only if U(w) = infy>0(V (y)+wy) and V (y) = supw>0(U(w)�wy).
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The value function is then

J(w) =
�
erT
�1��

E
h
U( ~W �)

i
= U(werT )E

264
0@ ��

1
�

E
h
��

1��
�

i
1A1��

375
= U(werT )

�
E
h
��

1��
�

i��
= U(werT )

�
E

�
exp

�
1� �

�

Z T

0

p
YtdZt +

1� �

2�

Z T

0

Ytdt

����
= U(werT )F (T; y): �

A.2 Proof of Proposition 3.2

Since a = 1��
�
; then

E

�
exp

�
1� �

�

Z T

0

p
YtdZt +

1� �

2�

Z T

0

Ytdt

��
= E

�
exp

�
a

Z T

0

p
YtdZt +

a

2

Z T

0

Ytdt

��
We can write:

E

�
exp

�
a

Z T

0

p
YtdZt +

a

2

Z T

0

Ytdt

��
= E

�
LT exp

�
a2 + a

2

Z T

0

Ytdt

��
where

LT = exp

�
a

Z T

0

p
YtdZt �

a2

2

Z T

0

Ytdt

�
: (A.2)

The random variable LT in (A:2) is the Radon-Nikodym density of a probability measure equivalent

to P. In fact, Theorem9 2.3 in Delbaen and Shirakawa (2002) applied to SDS = Y; �DS = 0:5;

rDS = b > 0; �DS = 2
p
c�; �DS = b + 2a

p
c�, and �DS = a implies that �DST = LT is the Radon-

Nikodym density of an equivalent probability measure Q̂ equivalent to P:Girsanov�s theorem implies
then that

Ẑt = Zt �
Z t

0

a
p
Ysds (A.3)

is a Q̂�Brownian motion. Thus

F (T; y) =

�
EQ̂
�
exp

�
a2 + a

2

Z T

0

Ytdt

����
; (A.4)

where Yt has the following dynamics under Q̂

dYt = bYtdt+ 2
p
c�YtdẐt; (A.5)

9The superscript (�)DS refers to the notations of Delbaen and Shirakawa, 2002, whereas a; b; c are de�ned in the
statement of Proposition 3.2.
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with Y0 = y. We specify that, if we de�ne the default time �y = infft � 0 : Yt = 0g, we have Yt � 0
on f�y � tg and Y satis�es the stochastic di¤erential equation (A.5) on the whole time interval

[0; T ]. To compute the expectation in (A:4), we de�ne the process

Mt = exp

�
a2 + a

2

Z t

0

Ysds

�
G(T � t; Yt) (A.6)

where G(t; y) is a C1;2 function to be determined in such a way that G(0; y) = 1 and M is a

Q̂-martingale. In particular, equation (A:6) implies for t = 0 that M0 = G(T; y) and for t = T

MT = exp

�
a2 + a

2

Z T

0

Ytdt

�
G(0; YT ) = exp

�
a2 + a

2

Z T

0

Ytdt

�
;

since G(0; �) = 1: The martingality condition M0 = EQ̂[MT ] yields then

G(T; y) = EQ̂
�
exp

�
a2 + a

2

Z T

0

Ysdt

��
;

that allows us to �nd (A:4) : By imposing 0 drift on the Ito decomposition under Q̂ of the process
Mt we get the partial di¤erential equation for G(

Gt =
�2

2
yGyy + byGy +

a2+a
2
yG

G(0; y) = 1:
(A.7)

We guess a solution of the form G(t; y) = eyg(t) and we obtain the following di¤erential equation

for g: (
g0(t) = �2

2
g2(t) + bg(t) + a2+a

2

g(0) = 0:
(A.8)

Equation (A:8) is a Riccati equation whose solution is

g (t) =
(a2 + a)(e

p
qt � 1)

p
q + b+ e

p
qt
�p

q � b
� :

Since Mt has 0 drift in the Ito decomposition under Q̂, Mt is a Q̂ local martingale. To conclude

that Mt is a martingale we de�ne

zt =
Mt

M0

;

which is a Q̂ local martingale as well, and show that zt is a Q̂ martingale. To this aim, we �rst

observe that process zt is a stochastic exponential. In fact Ito formula implies that

dMt = e
a2+a
2

R t
0 Ysds

@

@y
G(T � t; Yt)2

p
c�YtdẐt
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from the dynamics of Y with respect to Q̂ in Equation (A:5) : Since @
@y
G(T � t; Yt) = eYtg(T�t) �

g(T � t) = G(T � t; Yt) � g(T � t); we obtain

dMt = e
a2+a
2

R t
0 YsdsG(T � t; Yt) � g(T � t)2

p
c�YtdẐt

leading to

dMt = 2
p
c�YtMtg(T � t)dẐt: (A.9)

Therefore

zt = 1 +

Z t

0

zsdms

with

mt =

Z t

0

2
p
c�g(T � s)

p
YsdẐs:

We apply Theorem 4.1 in Klebaner and Lipster (2014) to conclude that zt is a true martingale. In

particular with Klebaner and Lipster notations (4.2) at page 44

as(y) = by bs(y) = 2
p
c�
p
y from (A.5) and

�s(y) = 2
p
c�g(T � s)

p
y from our def. of mt,

we get

Ls(y) = 2yas(y) + (bs(y))
2

= 2by2 + 4c�y

Ls(y) = 2y
�
as(y) + bs(y)�s(y) + (bs(y))

2�
= 2by2 + 8c�y2g(T � s) + 8c�y2

Since g is bounded, it follows that (�s(y))
2 ; Ls(y); and Ls(y) are all dominated by a quadratic

polynomial in y; and therefore assumptions (1)-(2)-(3) of Theorem 4.1 are satis�ed. This allows

us to conclude that zt = Mt

M0
is a martingale and therefore Mt is a martingale as well.Hence we can

write (A.4) as

F (T; y) =

 
exp

 
y

(a2 + a)(e
p
qT � 1)

p
q + b+ e

p
qT
�p

q � b
�!!�

= exp

 
y

a(e
p
qT � 1)

p
q + b+ e

p
qT
�p

q � b
�! ;

since

�(a2 + a) = a: �
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A.3 Proof of Proposition 3.3

In what follows, we will mainly work under the martingale measure Q; whose density with respect
to P is � in Equation (2:3). We denote with ZQt the Q-brownian motion

ZQt = Zt +

Z t

0

p
Ysds: (A.10)

Before proving the result, we �rst list some technical lemmas.

Lemma A.1 Let L� = LT
�
where LT is given by (A.2). Then L�t = EQ [L�jFt] satis�es the stochas-

tic di¤erential equation

dL�t = (a+ 1)L
�
t

p
YtdZ

Q
t =

1

�
L�t
p
YtdZ

Q
t (A.11)

with the initial condition L�0 = 1. In particular, L
� is the Radon-Nikodym density of the probability

measure Q̂ (whose density with respect to P is L in (A:2)) with respect to Q and Ẑt de�ned in (A:3)
can be written as

Ẑt = ZQt �
1

�

Z t

0

p
Ysds:

Proof. It is easy to observe that

L� =
LT
�
=

dQ̂
dP
dQ
dP

=
dQ̂
dQ

;

and from the de�nitions of � in (2:3) and of L in (A:2) that

L�T =
LT
�
= exp

�
a

Z T

0

p
YsdZs �

a2

2

Z T

0

Ysds+

Z T

0

p
YsdZs +

1

2

Z T

0

Ysds

�
= exp

�
(a+ 1)

Z T

0

p
YsdZs +

1� a2

2

Z T

0

Ysds

�
:

From the de�nition of ZQs in Equation (A:10) we get

L�T = exp

�
(a+ 1)

Z T

0

p
Ys

�
dZQs �

p
Ysds

�
+
1� a2

2

Z T

0

Ysds

�
= exp

 
(a+ 1)

Z T

0

p
YsdZ

Q
s �

(a+ 1)2

2

Z T

0

Ysds

!
:

This is equivalent to

dL�t = (a+ 1)L
�
t

p
YtdZ

Q
t :
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Moreover, from the de�nition of Ẑt in (A:3) we get

Ẑt = Zt �
Z t

0

a
p
Ysds

= ZQt �
Z t

0

p
Ysds�

Z t

0

a
p
Ysds ( from (A:10) )

= ZQt � (a+ 1)
Z t

0

p
Ysds ( with a+ 1 =

1

�
),

that proves the lemma.

Lemma A.2 Let Mt be the Q̂-martingale de�ned in (A.6), namely

Mt = e
a2+a
2

R t
0 YsdseYtg(T�t):

Then we have

dMt = 2
p
c�YtMtg(T � t)dẐt (A.12)

= 2
p
c�YtMtg(T � t)

�
dZQt �

1

�

p
Ytdt

�
where Ẑt is de�ned in (A:3) and Z

Q
t in Equation (A:10) :

Proof of the Lemma. The �rst line in equation (A:12) is equation (A:9) ; that leads to (A:12) by

recalling that

Ẑt = ZQt �
1

�

Z t

0

p
Ysds: �

Proof of Proposition 3.3. The discounted optimizer

~W � = w
��

1
�

E
h
��

1��
�

i
is the value at time T of a self-�nancing discounted portfolio, which admits the following represen-

tation under Q
~W � = w +

Z T

0

 �t
d ~Pt
~Pt
= w +

Z T

0

� �tp
Yt
dZQt (A.13)

since d ~Pt = ~Pt
p
Yt�tdt+ ~Pt�tdZt = ~Pt

�p
Yt
dZQt from (2:1) and (A:10) :
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Therefore we look for the Ito representation of ~W �(t) = EQ[ ~W �jFt] to derive  �. Denoting with
Lt = E

h
LT

���Fti; and �t = E
h
�
���Fti, we have

EQ
h
��

1
�

���Fti = E
h
�1�

1
�

���Fti
�t

( by Bayes�rule )

=
E
h
exp

�
a
R T
0

p
YtdZt +

a
2

R T
0
Ytdt

� ���Fti
�t

=
E
h
LT exp

�
a2+a
2

R T
0
Ytdt

� ���Fti
�t

( by (A:2) )

=
LtE

Q̂
h
exp

�
a2+a
2

R T
0
Ytdt

� ���Fti
�t

( by Bayes�rule )

= L�tE
Q̂
�
exp

�
a2 + a

2

Z T

0

Ytdt

� ���Ft�
= L�tE

Q̂
h
MT

���Fti = L�tMt ( by the de�nition of M in (A:6) ).

Hence

~W �
t = EQ[ ~W �jFt] =

= EQ

24w ��
1
�

E
h
��

1��
�

i
������Ft
35

=
w

E
h
��

1��
�

iEQ h�� 1
�

���Fti
=

w

E
h
��

1��
�

iL�tMt =

=
w

G(T; y)
L�tMt

because G(T; y) = (F (T; y))
1
� = E

h
��

1��
�

i
: It follows that the di¤erential of the Q�martingale

~W �
t is given by

d ~W �
t =

w

G(T; y)
d (L�tMt)

=
w

G(T; y)
L�tMt

�
1

�
+ 2
p
c�g(T � t)

�p
YtdZ

Q
t by (A:11) and (A:12)

= ~W �
t

�
1

�
+ 2
p
c�g(T � t)

�p
YtdZ

Q
t
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Comparing this equation with equation (A.13), we obtain

� �tp
Yt
= W �(t)

�
1

�
+ 2
p
c�g(T � t)

�p
Yt

hence, recalling that 2
p
c� = � and g(T � t) = 1

Yt
lnG(T � t; Yt) =

1
�Yt
lnF (T � t; Yt), we have:

 �t =
~W �
t

�

�
1

�
+ 2
p
c�g(T � t)

�
Yt

= ~W �
t

�
Yt
��
+
lnF (T � t; Yt)

�

�
:

In particular, at t = 0 we obtain  �0 = w
h
y
��
+ lnF (T;y)

�

i
; as in the statement of the proposition.
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Figure 1

Optimal fractional investment  �0=w in the defaultable asset versus T (� = 0:5, � = 4%)
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Figure 2

Optimal fractional investment  �0=w in the defaultable asset versus T (� = 0:5, r = 1%)
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Figure 3

Optimal fractional investment  �0=w in the defaultable asset versus T (� = 3, � = 4%)
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Figure 4

Optimal fractional investment  �0=w in the defaultable asset versus T (� = 3, r = 1%)
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Figure 5

Ratio  �(w;T;y)
 �(w;0;y) versus � (T = 10 < T �, � = 4%)
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Figure 6

Ratio  �(w;T;y)
 �(w;0;y) versus � (T = 10 < T �, r = 1%)
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