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Revised version, June 2014 

 

A PADDING METHOD TO REDUCE EDGE EFFECTS FOR ENHANCED 

DAMAGE IDENTIFICATION USING WAVELET ANALYSIS  

 

Lorenzo MONTANARI, Biswajit BASU, Andrea SPAGNOLI, Brian M. BRODERICK 

 

 

Reviewer #1 

 

The idea of the authors seems closer to the self-minimization method described 

in [17] but they compare their method to easiest one (isomorphism). The authors 

must justify this. 

Although both the proposed polynomial padding method and Messina’s self-

minimization method aim at searching smooth extensional functions, they are 

based on different algorithms (incidentally the proposed algorithm is easier to 

be implemented and has a lower computational cost). 

The authors tried to test Messina’s self-minimization method but they found it 

not as robust and effective as Messina’s isomorphism methods. In addition, they 

followed the conclusions reported in Ref. [17], where Messina himself recommends 

to adopt isomorphism methods. 

A sentence has been added in Section 4 of the revised version to explain this 

point. 

 

 

This reviewer suggests to mention a signal-to-noise ratio such as 

10log10(maxabssignal/std) in place of  SNR (eqs. 9, 10). This to make 

straightforward the comparison to previous analyses. 
The authors agree with the Reviewer that different 10log10 measurements of noise 

can be adopted. By considering a signal-to-noise ratio SNR* defined as 

10log10(max|signal|/std_of_noise) in place of SNR of Eqs 9,10, we have: 

SNR=120dB corresponds to about SNR*=63dB, SNR=100dB to SNR*=53dB, SNR=80dB to 

SNR*=43dB and so on. 

A sentence has been added in the revised version to explain this point. 

 

The authors must consider in their simulations that a signal to noise ratio 

(10log10(maxabssignal/std)) in even accurate measurements cannot be higher than 

~80-90 dB or, at least this reviewer never was able to make more accurate 

measurements. 

Given the correspondence between SNR and SNR* stated in the previous point, the 

values of signal-to-noise ratio being considered in the simulations seem to be 

realistic of actual measurements. 
 

The authors must better justify the choice connected with parameters beta1 and 

beta2 (eqs. 11.1-2). 

There is not an unique choice with the parameters beta1 and beta2, as they 

depends on the features of the signal and on the noise level. Some heuristic 

Reply to reviewer
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rules are followed. The sentence after Eq. 11 has slightly been modified to 

better explain these rules.  

 

All figures related to wavelet analysis (for example fig. 5 d-f etc) must 

clearly mention the amount the authors are showing. This would improve the 

intelligibility; for example figures 8.a-d look like third derivatives but this 

is not clear what they are. 

The quantities being presented in Figs 5-9 are stated in the captions. Such 

figures present the contour plot of CWT absolute value as a function of the 

scale and translation parameters of wavelet. 

 

 

 

Reviewer #2  

 

1) The word "modeshapes"  should be replaced by "mode shapes" throughout 

the article. 

Done 

 

2) In the sentence "the local stiffness kc due to the crack is evaluated … 

through the following polynomial expression" (at the end of page 4) the word 

"polynomial" should be deleted as the polynomial appears at the denominator in 

formula 4. 

Done, thank you 

 

3) Formula 4 should be corrected as at the numerator tb^2 should be bh^2 

Done 

 

4) Before formula (11) "…data, <eta>(x), is fitted…" should be "…data, 

<eta>(x), are fitted…" 

Done 

 

5) In formula (11.2) the expression  0 <x2 <-L(1-<beta>2) is wrong. 

The expression has been amended 

 

6) It is not clear if the origin of the  x2-coordinate coincides with the 

right or with the left end of the beam. If it is the left end, in formula (12.2) 

the expression 0 <x2<<LAMBDA>s should be corrected. 

The origin of the x2-axis is at the right of the beam, so Eq. 12.2 is correct. 

 

7) For  the sampling step defined after formula 12 it would be better to 

use the symbolism <DELTA>x instead of dx which is a differential. 

Done 

 

8) In the first line of section 4.3 "…… deflections of the beam …" should 

be "…… deflections of the cantilever  beam …" 

Done 

 

9) The Section entitled  "Summary of padding method comparison"  should be 

4.4 and not 4.3. 

Done 

 

10) The method proposed has been applied for a number of measuring points N 

= 1000. However, from an experimental point of view, even with a Scanning Laser 

Vibrometer, the number of measurements points is considerably lower and 

consequently the sensitivity of CWT will be influenced. Therefore it would be 
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interesting to plot diagrams comparing the results of the linear padding method, 

Messina's method and the proposed polynomial method such as  those shown in 

figure 10 for N=1000, but with N=50/100 in order to represent a more realistic 

case.  

 

The results being presented (e.g. see those in Fig. 10) for a sampling interval 

x = 0.001L, seem to be confirmed by taking a larger value such as x = 0.01L. 
However, when a larger value of sampling interval is considered, a smaller value 

of wavelet scale has to be chosen (see the new Ref. [29] in the revised version 

of the manuscript) in order to obtain the same damage identification capacity. 

A figure has been added in the revised version to show the trend of the minimum 

detectable crack size as a function of the signal-to-noise ration SNR for the 1st 

mode shape in a cantilever beam when x = 0.01L (sampling points equal to 100). 



Highlights 

 CWT edge effects in identifying damage close to beam ends is analysed 

 New polynomial padding method, based on polynomial fitting functions, is proposed 

 Noisy modeshapes and static deflections of cracked beams are simulated  

 Proposed method is compared with literature padding methods 

Highlights
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ABSTRACT. Vibration response based structural damage identification by spatial wavelet analysis 

is widely considered a powerful tool in Structural Health Monitoring (SHM). This work deals with 

the issue of border distortions in wavelet transform that can mask tiny damages close to the 

boundary of a structure. Since traditional padding methods (e.g. zero-padding, symmetric padding, 

linear padding) are often not satisfactory, a simple and computationally inexpensive signal 

extension method, based on fitting polynomial functions and continuity conditions at the extrema, is 

proposed. The method is applied to analyze noisy modeshapemode shapes and static deflection of 

cracked cantilever and simply supported beams. The effectiveness and the versatility of the method 

in localizing tiny damages close to clamped, free or hinged beam boundaries is demonstrated. 

Furthermore, an extensive comparison with the linear padding method and Messina‟s isomorphism 

methods is carried out.  

 

KEYWORDS: border distortions; padding method; false indication; vibration-based damage 

identification; continuous wavelet transform; cracked beam. 

 

 

1. INTRODUCTION 

In several aerospace, civil and mechanical structures, during their service life damage can nucleate, 

accumulate and propagate leading to out-of-service conditions and, sometimes, dangerous 

Text marked-up
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collapses. Therefore, Structural Health Monitoring (SHM) is an essential tool in identifying the 

presence and the evolution of possible damage. In the last few decades, researchers have put a great 

effort in developing different vibration response based damage identification methods [1,2] to 

replace traditional non-destructive techniques (e.g. acoustic, ultrasonic, magnetic field, radiograph, 

eddy-current, thermal field methods) [3], which exhibit the drawbacks of requiring a priori 

knowledge of damage location and its accessibility.  

Among the recent vibration-based structural damage detection techniques, also called intelligent 

damage diagnosis methods [2], Wavelet Analysis (WA) has been widely recognized as an effective 

and robust damage detection tool due to its capability to deal with non-stationary signals and to 

localize singularities in a function or in any of its derivatives [4]. Liew and Wang [5] and Wang and 

Deng [6] first analysed the numerical and experimental structural responses of simple cracked 

beams by Wavelet Transform (WT) in the space domain to identify damage. They highlighted that 

wavelet analysis, due its multi-resolution properties, is capable of identifying a singularity in beam 

deflection due to damage at the crack location through a local jump or peak of the wavelet 

coefficients. Subsequently other authors (Pakrashi et al. [7], Gentile and Messina [8], Rucka and 

Wilde [9,10], Loutridis et al. [11], Wang and Wu [12]) examined in more depth the damage 

detection problem by WA by analyzing numerical and experimental, static and dynamic noisy 

responses of damaged or multi-damaged (cracked, delaminated, etc.) structural components through 

wavelet functions having different basis. 

Despite the effectiveness of wavelet analysis in damage identification, a reliable detection of tiny 

damages is still an open challenge because they can be masked by measurement noise and/or edge 

(border) distortion of the wavelet transform. While the technology is progressing in the 

development of SHM techniques for spatially distributed measurements [7, 13-15] (e.g. networks of 

distributed sensors, optical fibers, computer vision and laser scanning techniques), the issue of edge 

effects in Continuous Wavelet Transforms (CWT) remains poorly addressed in the literature [9-10, 

16-17].  

It is well known that border effects are very common in many finite-length non-stationary signal 

analysis and processing approaches (e.g. WT, Hilbert-Huang transform) [4,18-19]. As near the 

signal ends, the convoluting window extends partially on the signal domain, abnormal coefficients 

arise and taint the transform. To handle boundary effects two type of approaches are usually used: 

the first is to impose some extra constraints on the signal (e.g. extension method) while the second 

is to construct a specific wavelet. For their simplicity the signal boundary constraint approaches are 

preferred. Traditional extending methods as zero padding, periodic padding, symmetric padding and 

linear padding (e.g. see MATLAB Wavelet Toolbox [20]), are usually employed in WA but often 

case-dependent models are needed to conveniently alleviate the border effects for the specific 

application. Kijewski and Kareem [21] and Su et al. [22] discussed extensively the edge effect 

problem in wavelet-based analysis employing the Morlet wavelet, suggesting, respectively, a simple 

extension method to preserve the local spectral content of the signal and a smooth extension scheme 

using a Fourier-based method to preserve the signal time-varying characteristics. Williams and 

Amaratunga [23] developed an extrapolated Discrete Wavelet Transform (DWT), applicable to 

Daubechies and biorthogonal wavelet bases, which does not exhibit edge effects in image 

compression and other signal processing applications. A non-linear extension model for CWT, 
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named the Leap-Step Time Series Analysis (LSTSA) model, was proposed by Zheng et al. [24] to 

enhance the detection of low-frequency signals in the observed Length-Of-Day (LOD) series. 

As mentioned above, few researchers have examined in depth the problem of WT border distortion, 

despite its significant influence in masking damage. In fact, since the damage tends to nucleate and 

propagate in the most highly stressed zone of the structure, if this zone is near the boundary (e.g. the 

area close to the clamped section of a cantilever) than the maximum WT coefficients due to the 

edge effects will mask the damage, leading to situations of false indication or even of false alarm. 

Spanos et al. [16]  considered multi-damaged Euler-Bernoulli beams subjected to static loads and 

numerically showed that applying the WT on the difference between the damaged and the 

undamaged beam responses, boundary effects are eliminated and damage-related to local maxima 

are clearly identified. Rucka and Wilde, imposing the local continuity of the first and second 

derivatives at the ends, extended the signal outside its original support through a simple cubic spline 

extrapolation based on three [9] or four [10] neighbouring points. On the other hand, Messina in 

[17] discusses extensively the border distortion in CWT dealing with the first four Gaussian 

wavelets and proposed two methods. The first method consists of padding the signal through 

isomorphisms (called “Rotation” – corresponding to a polar-like symmetry - and “Turnover” – 

corresponding to a mirror symmetry) of the original signal. The author examined their quality in 

limiting the border distortions with respect to the beam boundary conditions and the derivative 

order. The second method (called “Self-minimization”) aims at correcting a first approximated 

extension (e.g. obtained by a fitting polynomial) by minimizing an objective function which 

depends on the convolution results.         

In the present paper, the problem of the damage masked by CWT border distortions is discussed 

and a new signal extension polynomial method to enhance damage detection by spatial CWT is 

proposed. The method is based on high-order polynomial functions that fit the original data and its 

first derivative so as to extend smoothly the signal and its derivatives. To illustrate the effectiveness 

and the versatility of the method with respect to different boundary conditions and beam deflections 

(described by either trigonometric or polynomial functions), the free vibrations and the static 

deflection of a cracked cantilever, and the free vibrations of a cracked simple supported beam are 

numerically simulated. A synthetic Gaussian white noise is added to the signal to represent real 

measured data. The fourth order Coiflet basis function is used in wavelet analysis. The method is 

compared with the traditional linear padding method and with Messina’s isomorphism methods.  

 

 

2. MODELLING OF THE CRACKED BEAM 

A cracked Euler-Bernoulli beam characterized by an open edge crack under different boundary 

conditions at the two ends, i.e. clamped-free (cantilever beam) and supported-supported (simply 

supported beam), is considered (Fig. 1). The free vibration response of both cantilever and simply 

supported beams as well as the static deflection of the cantilever beam due to the point load F are 

analytically evaluated solving the free vibration equations or the static equilibrium equations of the 

two uncracked sub-beams connected by a rotational spring (representing the local stiffness kc of the 

cracked cross-section of the beam) at the crack location, xc. The beam has a rectangular cross-

section with height h and width b; the crack depth is a and L is the beam length. The symbols I, A, E 
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and ρ represent respectively, moment of inertia and area of the cross-section and Young modulus 

and density of the material. 

 

Figure 1 

 

 

 

2.1. Free vibration 

The free vibration response of the two uncracked parts of the beam can be written as 
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where v(x, t) is the transversal displacement of the beam from its static equilibrium position at a 

distance x from the left end at the time t. Separating the variables in Eq. (1) ( )()(),( tgxtxv  ) and 

solving the characteristic equation function of x, the modeshapemode shapes L  and R  of the left 

and right sub-beam respectively, are as follows 

cLLLLL xxxCxCxCxC  0)cosh()sinh()cos()sin( 4321   (2.1) 

and 

LxxxCxCxCxC cRRRRR  )cosh()sinh()cos()sin( 4321  . (2.2) 

where 

4/1
2
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








EI

A
 and ω is the natural frequency of the cracked beam. 

The C(.) terms are integration constants arising from the solution of a fourth order differential 

equation in space. By imposing the boundary conditions (Eqs. 3) a system of eight linear equations 

is formed. The natural frequencies of the cracked beam are found by setting the determinant of the 

matrix of the linear system to zero, and solving it numerically for the roots of α. The coefficient C1L 

is imposed to be equal to unity. 

The boundary conditions of the cantilever beam at the clamped and at the free end are, respectively: 

0)0( L    and   0)0( 
L , (3.1) 

0)(  LR   and   0)(  LR . (3.2) 

While the boundary conditions of the simple supported beam at the two ends are: 

0)0( L    and   0)0( 
L , (3.3) 

0)( LR    and   0)(  LR . (3.4) 

For both the structures, the conditions of continuity of displacement, moment and shear at the crack 

location can be expressed as  

)()( cRcL xx   ,   )()( cRcL xx     and  )()( cRcL xx   . (3.5) 

The rotational spring at the cracked section introduces a discontinuity of the rotation, which can be 

written as 

)()()( cR

c

cLcR x
k

EI
xx   . 

(3.6) 

The local stiffness kc due to the crack is  evaluated, according to linear elastic fracture mechanics 

concepts, through the following polynomial expression [25] 
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where ha /  is the relative crack depth.  

 

 

2.2. Static deflection 

The static deflection of the cracked cantilever subjected to a concentrated force, F, at the free end 

(x=L), can be modeled starting from the second order static equilibrium equation of the sub-beams 

at the left and right sides of the cracked section 

EI

xM
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2

2


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where M(x), the bending moment along the beam due to the force F, is equal to )( xLF  . Imposing 

the boundary conditions described in Eqs. (3.1, 3.2, 3.5 and 3.6), the analytical solution of the 

problem becomes 
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3. DAMAGE DETECTION BY SPATIAL CWT 

3.1. Wavelet analysis 

Thanks to its multi-resolution properties, wavelet analysis, acting as a signal microscope, has the 

ability to analyze non-stationary signals in more detail than traditional analysis tools, such as 

Fourier transform or Short-Time Fourier transform.  

A wavelet function ψ(x) is a zero mean local wave-like function which decays rapidly, and which 

satisfies particular conditions [4]. A family of wavelet functions may be obtained by considering: 








 


s

kx

s
xsk 

1
)(, , (7) 

where s and k are, respectively, the scale and the translation parameters. The continuous wavelet 

transform of a signal (x) with respect to the wavelet function ψ(x) is defined as 













 
 dx

s

kx

s
xskW *

1
)(),(   (8) 

where ψ* is the complex conjugate of ψ.  

Since the identification of a discontinuity in a function or in any of its derivatives can be linked to 

the number of vanishing moments of the analyzing wavelet function [7], it is possible for a wavelet 

transform to detect singularities in a signal or its derivatives by choosing an appropriate basis 
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function ψ(x). Since the presence of an open crack in a beam may introduce a singularity in the 

derivatives of the deflected shape, wavelet transforms are considered to be a powerful tool to locate 

the damage. Due to the presence of the singularity, a transformed deflected shape yields a local 

variation or extremum in the wavelet coefficient at the location of damage throughout the different 

scales. Wavelet functions with a high number of vanishing moments are appropriate for damage 

identification purposes, such as the 4
th

 order Coiflets („Coif4‟) and the 8
th

 order Symlets („Sym8‟), 

which both have 8 vanishing moments. Following the suggestion of Pakrashi et al. [7], the „Coif4‟ 

basis function is used throughout the present work. A MATLAB routine to perform the CWT with 

„Coif4‟ has been implemented by the authors to improve the accuracy of the existing MATLAB 

procedure (the built-in routine approximates the signal thorough a constant piecewise function, 

while that implemented in this study considers a piecewise linear trend). 

 

3.2. Edge effects and signal extension 

As mentioned above, the continuous wavelet transform is defined by the convolution of the input 

signal, (x), with a wavelet function generated from the mother wavelet, ψ(x), by scaling and 

translating it. For a finite-length signal, when the convolution operation is executed close to the 

signal ends, the wavelet window extents into a region with no available data, so that the transform 

values close to the borders of the signal are tainted by the non-existing data. Consequently, the 

values of the CWT coefficients very close to the signal extrema arise abnormally (border 

distortions) and the real signal features of that region are consequently corrupted by the transform. 

So edge effects can provoke the masking of the damage and yield false indicators (see Section 4).     

Among the different approaches to handle edge effects, the most commonly used one is to 

preprocess the signal through extrema extension [4,18]. Traditional extension techniques include 

extension by zero padding, periodicity, symmetry and linearization [20]. These methods make 

simple assumptions about the signal characteristics outside the borders but they prove unsatisfactory 

for many applications [21-24], including damage detection [9-10,17].  

According to the cracked beam model of Section 2, a damage introduces a discontinuity (jump) in 

the rotation, )(x , of the structural response and consequently a singularity in the curvature, 

)(x  , and in the subsequent derivatives. As is well-known [7], a wavelet with m vanishing 

moments detects the local discontinuities of the signal and of its derivatives up to the mth order. 

Therefore, padding functions to be added at either end of the original signal, need to have specific 

smoothness features to avoid introducing edge discontinuities into the padded signal or its 

derivatives up to the mth order. The traditional padding methods cited above introduce 

discontinuities at the ends of the signal and/or in its 1st or 2nd derivatives, so that small damages 

close to the beam extrema are masked by CWT border distortions. Hence, an ad-hoc extension 

method that minimizes edge effects must be employed for effective damage detection through 

wavelet analysis.  

 

 

3.3. The proposed padding method  



- 7 - 

 

Realistic situations where noise is superimposed on the original signal are considered in the 

following. As a matter of fact, the ideal situation in the absence of noise has a trivial solution as by 

extending the signal, (x), through its interpolating spline, the border distortions are suppressed and 

the location of very tiny damages close to the edges are always identified by WT. It is also noted 

that in the absence of noise WA is not necessary to detect the damage position since by numerically 

calculating the second derivative of the original signal, the damage location can be readily 

identified [26]).  

The presence of noise is introduced by adding a synthetic Gaussian white noise to the original 

response. To quantify the noise level, the signal to noise ratio (SNR) is considered. The SNR, 

expressed in decibels, is defined as 











noise

signal

P

P
SNR 10log10 . (9) 

The term P with the subscripts in Eq. (9) denotes power and is computed as 
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where Nz  denotes the number of discrete points of a generic sampled function z(x). Note that 

different measurements of the noise can be adopted. For instance by considering a signal-to-noise 

ratio SNR* defined as  noisesignal maxlog10 10  ( signalmax  = maximum absolute value of the signal, 

noise  = standard deviation of the signal), we have: SNR=120dB corresponds to about SNR*=63dB, 

SNR=100dB corresponds to about SNR*=53dB and so on. 

 

It can be shown, through numerical experiments, that approaches to extend the noisy signal either 

through its interpolating spline or its fitting spline (as suggested in [9-10]) prove not to be effective. 

Therefore, a simple and computationally efficient method based on using two polynomial functions 

)( 11 xf  and )( 22 xf  to extend, in the range 0x  and Lx  , respectively, the signal (x) is proposed 

(Fig. 2). These functions are obtained by a fitting procedure in order to: 

(i) describe correctly (x) in such a way to extend smoothly the trend of the signal and of its 

derivatives up to the order equal to the mth vanishing moment of the adopted wavelet; 

(ii) ensure continuity at the boundaries up to mth derivative order. 

Since the original signal is corrupted by noise, conditions (i) and (ii) may only be satisfied in an 

average sense.  

When adopting the „Coif4‟ wavelet with 8 vanishing moments, boundary continuities up to the 8
th

 

derivative of (x) have to be satisfied. Hence, polynomial functions of degree 8 are generated for 

)( 11 xf  and )( 22 xf .      

To define the extension functions, firstly the original noisy data, (x), is are fitted in a least squares 

sense through two polynomial functions )( 11 xf  and )( 22 xf as   
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where 111 ,,, IBA   and 222 ,,, IBA   are the coefficients of the fitting polynomial functions, )( 11 xf  

and )( 22 xf , respectively. The function )( 11 xf  fits (x) from 0x  to Lx 1 ; while )( 22 xf  fits 

(x) from )1( 2 Lx  to Lx  , where 1  and 2  can vary in the range 11.0  . There are not 

optimal values for these parameters, as they depend on the trend of the signal and the noise level. 

For instance in the case of signals characterized by no sign change of first derivative, values in the 

range of 17.0   work well while for oscillating signals values in the range 4.01.0   are suggested; 

moreover the latter values are preferred in the presence of low noise content (see Section 4).  

The extension polynomials )( 11 xf  and )( 22 xf , having the same degree of the fitting functions, are 
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and  
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2222 )( IxHxGxFxExDxCxBxAxf  with sx  20  (12.2) 

where s is the scale parameter considered in the WA,   represents the distance from the mother 

wavelet center to the position where the wavelet attains negligible values (for „Coif4‟, dx11 is 

assumed, where dx is the sampling step), and 111 ,,, IBA   and 222 ,,, IBA   are the polynomial 

coefficients obtained as follows: 

)0(;;;;;;;; 11111111111111111  xIHHGGFFEEDDCCBBAA   (13.1) 

)(;;;;;;;; 22222222222222222 LxIHHGGFFEEDDCCBBAA     (13.2) 

Then, the coefficients 1H  and 2H  are optimized against the first derivative )(x of the padded 

noisy data, )()()( 21 xfxxf  , numerically calculated at 0x  and Lx   through Richardson‟s 

extrapolation [27], which allows a high-order approximation (e.g. )( 8dx , )( 10dx  or )( 12dx ) of 

the derivative.  An iterative procedure is required since 1H  and 2H  are equal to )0( x  and 

)( Lx  , respectively, which in turn are functions of 1H  and 2H . 

Since differentiating the original signal increases the amount of noise, the above described 

optimization approach is not effective for the other polynomial coefficients, 11 ,, GA   and 

22 ,, GA  . Note that the last two equalities of Eqs (13.1) and (13.2) impose the fundamental 

condition of signal continuity at the two extrema. Furthermore, it has to be underlined that good 

results can be achieved without performing the optimization procedure related to the first derivative 

(i.e. by assuming 11 HH   and 22 HH  ) and, in fact, better results could be obtained in some 

cases, e.g., when the noise level is high. Figures 2-4 show a generic noisy data signal, extended 

through the proposed polynomial functions )( 11 xf  and )( 22 xf , and its 1st and 2nd derivatives. 

These figures point out that the conditions (i) and (ii), explained above, are satisfied by the 

proposed method.   

 

Figure 2 

Figure 3 

Figure 4 
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4. ILLUSTRATIVE EXAMPLES  

The effectiveness and the versatility of the proposed polynomial padding method in minimizing the 

CWT border distortions is analyzed by considering the modeshapemode shapes and the static 

deflection of both cantilever and simply supported cracked beams. Since the static deflection of a 

simply supported beam with a crack close to a support under a mid-span vertical point force 

coincides with that of a cantilever with a crack close to the free end, only the latter case is analysed 

in the following.  

The method is assessed by considering analytical structural responses having different features 

(trigonometric function for the modeshapemode shapes and cubic polynomial for the static 

responses) and constraint conditions (clamped, simple supported and free). The results are 

compared to those obtained by the traditional linear padding method [20] and Messina’s 

isomorphism methods [17], experimented by the present authors to be the most effective padding 

method available in the literature.  Note that the latter methods are chosen instead of the Messina’s 

self-minimization method, as they are found to be comparatively more robust and effective 

(incidentally, in the conclusions reported in Ref. [17] Messina himself recommends to adopt 

isomorphism methods). 

A cracked beam of length L = 1m and a rectangular cross-section of height h = 0.05L and width b = 

0.5h, constituted by an elastic linear isotropic material with Young modulus, E = 200 GPa, and 

density, = 7850 kg/m
3
, is considered. 

The free vibration responses and the static deflections of the beams, sampled at dx = 0.001L 

intervals, are determined according to the model of Section 2. Such signals are analyzed through 

CWT, fixing the relative crack depth, δ, unless otherwise specified, to 2% and varying the crack 

locations, xc, and the noise level (synthetic Gaussian white noise is used). The wavelet analyses are 

executed using the „Coif4‟ mother wavelet. 

 

4.1 Free vibration response of a cantilever beam 

The normalized first modeshapemode shape (maximum deflection equal to unity) of the damaged 

cantilever beam is analysed using the linear padding method, Messina‟s method (with the 

“Turnover” method at the clamped end and the “Rotation” method at the free end [28]) and the 

proposed method (with the fitting parameters, 1  and 2  assumed equal to 1). The crack is located 

at x = 0.02L from the clamped end. A noise level SNR = 120 dB is assumed. 

In Fig. 5a, where the linear padding method is used, a jump in the curvature is evident at x = 0. In 

Fig. 5b, where the “Turnover” method is applied to the clamped end, the continuity of the second 

derivative at x = 0 is fulfilled while a jump of the third derivative is expected. On the other hand, in 

Fig. 5c, thanks to the proposed polynomial padding, no discontinuities are present in the boundaries 

and the extending functions are in agreement with the average trend in the curvature )(x  . It is 

worth noticing that, for the selected combination of noise level and damage severity and location, it 

is not possible to locate the crack by analyzing the curvature plot, and hence a wavelet transform 

technique is necessary to detect such damage. 

 

Figure 5 
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Figures 5d-f present zooms on the contour plots of the absolute values of the CWT (from scale 1 to 

scale 40) of the normalized first modeshapemode shape padded using the three methods presented 

above. In the contour plots, the lighter colors represent high coefficient values, whilst darker colors 

correspond to low coefficient values (see the color bar on the right of Figs. 5d-f). Since a wavelet 

with more than one vanishing moment (in our case „Coif4‟) associates high coefficient values to the 

signal discontinuities and since high wavelet scales are able to detect a discontinuity even if the 

wavelet is not centered on it, the contour plot displays a shape pattern characterized by a central 

bright cone and a number of adjacent less bright cones, all pointing towards the singularity region.  

Since the linear padding method introduces a discontinuity in the second derivative at x = 0 (Fig. 

5a), high coefficient values arise around that region and the bright cone points towards x = 0 (Fig. 

5d). The damage location is consequently masked because of the edge effects. Furthermore if only 

the CWT coefficients related to a given scale were considered (e.g. scale 24 in Fig. 6a), the analysis 

would locate erroneously the damage at about x = 0.01L.  

When Messina‟s method is applied, even if a jump in the third derivative occurs at x = 0, crack 

discontinuity at finer and medium scales can be detected as the contour cones point correctly 

towards the crack location at x = 0.02L (Fig. 5e). On the other hand, at coarser scales, characterized 

by narrower bands of lower frequencies, the CWT detects the jump of the third derivative and hence 

it is unable to locate the damage.  

Figure 5f shows that, when the proposed polynomial extension method is used, the central bright 

cone is characterized by an axis centered to the correct damage location. Therefore crack position 

can be detected at all CWT scales, leading to unambiguous and more reliable damage identification.  

 

The contour plots of the absolute values of the CWT of the normalized third modeshapemode shape 

of the cracked cantilever beam obtained using Messina‟s method and the proposed polynomial 

method are presented in Fig. 6 (the crack is located close to the free end at x = 0.98L and a noise 

level SNR = 140 dB is imposed). Given the oscillating feature of the modeshapemode shape, 1  

and 2  are assumed equal to 0.2 and 0.333, respectively. 

Figures 6a and 6b demonstrate that wavelet analysis fails to detect the damage near the free end 

when Messina‟s method is applied. This is a consequence of the fact that the curvature near the free 

end tends to be null and therefore damage identification is more difficult. The jump in the 

modeshapemode shape third derivative at x = 0 due to the use of the “Turnover” padding method is 

the main discontinuity that „Coif4‟ wavelet detects in analyzing the padded signal. 

On the other hand, using the proposed polynomial padding method, no discontinuity is present at 

the extrema of the signal or its derivatives, and no border distortion is generated by the wavelet 

transform. The bright cones point properly to the damage position (see Figs 6c-d).   

 

Figure 6 

 

4.2 Free vibration response of a simply supported beam 
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Figure 7 shows the effectiveness of Messina‟s method (the “Rotation” method is applied at both 

extrema) and the proposed polynomial method ( 1  and 2  are equal to 1) in the case of the first 

modeshapemode shape of a cracked simply supported beam corrupted by noise (SNR = 140 dB). 

The crack, close to the left support at x = 0.02L, is correctly identified through both methods. Note 

that when applied to zero curvature ends, Messina‟s method does not introduce a discontinuity in 

the signal or its derivatives, and hence no border distortion occurs. Note also that the brightest cone 

of Fig. 7a is shifted at coarser scales to the left with respect to the damage location due to the 

presence of the mirrored damage at x = -xc.        

 

Figure 7 

 

4.3 Static deflection  

The normalized noisy static deflections of the cantilever beam subjected to the point load F of Fig. 

1, with an open crack of relative depth δ = 2%, located at 0.02L or at 0.098L, are analysed by CWT. 

The polynomial extension method is applied assuming 1  and 2  equal to 1 and compared with 

Messina‟s method. It is observed that even if (x) is a cubic function and the continuity of (x) and 

its derivatives at the boundaries can be satisfied by polynomial functions of degree three, the 

presence of noise requires extending polynomial functions in general of eighth order to overcome 

edge effects.  

Both methods prove to be effective in analyzing static deflection when the crack is close to the 

clamped end (Fig. 8) or when it is near the free end (Fig. 9).  

Considering a noise level of SNR = 100 dB, since finer scales are more sensible to noise than 

coarser ones, the lower parts (from scale 1 to 20) of the CWT contour plots in Figs. 8a and 8c 

provide somewhat ambiguous damage detection for both considered methods. On the other hand, by 

considering the upper parts of these contour plots, (from scale 20 to 40), the damage location can 

clearly be identified (Figs. 8b and 8d).  

 

Figure 8 

 

Fig. 9 compares the effectiveness of the two methods in removing edge effects as the noise level 

increases. When noise level is at SNR = 100 dB, the damage is clearly located by both methods. 

Increasing the noise level to SNR = 90 dB the damage is partially masked, while at SNR = 80 dB, 

the noise completely masks the damage. This behavioral trend demonstrates that CWT border 

distortions are effectively suppressed by both methods, but damage is masked when a certain level 

of noise (which is dependent on the specific beam features and damage location and severity) is 

present.         

 

Figure 9 
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4.43 Summary of padding method comparison 

The linear padding method, Messina‟s isomorphism methods and the proposed polynomial 

extension method are qualitatively compared in Figure 10 for a range of modeshapemode shapes 

and static deflections obtained by varying the crack depth ( 9.00001.0  ) and its location (x = 

0.02L or x = 0.98L) (see Fig. 10). Crack depth is incremented by 210  jd  throughout the range 
jj   1010 1   where 3,2,1,0j . For a given noise level, the identification criterion considers 

that the damage is correctly detected if the highest absolute value of the CWT at the scale 24 falls 

exactly at the crack location with each of 25 different noise random distributions. Figure 10 

identifies the minimum crack depth sizes correctly identified by each method with a given SNR. In 

these analyses, the fitting parameters 1  and 2  equal 1, except in the analysis of the second 

modeshapemode shape of the cantilever beam, where 15.01   and 125.02  , and the first 

modeshapemode shape of the simply supported beam, where 1667.021   . Moreover for the 

second modeshapemode shape of the cantilever beam, the values 11 HH   and 22 HH   are 

employed as coefficients of the extension polynomial function. 

 

Figure 10 clearly shows, for all the conditions analysed, the weakness of the linear padding method 

in tackling border distortions. For instance, when the first modeshapemode shape of the cantilever 

beam with xc = 0.98L is analysed, even cracks of about 9.0  are masked by edge effects. 

Moreover, at a given noise level, the minimum crack size that can be identified using the linear 

padding method is larger than those that can be detected using the other methods. For both the 

linear padding method and Messina‟s method, the plots in Figure 10 display plateau representing 

the minimum crack size that can be correctly detected irrespective of SNR. In the linear padding 

method this plateau occurs because „Coif4‟ recognizes the dominance of the discontinuity in the 

second derivative at x = 0 over the discontinuity introduced to the first derivative by the crack. The 

crack size identified by the plateau is the smallest that can be identified in this particular structure. 

As expected, at higher noise levels, the minimum damage that can be detected increases.  

With Messina‟s method, the observed plateaus in the -SNR curves are attributable to the 

discontinuity in the third derivative at x = 0 related to the “Turnover” method. Since a jump in the 

third derivative has less influence on the CWT than one in the second derivative, the smallest crack 

detectable using Messina‟s method at a given SNR is smaller than that detectable using the linear 

padding method. When Messina‟s method is applied to the modeshapemode shapes of the simply 

supported beam, the minimum identified  decreases monotonically with increasing SNR (Fig. 

10d). As mentioned above, this is due to the fact that the “Rotation” method applied to zero 

curvature ends does not yield edge discontinuities in all the signal derivatives. With damage at x = 

0.98L in a cantilever beam, Messina‟s method is much more effective when applied to the static 

deflection than to the first modeshapemode shape (see Figs. 10f and 10c). This arises because the 

first to the mth derivatives of modeshapemode shape are all non-zero whilst the derivatives of the 

cubic static deflection are null from the 4th. As „Coif4‟ analyses high order derivatives, the weight 

of the jump in the third derivative at x = 0 is more substantial in the modeshapemode shape.   
 
        

The proposed polynomial padding method is observed to be the most effective and versatile method 

in analyzing different structural responses corrupted by different noise amounts. At severe noise 
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levels, the proposed polynomial method and Messina‟s method succeed in identifying very similar 

minimum damage levels. However, at medium-to-low noise levels, the polynomial method is more 

successful in removing CWT border distortions, and is capable of identifying smaller cracks than 

either of the other methods. 

     

Figure 10 

The results being presented in Fig. 10 for a sampling interval x = 0.001L seem to be confirmed by 

taking a larger value of the sampling interval. For instance, the same damage identification capacity 

obtained in the above with x = 0.001L can be attained by considering a larger sampling interval, 

provided that a smaller wavelet scale is chosen (the need for a smaller wavelet scale as the sampling 

interval gets larger is discussed in Ref. [29]). Figure 11 presents the minimum detectable crack size 

as a function of the signal-to-noise ratio SNR for the first mode shape, sampled at x = 0.01L, in a 

cantilever beam with crack at xc = 0.02L. The trends turn out to be similar to those reported in Fig. 

10a for x = 0.001L. 

 

 

Figure 11 

 

5. CONCLUSIONS 

When wavelet analysis is employed in vibration-based structural damage identification, the issue of 

border distortions is often crucial as it tends to mask damage near the edges of the structure where 

high stress levels are liable to occur. Since traditional padding methods are not satisfactory when 

small near-edge damages need to be detected, an effective and computationally efficient signal 

extension method is proposed to enhance damage detection by CWT. The method is based on the 

approach of padding the original signal using two functions that satisfy continuity conditions and 

extend the average trend and derivatives of the noisy signal. The two high degree polynomial 

functions employed are determined by imposing signal and first derivative extrema continuity 

conditions.  

To investigate the effectiveness and the versatility of the proposed padding method, the analytical 

free vibration and static deflection responses of cantilever and simply supported cracked beams 

were analysed. Variations in crack depth ratio and position are considered, and synthetic Gaussian 

white noise is introduced to the signal to emulate real measured data. CWT, applying the linear 

padding method, Messina‟s isomorphism methods and the proposed polynomial method, is 

executed to detect the position of damage in the different structural configurations at different noise 

levels.  

The CWT contour plots in the scale from 1 to 40 are analysed. While the linear padding method is 

generally poor, failing to identify small- and even medium-sized damage close to the beam ends, 

Messina‟s method works much better when the crack is close to the cantilever fixed end or when 

the sinusoidal free vibration of the simply supported beam is analysed. When applied to cantilever 

beam modeshapemode shapes Messina‟s method does not perform as well. The proposed 
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polynomial method proved to be the most powerful method in dealing with the full range of 

structural configurations and damage considered. In particular, smaller cracks can be identified 

using the proposed method than with either of the other methods, whose formulations introduce a 

minimum bound on the crack size that can be correctly detected. 

In summary, while damage identification using wavelet-based techniques is still an open challenge 

in the presence of high noise levels, the proposed signal extension method supports improved 

detection of small damage near beam edges through the minimization of wavelet transform border 

distortions. 
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ABSTRACT. Vibration response based structural damage identification by spatial wavelet analysis 

is widely considered a powerful tool in Structural Health Monitoring (SHM). This work deals with 

the issue of border distortions in wavelet transform that can mask tiny damages close to the 

boundary of a structure. Since traditional padding methods (e.g. zero-padding, symmetric padding, 

linear padding) are often not satisfactory, a simple and computationally inexpensive signal 

extension method, based on fitting polynomial functions and continuity conditions at the extrema, is 

proposed. The method is applied to analyze noisy mode shapes and static deflection of cracked 

cantilever and simply supported beams. The effectiveness and the versatility of the method in 

localizing tiny damages close to clamped, free or hinged beam boundaries is demonstrated. 

Furthermore, an extensive comparison with the linear padding method and Messina‟s isomorphism 

methods is carried out.  

 

KEYWORDS: border distortions; padding method; false indication; vibration-based damage 

identification; continuous wavelet transform; cracked beam. 

 

 

1. INTRODUCTION 

In several aerospace, civil and mechanical structures, during their service life damage can nucleate, 

accumulate and propagate leading to out-of-service conditions and, sometimes, dangerous 
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collapses. Therefore, Structural Health Monitoring (SHM) is an essential tool in identifying the 

presence and the evolution of possible damage. In the last few decades, researchers have put a great 

effort in developing different vibration response based damage identification methods [1,2] to 

replace traditional non-destructive techniques (e.g. acoustic, ultrasonic, magnetic field, radiograph, 

eddy-current, thermal field methods) [3], which exhibit the drawbacks of requiring a priori 

knowledge of damage location and its accessibility.  

Among the recent vibration-based structural damage detection techniques, also called intelligent 

damage diagnosis methods [2], Wavelet Analysis (WA) has been widely recognized as an effective 

and robust damage detection tool due to its capability to deal with non-stationary signals and to 

localize singularities in a function or in any of its derivatives [4]. Liew and Wang [5] and Wang and 

Deng [6] first analysed the numerical and experimental structural responses of simple cracked 

beams by Wavelet Transform (WT) in the space domain to identify damage. They highlighted that 

wavelet analysis, due its multi-resolution properties, is capable of identifying a singularity in beam 

deflection due to damage at the crack location through a local jump or peak of the wavelet 

coefficients. Subsequently other authors (Pakrashi et al. [7], Gentile and Messina [8], Rucka and 

Wilde [9,10], Loutridis et al. [11], Wang and Wu [12]) examined in more depth the damage 

detection problem by WA by analyzing numerical and experimental, static and dynamic noisy 

responses of damaged or multi-damaged (cracked, delaminated, etc.) structural components through 

wavelet functions having different basis. 

Despite the effectiveness of wavelet analysis in damage identification, a reliable detection of tiny 

damages is still an open challenge because they can be masked by measurement noise and/or edge 

(border) distortion of the wavelet transform. While the technology is progressing in the 

development of SHM techniques for spatially distributed measurements [7, 13-15] (e.g. networks of 

distributed sensors, optical fibers, computer vision and laser scanning techniques), the issue of edge 

effects in Continuous Wavelet Transforms (CWT) remains poorly addressed in the literature [9-10, 

16-17].  

It is well known that border effects are very common in many finite-length non-stationary signal 

analysis and processing approaches (e.g. WT, Hilbert-Huang transform) [4,18-19]. As near the 

signal ends, the convoluting window extends partially on the signal domain, abnormal coefficients 

arise and taint the transform. To handle boundary effects two type of approaches are usually used: 

the first is to impose some extra constraints on the signal (e.g. extension method) while the second 

is to construct a specific wavelet. For their simplicity the signal boundary constraint approaches are 

preferred. Traditional extending methods as zero padding, periodic padding, symmetric padding and 

linear padding (e.g. see MATLAB Wavelet Toolbox [20]), are usually employed in WA but often 

case-dependent models are needed to conveniently alleviate the border effects for the specific 

application. Kijewski and Kareem [21] and Su et al. [22] discussed extensively the edge effect 

problem in wavelet-based analysis employing the Morlet wavelet, suggesting, respectively, a simple 

extension method to preserve the local spectral content of the signal and a smooth extension scheme 

using a Fourier-based method to preserve the signal time-varying characteristics. Williams and 

Amaratunga [23] developed an extrapolated Discrete Wavelet Transform (DWT), applicable to 

Daubechies and biorthogonal wavelet bases, which does not exhibit edge effects in image 

compression and other signal processing applications. A non-linear extension model for CWT, 
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named the Leap-Step Time Series Analysis (LSTSA) model, was proposed by Zheng et al. [24] to 

enhance the detection of low-frequency signals in the observed Length-Of-Day (LOD) series. 

As mentioned above, few researchers have examined in depth the problem of WT border distortion, 

despite its significant influence in masking damage. In fact, since the damage tends to nucleate and 

propagate in the most highly stressed zone of the structure, if this zone is near the boundary (e.g. the 

area close to the clamped section of a cantilever) than the maximum WT coefficients due to the 

edge effects will mask the damage, leading to situations of false indication or even of false alarm. 

Spanos et al. [16]  considered multi-damaged Euler-Bernoulli beams subjected to static loads and 

numerically showed that applying the WT on the difference between the damaged and the 

undamaged beam responses, boundary effects are eliminated and damage-related to local maxima 

are clearly identified. Rucka and Wilde, imposing the local continuity of the first and second 

derivatives at the ends, extended the signal outside its original support through a simple cubic spline 

extrapolation based on three [9] or four [10] neighbouring points. On the other hand, Messina in 

[17] discusses extensively the border distortion in CWT dealing with the first four Gaussian 

wavelets and proposed two methods. The first method consists of padding the signal through 

isomorphisms (called “Rotation” – corresponding to a polar-like symmetry - and “Turnover” – 

corresponding to a mirror symmetry) of the original signal. The author examined their quality in 

limiting the border distortions with respect to the beam boundary conditions and the derivative 

order. The second method (called “Self-minimization”) aims at correcting a first approximated 

extension (e.g. obtained by a fitting polynomial) by minimizing an objective function which 

depends on the convolution results.         

In the present paper, the problem of the damage masked by CWT border distortions is discussed 

and a new signal extension polynomial method to enhance damage detection by spatial CWT is 

proposed. The method is based on high-order polynomial functions that fit the original data and its 

first derivative so as to extend smoothly the signal and its derivatives. To illustrate the effectiveness 

and the versatility of the method with respect to different boundary conditions and beam deflections 

(described by either trigonometric or polynomial functions), the free vibrations and the static 

deflection of a cracked cantilever, and the free vibrations of a cracked simple supported beam are 

numerically simulated. A synthetic Gaussian white noise is added to the signal to represent real 

measured data. The fourth order Coiflet basis function is used in wavelet analysis. The method is 

compared with the traditional linear padding method and with Messina’s isomorphism methods.  

 

 

2. MODELLING OF THE CRACKED BEAM 

A cracked Euler-Bernoulli beam characterized by an open edge crack under different boundary 

conditions at the two ends, i.e. clamped-free (cantilever beam) and supported-supported (simply 

supported beam), is considered (Fig. 1). The free vibration response of both cantilever and simply 

supported beams as well as the static deflection of the cantilever beam due to the point load F are 

analytically evaluated solving the free vibration equations or the static equilibrium equations of the 

two uncracked sub-beams connected by a rotational spring (representing the local stiffness kc of the 

cracked cross-section of the beam) at the crack location, xc. The beam has a rectangular cross-

section with height h and width b; the crack depth is a and L is the beam length. The symbols I, A, E 
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and ρ represent respectively, moment of inertia and area of the cross-section and Young modulus 

and density of the material. 

 

Figure 1 

 

 

 

2.1. Free vibration 

The free vibration response of the two uncracked parts of the beam can be written as 

0
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where v(x, t) is the transversal displacement of the beam from its static equilibrium position at a 

distance x from the left end at the time t. Separating the variables in Eq. (1) ( )()(),( tgxtxv  ) and 

solving the characteristic equation function of x, the mode shapes L  and R  of the left and right 

sub-beam respectively, are as follows 

cLLLLL xxxCxCxCxC  0)cosh()sinh()cos()sin( 4321   (2.1) 

and 

LxxxCxCxCxC cRRRRR  )cosh()sinh()cos()sin( 4321  . (2.2) 

where 

4/1
2











EI

A
 and ω is the natural frequency of the cracked beam. 

The C(.) terms are integration constants arising from the solution of a fourth order differential 

equation in space. By imposing the boundary conditions (Eqs. 3) a system of eight linear equations 

is formed. The natural frequencies of the cracked beam are found by setting the determinant of the 

matrix of the linear system to zero, and solving it numerically for the roots of α. The coefficient C1L 

is imposed to be equal to unity. 

The boundary conditions of the cantilever beam at the clamped and at the free end are, respectively: 

0)0( L    and   0)0( 
L , (3.1) 

0)(  LR   and   0)(  LR . (3.2) 

While the boundary conditions of the simple supported beam at the two ends are: 

0)0( L    and   0)0( 
L , (3.3) 

0)( LR    and   0)(  LR . (3.4) 

For both the structures, the conditions of continuity of displacement, moment and shear at the crack 

location can be expressed as  

)()( cRcL xx   ,   )()( cRcL xx     and  )()( cRcL xx   . (3.5) 

The rotational spring at the cracked section introduces a discontinuity of the rotation, which can be 

written as 

)()()( cR

c

cLcR x
k

EI
xx   . 

(3.6) 

The local stiffness kc due to the crack is  evaluated, according to linear elastic fracture mechanics 

concepts, through the following expression [25] 
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where ha /  is the relative crack depth.  

 

 

2.2. Static deflection 

The static deflection of the cracked cantilever subjected to a concentrated force, F, at the free end 

(x=L), can be modeled starting from the second order static equilibrium equation of the sub-beams 

at the left and right sides of the cracked section 

EI
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2
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where M(x), the bending moment along the beam due to the force F, is equal to )( xLF  . Imposing 

the boundary conditions described in Eqs. (3.1, 3.2, 3.5 and 3.6), the analytical solution of the 

problem becomes 
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3. DAMAGE DETECTION BY SPATIAL CWT 

3.1. Wavelet analysis 

Thanks to its multi-resolution properties, wavelet analysis, acting as a signal microscope, has the 

ability to analyze non-stationary signals in more detail than traditional analysis tools, such as 

Fourier transform or Short-Time Fourier transform.  

A wavelet function ψ(x) is a zero mean local wave-like function which decays rapidly, and which 

satisfies particular conditions [4]. A family of wavelet functions may be obtained by considering: 








 


s

kx

s
xsk 

1
)(, , (7) 

where s and k are, respectively, the scale and the translation parameters. The continuous wavelet 

transform of a signal (x) with respect to the wavelet function ψ(x) is defined as 













 
 dx

s

kx

s
xskW *

1
)(),(   (8) 

where ψ* is the complex conjugate of ψ.  

Since the identification of a discontinuity in a function or in any of its derivatives can be linked to 

the number of vanishing moments of the analyzing wavelet function [7], it is possible for a wavelet 

transform to detect singularities in a signal or its derivatives by choosing an appropriate basis 
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function ψ(x). Since the presence of an open crack in a beam may introduce a singularity in the 

derivatives of the deflected shape, wavelet transforms are considered to be a powerful tool to locate 

the damage. Due to the presence of the singularity, a transformed deflected shape yields a local 

variation or extremum in the wavelet coefficient at the location of damage throughout the different 

scales. Wavelet functions with a high number of vanishing moments are appropriate for damage 

identification purposes, such as the 4
th

 order Coiflets („Coif4‟) and the 8
th

 order Symlets („Sym8‟), 

which both have 8 vanishing moments. Following the suggestion of Pakrashi et al. [7], the „Coif4‟ 

basis function is used throughout the present work. A MATLAB routine to perform the CWT with 

„Coif4‟ has been implemented by the authors to improve the accuracy of the existing MATLAB 

procedure (the built-in routine approximates the signal thorough a constant piecewise function, 

while that implemented in this study considers a piecewise linear trend). 

 

3.2. Edge effects and signal extension 

As mentioned above, the continuous wavelet transform is defined by the convolution of the input 

signal, (x), with a wavelet function generated from the mother wavelet, ψ(x), by scaling and 

translating it. For a finite-length signal, when the convolution operation is executed close to the 

signal ends, the wavelet window extents into a region with no available data, so that the transform 

values close to the borders of the signal are tainted by the non-existing data. Consequently, the 

values of the CWT coefficients very close to the signal extrema arise abnormally (border 

distortions) and the real signal features of that region are consequently corrupted by the transform. 

So edge effects can provoke the masking of the damage and yield false indicators (see Section 4).     

Among the different approaches to handle edge effects, the most commonly used one is to 

preprocess the signal through extrema extension [4,18]. Traditional extension techniques include 

extension by zero padding, periodicity, symmetry and linearization [20]. These methods make 

simple assumptions about the signal characteristics outside the borders but they prove unsatisfactory 

for many applications [21-24], including damage detection [9-10,17].  

According to the cracked beam model of Section 2, a damage introduces a discontinuity (jump) in 

the rotation, )(x , of the structural response and consequently a singularity in the curvature, 

)(x  , and in the subsequent derivatives. As is well-known [7], a wavelet with m vanishing 

moments detects the local discontinuities of the signal and of its derivatives up to the mth order. 

Therefore, padding functions to be added at either end of the original signal, need to have specific 

smoothness features to avoid introducing edge discontinuities into the padded signal or its 

derivatives up to the mth order. The traditional padding methods cited above introduce 

discontinuities at the ends of the signal and/or in its 1st or 2nd derivatives, so that small damages 

close to the beam extrema are masked by CWT border distortions. Hence, an ad-hoc extension 

method that minimizes edge effects must be employed for effective damage detection through 

wavelet analysis.  

 

 

3.3. The proposed padding method  
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Realistic situations where noise is superimposed on the original signal are considered in the 

following. As a matter of fact, the ideal situation in the absence of noise has a trivial solution as by 

extending the signal, (x), through its interpolating spline, the border distortions are suppressed and 

the location of very tiny damages close to the edges are always identified by WT. It is also noted 

that in the absence of noise WA is not necessary to detect the damage position since by numerically 

calculating the second derivative of the original signal, the damage location can be readily 

identified [26]).  

The presence of noise is introduced by adding a synthetic Gaussian white noise to the original 

response. To quantify the noise level, the signal to noise ratio (SNR) is considered. The SNR, 

expressed in decibels, is defined as 


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The term P with the subscripts in Eq. (9) denotes power and is computed as 
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where Nz  denotes the number of discrete points of a generic sampled function z(x). Note that 

different measurements of the noise can be adopted. For instance by considering a signal-to-noise 

ratio SNR* defined as  noisesignal maxlog10 10  ( signalmax  = maximum absolute value of the signal, 

noise  = standard deviation of the signal), we have: SNR=120dB corresponds to about SNR*=63dB, 

SNR=100dB corresponds to about SNR*=53dB and so on. 

 

It can be shown, through numerical experiments, that approaches to extend the noisy signal either 

through its interpolating spline or its fitting spline (as suggested in [9-10]) prove not to be effective. 

Therefore, a simple and computationally efficient method based on using two polynomial functions 

)( 11 xf  and )( 22 xf  to extend, in the range 0x  and Lx  , respectively, the signal (x) is proposed 

(Fig. 2). These functions are obtained by a fitting procedure in order to: 

(i) describe correctly (x) in such a way to extend smoothly the trend of the signal and of its 

derivatives up to the order equal to the mth vanishing moment of the adopted wavelet; 

(ii) ensure continuity at the boundaries up to mth derivative order. 

Since the original signal is corrupted by noise, conditions (i) and (ii) may only be satisfied in an 

average sense.  

When adopting the „Coif4‟ wavelet with 8 vanishing moments, boundary continuities up to the 8
th

 

derivative of (x) have to be satisfied. Hence, polynomial functions of degree 8 are generated for 

)( 11 xf  and )( 22 xf .      

To define the extension functions, firstly the original noisy data, (x), are fitted in a least squares 

sense through two polynomial functions )( 11 xf  and )( 22 xf as   
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where 111 ,,, IBA   and 222 ,,, IBA   are the coefficients of the fitting polynomial functions, )( 11 xf  

and )( 22 xf , respectively. The function )( 11 xf  fits (x) from 0x  to Lx 1 ; while )( 22 xf  fits 

(x) from )1( 2 Lx  to Lx  , where 1  and 2  can vary in the range 11.0  . There are not 

optimal values for these parameters, as they depend on the trend of the signal and the noise level. 

For instance in the case of signals characterized by no sign change of first derivative, values in the 

range of 17.0   work well while for oscillating signals values in the range 4.01.0   are suggested; 

moreover the latter values are preferred in the presence of low noise content (see Section 4).  

The extension polynomials )( 11 xf  and )( 22 xf , having the same degree of the fitting functions, are 
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where s is the scale parameter considered in the WA,   represents the distance from the mother 

wavelet center to the position where the wavelet attains negligible values (for „Coif4‟, dx11 is 

assumed, where x is the sampling step), and 111 ,,, IBA   and 222 ,,, IBA   are the polynomial 

coefficients obtained as follows: 

)0(;;;;;;;; 11111111111111111  xIHHGGFFEEDDCCBBAA   (13.1) 

)(;;;;;;;; 22222222222222222 LxIHHGGFFEEDDCCBBAA     (13.2) 

Then, the coefficients 1H  and 2H  are optimized against the first derivative )(x of the padded 

noisy data, )()()( 21 xfxxf  , numerically calculated at 0x  and Lx   through Richardson‟s 

extrapolation [27], which allows a high-order approximation (e.g. )( 8dx , )( 10dx  or )( 12dx ) of 

the derivative.  An iterative procedure is required since 1H  and 2H  are equal to )0( x  and 

)( Lx  , respectively, which in turn are functions of 1H  and 2H . 

Since differentiating the original signal increases the amount of noise, the above described 

optimization approach is not effective for the other polynomial coefficients, 11 ,, GA   and 

22 ,, GA  . Note that the last two equalities of Eqs (13.1) and (13.2) impose the fundamental 

condition of signal continuity at the two extrema. Furthermore, it has to be underlined that good 

results can be achieved without performing the optimization procedure related to the first derivative 

(i.e. by assuming 11 HH   and 22 HH  ) and, in fact, better results could be obtained in some 

cases, e.g., when the noise level is high. Figures 2-4 show a generic noisy data signal, extended 

through the proposed polynomial functions )( 11 xf  and )( 22 xf , and its 1st and 2nd derivatives. 

These figures point out that the conditions (i) and (ii), explained above, are satisfied by the 

proposed method.   

 

Figure 2 

Figure 3 

Figure 4 
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4. ILLUSTRATIVE EXAMPLES  

The effectiveness and the versatility of the proposed polynomial padding method in minimizing the 

CWT border distortions is analyzed by considering the mode shapes and the static deflection of 

both cantilever and simply supported cracked beams. Since the static deflection of a simply 

supported beam with a crack close to a support under a mid-span vertical point force coincides with 

that of a cantilever with a crack close to the free end, only the latter case is analysed in the 

following.  

The method is assessed by considering analytical structural responses having different features 

(trigonometric function for the mode shapes and cubic polynomial for the static responses) and 

constraint conditions (clamped, simple supported and free). The results are compared to those 

obtained by the traditional linear padding method [20] and Messina’s isomorphism methods [17], 

experimented by the present authors to be the most effective padding method available in the 

literature. Note that the latter methods are chosen instead of the Messina’s self-minimization 

method, as they are found to be comparatively more robust and effective (incidentally, in the 

conclusions reported in Ref. [17] Messina himself recommends to adopt isomorphism methods). 

A cracked beam of length L = 1m and a rectangular cross-section of height h = 0.05L and width b = 

0.5h, constituted by an elastic linear isotropic material with Young modulus, E = 200 GPa, and 

density, = 7850 kg/m
3
, is considered. 

The free vibration responses and the static deflections of the beams, sampled at x = 0.001L 

intervals, are determined according to the model of Section 2. Such signals are analyzed through 

CWT, fixing the relative crack depth, δ, unless otherwise specified, to 2% and varying the crack 

locations, xc, and the noise level (synthetic Gaussian white noise is used). The wavelet analyses are 

executed using the „Coif4‟ mother wavelet. 

 

4.1 Free vibration response of a cantilever beam 

The normalized first mode shape (maximum deflection equal to unity) of the damaged cantilever 

beam is analysed using the linear padding method, Messina‟s method (with the “Turnover” method 

at the clamped end and the “Rotation” method at the free end [28]) and the proposed method (with 

the fitting parameters, 1  and 2  assumed equal to 1). The crack is located at x = 0.02L from the 

clamped end. A noise level SNR = 120 dB is assumed. 

In Fig. 5a, where the linear padding method is used, a jump in the curvature is evident at x = 0. In 

Fig. 5b, where the “Turnover” method is applied to the clamped end, the continuity of the second 

derivative at x = 0 is fulfilled while a jump of the third derivative is expected. On the other hand, in 

Fig. 5c, thanks to the proposed polynomial padding, no discontinuities are present in the boundaries 

and the extending functions are in agreement with the average trend in the curvature )(x  . It is 

worth noticing that, for the selected combination of noise level and damage severity and location, it 

is not possible to locate the crack by analyzing the curvature plot, and hence a wavelet transform 

technique is necessary to detect such damage. 

 

Figure 5 
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Figures 5d-f present zooms on the contour plots of the absolute values of the CWT (from scale 1 to 

scale 40) of the normalized first mode shape padded using the three methods presented above. In 

the contour plots, the lighter colors represent high coefficient values, whilst darker colors 

correspond to low coefficient values (see the color bar on the right of Figs. 5d-f). Since a wavelet 

with more than one vanishing moment (in our case „Coif4‟) associates high coefficient values to the 

signal discontinuities and since high wavelet scales are able to detect a discontinuity even if the 

wavelet is not centered on it, the contour plot displays a shape pattern characterized by a central 

bright cone and a number of adjacent less bright cones, all pointing towards the singularity region.  

Since the linear padding method introduces a discontinuity in the second derivative at x = 0 (Fig. 

5a), high coefficient values arise around that region and the bright cone points towards x = 0 (Fig. 

5d). The damage location is consequently masked because of the edge effects. Furthermore if only 

the CWT coefficients related to a given scale were considered (e.g. scale 24 in Fig. 6a), the analysis 

would locate erroneously the damage at about x = 0.01L.  

When Messina‟s method is applied, even if a jump in the third derivative occurs at x = 0, crack 

discontinuity at finer and medium scales can be detected as the contour cones point correctly 

towards the crack location at x = 0.02L (Fig. 5e). On the other hand, at coarser scales, characterized 

by narrower bands of lower frequencies, the CWT detects the jump of the third derivative and hence 

it is unable to locate the damage.  

Figure 5f shows that, when the proposed polynomial extension method is used, the central bright 

cone is characterized by an axis centered to the correct damage location. Therefore crack position 

can be detected at all CWT scales, leading to unambiguous and more reliable damage identification.  

 

The contour plots of the absolute values of the CWT of the normalized third mode shape of the 

cracked cantilever beam obtained using Messina‟s method and the proposed polynomial method are 

presented in Fig. 6 (the crack is located close to the free end at x = 0.98L and a noise level SNR = 

140 dB is imposed). Given the oscillating feature of the mode shape, 1  and 2  are assumed equal 

to 0.2 and 0.333, respectively. 

Figures 6a and 6b demonstrate that wavelet analysis fails to detect the damage near the free end 

when Messina‟s method is applied. This is a consequence of the fact that the curvature near the free 

end tends to be null and therefore damage identification is more difficult. The jump in the mode 

shape third derivative at x = 0 due to the use of the “Turnover” padding method is the main 

discontinuity that „Coif4‟ wavelet detects in analyzing the padded signal. 

On the other hand, using the proposed polynomial padding method, no discontinuity is present at 

the extrema of the signal or its derivatives, and no border distortion is generated by the wavelet 

transform. The bright cones point properly to the damage position (see Figs 6c-d).   

 

Figure 6 

 

4.2 Free vibration response of a simply supported beam 

Figure 7 shows the effectiveness of Messina‟s method (the “Rotation” method is applied at both 

extrema) and the proposed polynomial method ( 1  and 2  are equal to 1) in the case of the first 
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mode shape of a cracked simply supported beam corrupted by noise (SNR = 140 dB). The crack, 

close to the left support at x = 0.02L, is correctly identified through both methods. Note that when 

applied to zero curvature ends, Messina‟s method does not introduce a discontinuity in the signal or 

its derivatives, and hence no border distortion occurs. Note also that the brightest cone of Fig. 7a is 

shifted at coarser scales to the left with respect to the damage location due to the presence of the 

mirrored damage at x = -xc.        

 

Figure 7 

 

4.3 Static deflection  

The normalized noisy static deflections of the cantilever beam subjected to the point load F of Fig. 

1, with an open crack of relative depth δ = 2%, located at 0.02L or at 0.098L, are analysed by CWT. 

The polynomial extension method is applied assuming 1  and 2  equal to 1 and compared with 

Messina‟s method. It is observed that even if (x) is a cubic function and the continuity of (x) and 

its derivatives at the boundaries can be satisfied by polynomial functions of degree three, the 

presence of noise requires extending polynomial functions in general of eighth order to overcome 

edge effects.  

Both methods prove to be effective in analyzing static deflection when the crack is close to the 

clamped end (Fig. 8) or when it is near the free end (Fig. 9).  

Considering a noise level of SNR = 100 dB, since finer scales are more sensible to noise than 

coarser ones, the lower parts (from scale 1 to 20) of the CWT contour plots in Figs. 8a and 8c 

provide somewhat ambiguous damage detection for both considered methods. On the other hand, by 

considering the upper parts of these contour plots, (from scale 20 to 40), the damage location can 

clearly be identified (Figs. 8b and 8d).  

 

Figure 8 

 

Fig. 9 compares the effectiveness of the two methods in removing edge effects as the noise level 

increases. When noise level is at SNR = 100 dB, the damage is clearly located by both methods. 

Increasing the noise level to SNR = 90 dB the damage is partially masked, while at SNR = 80 dB, 

the noise completely masks the damage. This behavioral trend demonstrates that CWT border 

distortions are effectively suppressed by both methods, but damage is masked when a certain level 

of noise (which is dependent on the specific beam features and damage location and severity) is 

present.         

 

Figure 9 

 

4.4 Summary of padding method comparison 
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The linear padding method, Messina‟s isomorphism methods and the proposed polynomial 

extension method are qualitatively compared in Figure 10 for a range of mode shapes and static 

deflections obtained by varying the crack depth ( 9.00001.0  ) and its location (x = 0.02L or x = 

0.98L) (see Fig. 10). Crack depth is incremented by 210  jd  throughout the range 
jj   1010 1   where 3,2,1,0j . For a given noise level, the identification criterion considers 

that the damage is correctly detected if the highest absolute value of the CWT at the scale 24 falls 

exactly at the crack location with each of 25 different noise random distributions. Figure 10 

identifies the minimum crack depth sizes correctly identified by each method with a given SNR. In 

these analyses, the fitting parameters 1  and 2  equal 1, except in the analysis of the second mode 

shape of the cantilever beam, where 15.01   and 125.02  , and the first mode shape of the 

simply supported beam, where 1667.021   . Moreover for the second mode shape of the 

cantilever beam, the values 11 HH   and 22 HH   are employed as coefficients of the extension 

polynomial function. 

 

Figure 10 clearly shows, for all the conditions analysed, the weakness of the linear padding method 

in tackling border distortions. For instance, when the first mode shape of the cantilever beam with 

xc = 0.98L is analysed, even cracks of about 9.0  are masked by edge effects. Moreover, at a 

given noise level, the minimum crack size that can be identified using the linear padding method is 

larger than those that can be detected using the other methods. For both the linear padding method 

and Messina‟s method, the plots in Figure 10 display plateau representing the minimum crack size 

that can be correctly detected irrespective of SNR. In the linear padding method this plateau occurs 

because „Coif4‟ recognizes the dominance of the discontinuity in the second derivative at x = 0 over 

the discontinuity introduced to the first derivative by the crack. The crack size identified by the 

plateau is the smallest that can be identified in this particular structure. As expected, at higher noise 

levels, the minimum damage that can be detected increases.  

With Messina‟s method, the observed plateaus in the -SNR curves are attributable to the 

discontinuity in the third derivative at x = 0 related to the “Turnover” method. Since a jump in the 

third derivative has less influence on the CWT than one in the second derivative, the smallest crack 

detectable using Messina‟s method at a given SNR is smaller than that detectable using the linear 

padding method. When Messina‟s method is applied to the mode shapes of the simply supported 

beam, the minimum identified  decreases monotonically with increasing SNR (Fig. 10d). As 

mentioned above, this is due to the fact that the “Rotation” method applied to zero curvature ends 

does not yield edge discontinuities in all the signal derivatives. With damage at x = 0.98L in a 

cantilever beam, Messina‟s method is much more effective when applied to the static deflection 

than to the first mode shape (see Figs. 10f and 10c). This arises because the first to the mth 

derivatives of mode shape are all non-zero whilst the derivatives of the cubic static deflection are 

null from the 4th. As „Coif4‟ analyses high order derivatives, the weight of the jump in the third 

derivative at x = 0 is more substantial in the mode shape.   
 
        

The proposed polynomial padding method is observed to be the most effective and versatile method 

in analyzing different structural responses corrupted by different noise amounts. At severe noise 

levels, the proposed polynomial method and Messina‟s method succeed in identifying very similar 
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minimum damage levels. However, at medium-to-low noise levels, the polynomial method is more 

successful in removing CWT border distortions, and is capable of identifying smaller cracks than 

either of the other methods. 

     

Figure 10 

The results being presented in Fig. 10 for a sampling interval x = 0.001L seem to be confirmed by 

taking a larger value of the sampling interval. For instance, the same damage identification capacity 

obtained in the above with x = 0.001L can be attained by considering a larger sampling interval, 

provided that a smaller wavelet scale is chosen (the need for a smaller wavelet scale as the sampling 

interval gets larger is discussed in Ref. [29]). Figure 11 presents the minimum detectable crack size 

as a function of the signal-to-noise ratio SNR for the first mode shape, sampled at x = 0.01L, in a 

cantilever beam with crack at xc = 0.02L. The trends turn out to be similar to those reported in Fig. 

10a for x = 0.001L. 

 

 

Figure 11 

 

5. CONCLUSIONS 

When wavelet analysis is employed in vibration-based structural damage identification, the issue of 

border distortions is often crucial as it tends to mask damage near the edges of the structure where 

high stress levels are liable to occur. Since traditional padding methods are not satisfactory when 

small near-edge damages need to be detected, an effective and computationally efficient signal 

extension method is proposed to enhance damage detection by CWT. The method is based on the 

approach of padding the original signal using two functions that satisfy continuity conditions and 

extend the average trend and derivatives of the noisy signal. The two high degree polynomial 

functions employed are determined by imposing signal and first derivative extrema continuity 

conditions.  

To investigate the effectiveness and the versatility of the proposed padding method, the analytical 

free vibration and static deflection responses of cantilever and simply supported cracked beams 

were analysed. Variations in crack depth ratio and position are considered, and synthetic Gaussian 

white noise is introduced to the signal to emulate real measured data. CWT, applying the linear 

padding method, Messina‟s isomorphism methods and the proposed polynomial method, is 

executed to detect the position of damage in the different structural configurations at different noise 

levels.  

The CWT contour plots in the scale from 1 to 40 are analysed. While the linear padding method is 

generally poor, failing to identify small- and even medium-sized damage close to the beam ends, 

Messina‟s method works much better when the crack is close to the cantilever fixed end or when 

the sinusoidal free vibration of the simply supported beam is analysed. When applied to cantilever 

beam mode shapes Messina‟s method does not perform as well. The proposed polynomial method 

proved to be the most powerful method in dealing with the full range of structural configurations 
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and damage considered. In particular, smaller cracks can be identified using the proposed method 

than with either of the other methods, whose formulations introduce a minimum bound on the crack 

size that can be correctly detected. 

In summary, while damage identification using wavelet-based techniques is still an open challenge 

in the presence of high noise levels, the proposed signal extension method supports improved 

detection of small damage near beam edges through the minimization of wavelet transform border 

distortions. 
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Figure captions 

Fig. 1 - Cracked cantilever and simply-supported beam models. 

Fig. 2 - A generic noisy data signal, η(x), is extended smoothly before the start by )( 11 xf  and after 

the end by )( 22 xf . 

Fig. 3 - The 1st derivative of the padded noisy signal is shown. The functions )( 11 xf   and )( 22 xf   

extend )(x  smoothly. 

Fig. 4 - The 2nd derivative of the padded noisy signal is plotted. Increasing the derivative order of 

η(x) leads to an increase of noise. However )( 11 xf   and )( 22 xf   follow the average trend of )(x  . 

Fig. 5 - Curvature and contour plots of the absolute values of the CWT of the normalized first mode 

shape of a cracked cantilever beam with δ = 2% and xc = 0.02L, and SNR=120 dB: (a,d) linear 

padding method; (b,e) Messina’s method; (c,f) proposed polynomial padding method. 

Fig. 6 - Contour plots of the absolute values of the CWT of the normalized third mode shape of the 

cracked cantilever beam with δ = 2% and xc = 0.98L, and SNR=140 dB: (a) Messina’s method; (b) 

zoom of (a); (c) proposed polynomial extension method; (d) zoom of (c). 

Fig. 7 - Zoom of the contour plot of the absolute values of the CWT of the normalized first mode 

shape of the cracked simply supported beam with δ = 2% and xc = 0.02L, and SNR=140 dB: (a) 

Messina’s method; (b) proposed polynomial extension method. 

Fig. 8 - Zooms of the contour plots of the absolute values of the CWT of the normalized static 

deflection of the cracked cantilever beam with δ = 2% and xc = 0.02L, and SNR=100 dB: (a,b) 

Messina’s method; (c,d) proposed polynomial extension method. 

Fig. 9 - Contour plots of the absolute values of the CWT of the normalized static deflection of the 

cracked cantilever beam with δ = 2% and xc = 0.98L, for varying noise levels: (a,b) SNR=100 dB; 

(c,d) SNR=90 dB; (e,f) SNR=80 dB. The contours (a,c,e) and (b,d,f) are obtained using Messina’s 

method and proposed polynomial extension method, respectively. 

Fig. 10 – Comparison of the success of the linear padding method, Messina’s method and the 

proposed polynomial method in identifying damage by CWT at scale 24 for varying SNR. The 

following structural schemes are analysed: (a,b) cantilever first and second mode shapes, 

respectively, with xc = 0.02L; (c) cantilever first mode shape with xc = 0.98L; (d) simply supported 

beam first mode shape with xc = 0.02L; (e,f) cantilever static deflection with xc = 0.02L and xc = 

0.98L, respectively.    

Figures



Fig. 11 – Comparison of the success of the linear padding method, Messina’s method and the 

proposed polynomial method in identifying damage by CWT using large sampling interval (x = 

0.01L) at scale 2 for varying SNR. The results refer to cantilever first mode shape, with xc = 0.02L.   
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Fig. 7 
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