
25 April 2024

University of Parma Research Repository

A local time stepping algorithm for GPU-accelerated 2D shallow water models / Dazzi, Susanna; Vacondio,
Renato; Dal Palù, Alessandro; Mignosa, Paolo. - In: ADVANCES IN WATER RESOURCES. - ISSN 0309-1708. -
111:(2018), pp. 274-288. [10.1016/j.advwatres.2017.11.023]

Original

A local time stepping algorithm for GPU-accelerated 2D shallow water models

Publisher:

Published
DOI:10.1016/j.advwatres.2017.11.023

Terms of use:

Publisher copyright

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available

Availability:
This version is available at: 11381/2836093 since: 2021-10-13T18:00:48Z

Elsevier Ltd

This is the peer reviewd version of the followng article:

note finali coverpage

UN
CO

RR
EC

TE
D

PR
OOF

Advances in Water Resources xxx (2017) xxx-xxx

Contents lists available at ScienceDirect

Advances in Water Resources
journal homepage: www.elsevier.com

A local time stepping algorithm for GPU-accelerated 2D shallow water models
Susanna Dazzi a, ⁎, Renato Vacondio a, Alessandro Dal Palùb, Paolo Mignosa a

a Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/A, Parma 43124, Italy
b Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze 53/A, Parma 43124, Italy

A R T I C L E I N F O

Keywords:
GPU
Local time stepping
Shallow water equations
Finite volume
Flood simulation
Parallel computing

A B S T R A C T

In the simulation of flooding events, mesh refinement is often required to capture local bathymetric features and/
or to detail areas of interest; however, if an explicit finite volume scheme is adopted, the presence of small cells
in the domain can restrict the allowable time step due to the stability condition, thus reducing the computational
efficiency. With the aim of overcoming this problem, the paper proposes the application of a Local Time Stepping
(LTS) strategy to a GPU-accelerated 2D shallow water numerical model able to handle non-uniform structured
meshes. The algorithm is specifically designed to exploit the computational capability of GPUs, minimizing the
overheads associated with the LTS implementation. The results of theoretical and field-scale test cases show that
the LTS model guarantees appreciable reductions in the execution time compared to the traditional Global Time
Stepping strategy, without compromising the solution accuracy.

1. Introduction

The heavy economic and human losses caused by flood events in re-
cent years (Barredo, 2009) demand the adoption of specific flood risk
management strategies, which include not only structural defense sys-
tems (such as levees), but also resilient policies. From this point of view,
the numerical modeling of flood scenarios can be very helpful both
for the definition of the most effective technical interventions, and for
the design of flood-hazard and flood-risk maps, necessary for flood risk
management planning (as requested by the European Council, 2007).

Most free-surface flows, such as tsunamis, river floods, and
dam-break events, can be simulated through the two-dimensional (2D)
Shallow Water Equations (SWE), which can be discretized by differ-
ent numerical methods (e.g. Alcrudo and Garcia–Navarro, 1993; Horritt
and Bates, 2002; Vacondio et al., 2012; Costabile et al., 2012, 2015).
Among these, Finite Volume (FV) schemes have the advantage of ac-
curately describing transcritical flows and shock-type discontinuities
(Toro, 1999), and can even be applied to flows over irregular bathyme-
tries, provided that the scheme is associated with a specific treat-
ment of wetting and drying fronts (e.g. Bradford and Sanders, 2002;
Brufau et al., 2004; Liang and Borthwick, 2009), and of bed and friction
slope source terms, which should guarantee that the C-property is sat-
isfied (e.g. Bermudez and Vazquez, 1994; Greenberg and Leroux, 1996;
Garcia-Navarro and Vazquez, 2000; Rogers et al., 2003; Audusse et al.,

2004; Aureli et al., 2008; Liang and Marche, 2009; Vacondio et al.,
2013).

The high computational cost entailed by the application of 2D SWE
models to field-scale simulations with high-resolution meshes encour-
aged researchers to investigate parallelization techniques on supercom-
puters (e.g. Sanders et al., 2010). Moreover, the computational capa-
bility of Graphics Processing Units (GPUs) has been recently exploited
to carry out High Performance Computing on personal workstations,
and GPU-accelerated SWE models are now developed by a number of
authors, both for structured (Lastra et al., 2009; de la Asuncion et al.,
2013; Brodtkorb et al., 2012; Vacondio et al., 2014, 2017; Ferrari et al.,
2017) and unstructured meshes (Castro et al., 2011; Lacasta et al., 2014;
Petaccia et al., 2016). Results of these works show that significant re-
ductions in computational time, up to two orders of magnitude com-
pared with serial codes, can be achieved.

In many practical applications, local mesh refinement is often nec-
essary, due to the presence of complex bathymetric features or spe-
cific areas of interest, and some GPU-enhanced models able to handle
non-uniform resolution have been presented in literature (Sætra et al.,
2015; Vacondio et al., 2017). Explicit numerical schemes are often pre-
ferred to implicit ones (as shown by Teng et al., 2017), due to their
suitability for describing rapidly varying flows, but also to the possi-
bility of designing efficient parallel models, exploiting modern hetero-
geneous computing architectures. However, the time step size used to
update the solution with explicit schemes is computed based on the
Courant-Friedrichs-Lewy (CFL) stability condition, and is generally dic-
tated by the minimum grid size (neglecting the possible high variabil

⁎ Corresponding author.
Email addresses: susanna.dazzi@unipr.it (S. Dazzi); renato.vacondio@unipr.it (R. Vacondio); alessandro.dalpalu@unipr.it (A.D. Palù); paolo.mignosa@unipr.it (P. Mignosa)

https://doi.org/10.1016/j.advwatres.2017.11.023
Received 26 April 2017; Received in revised form 25 September 2017; Accepted 23 November 2017
Available online xxx
0309-1708/ © 2017.

UN
CO

RR
EC

TE
D

PR
OOF

S. Dazzi et al. Advances in Water Resources xxx (2017) xxx-xxx

ity in wave celerity values). All cells in the domain are advanced with
the common (minimum) time step. This strategy is usually referred to as
Global Time Stepping (GTS). If only a small region is refined, the other
part of the domain, with a coarser grid size, is updated with a much
smaller time step than its maximum admissible for stability, thereby in-
creasing the required computational effort. In order to overcome this
problem, Osher and Sanders (1983) introduced the Local Time Stepping
(LTS) strategy, based on the idea of advancing each cell with its own
time step, closer to its maximum allowable. LTS schemes were success-
fully applied to SWE models (Crossley and Wright, 2005; Sanders, 2008;
Kesserwani and Liang, 2015; Dazzi et al., 2016), and appeared to be
beneficial for enhancing their computational performances compared to
standard GTS schemes, without degrading the solution accuracy. To the
best of the authors’ knowledge, the only attempt to apply a LTS scheme
in a GPU-accelerated model can be attributed to Sætra et al. (2015), who
focused on an Adaptive Mesh Refinement (AMR) technique.

This paper presents an efficient GPU implementation of a first- and
second-order accurate FV scheme with a LTS strategy, which solves the
2D SWEs on a non-uniform structured grid. The present model is based
on an existing GPU-model (Vacondio et al., 2014, 2017), which has
been thoroughly tested and validated, even for the simulation of real
flooding events (Vacondio et al., 2016). Compared to previous LTS tech-
niques, the algorithm presented in this work has been derived and coded
in such a way that it can exploit the computational capabilities of GPUs.
The performances of the GTS and LTS schemes are assessed based on
three theoretical and two real-field test cases.

The paper is structured as follows. Section 2 briefly describes the
original GTS model. In Section 3, the new LTS scheme and its GPU im-
plementation are detailed. Then, the model performances are evaluated
through the simulation of five test cases in Section 4. Conclusions are
drawn in Section 5.

2. Global time stepping scheme

The original GTS numerical model is described in detail by Vacondio
et al. (2014, 2017). Here, only the most important features are briefly
recalled. The governing equations are the 2D SWEs written in integral
form (Toro, 2001):

(1)

where t is the time, A is the area of the integration volume, C is the
volume boundary, U is the vector of conserved variables, H=(F,G) is
the tensor of fluxes in the x and y directions, n is the outward unit
vector normal to C, S0 and Sf are the bed and friction slope source
terms, respectively. The modified form of the SWEs, which guaran-
tees that the scheme is well-balanced, is adopted (following Liang and
Marche, 2009):

(2a)

(2b)

In Eq. (2), h is the flow depth, z is the bed elevation above datum,
and η=h+z is the water surface elevation above datum; u and v are the
velocity components along the x and y directions respectively, g is the
acceleration due to gravity, and nf is Manning's roughness coefficient.

An explicit FV scheme is used to discretize the equations; both
first-order and second-order accurate approximations in space and time
are implemented. The first-order approximation exploits the following
equation to update the conserved variables in time:

(3)

Subscripts i,j represent the cell position, while superscript n refers to
the time level; Δx and Δy are the cell dimensions in the x and y direc-
tions respectively, and Δt is the time step size, computed according to
the CFL stability condition (Toro, 2001):

(4a)

(4b)

where Cr is the Courant number (≤1). Notice that, according to the GTS
scheme, each cell is updated with the same time step Δt, equal to the
minimum value in the whole domain.

Second-order accuracy in space is achieved by means of a depth-pos-
itive MUSCL extrapolation at cell boundaries (Audusse et al., 2004),
adopting the minmod slope limiter. Second-order accuracy in time is ob-
tained by applying the second-order Runge–Kutta method:

(5)

where is obtained as:

(6)

2

UN
CO

RR
EC

TE
D

PR
OOF

S. Dazzi et al. Advances in Water Resources xxx (2017) xxx-xxx

and the operator Di(Ui,j) is defined as:

(7)

Fluxes are computed using the HLLC approximate Riemann solver
(Toro, 1999), together with the correction proposed by Kurganov and
Petrova (2007), which avoids non-physical velocity values at wet/dry
fronts. The slope source term is discretized using a centered approxima-
tion (Vacondio et al., 2014), while the friction source term is discretized
using the implicit formulation proposed by Caleffi et al. (2003).

The CUDA/C ++ implementation of the model exploits the intrinsic
parallelization of computations on GPU devices, thus guaranteeing fast
execution times compared to serial codes. The basic work unit in CUDA
is the thread, and many threads are organized into a block. In the pre-
sent model, each thread corresponds to one cell used to discretize the
computational domain, and each block consists of K×K cells. In the first
implementation of this model (Vacondio et al., 2014), the domain was
discretized by means of a Cartesian grid; information about neighboring
cells/blocks is easily retrieved thanks to the correspondence between
the physical position of a cell/block and its position on the two-dimen-
sional array where data concerning that cell/block are stored in the
memory.

Recently, the model has been extended to the case of a new type
of non-uniform structured grids, called Block-Uniform Quadtree (BUQ)
grids (Vacondio et al., 2017). In this case, the domain is still partitioned
into blocks, each containing K×K cells with uniform spatial resolution
within the block, but cells belonging to different blocks can be charac-
terized by a different grid size. In particular, starting from blocks with
the maximum resolution level (level 0), which contain cells with size
Δx0=Δxmin, each level l contains cells with size Δxl=2l·Δxmin, up to
the minimum resolution level L, where cells have size Δxmax=2L·Δxmin
(in this work, L is assumed equal to 3). Neighboring blocks can dif-
fer by one resolution level, at most. The idea is similar to standard
quad-tree partitioning (Liang and Borthwick, 2009), but each node of
the quad-tree mesh corresponds to a block instead of a single cell. Op-
eratively, the user must specify seeding points with assigned spatial res-
olution level as input to the simulation, and the model automatically
generates the multi-resolution grid according to the procedure described
by Vacondio et al. (2017). Memory allocation of blocks is not pre-estab-
lished, as in the case of Cartesian grid, hence some additional data must
be stored in order to retrieve information about neighboring cells be-
longing to different blocks during the computations. In particular, when
adjacent cells have a different spatial resolution level, the natural neigh-
boring interpolation procedure (Liang, 2011) is employed to reconstruct
the conserved variables in the neighboring cells.

3. Local time stepping scheme

The key idea of the LTS strategy is to advance each cell with a
time step as close as possible to its maximum permissible for stability.
Most papers concerning LTS (e.g. Kleb et al., 1992; Crossley and Wright,
2005; Krámer and Józsa, 2007; Sanders, 2008; Dazzi et al., 2016) as-
sume the local time step size in each cell as an integer multiple (in
particular, a power-of-two multiple) of a common reference time step
Δt, equal to the minimum in the whole domain. The procedure usually
starts with the application of Eq. (4a) for each cell, in order to compute
its own allowable time step, and of Eq. (4b), in order to find the global
minimum time step. A temporal resolution level m (0, 1, 2 …) is as

signed to each cell based on the condition: 2 m Δt≤Δti,j<2m+1 Δt; the
coarsest level in the domain M is also computed. Then, the update pro-
cedure begins: all cells belonging to level m will be updated via 2M-m

steps of size 2mΔt; for example, cells with m=0 will be advanced for 2M

steps of size Δt, while cells with m=M will only perform one step of
size Δtmax=2MΔt. This sequence of intermediate updates for each cell
leads to a synchronized solution in the whole domain, then the proce-
dure starts again.

The LTS algorithm presented in this paper is generally based on the
same idea, with a major difference: it is assumed that all cells belonging
to a block, which already share the same mesh size in the BUQ grid, also
share the same local time step, while different blocks may be updated
with different time steps. Hence, similarly to the spatial resolution level
l (0, 1…L) of each block, it is possible to define the temporal resolu-
tion level m (0, 1…M) of each block. Notice that, while the spatial res-
olution is assigned by the grid generation procedure in the pre-process-
ing stage and remains unchanged during the simulation, the temporal
resolution levels need to be re-computed before each sequence of par-
tial updates, because flow conditions and admissible time step sizes can
change throughout the domain during the simulation.

The choice of adopting the same time step for all cells belonging
to a block may appear to be inefficient in the LTS framework, because
in the worst case only one cell may actually need to be advanced at
such a slow pace. However, this block-based design offers a simple and
well-performing parallel code, which fully exploits the parallel architec-
ture of GPUs. It is worth recalling that the best performances on GPUs
are obtained when cells belonging to a block are characterized by uni-
form features, so that special treatments are required only for cells on
the border of a block, and code branching is minimized. Ultimately,
this LTS implementation represents a natural extension of the spatial
multi-resolution model, and introduces limited coding efforts and over-
heads.

In the following sub-sections, the main aspects of the LTS scheme
are outlined. Section 3.1 deals with the definition of active blocks, with
the assignment of a temporal resolution level to each block, and with
the m-level distribution regularization. In Section 3.2, the core updat-
ing procedure for different time resolution blocks is covered, while
Section 3.3 describes the rollback procedure, needed in cases where the
CFL condition is violated. Finally, Section 3.4 reports on the expected
advantages and overheads for a LTS block-based simulation on GPUs.

3.1. Temporal resolution level assignment to blocks

This Section describes the procedures required before the asynchro-
nous time advancement of blocks may start. Notice that, when these op-
erations are performed, all cells are synchronized to the common time
level tn.

The procedure for the temporal resolution assignment to each block
starts with the execution of a kernel (i.e. a CUDA piece of code executed
on the GPU) which computes the allowable Δti,j in each cell, and deter-
mines the minimum Δtb of each block b. Then, the CPU calculates the
minimum Δt in the whole domain:

(8)

and assigns an initial guess m-level to each block as follows:

(9)

It is worth recalling that, in the original GTS model, a Block Deac-
tivation Optimization (BDO) was introduced in order to increase model
efficiency (Vacondio et al., 2014); thanks to this procedure, only active
blocks are processed during each time step. A block is defined as active
if it contains at least one wet cell, or one cell which may become wet at

3

UN
CO

RR
EC

TE
D

PR
OOF

S. Dazzi et al. Advances in Water Resources xxx (2017) xxx-xxx

the end of the current time step. The kernel that computes the allow-
able time step also determines whether a block is wet. Then, “wettable”
blocks are added to the set of active blocks by CPU processing, based
on the simple idea that a wet/dry front may propagate at most over
one cell per time step: hence, a dry block may become wet if one of
its neighboring blocks has at least one wet cell on the confining bor-
der. For LTS, this condition is not sufficient, since up to 2M steps may
be performed before re-computing the set of active blocks. Hence, all
dry blocks that are neighbors to wet blocks are activated, as shown in
Fig. 1, where wet blocks and “wettable” blocks are active, while dry
blocks are not processed during the current iteration. Since the set of
active blocks is not redefined for a few steps, it is strongly recom-
mended to impose an upper bound to M, which should be limited to
fulfil the condition 2M=K (if the block consists of K×K cells). For ex-
ample, if 8×8 cell-blocks are employed, M should be limited to 3, so
that 8 steps may be performed at most, and that the wet/dry front may
not propagate over more than the 8 cells of the neighbor block. Ob-
viously, for “wettable” blocks it is impossible to compute Δtb because
depth and velocity are null in each cell. Therefore, each “wettable”

Figure 1. Sketch of the definition of active blocks: wet blocks are depicted in blue, “wet-
table” blocks in red, dry blocks in white. An example of first guess m-level assignment to
“wettable” blocks j and k is also provided. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

block is temporarily assigned the following m-level:

(10)

where nwb indicates a neighboring wet block. As an example, let us con-
sider the case of block j in Fig. 1: its two wet neighbors are character-
ized by m-levels equal to 1 and 2; block j will then be given mj=1. Ex-
ception to this rule is the case of a “wettable” block with a finer spatial
resolution than the one of its wet neighbors; in this case, its temporal
resolution level is refined too. As an example, block k in Fig. 1, whose
wet neighbors are coarser and are characterized by m=1, is assigned a
temporal resolution level equal to 0.

Many authors (e.g. Crossley and Wright, 2005; Krámer and Józsa,
2007) suggest that neighboring cells (or blocks, in this case) should dif-
fer by one temporal resolution level at most, in order to increase the
robustness of the scheme. This also helps to develop an algorithm able
to guarantee mass and momentum conservation (when no source terms
are present) at interfaces between cells with different m-levels, while
minimizing code branching and thus maintaining sufficient efficiency
on GPUs. For this reason, after defining the set of active blocks, a reg-
ularization procedure to correct the initial guess m-levels is performed
(see Algorithm 1). Iterations start from blocks with the maximum tem-
poral resolution level (m=0). For each block belonging to the current
level, the temporal resolution of all neighboring blocks is checked, and,
whenever the difference between the m-levels of the current and neigh-
bor block exceeds one, the neighbor block is assigned a reduced m-level.
An example of the application of this procedure is shown in Fig. 2a–b,
which depict a few blocks of a BUQ grid with the corresponding tempo-
ral resolution level. After the initial guess m-level assignment (Fig. 2a),
which obviously depends on the local grid size and flow variables, in
this example two instances of blocks with one neighbor (indicated by a
black arrow) whose m-level must be reduced (see Fig. 2b) can be identi-
fied.

Moreover, Crossley and Wright (2005) analyzed how waves propa-
gate in neighboring cells characterized by different temporal resolution
levels, and concluded that a “buffer” region needs to be defined in order
to guarantee the propagation of waves travelling from maximum to min-
imum temporal resolution level regions. In the present model, the buffer
region consists of a buffer block, whose m-level is artificially re-assigned
according to Algorithm 2. In summary, each m-level region is broadened
with one more line of buffer blocks. The allowable time step in these
blocks is in theory double than the one actually used during the compu-
tations; however, the local artificial temporal resolution refinement en-
sures the correct propagation of waves and wet/dry fronts. An example
of the m-level reassignment to buffer blocks is represented in Fig. 2c.

Figure 2. Example of temporal resolution level assignment to blocks: (a) initial guess, with arrows identifying neighboring blocks with a jump in the m-level larger than one; (b) after the
regularization procedure of Algorithm 1; (c) after the m-level reassignment in buffer blocks according to Algorithm 2.

4

UN
CO

RR
EC

TE
D

PR
OOF

S. Dazzi et al. Advances in Water Resources xxx (2017) xxx-xxx

3.2. LTS update procedure

Algorithm 3 compares the GTS and LTS scheme pseudocodes (ex-
cluding input and output procedures). At the beginning of each itera-
tion, the time step is computed, and active blocks are defined; in the LTS
procedure, m-levels are also properly assigned, as already described in
Section 3.1. Then, the update procedure may start. In the GTS version of
the model, the solution is advanced by a single time step in the whole
domain, and the iterations over time continue. In the LTS version of the
scheme, instead, if M is the maximum temporal resolution level in the
domain, a series of intermediate updates, which advances the solution
from time level tn to time level tn+Δtmax (where Δtmax=2M Δt) via 2M

steps, starts.
Let us consider the first-order version of the scheme. In this case,

MUSCL extrapolation is not performed, and the left and right values re-
quired for computing fluxes at cell edges coincide with the conserved
variables at cell centres; the solution in each cell is advanced via Eq. (3)
with the local time step characterizing the current block. At each step s
(0, 1 … 2M−1), only blocks that fulfil a specific criterion are processed:
all cells belonging to block b with level m are updated with a time step
equal to Δtb=2m Δt, if s is an integer multiple of 2m. The procedure is
sketched in Fig. 3 for a simple one-dimensional (1D) case with six blocks
and M=2.

A special treatment is necessary for cells on the border of a buffer
block, whose neighboring cells are characterized by a different tempo-
ral resolution level. Although some authors (e.g. Kesserwani and Liang,
2015; Saetra et al., 2015) adopt temporal interpolation procedures at
these interfaces, which in turn require corrections to guarantee mass
and momentum conservation, the present scheme adopts an intrinsi-
cally conservative strategy to handle these interfaces. Figure 4 shows
two cells belonging to a buffer block with m=0, and two cells on its
neighboring block with m=1. Without loss of generality, a 1D repre-
sentation with cells characterized by the same mesh size and only two
temporal resolution levels is chosen for simplicity. During the first step
(s=0), all cells are updated, and fluxes are computed based on the
conserved variables values at time tn, as usual. During the second step
(s=1), however, only cells belonging to the block with m=0 must
be advanced in time. While inner cell i−1 has both west and east
neighbor values available for flux computation at time tn+1, border cell
i lacks a synchronized value to the east. For this reason, on its east-
ern edge, which coincides with the block border, values at time tn are
reused for the flux computation. In this way, the sum of the eastern
fluxes of cell i computed at times tn and tn+1 (which are then multiplied

Figure 3. First-order LTS scheme: sketch of the update procedure for six blocks with dif-
ferent temporal resolution levels (M=2). White arrows represent the flux computation
and time integration operations, performed at the step specified in bold type.

Figure 4. First-order LTS scheme: sketch of the update procedure for cells near the border
of a buffer block (M=1). Red and blue dots represent variables at cell centers at tn and
tn+1. Red and blue arrows represent flux computation based on the variables of the corre-
sponding color. White arrows represent time integration, performed at the step specified
in bold type. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

by Δt), and the western flux of cell i+1 at tn (which is multiplied by
2Δt), are the same, and the scheme is conservative. Notice that on the
western edge of cell i, flux computation is still performed based on val-
ues at tn+1. This strategy is possible because arrays for fluxes are not
allocated in the present model, and the computation of the same flux
at the edge between two cells is repeated twice (once for each thread)
for efficiency reasons (as discussed by Vacondio et al., 2014). Hence, the
only drawback of this procedure is the necessity of allocating an ad-
ditional array in memory, where conserved variables from the previ-
ous time step in cells on the block boundaries are stored and retrieved
when necessary. The detailed implementation (neglecting GPU paral-
lelization) is reported in Algorithm 4, which corresponds to lines 7–13
of Algorithm 3b.

The second-order version of the scheme is presented next. In this
case, two sub-steps are performed during each time advancement, and
two kernels are launched during each of these two sub-steps: one,
which executes the MUSCL extrapolation, and one, which performs flux
computation and time integration. Finally, an additional kernel sums
the contributions retrieved from the two half time steps, according to
Eq. (5).

In the LTS implementation of the scheme, each pair of sub-steps of
the second-order scheme can be compared to two consecutive steps of
the first order scheme, provided that appropriate criteria are defined
in order to distinguish whether blocks belonging to each m-level are
to be processed during the current sub-step. Time advancement from
tn to tn+Δtmax is schematized in Algorithm 5 (which substitutes lines
7–13 of Algorithm 3b). Fig. 5 depicts three blocks with different m-levels
(M=2), specifying the step (0, 1, 2, 3) and sub-step (A, B) at which each
block is processed, according to Algorithm 5. Fig. 5a represents MUSCL
extrapolation, while Figure 5b shows flux computation and time inte-
gration.

Cells lying on the border of buffer blocks are updated asymmetri-
cally, similarly to the first-order scheme. At sub-steps for which the
synchronized neighboring values are missing, MUSCL extrapolation is
skipped in these cells: on the border block edge, extrapolated values at
the previous sub-step are reused for flux computation; on the inner edge,
accuracy is locally reduced to first-order in space (e.g. values at the cell
center are used for flux computation), in order to avoid interpolations.
Results presented in the following section show that this simplification
does not significantly impair the accuracy of the solution.

Finally, a short remark about open boundary conditions (BCs) needs
to be made. For each open BC (discharge, rating curve and/or water

5

UN
CO

RR
EC

TE
D

PR
OOF

S. Dazzi et al. Advances in Water Resources xxx (2017) xxx-xxx

Figure 5. Second-order LTS scheme: sketch of the update procedure for three blocks with different temporal resolution levels (M=2). (a) MUSCL extrapolation procedure, and (b) flux
computation and time integration, each performed at the specified step (0…3) and sub-step (A, B). Dashed lines indicate the half time steps.

level) the minimum allowable temporal resolution level mbc is assigned
to all blocks affected by the given open BC. The specific CUDA ker-
nel which assigns the prescribed quantities (discharge, water elevation,
rating curve) at open BCs cells is executed only at steps for which
blocks with m=mbc are processed. For details about BCs handling in the
model, the reader is referred to Vacondio et al. (2014). From a practi-
cal point of view, this is not a relevant feature in the LTS model, be-
cause the number of the cells to which an open boundary conditions is
assigned is usually negligible compared to the total number of cells used
to discretize the domain.

3.3. Roll back procedure

According to Algorithm 3b, the time step computation and the
m-level assignment (lines 2–6) are performed before the inner LTS loop
(lines 7–13) which advances the solution from tn to tn+Δtmax. This
means that the temporal resolution level (hence, the time step size) is
maintained fixed for a few steps. However, during the computations,
flow field conditions vary; in some cases, velocity and/or celerity might
increase, and the time step can no longer fulfil the CFL condition, gen-
erating instabilities. For this reason, a procedure to roll back simulation
time is implemented in the present model. An additional array needs to
be allocated, where conserved variables are stored at time tn. After each
partial time integration, the CFL condition is re-evaluated in each cell
based on the updated values of conserved variables, assuming Cr=1.
If this check highlights potential instabilities somewhere in the domain,
the LTS loop is stopped, and partial computations already performed are
discarded. Then, the loop begins again starting from the values stored in
the rollback array and assuming a halved time step size everywhere. The
prevention of potential simulation crashing compensates for the slight
overload induced by this procedure.

3.4. Efficiency of the LTS algorithm on the GPU

A comparison between the computational efficiency of the GTS and
LTS schemes can be performed by evaluating the execution time ratio
SU, defined as the ratio of the GTS execution time to the LTS execution
time for each simulation.

This factor strongly depends on the test case under consideration
and on the grid refinement, and the maximum expected time ratio for a
given test case can be theoretically estimated by analyzing the amount
of computational operations associated with the two versions of the
code. For this analysis, let us distinguish between the “dt” piece of code
(lines 2–3 in Algorithm 3a for GTS, or 2–6 in Algorithm 3b for LTS),

and the “update” piece of code (lines 4–5 in Algorithm 3a for GTS, or
7–14 in Algorithm 3b for LTS, which are substituted by Algorithm 5 for
the second-order scheme). Preliminary investigations show that, in the
GTS version of the code, the “dt” stage takes roughly 30% of the total
simulation time for the first-order scheme, and 15% for the second-order
scheme; accordingly, the “update” stage takes roughly 70% and 85% of
the total execution time for the first- and second-order schemes, respec-
tively.

As regards the “dt” stage, it can be observed that, in the LTS version
of the scheme, the time step computation and the BDO procedure are
performed only once every 2M steps, while the GTS scheme repeats these
operations at every time step. Therefore, the LTS version is in theory
2M times faster than the GTS scheme in performing the “dt” stage, even
if the additional processing for the m-level assignment (see Section 3.1)
reduces the actual time ratio for this part of the code.

On the other hand, the most important computational saving of the
LTS scheme is associated with the “update” stage, since a subset of
blocks is processed fewer times in the LTS code than they would be in
the GTS scheme. An estimate of the achievable theoretical time ratio for
the “update” piece of code can be quantified by dividing the total num-
ber of cells (blocks) processed in the GTS simulation by the same value
in the LTS simulation, assuming that the update operations performed
on each block require roughly the same computational time (Kleb et al.,
1992). In the example depicted in Fig. 3, fourteen update operations are
performed instead of twenty-four, which results in a theoretical time
ratio (for the “update” stage only) equal to 1.7. However, this simple
computation does not take into account the overheads associated with
the LTS scheme. First of all, a few operations must be performed in-
side each kernel of time advancement, in order to distinguish whether a
block must be processed during the current time step. In addition to this,
managing interfaces between blocks with different temporal resolution
levels requires code branching, which may slow down computations on
the GPU. The whole roll back procedure, described in Section 3.3, is
also added to the code. All these overheads lead to an actual time ratio
smaller than the theoretical one.

In summary, the theoretically achievable time ratio can be evaluated
by combining the contributions from the “dt” and “update” stages as fol-
lows:

(11)

6

UN
CO

RR
EC

TE
D

PR
OOF

S. Dazzi et al. Advances in Water Resources xxx (2017) xxx-xxx

where Nm is the number of cells (or blocks) belonging to each m-level,
N is the total number of cells (or blocks) in the domain, and and

are the execution times for the “dt” and “update” stages, normal-
ized to the total execution time. Considering the example depicted in
Fig. 3 (M=2), the theoretical time ratio is equal to 2.05 for the first-or-
der scheme (assuming =0.3, and =0.7), and to 1.86 for the
second-order scheme (=0.15, and =0.85).

Finally, an additional aspect should be considered in the assessment
of the computational efficiency of the model. On GPUs, tasks on dif-
ferent blocks are executed in parallel by the different processors the
hardware architecture consists of. If the number of active blocks is
larger than the available cores, blocks need to be queued by the GPU's
scheduler, while, when simulations with a smaller number of active
blocks are performed, the computational capabilities of the GPU may
not be fully exploited. In this latter case, the increased model efficiency
due to parallel computations on the GPU is somehow impaired by the
CPU-GPU communication overheads (see Vacondio et al., 2017). Hence,
the typical scalability of GPUs (i.e. the computational time, normalized
to the total number of cells, decreases with increasing the number of
processed cells, and remains almost constant after reaching a threshold
value, which depends on the GPU type) should also be taken into ac-
count when evaluating the computational efficiency of both GTS and
LTS schemes.

In any case, a quantitative analysis of the overheads and savings of
the LTS scheme is discussed for the first two test cases in Section 4.

4. Numerical tests

In this Section, a comparison between the performances of the origi-
nal GTS and the novel LTS model implementation is performed based on
three theoretical test cases and on two field-scale practical applications.
All simulations were run using a K40 Tesla® GPU. For all test cases,
the Courant number was assumed equal to 0.8. Moreover, the BUQ grid
was formed by 8×8-cell blocks; hence, the temporal resolution level was
limited to M=3 for all simulations.

4.1. Vortex test case

The first numerical experiment considers the steady-state test case of
a vortex flow with analytical solution (Sanders and Bradford, 2006). The
vortex circulates clockwise on a flat frictionless bottom, and its motion
can be described by means of the following relations (assuming that the
coordinate system origin coincides with the vortex center):

(12a)

(12b)

where is the distance from the vortex center, and the
values attributed to the other parameters are as follows: h0=10m,
U0=1.5 m/s, r0=100m. The domain is extended up to r=3000m.

The maximum resolution (Δxmin) is imposed in the area close to
the vortex center (approximatively up to r=500m), surrounded by a
smooth transition up to the minimum resolution Δxmax in the outer re-
gion of the domain. A detail of the resulting multi-resolution grid is
shown in Fig. 6, which represents each 8×8-cell block as a square ele-
ment. The temporal resolution level for the LTS simulation is dictated
by the grid size for this test case. Thus, the area characterized by the
maximum temporal resolution level (m=0) coincides with the finest

Figure 6. Vortex test case: detail of the non-uniform grid (each square element is a
8×8-cell block), and temporal resolution level distribution.

grid size region, plus the circle of neighboring blocks (with halved grid
size) required by the numerical scheme as a buffer region to ensure cor-
rect wave propagation. The same holds for the areas with coarser grid
size. The m-level distribution is also represented in Fig. 6, where differ-
ent colors identify blocks with homogeneous temporal resolution level.

Sixteen simulations were run, assuming four different test configu-
rations (see Table 1), each performed with both models (LTS and GTS),
and with both the first- and the second-order accurate version of the
scheme. Minimum and maximum grid sizes were in the range 1–8m,
and 8–64m respectively. The analytical solution was imposed as initial
condition, and the simulation was run for a physical time in the range
500–4000s, in order to ensure that the same number of update opera-
tions was performed for all test configurations.

As an example, Figs. 7 and 8 compare the results of the GTS and LTS
simulations performed with the second-order accurate scheme for test
configuration B. Fig. 7 reports the contour maps of water depth and ve-
locity magnitude , while Fig. 8 shows the profiles of the
same variables along the y=x line. A quantitative comparison regard-
ing the agreement of numerical results with the exact solution can be
performed by computing the non-dimensional L2 error norms of water
depth and velocity components:

Table 1
Vortex test case: L2 norms and time ratio SU for four configurations characterized by dif-
ferent minimum and maximum resolution, number of cells, and simulation time, obtained
from GTS and LTS first-order (FO) and second-order (SO) simulations.

Test A B C D

Δxmin (m) 1 2 4 8
Δxmax (m) 8 16 32 64
cells (10 6) 1.577 0.411 0.102 0.029
T (s) 500 1000 2000 4000
L2 (h) GTS-

FO
2.81E-05 6.94E-05 1.17E-04 1.40E-04

LTS-
FO

2.81E-05 6.93E-05 1.16E-04 1.40E-04

GTS-
SO

3.86E-06 4.19E-06 1.16E-05 4.95E-05

LTS-
SO

3.87E-06 4.19E-06 1.16E-05 4.95E-05

L2
(u)=L2
(v)

GTS-
FO

1.98E-03 5.49E-03 1.13E-02 1.69E-02

LTS-
FO

1.98E-03 5.50E-03 1.14E-02 1.69E-02

GTS-
SO

3.20E-05 1.66E-04 8.91E-04 3.84E-03

LTS-
SO

4.25E-05 1.76E-04 9.00E-04 3.85E-03

SU (-) FO 1.53 1.51 1.50 1.38
SO 1.44 1.42 1.28 1.23

7

UN
CO

RR
EC

TE
D

PR
OOF

S. Dazzi et al. Advances in Water Resources xxx (2017) xxx-xxx

Figure 7. Vortex test case (configuration B, second-order scheme): depth (a) and velocity magnitude (b) contour maps at the end of the GTS and LTS simulations (shown side by side).

Figure 8. Vortex test case (configuration B, second-order scheme): comparison between exact and numerical depth (a) and velocity magnitude (b) profiles along the y=x line.

(13)

where N is the number of cells in the domain, and subscripts num and
exact refer to the numerical and analytical solutions. The same expres-
sion can be used to calculate L2(u) and L2(v) by adopting U0 as reference
value for normalization.

The L2 error norms computed for the sixteen simulations are re-
ported in Table 1. As expected, errors increase with the grid size for
both first- and second-order simulations, and second-order error norms
are at least one order of magnitude smaller than first-order ones for
all configurations. No differences can be appreciated between LTS and
GTS water depth error norms, which remain in the range 10−5–10−6,
close to machine precision, for second-order simulations, while velocity
error norms reach the order of magnitude 10−4–10−3 for the coarsest
grid sizes, and show small differences between LTS and GTS values. For
first-order simulations, LTS and GTS error norms practically coincide.

Finally, Table 1 reports the execution time ratios for all test config-
urations. Time ratios achieved by the first-order scheme, reaching 1.53,
are always slightly larger than the ones obtained from the second-order

scheme, which are limited to 1.44. The best performances can be ob-
served for tests with the finest grid size, even if the time ratio is not ex-
pected to depend much on the grid size and number of cells, due to the
steadiness of the test case. In fact, the achievable theoretical time ratio
is approximately the same for all configurations, and is equal to 1.86
and to 1.6 for the first- and second-order schemes, respectively.

A detailed analysis regarding the computational times associated
with different parts of the code is reported for configuration A
(Δxmin=1m). The theoretical time ratios for the “dt” and “update”
stages are equal to 8 and 1.4, respectively. Fig. 9 shows the execution
times of the two parts of the code for first- and second-order schemes
(both GTS and LTS); values are normalized to the total execution time
of the GTS second-order simulation, which is the longest one. In the
first-order scheme, the time ratio associated with the “update” piece of
code is 1.26; this means that the overhead associated with LTS branch-
ing in the update kernels is only 10% for this simulation. On the other
hand, the time ratio for the “dt” stage is equal to 3.31, and the over-
head associated with the additional operations performed for the m-lev-
els assignment is widely compensated by the fact that this piece of code
is executed only once every eight steps. The combination of the com-
putational savings associated with the two parts of the code results in
an actual time ratio equal to 1.53. Therefore, the LTS overheads in

8

UN
CO

RR
EC

TE
D

PR
OOF

S. Dazzi et al. Advances in Water Resources xxx (2017) xxx-xxx

Figure 9. Vortex test case (configuration A): execution times of “dt” and “update” pieces
of code for GTS and LTS simulations in the first (FO) and second-order (SO) version of the
scheme. Values are normalized to the total run time of the GTS-SO simulation. The table
in the insert reports the total and partial time ratios.

crease the total simulation time by roughly 18% compared to the the-
oretically achievable value for this test. For the second-order scheme,
due to the heavier “update” operations, the “dt” piece of code is com-
putationally less relevant than for the first-order one. In fact, while both
first- and second-order schemes require approximately the same execu-
tion time for the “dt” operations, the “update” stage for the second-or-
der scheme takes more than twice the time required for the first-order
scheme (this is true for both GTS and LTS), due to the larger number of
executed kernels. For this reason, despite similar partial time ratios, the
total execution time ratio for the second-order scheme, equal to 1.44,
is slightly smaller than the value obtained from first-order simulations,
and the LTS overheads can be estimated to be only 10% of the total ex-
ecution time.

4.2. Circular dam-break

The model was then tested by simulating the classical wet circu-
lar dam-break problem (Liska and Wendroff, 1997). The domain [−25,
25] m×[−25, 25] m is characterized by a horizontal frictionless bot-
tom. A 10m-high cylindrical water column, with radius R=10m, is
centered in the domain, and is surrounded by 1m-deep still water. Due
to the cylindrical symmetry of the problem, a reference solution can
be obtained by deriving the inhomogeneous 1D system of the SWE
in radial geometry (Toro, 2001) and solving it with a very fine mesh
(Δx=0.005m). The grid for the 2D LTS and GTS simulations was gen-
erated by forcing the maximum resolution Δxmin=0.025m alongside
the initial discontinuity (9m< r<11.5m), and by imposing the halved

Figure 10. Circular dam-break test case: multiresolution grid (each square element is a
8×8-cell block), and temporal resolution level map at t=0.4s. The dashed white line
identifies the initial discontinuity position.

mesh size 0.05m in the regions 6.5m< r<9m and 11.5m< r<14.5m.
The automatic grid generation procedure created the remaining transi-
tions up to the minimum resolution Δxmax=0.2m. Fig. 10 represents a
detail of the resulting mesh, which consists of 0.465·106 cells. Simula-
tions were run until the physical time t=1s.

Fig. 11 compares the water depth profiles along the radial direction
at t=0.4s obtained by the LTS and GTS simulations with the reference
solution. Results from both first- and second-order schemes agree well
with the pseudo-exact solution, the latter showing a closer agreement,
as expected. Notice that, even if the shock wave is propagating over
a region with m=1 (see the temporal resolution level distribution at
t=0.4s in Fig. 10), the LTS solution accuracy is not degraded compared
to GTS results. On the contrary, dimensional L2 error norms for water
depth and velocity magnitude (reported in Table 2) show that the LTS
model provides even slightly more accurate results than GTS, in partic-
ular as regards the first-order scheme.

Also for this test case, the execution time ratio, reported in Table 2,
is slightly larger for the first-order scheme (SU=1.49) than for the sec-
ond-order scheme (SU=1.39). The achievable theoretical values are
equal to 1.81 and 1.56 for the first- and second-order schemes, respec-
tively (in particular, 8 for the “dt” stage, and 1.36 for the “update”
stage). As can be inferred from Fig. 12, the “update” time ratio is equal
to 1.22 for the first-order simulation, and to 1.28 for the second-order
one, confirming the 6–10% overhead induced by the LTS implementa-
tion within this piece of code, which reduces the achieved time ratio
compared to the theoretical one. Similarly to the previous test case, the
execution times for the “dt” operations show that the overhead induced
by the procedure for m-level assignment in the LTS scheme is largely
compensated by the computational savings due to the fewer “dt” execu-
tions. Globally, the LTS overhead is 10–18% for this test case too.

Figure 11. Circular dam-break test case: reference and numerical (LTS and GTS) water depth profiles for first- (a) and second-order (b) schemes; inserts zoom on the shock wave.

9

UN
CO

RR
EC

TE
D

PR
OOF

S. Dazzi et al. Advances in Water Resources xxx (2017) xxx-xxx

Table 2
Circular dam-break test case: dimensional L2 error norms for water depth and velocity
magnitude at t=0.4s for GTS and LTS in the first-order (FO) and second-order (SO) ver-
sion of the scheme, and time ratio SU.

FO SO

GTS LTS GTS LTS

L2 (h) (m) 8.61E-02 7.96E-02 5.86E-02 5.86E-02
L2 (|u|) (m/
s)

2.15E-01 1.94E-01 1.43E-01 1.43E-01

SU (-) 1.49 1.39

Figure 12. Circular dam-break test case: execution times of “dt” and “update” pieces of
codes for GTS and LTS simulations in the first- (FO) and second-order (SO) version of the
scheme. Values are normalized to the total runtime of the GTS-SO simulation. The table in
the insert reports the total and partial time ratios.

4.3. Thacker test case

The LTS scheme was further validated by simulating the periodic
oscillation of a water volume in a frictionless paraboloidic basin
(Thacker, 1981), which involves wetting/drying and non-flat topogra-
phies. The bottom can be described by means of the following equation:

(14)

where z0 is the depth of the vertex, and L is the radius at z=0 (see
Fig. 13a). The water volume, initially at rest and paraboloidic, expands
and contracts periodically due to gravity. The exact solution for this

Figure 13. Thacker test case: detail of the multiresolution grid (each square element is a
8×8-cell block), and temporal resolution level map at t=250s. The dashed blue line iden-
tifies the wet-dry front.

test case is:

(15)

where ω and A are defined as:

(16)

The test parameters are set as follows: z0=50m, η0=10m,
L=1000m, which correspond to a period of oscillation equal to 50s.
The domain is extended up to r=1500m. The maximum resolution
Δxmin=1m is assigned to the area subject to wetting/drying
(850m< r<1100m), and near the paraboloid center (r<30m), while
the grid generation procedure automatically creates transitions up to
Δxmax=8m. The final mesh (Fig. 14) consists of 2⋅106 cells, and the sim-
ulation time includes four complete oscillations (tfinal=400s).

Fig. 13b presents a comparison between analytical and numerical re-
sults (for the second-order scheme); in particular, slices of water sur-
face elevation along the x-axis at selected times are depicted. GTS and
LTS profiles practically coincide, confirming the accuracy of the scheme
even in the presence of wetting/drying and bottom slope source terms.
Dimensional L2 error norms, reported in Table 3 for t=250s, show that
LTS results are even slightly better than GTS. The obtained time ratios
reported in Table 3 (equal to 1.47 and 1.32 for first- and second-order
simulations, respectively) are slightly smaller than the corresponding
theoretical values (estimated to be equal to 1.70 and to 1.43), due to the
overheads introduced in the LTS scheme, as already discussed for the
previous test cases.

The same case was also simulated with friction, in order to assess
the LTS scheme accuracy when both source terms are present. For this
case, no analytical solution is available, therefore LTS results are only
compared with GTS. Manning's roughness coefficient is set equal to
0.15 m−1/3s. Fig. 15 reports the water surface elevation trend in time
at point (0.0; 0.0) for both frictionless and non-frictionless simulations.
While oscillation amplitude and frequency remain constant in the for-
mer case, in the latter case water level oscillations are dampened, as ex-
pected. Again, LTS and GTS results are almost overlapping. In this case,
time ratios are equal to 1.74 and 1.65 for the first- and second-order
simulations, respectively (in contrast with theoretical values of 2.11 and
1.86).

4.4. Parma–Baganza test case

For field-scale test cases, computational savings are expected to be
considerable when the LTS scheme is used to simulate a large do-
main where only a small region is discretized with a very fine mesh.
This might be the case of the presence of bridge piers in a riverbed,
which require a high level of detail. The Baganza River (Northern
Italy), which is crossed by a bridge 500m upstream of its confluence
in the Parma River, was considered for this test case. The bridge is
characterized by four 3×10m round nosed piers. The bathymetry is
shown in Fig. 16: the 3.4km-long final branch of the Baganza River
was modelled, together with the 2km- and 1km-long branches of the
Parma River upstream and downstream of the confluence, respectively.
The non-uniform BUQ grid is characterized by Δxmin=0.25m, imposed
only at the bridge site, which gradually transitions to Δxmax=2m in

10

UN
CO

RR
EC

TE
D

PR
OOF

S. Dazzi et al. Advances in Water Resources xxx (2017) xxx-xxx

Figure 14. Thacker test case: (a) sketch of the test geometry, (b) analytical and numerical (second-order LTS and GTS schemes) water surface elevation slices along the x-axis at selected
times.

Table 3
Thacker test case: dimensional L2 error norms for water surface elevation and velocity
magnitude at t=250s for GTS and LTS in the first-order (FO) and second-order (SO) ver-
sion of the scheme, and time ratio SU.

FO SO

GTS LTS GTS LTS

L2 (η) (m) 5.38E-01 4.35E-01 3.76E-02 3.39E-02
L2 (|u|) (m/
s)

3.73E-01 3.70E-01 6.69E-02 6.05E-02

SU (-) 1.47 1.32

the remainder of the domain, as shown in the insert in Fig. 16. The total
number of cells is equal to 0.536⋅106.

As upstream boundary condition, a discharge hydrograph is assigned
at the inflow of the Baganza River: the initial value is 100 m3/s, which
is gradually increased to 300 m3/s within one hour; the simulation is
then prolonged for three more hours. Similarly, a discharge hydrograph
with initial and final values equal to 200 and 400 m3/s is imposed as
upstream boundary condition for the Parma River. Downstream, a con-
stant water depth is assigned. Initial conditions are obtained from a pre-
liminary steady-state simulation with the initial discharge values. Man-
ning's roughness coefficient is assumed equal to 0.04 m−1/3s.

Table 4 reports the execution time ratios for both first- and sec-
ond-order simulations. Values of approximately 2.7 confirm the achiev-
able reduction in execution time due to the adoption of the LTS ver-
sion of

the model. In this case, the theoretical values are equal to 3.83 for the
first-order scheme, and to 3.45 for the second-order scheme. For real
test cases with boundary conditions and wet/dry fronts, code branching
probably enhances the overheads associated with the LTS scheme, and
the total overhead (22–27%) is larger than the one obtained from the
simulation of the theoretical test cases previously analyzed (10–18%).

In addition to the greater computational efficiency, the choice of the
LTS scheme does not degrade the quality of results compared to GTS.
The root mean square error (RMSE) between GTS and LTS water surface
elevations, when steady-state conditions were achieved, was also com-
puted:

(17)

and was observed to be almost negligible (see Table 4).
Finally, as an example of results, Fig. 17a–b show the water surface

elevation and velocity maps around one of the bridge piers (obtained
from the second-order LTS simulation). The adoption of a mesh with lo-
cal high resolution allows predicting the local 2D flow field in detail;
in particular, the stagnation points upstream of the pier and the recir-
culation region downstream can be resolved. For comparison, Fig. 17c
depicts the velocity field for a simulation performed without imposing
a local grid refinement: in this case, the pier geometry is only roughly
described, and the velocity field is not accurately captured. This justi

Figure 15. Thacker test case: water surface elevation trend in time at point (0; 0) for the frictionless (with exact solution) and non-frictionless simulations. Only second-order LTS and
GTS results are reported.

11

UN
CO

RR
EC

TE
D

PR
OOF

S. Dazzi et al. Advances in Water Resources xxx (2017) xxx-xxx

Figure 16. Bathymetry for the Parma-Baganza test case. The insert zooms on the bridge
site (bridge piers are shown in white), and represents the multi-resolution grid (each
square is a 8×8-cell block).

Table 4
Parma–Baganza test case: time ratio SU and RMSE between GTS and LTS results, at the end
of the simulation, for first-order (FO) and second-order (SO) schemes.

FO SO

SU (-) 2.77 2.66
RMSE (m) 5.1E-03 6.3E-03

fies the choice of a locally refined mesh when the flow field near the
bridge is of interest, which makes the adoption of a LTS scheme partic-
ularly convenient.

4.5. Flooding scenario due to levee breaching

Finally, the achievable performance improvement of the LTS scheme
over the GTS scheme was assessed based on the simulation of the
flooding scenario induced by a hypothetical levee breach on the Sec-
chia River (Italy). The 750 km2-domain, reported in Fig. 18a, includes
a 43km-long branch of the river (from Modena to Concordia), and the
floodable area on its right bank, stretching to the Panaro River.

The BUQ grid used for the simulations was characterized by
Δxmin=5m and Δxmax=40m. The maximum resolution was forced
near the inflow and outflow boundary conditions, and around the
breach location. A grid size Δx=10m was imposed along the remainder
of the river. The resulting grid size distribution along the river is shown
in Fig. 18b. Besides, the whole floodable area was discretized at the min-
imum resolution (hence its representation is avoided in Fig. 18b). The
domain includes roughly 1⋅106 cells.

The 20 years-return period discharge hydrograph (with peak inflow
discharge equal to 620 m3/s after 24h) was set as upstream boundary
condition, while a rating curve was assigned downstream, far from the
breach location. The breach opening was generated on the right levee
when the peak discharge reached that location (indicated in Fig. 18a),
28h after the beginning of the simulation. The event was then pro-
longed for 72h, so that 100h of physical time were simulated. Man-
ning's roughness coefficient was assumed equal to 0.05 m−1/3s, ex-
cept for the residential and industrial areas, where it was increased to
0.143 m−1/3s. Simulations were run using both first- and second-order
accurate schemes, and results and execution times of the LTS and GTS
models were compared.

Fig. 19a shows an example of the temporal resolution level distribu-
tion in the blocks near the breach location 5h after the breach opening,
while Fig. 19b represents the water depth map obtained from the sec-
ond-order LTS simulation at the same moment. It can be noticed that the
maximum temporal resolution (m=0) is observed along the riverbed
and at the breach location, where the fine grid size and the high wa-
ter depth and velocity values dictate the time step for the whole do-
main. The leveed floodplain on the left is only partially inundated, with
small water depths, thus a smaller temporal resolution level is observed
here despite the fine grid size. The whole flooded area at the mini-
mum spatial resolution is updated with the minimum temporal resolu-
tion (M=3). Notice that a temporal resolution level is also assigned to
a few blocks outside the wet area due to the BDO procedure, which ac-
tivates dry blocks bounding wet blocks.

Fig. 20 describes the flooding evolution in time, by depicting the wa-
ter surface elevation maps at three selected times, obtained from the
second-order LTS simulation. A synthetic index for comparing flood ex-
tent of different scenarios is suggested by Horritt and Bates (2002):

(18)

where nGTS and nLTS indicate the number of flooded cells at a fixed
time in the GTS and LTS simulations, respectively. The index coincides
with the unity when the flooded areas are the same. Table 5 reports IF
for first- and second-order simulations at selected times. All values are
very close to one, in particular for the first-order scheme, confirming
the close agreement between the inundated areas for GTS and LTS sim-
ulations. The RMSE of the water surface elevations in the flooded re-
gion obtained from GTS and LTS simulations is also reported in Table 5.
For the first-order scheme, negligible differences can be noticed, while
RMSE values up to a few centimeters are observed for the second-order
scheme. After 72h from the breach opening, approximately 140 km2 are
inundated. A comparison between the total flooded areas for all tests is
reported in Table 6, showing almost equivalent flood extents for all sim-
ulations.

Table 6 also reports information about the computational perfor-
mance of the models. The achieved time ratio is slightly larger for the
first-order scheme (equal to 1.77) than for the second-order scheme
(1.61); the same holds for the corresponding theoretical values, equal
to 2.14 and to 1.74, respectively. During the second-order LTS simu-
lation of this test case, the roll back procedure is activated only once,
thus not affecting the computational time significantly. Ratios of physi-
cal to computational time RT, reported in Table 6, confirm the efficiency
of GPU-accelerated numerical models for practical applications, partic-
ularly if the LTS version of the scheme is adopted.

5. Conclusions

In this paper, a local time stepping strategy was implemented in an
explicit FV numerical scheme, which solves the 2D SWEs on structured

12

UN
CO

RR
EC

TE
D

PR
OOF

S. Dazzi et al. Advances in Water Resources xxx (2017) xxx-xxx

Figure 17. Details of the results for the Parma–Baganza test case at the bridge site: water surface elevation (a) and velocity (b) maps from the second-order LTS simulation; (c) velocity
map from a second-order simulation where the bridge site is discretized at the minimum resolution (Δxmax=2m).

Figure 18. (a) Levee breach test case: bathymetry. The main residential areas are also indicated. (b) Grid size distribution along the river (the floodable area is discretized by elements of
size equal to 40m everywhere, and is not represented).

non-uniform grids. Both first- and second-order accurate schemes were
considered. The method was developed in a CUDA/C ++ code, so that
the computational capability of GPUs could be fully exploited.

The model assessment was performed based on the simulation of
three theoretical test cases and two field-scale problems. Results of the
numerical tests show that, compared to the traditional global time step-
ping strategy, LTS reduces the total simulation times without impairing

the solution accuracy. Execution time ratios between 1.2 and 2.8 were
obtained. The achievable performance improvement mainly depends on
the spatial resolution level distribution, and on the local flow field con-
ditions. The adoption of the LTS method was observed to be especially
convenient in the simulation of real field test cases characterized by
a large domain discretized with a coarse mesh, where a high level of

13

UN
CO

RR
EC

TE
D

PR
OOF

S. Dazzi et al. Advances in Water Resources xxx (2017) xxx-xxx

Figure 19. (a) Detail of the multiresolution grid, and temporal resolution levels, 5 h after the breach opening; the breach position (black cross), riverbed (blue line) and levees (brown
lines) are also represented. (b) Water depth contour map near the breach position (5h after the breach opening). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Figure 20. Levee breach test case: water surface elevation contour maps obtained from the second-order LTS simulation 10h (a), 24h (b), and 72h (c) after the breach opening.

Table 5
Levee breach test case: IF and RMSE between GTS and LTS water surface elevations in
the flooded area at selected times t’ after the breach opening, for first-order (FO) and sec-
ond-order (SO) simulations.

t’ (h) IF (-) RMSE (m)

FO SO FO SO

2 0.961 0.966 4.6E-03 1.6E-02
12 0.994 0.987 7.1E-03 2.6E-02
22 0.996 0.991 8.3E-03 2.6E-02
32 0.997 0.984 3.9E-03 2.7E-02
42 0.998 0.989 2.5E-03 2.8E-02
52 0.996 0.991 4.8E-03 2.9E-02
62 0.997 0.988 2.1E-03 3.4E-02
72 0.998 0.991 1.6E-03 4.4E-02

Table 6
Levee breach test case: total inundated area Aflood, ratio of physical to computational time
RT, and time ratio SU for first-order (FO) and second-order (SO) simulations.

FO SO

GTS LTS GTS LTS

Aflood (km2) 140.74 141.03 141.25 140.08
RT (-) 52.9 93.6 29.7 47.7
SU (-) 1.77 1.61

Algorithm 1
Pseudocode for the m-levels regularization procedure.

1: for level=0 … M−1
2: for each block with m[block]==level
3: for neighbor=1 … n_neighbors
4: if m[neighbor]>level+1
5: m[neighbor]=level+1
6: end if
7: end for
8: end for
9: end for

Algorithm 2
Pseudocode for the buffer block definition procedure.

1: for block=1 … n_active_blocks
2: for neighbor=1 … n_neighbors
3: if m[block] – m[neighbor]>0
4: m_correct[block]=m[neighbor]
5: end if
6: end for
7: end for

refinement was required only in small selected regions (e.g. bridge piers,
breach location).

The high values of ratios of physical to computational time achieved
for the levee-breach scenario support the idea of applying GPU-ac-
celerated models, coupled with an efficient LTS strategy, to

14

UN
CO

RR
EC

TE
D

PR
OOF

S. Dazzi et al. Advances in Water Resources xxx (2017) xxx-xxx

Algorithm 3
Comparison between GTS (a) and LTS (b) pseudocodes. The GPU parallel implementation
is neglected here for the sake of clarity.

(a) GTS (b) LTS
1: WHILE time≤ time_end 1: WHILE time≤ time_end
2: compute Δt and define wet
blocks

2: compute Δt and define wet blocks

3: assign first guess m-level to blocks
3: define active blocks (BDO
procedure)

4: define active blocks (BDO procedure)

5: m-levels regularization procedure &
buffer region
6: find M=max(m-level) of all active
blocks
7: for step=0: 2M – 1
8: for block=1: n_active_blocks
9: if step is an integer multiple of
2m[block]

4: update all active blocks (by
Δt)

10: update block (by 2 m·Δt)

11: end if
12: end for
13: end for

5: time=time+Δt 14: time=time+2M·Δt
6: END WHILE 15: END WHILE

Algorithm 4
Pseudocode for flux computation in the LTS integration procedure (first-order scheme).
The GPU parallel implementation is neglected here for the sake of clarity.

1: for step s=0 … 2M−1
2: for block b=1: n_active_blocks
3: if s is an integer multiple of 2 m[b]

4: for cell=1: n_cells_per_block
5: if (inner cell OR border cell with m[neigh]≤m[b])
6: compute all fluxes with values at t+ s·Δt
7: else // border cell with m[neigh]>m[b], as cell i in Figure 4
8: if (s·2−m[b] is even)
9: compute all fluxes with values at t+ s·Δt
10: else
11: compute inner flux with values at t+ s·Δt
12: compute border flux with values at t+(s−2m[b])·Δt
13: end if
14: end if
15: update cell (by 2 m[b]·Δt) (Eq. 3)
16: end for
17: end if
18: end for
19: end for

Algorithm 5
Pseudocode for second-order LTS integration procedure. The GPU parallel implementation
is neglected here for the sake of clarity.

1: for step s=0 … 2M−1
2: for block=1: n_active_blocks

// sub-step A
3: if 2·s is an integer multiple of 2 m [block] then do MUSCL extrapolation on block
end if
4: if s is an integer multiple of 2 m [block] then do flux comput. (Eq. (7))+time
integr. (Eq. (6)) on block end if

// sub-step B
5: if (2·s+1) is an integer multiple of 2 m [block] then do MUSCL extrapolation on
block end if
6: if (s+1) is an integer multiple of 2 m [block] then do flux comput. (Eq. (7)) on
block end if
7: if (s+1) is an integer multiple of 2 m [block] then do half time step sum (Eq.
(5)) on block end if
8: end for
9: end for

quasi real-time 2D simulations of flooding events over domains of con-
siderable extent, preserving the required level of detail where neces-
sary. This prospect can become even more feasible if the rapid develop-
ment of GPU capabilities and the possibility of extending the model to
multi-GPUs are taken into account.

Acknowledgements

This work was partially supported by the Ministry of Education,
Universities and Research (Italy) under the Scientific Independence of
young Researchers programme, grant number RBSI14R1GP, CUP code
D92I15000190001. The authors gratefully acknowledge the support of
CINECA under Project PANCIA id. HP10CIGMEB, of NVIDIA under the
CUDA Research Center Program, and of GNCS-INDAM. The authors
wish to thank the anonymous Reviewers, whose valuable suggestions
greatly contributed to improving the paper.

References

Alcrudo, F., Garcia-Navarro, P., 1993. A high-resolution Godunov-type scheme in finite
volumes for the 2D shallow-water equations. Int. J. Numer. Methods Fluids 16 (6),
489–505.

Audusse, E., Bouchut, F., Bristeau, M.O., Klein, R., Perthame, B.T., 2004. A fast and stable
well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM
J. Sci. Comput. 25 (6), 2050–2065.

Aureli, F., Maranzoni, A., Mignosa, P., Ziveri, C., 2008. A weighted surface-depth gradient
method for the numerical integration of the 2D shallow water equations with topog-
raphy. Adv. Water Resour. 31 (7), 962–974.

Barredo, J.I., 2009. Normalised flood losses in Europe: 1970–2006. Nat. Hazards Earth
Syst. Sci. 9 (1), 97–104.

Bermudez, A., Vazquez, M.E., 1994. Upwind methods for hyperbolic conservation laws
with source terms. Comput. Fluids 23 (8), 1049–1071.

Bradford, S.F., Sanders, B.F., 2002. Finite-volume model for shallow-water flooding of ar-
bitrary topography. J. Hydraul. Eng. 128 (3), 289–298.

Brodtkorb, A.R., Sætra, M.L., Altinakar, M., 2012. Efficient shallow water simulations on
GPUs: Implementation, visualization, verification, and validation. Comput. Fluids 55,
1–12.

Brufau, P., García-Navarro, P., Vázquez-Cendón, M.E., 2004. Zero mass error using un-
steady wetting–drying conditions in shallow flows over dry irregular topography. Int.
J. Numer. Methods Fluids 45 (10), 1047–1082.

Caleffi, V., Valiani, A., Zanni, A., 2003. Finite volume method for simulating extreme flood
events in natural channels. J. Hydraul. Res. 41 (2), 167–177.

Castro, M.J., Ortega, S., De la Asuncion, M., Mantas, J.M., Gallardo, J.M., 2011. GPU com-
puting for shallow water flow simulation based on finite volume schemes. Comptes
Rendus Mécanique 339 (2-3), 165–184.

Costabile, P., Costanzo, C., Macchione, F., 2012. Comparative analysis of overland flow
models using finite volume schemes. J. Hydroinf. 14 (1), 122–135.

Costabile, P., Costanzo, C., Macchione, F., 2015. Performances and limitations of the dif-
fusive approximation of the 2-d shallow water equations for flood simulation in urban
and rural areas. Appl. Numer. Math. 116 (1), 141–156.

Crossley, A.J., Wright, N.G., 2005. Time accurate local time stepping for the unsteady shal-
low water equations. Int.J. Numer. Methods Fluids 48 (7), 775–799.

Dazzi, S., Maranzoni, A., Mignosa, P., 2016. Local time stepping applied to mixed flow
modelling. J. Hydraul. Res. 54 (2), 145–157.

de la Asunción, M., Castro, M.J., Fernández-Nieto, E.D., Mantas, J.M., Acosta, S.O.,
González-Vida, J.M., 2013. Efficient GPU implementation of a two waves TVD-WAF
method for the two-dimensional one layer shallow water system on structured meshes.
Comput. Fluids 80, 441–452.

European Council (2007). Directive 2007/60/EC of the European Parliament and of the
Council of 23 October 2007 on the assessment and management of flood risks.

Ferrari, A., Vacondio, R., Dazzi, S., Mignosa, P., 2017. A 1D–2D shallow water equations
solver for discontinuous porosity field based on a generalized Riemann problem. Adv.
Water Resour. 107, 233–249.

Garcia-Navarro, P., Vazquez-Cendon, M.E., 2000. On numerical treatment of the source
terms in the shallow water equations. Comput. Fluids 29 (8), 951–979.

Greenberg, J.M., LeRoux, A.Y., 1996. A well-balanced scheme for the numerical process-
ing of source terms in hyperbolic equations. SIAM J. Numer. Anal. 33 (1), 1–16.

Horritt, M.S., Bates, P.D., 2002. Evaluation of 1D and 2D numerical models for predicting
river flood inundation. J. Hydrol. 268 (1), 87–99.

Kesserwani, G., Liang, Q., 2015. RKDG2 shallow-water solver on non-uniform grids with
local time steps: application to 1D and 2D hydrodynamics. Appl. Math. Model. 39 (3),
1317–1340.

Kleb, W.L., Batina, J.T., Williams, M.H., 1992. Temporal adaptive Euler/Navier-Stokes al-
gorithm involving unstructured dynamic meshes. AIAA J. 30 (8), 1980–1985.

Krámer, T., Józsa, J., 2007. Solution-adaptivity in modelling complex shallow flows. Com-
put. Fluids 36 (3), 562–577.

Kurganov, A., Petrova, G., 2007. A second-order well-balanced positivity preserving cen-
tral-upwind scheme for the Saint-Venant system. Commun. Math. Sci. 5 (1), 133–160.

Lacasta, A., Morales-Hernández, M., Murillo, J., García-Navarro, P., 2014. An optimized
GPU implementation of a 2D free surface simulation model on unstructured meshes.
Adv. Eng. Softw. 78, 1–15.

15

UN
CO

RR
EC

TE
D

PR
OOF

S. Dazzi et al. Advances in Water Resources xxx (2017) xxx-xxx

Lastra, M., Mantas, J.M., Ureña, C., Castro, M.J., García-Rodríguez, J.A., 2009. Simulation
of shallow-water systems using graphics processing units. Math. Comput. Simul. 80
(3), 598–618.

Liang, Q., 2011. A structured but non-uniform Cartesian grid-based model for the shallow
water equations. Int. J. Numer. Methods Fluids 66 (5), 537–554.

Liang, Q., Borthwick, A.G., 2009. Adaptive quadtree simulation of shallow flows with
wet–dry fronts over complex topography. Comput. Fluids 38 (2), 221–234.

Liang, Q., Marche, F., 2009. Numerical resolution of well-balanced shallow water equa-
tions with complex source terms. Adv. Water Resour. 32 (6), 873–884.

Liska, R., Wendroff, B., 1997. 2d shallow water equations by composite schemes. Int. J.
Numer. Methods Fluids 30 (4), 461–479.

Osher, S., Sanders, R., 1983. Numerical approximations to nonlinear conservation laws
with locally varying time and space grids. Math. Comput. 41 (164), 321–336.

Petaccia, G., Leporati, F., Torti, E., 2016. OpenMP and CUDA simulations of Sella Zerbino
Dam break on unstructured grids. Comput. Geosci. 20 (5), 1123–1132.

Rogers, B.D., Borthwick, A.G., Taylor, P.H., 2003. Mathematical balancing of flux gradient
and source terms prior to using Roe's approximate Riemann solver. J. Comput. Phys.
192 (2), 422–451.

Sætra, M.L., Brodtkorb, A.R., Lie, K.A., 2015. Efficient GPU-implementation of adaptive
mesh refinement for the shallow-water equations. J. Sci. Comput. 63 (1), 23–48.

Sanders, B.F., 2008. Integration of a shallow water model with a local time step. J. Hy-
draul. Res. 46 (4), 466–475.

Sanders, B.F., Bradford, S.F., 2006. Impact of limiters on accuracy of high-resolution flow
and transport models. J. Eng. Mech. 132 (1), 87–98.

Sanders, B.F., Schubert, J.E., Detwiler, R.L., 2010. ParBreZo: a parallel, unstructured grid,
Godunov-type, shallow-water code for high-resolution flood inundation modeling at
the regional scale. Adv. Water Resour. 33 (12), 1456–1467.

Teng, J., Jakeman, A.J., Vaze, J., Croke, B.F.W., Dutta, D., Kim, S., 2017. Flood inundation
modelling: a review of methods, recent advances and uncertainty analysis. Environ.
Model. Softw. 90, 201–216.

Thacker, W.C., 1981. Some exact solutions to the nonlinear shallow-water wave equations.
J. Fluid Mech. 107, 499–508.

Toro, E.F., 1999. Riemann Solvers and Numerical Methods For Fluid dynamics: a Practical
Introduction. Springer.

Toro, E.F., 2001. Shock-capturing Methods For Free-Surface Shallow Flows. John Wiley.
Vacondio, R., Rogers, B.D., Stansby, P.K., 2012. Accurate particle splitting for smoothed

particle hydrodynamics in shallow water with shock capturing. Int. J. Numer. Meth-
ods Fluids 69 (8), 1377–1410.

Vacondio, R., Rogers, B.D., Stansby, P.K., Mignosa, P., 2013. A correction for balancing
discontinuous bed slopes in two-dimensional smoothed particle hydrodynamics shal-
low water modeling. Int. J. Numer. Methods Fluids 71 (7), 850–872.

Vacondio, R., Dal Palù, A., Mignosa, P., 2014. GPU-enhanced finite volume shallow water
solver for fast flood simulations. Environ. Model. Softw. 57, 60–75.

Vacondio, R., Aureli, F., Ferrari, A., Mignosa, P., Dal Palù, A., 2016. Simulation of the
January 2014 flood on the Secchia River using a fast and high-resolution 2D parallel
shallow-water numerical scheme. Nat. Hazards 80 (1), 103–125.

Vacondio, R., Dal Palù, A., Ferrari, A., Mignosa, P., Aureli, F., Dazzi, S., 2017. A non-uni-
form efficient grid type for GPU-parallel shallow water equations models. Environ.
Model. Softw. 88, 119–137.

16

	
	
	

