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Abstract The propagation of viscous, thin gravity currents of non-Newtonian liquids
in horizontal and inclined channels with semicircular and triangular cross-sections is
investigated theoretically and experimentally. The liquid rheology is described by a
power-law model with flow behaviour index n, and the volume released in the chan-
nel is taken to be proportional to tα , where t is time and α is a non-negative con-
stant. Some results are generalised to power-law cross-sections. These conditions are
representative of environmental flows, such as lava or mud discharges, in a variety
of conditions. Theoretical solutions are obtained in self-similar form for horizontal
channels, and with the method of characteristics for inclined channels. The position
of the current front is found to be a function of the current volume, the liquid rheol-
ogy, and the channel inclination and geometry. The triangular cross-section is asso-
ciated with the fastest or slowest propagation rate depending on whether α < αc or
α > αc. For horizontal channels, αc = n/(n+1)< 1, whereas for inclined channels,
αc = 1, irrespective of the value of n. Experiments were conducted with Newtonian
and power-law liquids by independently measuring the rheological parameters and
releasing currents with constant volume (α = 0) or constant volume flux (α = 1)
in right triangular and semicircular channels. The experimental results validate the
model for horizontal channels and inclined channels with α = 0. For tests in inclined
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Viale Risorgimento, 2, 40136 Bologna, Italy

L. Chiapponi
Dipartimento di Ingegneria Civile, Ambiente Territorio e Architettura (DICATeA), Università di Parma,
Parco Area delle Scienze, 181/A, 43124 Parma, Italy

Manuscript
Click here to download Manuscript: AJE_revised_Second_Revision_NN_fluids_in_channels_EFM.tex 
Click here to view linked References

http://www.editorialmanager.com/efmc/download.aspx?id=31201&guid=20412982-f01f-4f35-bb99-8da9d1173cf1&scheme=1
http://www.editorialmanager.com/efmc/viewRCResults.aspx?pdf=1&docID=1032&rev=2&fileID=31201&msid={40229B8C-F412-4419-A971-127F1FC1AAD8}


2 Sandro Longo, Vittorio Di Federico, Luca Chiapponi

channels with α = 1, the propagation rate of the current front tended to lower val-
ues than predicted, and different flow regimes were observed, i.e., uniform flow with
normal depth or instabilities resembling roll waves at an early stage of development.
The theoretical solution accurately describes current propagation with time before
the transition to longer roll waves. An uncertainty analysis reveals that the rheolog-
ical parameters are the main source of uncertainty in the experiments and that the
model is most sensitive to their variation. This behaviour supports the use of care-
fully designed laboratory experiments as rheometric tests.

Keywords Gravity current · Similarity solution · Non-Newtonian · Power-law ·
Channel shape · Laboratory experiments

1 Introduction

Gravity currents occur in several natural phenomena (e.g., mud flows and lava flows)
and manufacturing processes (e.g., coating processes and mould filling) and are char-
acterised by a large variety of physical conditions and approximations, as discussed in
the reviews of Simpson [1], Huppert [2], and Ungarish [3]. Models of gravity currents
of Newtonian fluids, in which buoyancy and viscous or inertial forces are balanced,
have been successfully tested in experiments by Huppert [4] and Didden and Max-
worthy [5]. However, fluids exhibiting purely Newtonian behaviour are an exception
to the rule that most fluids in the environment, in biology, and in industrial processes
behave as non-Newtonian fluids. Experimental evidence from both field and labora-
tory studies demonstrates that some magmas behave as non-Newtonian fluids at sub-
liquidus temperatures due to gas bubbles and the presence of crystals [6]. Numerous
factors influence the propagation of magma flows, such as thermal effects that cause
an increase in the apparent viscosity eventually inducing a crustal layer at the sur-
face, accompanied by an increase in the flow resistance. However, the early stage of
lava eruption is not affected by these factors and can be confidently modelled within
the simplified framework of the present model [7]. Mudflows in surface and subma-
rine settings also exhibit complex rheological behaviour when treated with a single
phase approach; for a review, see Ugarelli and Di Federico [8]. Although the fluid
rheology in these environmental flows is often best described by a yield stress model,
the relatively simple Ostwald-de Waele power-law approximation is appropriate for
describing the behaviour of fresh magma, fine sediment-water mixtures, and mine
tailings in the limit that the yield stress tends to zero [9–11]. Gravity current models
of power-law fluids have been developed by, among others, Pascal [12], Gratton et al.
[13], and Di Federico et al. [14] and experimentally tested by Chowdhury and Testik
[15], Sayag and Worster [16], and Longo et al. [17]. In some analyses, the estimation
of fluid parameters relies on the measurement of the slumping of a constant volume
of power-law fluid on a horizontal base [18]. The inference of non-Newtonian rhe-
ological parameters by experiments with gravity currents is extensively analysed in
[17]. Jacobson and Testik [19] experimentally investigated the entrainment of ambi-
ent water into constant volume release gravity currents of power-law fluid. In many
cases, the flow of gravity currents is confined by channels [20, 21], as in lava flows
[7] and mud dynamics [22]. The shape of the boundaries influences the velocity of
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Fig. 1 A sketch of the current in the x-z and y- z planes.

the front and significantly modifies the overall dynamics of the current. The goals of
the present study are to develop solutions for gravity currents of power-law liquids
flowing in confined channels and to test them experimentally. In Section 2, governing
equations are derived for the cases of flow in a horizontal channel and flow in an in-
clined rectilinear channel, caused by the release of a volume of liquid varying as tα .
Two subsections present self-similar solutions (horizontal case) and solutions using
the method of characteristics (inclined case) for semicircular and triangular channels.
A third subsection generalises some results to channels described by a power func-
tion. In Sections 3 and 4, theoretical results are compared with laboratory experiments
conducted at constant volume or constant volume flux with shear-thinning, Newto-
nian, and shear-thickening (only in a single test) fluids in three different channels.
Section 3 describes the experimental setting and procedures, and Section 4 discusses
the experimental results and presents an uncertainty analysis. A set of conclusions in
Section 5 closes the paper.

2 Formulation

Consider a non-Newtonian liquid with rheology parameterised by an Ostwald-de
Waele power-law relating the shear stress and the shear rate τ = µ̃ γ̇ |γ̇|n−1, where
τ is the shear stress, µ̃ the consistency index, n the fluid behaviour index, and γ̇ the
shear rate. A liquid of uniform density, ρ , is injected into a rectilinear channel of
fixed cross-section inclined at an angle β with the horizontal, and moves in an ambi-
ent fluid of negligible mass density (due to the large density difference between the
current and the ambient fluid). The channel geometry is shown in Figure 1, with the
x, y, and z orthogonal axes oriented along the channel axis, across the channel, and
normal to the slope, respectively. The cross-section of the channel, with a boundary
described by the function d(y), is partly occupied by the current, which has a top
width of 2W (x, t) and a height h(x, t) that is invariant in the span-wise direction. We
assume that buoyancy and viscous forces are balanced with negligible inertial effects
and that the motion is quasi-stationary and can be described by continuity and mo-
mentum balance with null acceleration. Assuming that the streamlines are parallel to
the bottom of the channel and neglecting the effects of surface tension, the pressure
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in the liquid is hydrostatic and given by

p = p0 +ρg(h− z)cosβ , (1)

where p0 is the atmospheric pressure at the free surface and g is the gravitational
acceleration. We also assume that the extent of the flow, xN(t), is much larger than
both h and W . Hence, the motion is taken to be unidimensional along the x-axis and
is described by a single velocity component u(x,y,z, t). Under these hypotheses, the
Stokes equation reduces to

−∂ p
∂x

+ρ fx +
∂τyx

∂y
+

∂τzx

∂ z
= 0, (2)

where ρ fx is the volume force in the x-direction and τyx, τzx are the shear stresses.
We also consider wide cross-sections with h <<W , allowing one to neglect ∂τyx/∂y
with respect to ∂τzx/∂ z. Under this hypothesis, substitution of the expression for the
shear stress of a power-law fluid into Eq.(2) yields

∂

∂ z

[(
∂u
∂ z

)n]
=−S, (3)

where the assumption ∂u/∂ z > 0 holds and the source term S, dependent on the
channel inclination angle β , is given by

S =−ρg
µ̃

∂h
∂x

(β = 0), S =
ρg
µ̃

sinβ (β 6= 0). (4)

Eq. (4) indicates that for a horizontal channel, the motion is induced by the slope of
the free surface, while for an inclined channel, it is assumed that the current is locally
in equilibrium, with gravity acting proportionally to the slope. The latter condition
also requires that tanβ >> ∂h/∂x and excludes the possibility that the effect of the
free-surface slope is comparable with that of the channel slope. The dynamic bound-
ary condition at the free surface requires the continuity of the shear stress in the liquid
and in the ambient fluid, which can be approximated by zero. The no-slip condition
holds at the fixed boundary. Hence, Eq. (3) can be integrated by imposing

u|z=d = 0,
∂u
∂ z

∣∣∣∣
z=h

= 0, (5)

such that we obtain

u(x,y,z, t) = S1/n n
n+1

[
(h−d)(n+1)/n− (h− z)(n+1)/n

]
. (6)

The local continuity equation for a one-dimensional current is

∂A
∂ t

+
∂Q
∂x

= 0, (7)

where A is the cross-sectional area occupied by the liquid, given in the symmetric
case by

A(x, t) = 2
∫ W (x,t)

0
[h(x, t)−d(y)]dy, (8)
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and Q is the downstream volume flux obtained by integrating the velocity over the
cross-sectional area. Substituting Eq.(8) into Eq.(7) yields

2W
∂h
∂ t

+
∂Q
∂x

= 0. (9)

The global continuity equation yields

∫ xN(t)

0
A dx = qtα , (10)

where q > 0 and α ≥ 0 are constants and qtα is the volume of liquid released. The
case α = 0 corresponds to instantaneous injection of a constant volume and α = 1
corresponds to constant volume flux. At the front end of the current, the boundary
condition of vanishing height

h [xN(t), t] = 0 (11)

completes the mathematical statement of the problem for horizontal channels. How-
ever, Eq. (11) cannot be satisfied for inclined channels as the order of the differential
equation is lower due to the assumptions made in Eq. (4). For the inclined case this
produces a profile ending abruptly at the head of the current, as noted by Huppert
[23].

2.1 Semicircular cross-section

For a semicircular cross-section of radius r, the boundary is given by d = r− (r2−
y2)1/2 and the current half-width by W = (2rh)1/2[1− (1/2)h/r]1/2. Assuming that
the current is thin compared to the radius, i.e., h << r, it follows that the approxima-
tions d ≈ y2/(2r), W ≈ (2rh)1/2, and A≈ 4/3(2rh3)1/2 hold. The relative error in the
approximation of the width is O(h/r); for h/r = 0.1 and h/r = 0.5 the relative error
is equal to 2.6% and 15.5%, respectively. By integrating Eq.(6), the volume flux is
obtained as

Q(x, t) = 2
∫ W (x,t)

0
dy
∫ h(x,t)

d(y)
udz = h5/2+1/n√rS1/nKc(n), (12)

where

Kc(n) =

√
2π Γ (2+1/n)

Γ (7/2+1/n)
, (13)

where Kc(n) is a numerical factor and Γ (·) is the gamma function. Substituting the
expression for the cross-sectional area into Eq. (10) yields

4
3

√
2r
∫ xN(t)

0
h3/2dx = qtα . (14)
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2.1.1 The case β = 0 for a semicircular cross-section

For a horizontal channel with inclination angle β = 0, Eq. (9) yields

h1/2 ∂h
∂ t
−
√

2
4

Kc

(
ρg
µ̃

)1/n
∂

∂x

(
h5/2+1/n

∣∣∣∣∂h
∂x

∣∣∣∣1/n−1
∂h
∂x

)
= 0. (15)

Introducing the length and time scales

x∗ =
(

q√
r

)2n/(2α+5n)(
µ̃

ρg

)2α/(2α+5n)

, (16)

t∗ =
(

q√
r

)−2/(2α+5n)(
µ̃

ρg

)5/(2α+5n)

, (17)

Eqs. (15) and (14) become

H1/2 ∂H
∂T
−
√

2
4

Kc
∂

∂X

(
H5/2+1/n

∣∣∣∣∂H
∂X

∣∣∣∣1/n−1
∂H
∂X

)
= 0, (18)

∫ XN(T )

0
H3/2 dX =

3
√

2
8

T α , (19)

respectively, and the boundary condition (11) is given by

H [XN(T ),T ] = 0, (20)

where H = h/x∗, X = x/x∗ and T = t/t∗ are nondimensional variables. The similarity
solution of Eqs. (18-19) is expressed in terms of the similarity variable

η =

(
2
√

2
Kc

)n/(n+1)

XT−F1c , F1c =
2α(n+2)+3n

5n+7
(21)

and the solution form

H(X ,T ) = η
(n+1)/(n+2)
N T F2c ψ(ζ ), ζ =

η

ηN
, F2c =

F1c(n+1)−n
n+2

, (22)

where ηN is the value of η at the current edge XN , and the shape function, ψ , is the
solution of the nonlinear ordinary differential equation(

ψ
5/2+1/n ∣∣ψ ′∣∣1/n−1

ψ
′
)′
−F2cψ

3/2 +F1cζ ψ
1/2

ψ
′ = 0, ψ(1) = 0, (23)

in which the prime indicates d/dζ . The value of ηN is obtained from Eq. (19), which
transforms into

ηN =

4
√

2
3

(
Kc
√

2
4

)n/(n+1) ∫ 1

0
ψ

3/2dζ

−F3c

, F3c =
2(n+2)
5n+7

. (24)
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Fig. 2 Left panel: shape functions for semicircular horizontal channel sections for n = 0.5 (dashed line),
n = 1.0 (solid line), and n = 1.5 (dotted line). The thick dotted line represents the analytical solution for
n = 1.0. Right panel: the prefactor ηN as a function of α for n = 0.5 (dashed line), n = 1.0 (solid line), and
n = 1.5 (dotted line). For n = 1.0 and α = 0 the analytical solution ηN = 2.9021 is reproduced.

In Eqs. (21)-(24), the factors F1c, F2c, and F3c take different values depending on the
fluid rheology. For α = 0, Eqs. (23) and (24) admit the following analytical solutions:

ψ =

(
n+2
n+1

)1/(n+2)(2F1c

3

)n/(n+2)

(1−ζ
n+1)1/(n+2), (25)

ηN =

(
3
√

2
8

)F3c
(

2
√

2
Kc

) nF3c
n+1 (n+1

n+2

) 3F3c
2(n+2)

(
3

2F1c

) 3nF3c
2(n+2)

×

 Γ

[
1+ 1

1+n +
3

2(2+n)

]
Γ
(
1+ 1

1+n

)
Γ

[
1+ 3

2(2+n)

]
F3c

, (26)

which, for n = 1, are equivalent to the expressions given by Takagi and Huppert [20].
For α 6= 0, Eq. (23) must be integrated numerically. To do so, a second boundary
condition is obtained by generating an asymptotic solution near the current front in
terms of a power series [4], to yield

ψ
′(ζ → 1) =−a0b(1−ζ )b−1, a0 =

(
2F1c

3b1/n

)nb

, b =
1

n+2
. (27)

Figure 2 shows the shape function for different values of α and n, and the prefactor
ηN as a function of α for different values of n. The shape function significantly in-
creases for increasing α and modestly decreases for increasing n, and the prefactor
ηN increases for increasing n. The numerical result for α = 0 is confirmed by the an-
alytical solution. From Eq. (21), the front end of the current propagates as XN ∝ T F1c ,
with a speed UXN ∝ T F1c−1.
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2.1.2 The case β > 0 for a semicircular cross-section

For an inclined channel with β > 0, Eq. (9) becomes

∂h
∂ t

+
Kc
√

2
4

(
ρg
µ̃

)1/n (5n+2)
2n

(sinβ )1/n h1+1/n ∂h
∂x

= 0, (28)

where the factor Kc is given by Eq. (13). The dimensionless form of Eq. (28) is

∂H
∂T

+
Kc
√

2
4

(5n+2)
2n

(sinβ )1/n H1+1/n ∂H
∂X

= 0, (29)

while Eq. (19) is unchanged. The function H is constant along the characteristics
given by

dX
dT

= gc(n)H1+1/n, gc(n) =
Kc
√

2
4

(5n+2)
2n

(sinβ )1/n (30)

and admits the solution

H = g−n/(n+1)
c Xn/(n+1)T−n/(n+1). (31)

Eq. (31) represents a profile abruptly ending at XN , which can be smoothed by in-
cluding surface tension [23]. The condition XN = 0 for T = 0, implicit in Eq. (31),
can be changed to XN > 0 for T = 0 by introducing a time shift equivalent to a virtual
origin; this is a local effect without significant consequences for the current profile in
the asymptotic regime. Note that no further boundary conditions are required. Upon
substitution of Eq. (31), the constraint represented by Eq. (19) gives the length of the
current as

XN =

(
3
√

2
8

) 2(n+1)
5n+2

g
3n

5n+2
c

[
5n+2

2(n+1)

] 2(n+1)
5n+2

T
2α(n+1)+3n

5n+2 (32)

with the front end advancing with a speed UXN ∝ T 2(α−1)(n+1)/(5n+2). The current
accelerates (decelerates) for α > 1 (α < 1). For α = 0 and n = 1, the expressions
given in dimensional form by Takagi and Huppert [20] are recovered.
For α = 1, the volume flux, Q, is constant with Q ≡ q, the maximum height of the
current at X = XN is equal to

HXN =

[
2(n+1)

3n
Kc(sinβ )1/n

]−2n/(5n+2)

, (33)

and the front end advances with a constant speed. The depth predicted by Eq. (33)
may be compared with the normal and critical depths of the channel for the same
volume flux. The normal depth is derived by balancing the gravitational force and
tangential stress such that

hn =

[
µ̃1/nQ

√
rKc(ρgsinβ )1/n

]2n/(5n+2)

, (34)
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Fig. 3 The nondimensional profile of the gravity current in a semicircular inclined channel (bold line)
with α = 1.0, n = 1.0, and Fr = 0.11. The dashed line is the normal depth and the dash-dotted line is the
critical depth.

yielding, in nondimensional form,

Hn =
[
Kc(sinβ )1/n

]−2n/(5n+2)
. (35)

The critical depth, where energy is at a minimum for a given volume flux, is equal to

hc =

(
27χQ2

64gr

)1/4

, (36)

where χ is the Coriolis coefficient.

A comparison between the maximum depth at the current front calculated with the
present model, as given by Eq. (33), and the normal depth yields HXN > Hn, HXN =
Hn, or HXN < Hn, depending on whether n > 2, n = 2, or n < 2.

The global Reynolds and Froude numbers of the current are computed for inclined
channels (β > 0) and constant volume flux (α = 1) as

Re =
8ρU2

n

µ̃

[√
2rhn

2Un

]n

, Fr =
Un√

2ghn cosβ

3χ

, (37)

where Un is the normal velocity. Figure 3 shows the nondimensional profile of the
current for n = 1.0 and Fr = 0.11. Similar results are obtained for other values of n
(but are not shown here).

2.2 Triangular cross-section

The velocity distribution for laminar flow in a V-shaped cross-section with vertex an-
gle 2θ cannot be computed by assuming ∂τzx/∂ z >> ∂τyx/∂y in the Stokes equation
(2) for general values of θ , but only for 2θ >> 90◦. For Newtonian liquids, Tak-
agi and Huppert [20] adopted a coordinate transformation and found a solution for
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the velocity field in terms of an infinite summation of orthogonal cosine functions,
deriving by integration an expression for the volume flux in the form

Q≈ 0.137m3

1+m2 h4S, (38)

where m = tanθ and S is the source term defined by Eq. (4). For a power-law liquid,
a similar approach cannot be followed due to nonlinearity. Hence we resort to an
empirical approach and employ the experimental results of Burger et al. [11]. They
investigated the flow of various non-Newtonian liquids in open channels of different
cross-sectional shapes and expressed the relationship between the Fanning friction
factor, f , and the generalised Reynolds number, ReH , in fully developed laminar flow
through the use of a shape factor coefficient (the theoretical formulation given by
Muzychka and Edge [24] yields similar results). For a power-law liquid flowing in a
right triangular section with 2θ = 90◦, their experiments yielded

f = 14.6/ReH , (39)

with

f =
2gRsinβ

U2 , ReH =
8ρU2

µ̃

(
R

2U

)n

, (40)

where U = Q/A and R is the hydraulic radius. Hence, by substituting the expressions
given for f and ReH in Eq. (40) into Eq. (39) we obtain

Q = Kt(n,m)h(3n+1)/nS1/n,

Kt(n,m) = 2(3−2n)/n m(2n+1)/n

(1+m2)(n+1)/(2n)

(
1

14.6

)1/n

, (41)

where Kt(n,m) is a coefficient incorporating the shape of the cross-section and the
fluid rheology. For n = 1, Kt is approximately equal to the value 0.137 given in Eq.
(38). Eq. (41) is thus strictly valid only for 2θ = 90◦. For other values of the vertex
angle, 2θ , a factor solely dependent on channel shape and with a numerical value
different from 14.6 will appear in the expression for the friction factor given by Eq.
(39); this numerical factor must be determined with independent experiments similar
to those of Burger et al. [11]. This will, in turn, change the numerical value of the
coefficient Kt(n,m) given by Eq. (41), but not its dependence on m and n. Hence. in
the following theoretical derivations Kt(n,m) is assumed to be known, regardless of
its actual value.

2.2.1 The case β = 0 for a triangular cross-section

For a horizontal channel (β = 0), substituting Eq. (41) into Eq. (9) with W = mh
yields

h
∂h
∂ t
− Kt

2m

(
ρg
µ̃

)1/n
∂

∂x

(
h(3n+1)/n

∣∣∣∣∂h
∂x

∣∣∣∣1/n−1
∂h
∂x

)
= 0, (42)
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while Eq. (10) becomes

m
∫ xN(t)

0
h2dx = qtα , (43)

because A = mh2 and the boundary condition given by Eq. (11) holds. Introducing
the length and time scales

x∗ =
( q

m

)n/(α+3n)
(

µ̃

ρg

)α/(α+3n)

, (44)

t∗ =
( q

m

)−1/(α+3n)
(

µ̃

ρg

)3/(α+3n)

, (45)

Eqs. (42) and (43) become, in dimensionless form,

H
∂H
∂T
− Kt

2m
∂

∂X

(
H(3n+1)/n

∣∣∣∣∂H
∂X

∣∣∣∣1/n−1
∂H
∂X

)
= 0, (46)

∫ XN(T )

0
H2dX = T α , (47)

and the boundary condition is again given by Eq. (20). The similarity variable and the
solution form of the problem described by Eqs. (46)-(47), with Eq. (20), are given by

η =

(
2m
Kt

)n/(n+1)

XT−F1t , F1t =
α(n+2)+2n

3n+4
, (48)

H(X ,T ) = η
(n+1)/(n+2)
N T F2t ψ(ζ ), ζ =

η

ηN
, F2t =

α(n+1)+n
3n+4

, (49)

where the shape function, ψ , is obtained by solving the differential equation(
ψ

(3n+1)/n ∣∣ψ ′∣∣1/n−1
ψ
′
)′
−F2tψ

2 +F1tζ ψψ
′ = 0, ψ(1) = 0, (50)

and the prefactor is given by

ηN =

[(
Kt

2m

)n/(n+1) ∫ 1

0
ψ

2dζ

]−F3t

, F3t =
n+2

3n+4
. (51)

In Eqs. (48)-(51), the factors F1t , F2t , and F3t depend solely on fluid rheology. For
α = 0, a closed form solution is derived as

ψ =

(
n

3n+4

)n/(n+2)(n+2
n+1

)1/(n+2) (
1−ζ

n+1)1/(n+2)
, (52)

ηN =

(
2m
Kt

)nF3t/(n+1)(3n+4
n

)2nF3t/(n+2)(n+1
n+2

)2F3t/(n+2)

×
[

2F1

(
1

1+n
,− 2

2+n
,

2+n
1+n

,1
)]−F3t

, (53)
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where 2F1 is the hypergeometric function. For the case n= 1, Eq. (53) is equivalent to
the solution reported in dimensional form in [20]. For α 6= 0, the numerical integra-
tion of Eq. (50) requires a second boundary condition near the current front, obtained
similarly to Eq. (27) as

ψ
′(ζ → 1) =−a0b(1−ζ )b−1, a0 =

(
nF1tb(n−1)/n

b(3n+2)−1

)nb

, b =
1

n+2
. (54)

Numerical values of the shape function and the prefactor ηN for different values of α

and n are similar to the semicircular case. The front end of the current propagates as
XN ∝ T F1t and advances with a speed UXN ∝ T F1t−1.

2.2.2 The case β > 0 for a triangular cross-section

In an inclined triangular channel with β > 0, Eq. (9) becomes

∂h
∂ t

+
Kt

2m

(
ρg
µ̃

)1/n (3n+1)
n

(sinβ )1/n h(n+1)/n ∂h
∂x

= 0, (55)

and Eq. (43) is unchanged. In nondimensional form, Eq. (55) is

∂H
∂T

+
Kt

2m
(3n+1)

n
(sinβ )1/n H(n+1)/n ∂H

∂X
= 0, (56)

while Eq. (20) still holds. The solution is obtained with the method of characteristics
as

H = g−n/(n+1)
t Xn/(n+1)T−n/(n+1), gt =

Kt

2m
(3n+1)

n
(sinβ )1/n , (57)

and the length of the current is given by

XN =

(
3n+1
n+1

)(n+1)/(3n+1)

g2n/(3n+1)
t T

α(n+1)+2n
3n+1 , (58)

with the front end advancing with a speed UXN ∝ T (α−1)(n+1)/(3n+1). For α = 1 (con-
stant volume flux), the maximum height of the current at X = XN is equal to

HXN =

(
n+1

2n
Kt

m
sinβ

1/n
)−n/(3n+1)

, (59)

and the front end advances with constant speed. For α = 0 and n = 1, the solution
given by Takagi and Huppert [20] is recovered. The normal depth is given in dimen-
sional and nondimensional form by

hn =

[
µ̃1/nQ

Kt(ρgsinβ )1/n

]n/(3n+1)

, Hn =

[
Kt

m
(sinβ )1/n

]−n/(3n+1)

, (60)

and the critical depth is

hc =

(
2χQ2

gm2

)1/5

. (61)
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The Reynolds and Froude numbers of the current are computed for constant volume
flux (α = 1) as

Re =
8ρU2

n

µ̃

[
mhn

4Un(1+m2)

]n

, Fr =
Un√

2ghn cosβ

2χ

. (62)

Hence, HXN > Hn, HXN = Hn, or HXN < Hn depending on whether n < 1, n = 1, or
n > 1.

2.3 A generalisation for power-law channels

The previous results can be suitably generalised upon describing the cross-section
with a general power-law relationship d = a |y/a|k, where a is a length scale and k is
a prescribed constant: k = 1, k = 2, and k→∞ correspond to triangular, semicircular,
and infinitely wide rectangular sections, respectively. For k > 1, the current depth is
much smaller than its width and ∂τzx/∂ z >> ∂τyx/∂y, as earlier hypothesised for
semicircular sections. By using the same arguments for semicircular sections, for
wide cross-sections (k > 1) the exponent of time, proportional to the propagation
distance, c, is given by

chw =
2kα +n(1+ k+ kα)

1+n+ k(3+2n)
, for β = 0, (63)

ciw =
αk(n+1)+n(k+1)
n(k+1)+ k(n+1)

, for β > 0. (64)

In a narrow channel, the Stokes equation (2) simplifies, retaining only the gradient of
the shear stress ∂τyx/∂y, which is the dominant term. By dimensional arguments, for
propagation in narrow cross-sections (k < 1), the exponent of time is

chn =
α(k+1)+n(k+α +1)

2+2n+ k(2+n)
, for β = 0, (65)

cin =
α +n(k+α +1)

1+n(2+ k)
, for β > 0. (66)

Note that ciw(α,n,k)≡ cin(α,n,1/k). A summary of the propagation rates for differ-
ent geometries is listed in Table 1. In horizontal channels, the front end accelerates
if α > (4+ n)/(2+ n) for V-shaped sections, α > (7+ 2n)/(4+ 2n) for semicir-
cular sections, and α > (3+ 2n)/(2+ n) for wide rectangular sections. For generic
power-law cross-sections, accelerated currents are obtained for α > (2+2k+n)/(1+
k+ n), k < 1, and α > (1+ 3k+ kn)/(2k+ kn), k > 1. In inclined channels of any
shape, the current front accelerates if α > 1, decelerates if α < 1, and advances with
a constant speed independent of the value of the fluid behaviour index n if α = 1.
In horizontal channels, the front velocity attains its maximum value for a triangular
section (k = 1) when α < αc ≡ n/(n+1); in this case the front is always decelerated.
Conversely, if α > αc ≡ n/(n+1) the minimum value of the front velocity is reached
for a triangular section; here the front can be decelerated or accelerated. Qualitatively
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Shape Reference Horizontal (β = 0) Reference Inclined (β > 0)

Narrow (k = 1/2) tp 3(n+α)+2nα

5n+6 tp 2α(n+1)+3n
5n+2

V-shaped (k = 1) tp α(n+2)+2n
3n+4 tp α(n+1)+2n

3n+1

Semicircular (k = 2) tp 2α(n+2)+3n
5n+7 tp 2α(n+1)+3n

5n+2

Rectangular (k→ ∞) GM α(n+2)+n
2n+3 tp α(n+1)+n

2n+1

Table 1 Current propagation rates in horizontal and inclined channels of different shapes. ”GM” and ”tp”
refer to Gratton et al. [13] and this paper, respectively. For n = 1, these results are consistent with the data
listed in Table I of Takagi and Huppert [21].

Fig. 4 The time exponent c (proportional to the propagation distance) as a function of k for a shear-thinning
liquid with n = 0.5 for different values of α for horizontal (left panel) and inclined channels (right panel).

similar results are obtained for inclined channels, except that the critical value αc
equals unity, irrespective of the value of the flow behaviour index n. Figure 4 shows
the dependence of the exponent of time, c, on k for a shear-thinning liquid (n = 0.5)
for different values of α for horizontal and inclined channels, confirming the above
findings. The influence of the shape of the cross-section, parameterised by k, is larger
in the interval 0 < k < 2. The results for different values of n (not shown here) are
similar, indicating the relatively minor influence of the flow behaviour index n on the
propagation rates. The values of αc for n = 1 are in agreement with those reported in
Takagi and Huppert [21].

3 Experiments

A series of experiments was performed at the Hydraulics Laboratory of the Uni-
versity of Parma to test the theoretical formulation. Constant volume (α = 0) and
constant volume flux (α = 1) tests were conducted with Newtonian (n = 1), shear-
thinning (n < 1), and shear-thickening (n > 1) liquids, in horizontal (β = 0) and
inclined (β > 0) channels with different cross-sectional shapes. Three different ex-
perimental setups were utilised. The first employed a 600 mm-long circular tube of
polymethyl methacrylate (PMMA) with a radius of 119 mm, which was cut along a
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meridian plane and supported with frames and adjustable feet to ensure horizontality
of the axis. This semicircular channel was used in experiments with α = 1 and β = 0.
Another set of experiments, conducted with α = 0 and β = 0, and with α = 0 or 1
and β > 0, used a circular 2000 mm-long PVC tube with a radius of 74.5 mm, which
was fixed to an aluminium rigid frame supported by adjustable feet. In a third set of
experiments, a 2000 mm-long aluminium profile with a triangular L-shaped 100 mm
× 100 mm cross-section and a vertex angle of 90◦ was utilized, supported at both
ends with plastic frames equipped with adjustable feet. To explain some apparent
inconsistencies in the experimental results, the aluminium frame was covered with
PVC in a limited subset of experiments (see the Discussion section). In all groups of
tests, the inclination of the channel axis was measured with an electronic spirit level
with an overall accuracy of 0.1◦. For tests involving an instantaneous release of the
liquid (α = 0), a lock gate was installed at one end of the channel, delimiting a reser-
voir having the same cross-sectional shape. The volume of the liquid was estimated
with a relative uncertainty of ±1.5% by weighing the mass that filled the reservoir
and dividing by the mass density. For tests with a constant volume flux (α = 1), a
syringe pump built in the lab, accurate to ±1% of the instantaneous volume flux, de-
livered the liquid through a plastic tube. The position of the front end of the current
was detected using either a high-resolution digital video camera or a digital camera
with images taken approximately 600 mm above the current, thus achieving a spatial
resolution of ≈ 3 pixels/mm. To cover the entire extent of the current with adequate
spatial resolution, the video camera and one or two synchronised photo cameras were
installed with overlapping fields of view, even though, for many tests, only the images
far from the source were of interest. To identify the current boundary, the resulting
images were processed using software that restituted the pixel positions in a reference
grid with an overall estimated uncertainty of ±1.5 mm. In the experiments with the
lock gate, the start time was detected by observing the video images. In the other tests,
the start of the syringe pump was controlled by a personal computer; simultaneously,
an LED in the field of view of the video camera was turned on and an electric signal
for acquiring an image was sent to the photo cameras. The video camera acquired 25
frames per second (usually undersampled to 1 frame per second or less) and the photo
cameras acquired 1 frame per second or less, depending on the velocity of the front
end of the current. The uncertainty in time measurement was assumed to be equal to
1/50 s for the video camera and negligible for the pictures taken by the photo cameras.
The liquids used in the tests were prepared by gently mixing glycerol, water, and ink
to obtain a Newtonian fluid, and by adding xanthan gum to obtain a shear-thinning
fluid. The shear-thickening liquid used in a single test was a mixture of water (40%
by weight) and cornstarch (60% by weight). The rheological behaviour of the liquids
was tested with a coaxial cylinder shear rheometer (Haake Rotovisco RT10) and a
parallel plate rheometer (Dynamic Shear Rheometer Anton Paar Physica MCR 101),
both strain-controlled rheometers. The flow behaviour index and the consistency co-
efficient were obtained by fitting an Ostwald-de Waele power-law to the data mea-
sured with the rheometers. The real rheological behaviour of the liquid is generally
better described by a Cross or Carreau-Yasuda model, which reduces to the power-
law model only for limited ranges of the shear rate, with varying values of the indices
in different ranges. Hence, to render the power-law approximation acceptable, the fit-
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Fig. 5 (a) Schematic of the experimental apparatus. (b) A snapshot of a current propagating in a semicir-
cular horizontal channel with constant volume flux. The image refers to Test 2.

ting was performed in the low shear rate range (less than 5 s−1), consistent with the
expected mean shear rate of the currents in the present experiments. The uncertainty
associated with the rheological parameters is essentially due to the limitations of the
power-law model in reproducing the rheometrical experimental data. For the liquids
used in the present tests, the uncertainty (one standard deviation) associated with the
flow behaviour index and the consistency coefficient are≈ 2.5% and≈ 3.5%, respec-
tively. The mass density of the liquids was measured by a hydrometer or by weighing
a fixed known volume of liquid, with an uncertainty of ≈ 1%. The temperature was
measured by submerging a mercury-in-glass thermometer (0.02 ◦C resolution) in the
liquid before filling the syringe pump or the reservoir. Figure 5 shows a schematic of
the experimental apparatus and a snapshot of a current of shear-thinning liquid ad-
vancing in a semicircular horizontal channel. A total of 36 tests were conducted with
different channel cross-sections (semicircular and right triangular), inclinations to the
horizontal, liquid supply methods (constant volume or volume flux), and rheologies.
In most tests a shear-thinning fluid was used. Some tests employed a Newtonian fluid
to validate the outcomes against known theoretical results. In a single test (test 55), a
shear-thickening fluid was utilised. The experimental parameters are reported in Ta-
ble 2, including: test number; channel inclination; type of test (α = 0 or 1 for constant
volume or volume flux); injected volume or volume flux; flow behaviour index and
consistency coefficient; fluid density; and global Reynolds and Froude numbers for
tests conducted with constant volume flux (α = 1) in an inclined channel (β > 0).

We note that the highest observed value of the Reynolds number is Re = 60; this
ensures that the Stokes flow approximation is correct, because the gradual transition
from laminar to fully turbulent flow is expected to begin for Re > 500. In only two
tests (25 and 42), the equivalent uniform flow in the channel is supercritical with a
Froude number greater than unity (or, equivalently, with a normal depth less than
the critical depth) and with the maximum height of the predicted profile smaller than
the normal and critical depths. For the tests with Fr < 1, the maximum height of
the predicted profile is between the critical depth and the normal depth. A time shift
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Test shape β α q n µ̃ ρ Re Fr state

(deg) (ml s−α ) (Pa sn) (kgm−3)

21 c(2) 0.0 0.0 143.6 0.42 0.67 1175
24 c(2) 0.0 0.0 311.2 0.42 0.67 1175
52 c(2) 7.4 0.0 126 0.42 0.67 1175
53 c(2) 4.5 0.0 130 0.42 0.67 1175
55 c(2) 4.5 0.0 192 1.57 0.40 1200
1 c(1) 0.0 1.0 1.35 0.42 0.67 1175
2 c(1) 0.0 1.0 4.08 0.42 0.67 1175
3 c(1) 0.0 1.0 0.57 0.42 0.67 1175
5 c(1) 0.0 1.0 2.17 1.00 0.16 1241
18 c(2) 4.0 1.0 0.79 1.00 0.16 1241 6.4 0.11 me
19 c(2) 4.0 1.0 0.78 0.42 0.67 1175 1.2 0.10 me
20 c(2) 5.5 1.0 2.34 0.42 0.67 1175 6.0 0.27 me
25 c(2) 30.6 1.0 3.94 0.42 0.67 1175 62.5 1.98 rw
26 c(2) 30.6 1.0 0.77 0.42 0.67 1175 9.8 0.76 rw
27 c(2) 30.6 1.0 0.21 0.42 0.67 1175 2.2 0.35
28 c(2) 30.6 1.0 0.30 0.42 0.67 1175 3.3 0.43 rw
29 c(2) 30.6 1.0 0.24 0.42 0.67 1175 2.6 0.37 irw
30 c(2) 30.6 1.0 0.18 0.42 0.67 1175 1.9 0.32
33 c(2) 18.0 1.0 0.94 0.42 0.67 1175 7.2 0.50 rw
34 c(2) 18.0 1.0 0.54 0.42 0.67 1175 3.9 0.36
35 c(2) 18.0 1.0 1.64 0.42 0.67 1175 13.6 0.69 rw
9 t 0.0 0.0 286 0.42 0.67 1175
10 t 0.0 0.0 430 0.42 0.67 1175
14 t 5.5 0.0 163.9 0.42 0.67 1175
15 t 8.8 0.0 68.0 0.42 0.67 1175
16 t 5.5 0.0 104.1 0.42 0.67 1175
6 t 0.0 1.0 2.14 0.42 0.67 1175
7 t 0.0 1.0 0.54 0.42 0.67 1175
8 t 0.0 1.0 4.33 0.42 0.67 1175
11 t 5.5 1.0 4.14 0.42 0.67 1175 10.5 0.54 u
12 t 8.6 1.0 1.86 0.42 0.67 1175 7.6 0.57 u
13 t 5.5 1.0 0.81 0.42 0.67 1175 1.8 0.22 u
42 t 18.1 1.0 3.82 0.42 0.67 1175 40 1.93
48 t 30.5 1.0 2.29 1.00 0.16 1241 3.3 0.78 me
49 t 30.5 1.0 3.62 1.00 0.16 1241 4.6 0.92 me
50 t 30.5 1.0 2.31 1.00 0.16 1241 3.3 0.78 u

Table 2 Experimental parameters for all tests. The symbols c(1) and c(2) indicate a semicircular section
with r = 119 mm and r = 74.5 mm, respectively, whereas t indicates a triangular section with 2θ = 90◦.
Values of global Reynolds and Froude numbers are listed when α = 1 and β > 0. In the last column, ”me”
indicates a metastable state, ”rw” indicates the presence of roll waves, ”irw” indicates incipient roll waves,
and ”u” indicates uniform flow with normal velocity.

equivalent to a virtual origin was introduced to interpret the experimental data for the
inclined channel and the constant volume subcase (α = 0) for the horizontal chan-
nel. In the latter case, the correction was needed to account for the finite size of the
reservoir and the finite time needed to open the gate.
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4 Discussion

The scaled, nondimensional results for current front position as a function of time are
depicted in Figure 6 for horizontal channels with semicircular cross-sections, and in
Figure 7 for horizontal channels with right triangular cross-sections. Figures 8 and
Figure 9 show the corresponding results for inclined channels. Each Figure is split
into two panels (a) and (b), each covering a different range of abscissa and ordinate
values. The different factors used for the scaling of XN in the four Figures are ex-
pressed as fi(XN), i = 1,2,3,4. Figures 8 and Figure 9, valid for inclined channels,
depict two additional reference lines representing the normal speed of uniform cur-
rents of shear-thinning (n = 0.42) and Newtonian liquids. The inset in panel (a) of
each Figure represents an enlargement of a portion of the panel.

For horizontal channels, the experimental results (symbols) are in good agreement
with the theoretical predictions (solid lines) for constant volume flux (α = 1) and
constant volume (α = 0). In the latter case, only the late time evolution of the current
is consistent with the theory, while at early times the time exponent for the front end
position differs from the similarity solution. This is because the current, after the
slumping phase, is initially in an inertial-buoyancy regime, where buoyancy forces
are balanced by inertia. The transition to a viscous-buoyancy regime takes longer for
constant volume (α = 0) than for constant volume flux (α = 1) currents, as also noted
by Sayag and Worster [16] for an axisymmetric geometry. For inclined channels,
good agreement with the theory at late times was again observed in tests with α = 0.
In tests with α = 1, the speed of the front was generally lower than the theoretical
prediction, and different flow regimes were observed. In some tests conducted in
triangular channels with small inclinations (up to 8.6◦), the flow was stable, but the
front of the current advanced with a constant speed lower than UXN predicted by Eq.
(58) and equal to the mean velocity Un in a channel with normal depth. The latter
is significantly lower than the former, as shown by their ratio, which is given for
semicircular and triangular channels by

UXN

Un
= (2+5n) [2(n+1)]−2(n+1)/(2+5n) (3n)−3n/(2+5n) (67)

UXN

Un
= (1+3n)(n+1)−(n+1)/(1+3n)(2n)−2n/(1+3n), (68)

respectively. For both cross-sections, the numerical value of the ratio is always larger
than unity, reaching a maximum of 2 for n= 1 and n= 2. For tests with larger channel
inclinations (18.0◦ to 30.6◦), streamwise instabilities developed with bores followed
by gentle profiles. This phenomenon, known as roll waves, has been studied in the
laminar regime by Julien and Hartley [25] for Newtonian fluids, Ng and Mei [10]
for power-law shear-thinning fluids, and Longo [26] for power-law shear-thickening
fluids. Roll waves start to form on uniform currents with a minimum length corre-
sponding to the level of dissipation of the (uniform) flow and continue to grow with
increasing lengths and bore speeds. Developed periodic roll waves in the flow of
power-law shear-thinning liquids in rectangular channels show a peak fluid velocity
exceeding the uniform current speed by≈ 30% [10]. Although the dynamics of roll
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Fig. 6 Experimental results for horizontal semicircular channels in different sets of tests. The
variables XN and T are nondimensional and are scaled according to Eq. (21), with f1(XN) =
[(XN/ηN)(2

√
2/Kc)

n/(n+1)]1/F1c . The solid line represents the theoretical prediction.

Fig. 7 Experimental results for horizontal right triangular channels in different sets of tests. The
variables XN and T are nondimensional and are scaled according to Eq. (48), with f2(XN) =
[(XN/ηN)(2m/Kt)

n/(n+1)]1/F1t . The solid line represents the theoretical prediction.

waves is strongly affected by the shape of the channel, we expect the peak fluid ve-
locity also to be larger than the uniform current speed in semicircular and triangular
channels; this velocity field pushes the current front end, which in turn moves faster
than the uniform speed. In some of the present tests, the front of the current advanced
with an average speed greater than the normal speed, but still lower than that pre-
dicted by the present model; this finding is qualitatively consistent with the mecha-
nism of current advancement described above. While the model adopted herein does
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Fig. 8 Experimental results for inclined semicircular channels in different sets of tests. The variables
XN and T are nondimensional and are scaled according to Eq. (32), with f3(XN) = [(X5n+2

N /g3n
c )[16(n+

1)/(3
√

2(5n+2))]2(n+1)]1/[2α(n+1)+3n]. The solid line represents the theoretical prediction; the blue dashed
and green dash-dotted lines represent the normal speeds for a uniform current of shear-thinning (n = 0.42)
and Newtonian liquids, respectively. The inset in Figure 8a shows an enlargement of a portion of the figure,
illustrating the behaviour of currents with roll waves (tests 25 and 28).

Fig. 9 Experimental results for inclined right triangular channels in different sets of tests. The variables
XN and T are nondimensional and are scaled according to Eq. (58), with f4(XN) = [(X3n+1

N /g2n
t )[(n+

1)/(3n+ 1)](n+1)]1/[α(n+1)+2n]. The solid line represents the theoretical prediction; the blue dashed and
green dash-dotted lines represent the normal speeds for a uniform current of shear-thinning (n = 0.42) and
Newtonian liquids, respectively. The inset in Figure 9a shows an enlargement of a portion of the figure,
illustrating the behaviour of currents in a metastable state (tests 48 and 49).
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Fig. 10 Left panel: position of the current front for test 28 (semicircular inclined channel, n = 0.42±
2.5%, µ̃ = 0.67± 3.5% Pa sn, ρ = 1175± 1.0% kgm−3, q = 0.30± 1% ml s−1, β = 30.6◦± 0.5%, α =
1.0± 0.1%, and r = 74.5± 1% mm, uncertainty expressed as one standard deviation). The thick red and
thin light blue solid lines are the theoretical prediction and the experimental results, respectively; the
dashed red lines are the 95% confidence limits and the thick blue dashed line represents the uniform
motion (normal speed). The arrow indicates the transition to a different flow regime. The error bar equal
to ±2 times the experimental uncertainty in detecting the front end position of the current is indicated for
comparison. Right panel: sensitivity analysis for the length of the gravity current in an inclined channel
with a semicircular cross-section. The ratio of the standard deviation, σi, of the ith parameter and the total
standard deviation, σxN , is shown assuming an uncertainty of 1% for each parameter. The uncertainty in
time is assumed to be equal to 1/50 s, i.e., half the time interval between two subsequent frames.

not consider inertia, the appearance of incipient roll waves and/or metastable con-
figurations suggests that inertial effects or other secondary effects were not entirely
negligible. Upon examining the position of the current front against time in greater
detail in specific tests exhibiting roll waves (e.g., test 28 conducted in a semicircu-
lar inclined channel, Figure 10a), it is seen that the current propagation is initially
correctly predicted by the present model. Then, the speed of the front end decreases
quite abruptly as soon as the roll waves increase in length. This was also documented
for other tests showing longer roll waves, and confidence intervals of the same or-
der as those shown in Figure 10a were obtained. On the basis of these findings, it
can be concluded that the present model correctly interprets the advancement of the
current before the transition between incipient roll waves and roll waves. As soon
as the roll waves increase in length, part of the energy is dissipated in the breaking
process of the bores, and the front of the current reduces its speed. To capture this
transition in triangular channels, numerous tests were added to the initially planned
sequence. The channel material was also changed from aluminium to PVC to detect
the possible effects of the contact angle and/or any electrical effects evident in mi-
crochannel viscous flows (see, e.g., Yang and Li [27]); however no significant change
was observed in the propagation rate. Notably, tests conducted in identical conditions
yielded different values for the speed of the front end of the current; this indicated
the metastability of the flow, which is highly sensitive to minimal disturbances.
An uncertainty analysis was conducted by expressing the length of the current, xN ,

as a function of the problem parameters and time, and by expanding xN in a Taylor
series to first order. After calculating the contribution of each parameter, the total un-
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certainty in xN was obtained by summing the individual contributions in quadrature
as

σxN =

√(
∂xN

∂n

)2

σ2
n +

(
∂xN

∂ µ̃

)2

σ2
µ̃
+ . . ., (69)

where the symbols σi denote the standard deviation, which is assumed to be an esti-
mate of the uncertainty. Figure 10b depicts the sensitivity of the model to the uncer-
tainty in the parameters as the ratio between the standard deviation associated with
each parameter and the total standard deviation, assuming a fixed uncertainty of 1%
for each parameter. The highest ratio is associated with the rheological parameters n
and µ̃ , accounting for more than 80% of the total standard deviation of xN . This is
because in the present tests, the uncertainties in n and µ̃ are by far the most relevant
- all the other sources of uncertainty are almost trivial.

5 Conclusions

We investigated the flow of laminar gravity currents of power-law liquids in hori-
zontal and inclined channels having different cross-sectional shapes, namely semicir-
cular and right triangular, theoretically and experimentally. The theoretical solutions
are self-similar or based on the method of characteristics, and allow the evaluation of
the position of the current front and the thickness of its profile, extending the Newto-
nian results of Takagy and Huppert [20, 21]. Laboratory experiments were conducted
with liquids of different rheologies in semicircular and triangular channels. The main
conclusions of our work are:

– The position of the current front depends on (i) the volume parameter α , (ii) the
liquid rheology, and (iii) the channel inclination and shape of the cross-section.
The latter factor influences the mass balance equation and modulates the down-
stream evolution of the current. Critical values of α are determined for horizontal
channels as a function of behaviour index n as αc = n/(n+ 1), and for inclined
channels as αc = 1, irrespective of cross-section geometry. For triangular cross-
sections, a maximum (minimum) value of the rate of spreading is attained for
α < αc (α > αc).

– The position of the current front obtained experimentally is generally in good
agreement with theory. For tests in inclined channels with α = 1, a variety of
flow regimes typical of open-channel flows were observed at the end of the tests:
uniform flow with normal depth, incipient roll waves, roll waves, metastable con-
ditions. The final propagation rate of the current front was overpredicted by the
model, while the presence of roll waves suggested the influence of inertia or other
secondary effects. Upon examining the rate of propagation of the current over
time, it was discovered that the theoretical solution accurately describes the phe-
nomenon before the transition between incipient roll waves and roll waves. As
these require a sufficient channel length to develop, the final fate of the currents
analysed in the present tests is not known. However, on the basis of our exper-
imental results, we infer that the profile predicted for inclined channels in the
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present model is a limiting profile of the current and marks the transition to a
different flow regime.

– The rheology of complex liquids is usually of concern in laminar flow models
because it is often not adequately known or described. This is confirmed by the
present study, where the rheological parameters are shown to be the main source
of uncertainty. This behaviour supports the use of carefully designed laboratory
experiments as rheometric tests.

– The results obtained may prove useful in analysing the joint influence of rheology,
channel shape, and volume growth rate in environmental flows, such as turbidity
currents, avalanches, and pyroclastic flows of non-Newtonian fluids characterised
by negligible yield stress.
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Shape Reference Horizontal (β = 0) Reference Inclined (β > 0)

Narrow (k = 1/2) tp 3(n+α)+2nα

5n+6 tp 2α(n+1)+3n
5n+2

V-shaped (k = 1) tp α(n+2)+2n
3n+4 tp α(n+1)+2n

3n+1

Semicircular (k = 2) tp 2α(n+2)+3n
5n+7 tp 2α(n+1)+3n

5n+2

Rectangular (k→ ∞) GM α(n+2)+n
2n+3 tp α(n+1)+n

2n+1

Table 1 Current propagation rates in horizontal and inclined channels of different shapes. ”GM” and ”tp”
refer to Gratton et al. [13] and this paper, respectively. For n = 1, these results are consistent with the data
listed in Table I of Takagi and Huppert [21].

Fig. 4 The time exponent c (proportional to the propagation distance) as a function of k for a shear-thinning
liquid with n = 0.5 for different values of α for horizontal (left panel) and inclined channels (right panel).

similar results are obtained for inclined channels, except that the critical value αc
equals unity, irrespective of the value of the flow behaviour index n. Figure 4 shows
the dependence of the exponent of time, c, on k for a shear-thinning liquid (n = 0.5)
for different values of α for horizontal and inclined channels, confirming the above
findings. The influence of the shape of the cross-section, parameterised by k, is larger
in the interval 0 < k < 2. The results for different values of n (not shown here) are
similar, indicating the relatively minor influence of the flow behaviour index n on the
propagation rates. The values of αc for n = 1 are in agreement with those reported in
Takagi and Huppert [21].

3 Experiments

A series of experiments was performed at the Hydraulics Laboratory of the Uni-
versity of Parma to test the theoretical formulation. Constant volume (α = 0) and
constant volume flux (α = 1) tests were conducted with Newtonian (n = 1), shear-
thinning (n < 1), and shear-thickening (n > 1) liquids, in horizontal (β = 0) and
inclined (β > 0) channels with different cross-sectional shapes. Three different ex-
perimental setups were utilised. The first employed a 600 mm-long circular tube of
polymethyl methacrylate (PMMA) with a radius of 119 mm, which was cut along a

Table 1
Click here to download Table: Table_1.pdf 

http://www.editorialmanager.com/efmc/download.aspx?id=31189&guid=9664fa35-af9a-4289-a347-bcc3a3b4e519&scheme=1
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Test shape β α q n µ̃ ρ Re Fr state

(deg) (ml s−α ) (Pa sn) (kgm−3)

21 c(2) 0.0 0.0 143.6 0.42 0.67 1175
24 c(2) 0.0 0.0 311.2 0.42 0.67 1175
52 c(2) 7.4 0.0 126 0.42 0.67 1175
53 c(2) 4.5 0.0 130 0.42 0.67 1175
55 c(2) 4.5 0.0 192 1.57 0.40 1200
1 c(1) 0.0 1.0 1.35 0.42 0.67 1175
2 c(1) 0.0 1.0 4.08 0.42 0.67 1175
3 c(1) 0.0 1.0 0.57 0.42 0.67 1175
5 c(1) 0.0 1.0 2.17 1.00 0.16 1241
18 c(2) 4.0 1.0 0.79 1.00 0.16 1241 6.4 0.11 me
19 c(2) 4.0 1.0 0.78 0.42 0.67 1175 1.2 0.10 me
20 c(2) 5.5 1.0 2.34 0.42 0.67 1175 6.0 0.27 me
25 c(2) 30.6 1.0 3.94 0.42 0.67 1175 62.5 1.98 rw
26 c(2) 30.6 1.0 0.77 0.42 0.67 1175 9.8 0.76 rw
27 c(2) 30.6 1.0 0.21 0.42 0.67 1175 2.2 0.35
28 c(2) 30.6 1.0 0.30 0.42 0.67 1175 3.3 0.43 rw
29 c(2) 30.6 1.0 0.24 0.42 0.67 1175 2.6 0.37 irw
30 c(2) 30.6 1.0 0.18 0.42 0.67 1175 1.9 0.32
33 c(2) 18.0 1.0 0.94 0.42 0.67 1175 7.2 0.50 rw
34 c(2) 18.0 1.0 0.54 0.42 0.67 1175 3.9 0.36
35 c(2) 18.0 1.0 1.64 0.42 0.67 1175 13.6 0.69 rw
9 t 0.0 0.0 286 0.42 0.67 1175
10 t 0.0 0.0 430 0.42 0.67 1175
14 t 5.5 0.0 163.9 0.42 0.67 1175
15 t 8.8 0.0 68.0 0.42 0.67 1175
16 t 5.5 0.0 104.1 0.42 0.67 1175
6 t 0.0 1.0 2.14 0.42 0.67 1175
7 t 0.0 1.0 0.54 0.42 0.67 1175
8 t 0.0 1.0 4.33 0.42 0.67 1175
11 t 5.5 1.0 4.14 0.42 0.67 1175 10.5 0.54 u
12 t 8.6 1.0 1.86 0.42 0.67 1175 7.6 0.57 u
13 t 5.5 1.0 0.81 0.42 0.67 1175 1.8 0.22 u
42 t 18.1 1.0 3.82 0.42 0.67 1175 40 1.93
48 t 30.5 1.0 2.29 1.00 0.16 1241 3.3 0.78 me
49 t 30.5 1.0 3.62 1.00 0.16 1241 4.6 0.92 me
50 t 30.5 1.0 2.31 1.00 0.16 1241 3.3 0.78 u

Table 2 Experimental parameters for all tests. The symbols c(1) and c(2) indicate a semicircular section
with r = 119 mm and r = 74.5 mm, respectively, whereas t indicates a triangular section with 2θ = 90◦.
Values of global Reynolds and Froude numbers are listed when α = 1 and β > 0. In the last column, ”me”
indicates a metastable state, ”rw” indicates the presence of roll waves, ”irw” indicates incipient roll waves,
and ”u” indicates uniform flow with normal velocity.

equivalent to a virtual origin was introduced to interpret the experimental data for the
inclined channel and the constant volume subcase (α = 0) for the horizontal chan-
nel. In the latter case, the correction was needed to account for the finite size of the
reservoir and the finite time needed to open the gate.

Table 2
Click here to download Table: Table_2.pdf 

http://www.editorialmanager.com/efmc/download.aspx?id=31190&guid=da98dbb7-2d94-4f56-a3d8-9c83173ec763&scheme=1



