
27 April 2024

University of Parma Research Repository

A non-uniform efficient grid type for GPU-parallel Shallow Water Equations models / Vacondio, Renato;
DAL PALU', Alessandro; Ferrari, Alessia; Mignosa, Paolo; Aureli, Francesca; Dazzi, Susanna. - In:
ENVIRONMENTAL MODELLING & SOFTWARE. - ISSN 1364-8152. - 88:(2017), pp. 119-137.
[10.1016/j.envsoft.2016.11.012]

Original

A non-uniform efficient grid type for GPU-parallel Shallow Water Equations models

Publisher:

Published
DOI:10.1016/j.envsoft.2016.11.012

Terms of use:

Publisher copyright

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available

Availability:
This version is available at: 11381/2819318 since: 2021-10-13T16:55:07Z

Elsevier Ltd

This is the peer reviewd version of the followng article:

note finali coverpage

UN
CO

RR
EC

TE
D

PR
OO

F

A R T I C L E I N F O

Article history:
Received 10 February 2016
Received in revised form 2 August
2016
Accepted 9 November 2016
Available online xxx

A B S T R A C T

A GPU-parallel numerical model for the solution of the 2D Shallow Water Equations, based on a novel type of grid
called Block-Uniform Quadtree (BUQ), is presented. BUQ grids are based on a data structure which allows to exploit the
computational capability of GPUs with minimum overheads, while discretizing the domain with non-uniform resolution.
Different cases have been simulated in order to assess the efficiency of the BUQ grids. Theoretical and laboratory tests
demonstrate that speed-ups of up to one order of magnitude can be achieved in comparison with uniform Cartesian grids.
In the simulation of a hypothetical flood event induced by a levee breach in a real 83 km long river reach, with maximum
resolution of 5 m, a ratio of physical to computational time of about 12 was obtained, opening scenarios of quasi real-time
2D simulations in large domains, still retaining a high resolution where necessary.

© 2016 Published by Elsevier Ltd.

Environmental Modelling and Software xxx (2016) xxx-xxx

Contents lists available at ScienceDirect

Environmental Modelling and Software
journal homepage: www.elsevier.com

A non-uniform efficient grid type for GPU-parallel Shallow Water Equations models
Renato Vacondio a, ∗, Alessandro Dal Palù b, Alessia Ferrari a, Paolo Mignosa a, Francesca Aureli a, Susanna Dazzi a

a Department of Civil and Environmental Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/A, 43124, Parma, Italy
b Department of Mathematics and Computer Science, University of Parma, Parco Area delle Scienze 53/A, 43124, Parma, Italy

Software availability

Name of software G-Flood
Contact address DICATeA, University of Parma, Parco Area delle

Scienze 181/A, 43124 Parma, Italy
Email renato.vacondio@unipr.it, alessadro.dalpalu@unipr.it
Language CUDA, C++
Hardware PC with CUDA-enabled GPU
Availability upon request by email (for scientific collaboration)
Year first available 2014

1. Introduction

Flooding events in recent years caused many damages and casu-
alties all over the word. Considering climate change and socio-eco-
nomic effects, Alfieri et al. (2015) pointed out a future increase in
the trend of river flood impact in most European countries. If in
2050 the population affected each year is estimated to be in the range
of 500,000–640,000, in 2080 the gap is projected to rise up to
540,000–950,000. The same authors estimated the damages related to
flooding in Europe to be 20–40 B€ in 2050 and 30–100 B€ in 2080.

After the European Union Directive (2007/60/EC), many countries
established national programs to define flood risk maps from global
to local scale (De Moel et al., 2015). In such programs the numeri-
cal modelling of flooding events remains one of the main instruments
through which calculate for instance water depth, velocity and ex-
tent of inundation, essential to define flood hazard and then flood risk
maps.

∗ Corresponding author.
Email addresses: renato.vacondio@unipr.it (R. Vacondio); alessandro.dalpalu@
unipr.it (A. Dal Palù); alessia.ferrari3@studenti.unipr.it (A. Ferrari); paolo.
mignosa@unipr.it (P. Mignosa); francesca.aureli@unipr.it (F. Aureli); susanna.
dazzi@studenti.unipr.it (S. Dazzi)

Literature offers various examples of numerical models based on
2D Shallow Water Equations (2D-SWEs) suitable to simulate the
flood propagation in river reaches where 1D models are not applica-
ble and/or inundations due to levee overtopping/breaching can occur
(Lynch and Gray, 1979; Casulli, 1990; Toro, 1999a; Vacondio et al.,
2012; Costabile and Macchione, 2015). Among others, explicit Finite
Volume (FV) schemes are both robust and accurate, allowing simu-
lations of flood propagation on real irregular bathymetries, transcrit-
ical flows, hydraulic jumps and shocks, etc.. Their main drawback is
still the high computational cost that makes arduous to run (many)
high – resolution simulations on large domains only by means of se-
rial codes. To overcome this issue parallel numerical schemes have
been recently developed. Parallelization can be done using a classical
approach based on Message Passing Interface (Sanders et al., 2010),
that requires access to supercomputers, or Graphics Processing Units
(GPUs) (NVIDIA, 2007) which are much cheaper and then suitable
for almost all. The use of GPUs is becoming more common in high
parallel computation, mainly due to the possibility of drastically re-
ducing the computational times, without increasing the per processor
costs. GPU-accelerated models execute the same program in parallel,
through various data elements, on Graphic Cards typical of desktop
computers. Applications of GPU computing still involve many differ-
ent research fields, such as medical imaging, oil and gas, physics, me-
chanical engineering (Sousa et al., 2012), chemistry and biology, de-
sign and visualization and fluid dynamics (Caviedes-Voullieme et al.,
2014; Crespo et al., 2015), among the others.

In the last years different authors have already managed to develop
GPU accelerated SWEs schemes (Crossley et al., 2010; Kalyanapu
et al., 2011; De la Asunción et al., 2013; Brodtkorb et al., 2012). More
recently, Vacondio et al., 2014a,b implemented an efficient second or-
der finite volume scheme using the Computed Unified Data Architec-
ture (CUDA®). The same model has been used to simulate real floods
with high spatial resolution over domains up to 180 km2 wide, still

http://dx.doi.org/10.1016/j.envsoft.2016.11.012
1364-8152/© 2016 Published by Elsevier Ltd.

UN
CO

RR
EC

TE
D

PR
OO

F

2 Environmental Modelling and Software xxx (2016) xxx-xxx

maintaining a ratio between physical and computational times equal to
15 (Vacondio et al., 2016).

However, most of the GPU-accelerated models are based on uni-
form Cartesian grids, which have two major limitations: (i) the same
resolution has to be adopted in the whole domain and (ii) the shape
of the domain has to be rectangular. This still prevents the possibility
of using such models to simulate floodings over larger areas (order of
103 km2) if somewhere in the domain a resolution of 1–2 m has to be
adopted.

In order to resolve small-scale effects in limited areas while sim-
ulating large domains, non-uniform grids are widely adopted for
non-parallel numerical models, either in the form of unstructured
mesh (Begnudelli and Sanders, 2006; Brufau et al., 2004) or hierarchi-
cal Quadtree (Greaves and Borthwick, 1999; Borthwick et al., 2000;
Rogers et al., 2001; Liang et al., 2007, 2008). The use of non-uniform
grids on GPU codes has recently received some attention in literature.
Lacasta et al. (2014) developed several optimizations for a flood sim-
ulation model based on unstructured triangular grids; the same type of
grids has been also adopted in GPU - accelerated models for landslide
(Lacasta et al., 2015a), sediment transport (Juez et al., 2016) and rain-
fall-runoff (Lacasta et al., 2015b) simulations. A full GPU implemen-
tation of a SWE model based on Adaptive Mesh Refinement has also
been presented by Sætra et al. (2014). Despite all these contributions,
the use of non-uniform meshes in GPU-enhanced numerical schemes
still remains an ongoing challenge.

Classical data structures used in models based on unstructured
or Quadtree meshes cannot exploit the computational capability of
GPUs. The main limitation is the arrangement in memory of data and
the cost of accessing graph-like data structures (as in typical Quadtree
meshes) as opposed to plain matrix memorization, where regularity in
accesses provides the best GPU throughput.

With the goal of providing a data structure that combines the ben-
efits of non-uniform resolution meshes and the performances of plain
matrix accesses, in the present work a novel Block-Uniform Quadtree
grid (BUQ) in a GPU code which solves the 2D-SWE is introduced.
The key idea of BUQ grids is to discretize the domain using cell
blocks with uniform resolution, while allowing different resolutions
for different blocks of cells.

In the present paper the BUQ grids are adopted to simulate theoret-
ical, experimental and real tests following the procedure proposed by
Bennett et al. (2013). The quantitative performance has been investi-
gated by comparing the results with analytical solutions, with data ac-
quired in a literature laboratory experiment and collected in the field
during a recent real flooding event.

The paper is organized as follows: in Section 1 the numerical
model solving the 2D-SWEs is briefly illustrated. The description of
the BUQ grids, together with the adopted data structure, is presented
in Section 2. In Section 3 the BUQ grid generation procedure is illus-
trated in detail. Section 4 is dedicated to the evaluation of the model
performances by simulating theoretical, laboratory and real test cases.
Some conclusion of the work are finally outlined in Section 5.

2. Numerical model

In this Chapter only the main aspects of the numerical model are
briefly summarized, as a detailed presentation is beyond the purpose
of this work. Major details can be found in Vacondio et al. (2014a,b).

The numerical model solves through a finite volume scheme the
2D-SWE, in the integral form (e.g. Toro, 1999a):

where A is the area of the integration element, C the element boundary,
n the outward unit vector normal to C, U the vector of the conserved
variables, H = (F,G) the tensor of fluxes in the x and y directions, S
and Sf the bed and friction slope source terms, respectively.

In the present work the modified form of SWEs proposed by Liang
and Borthwick (2009) is adopted:

in which h is the flow depth, u and v are the velocity components
in the x and y directions, g is the gravitational acceleration, z is the
bed elevation and η = h + z is the free surface elevation above da-
tum. The slope source term is discretized using a centered approxima-
tion (Vacondio et al., 2014a,b) but the main advantage of the modi-
fied version of the SWEs reported in Equation (2) is that it guarantees
the C-property defined as the capability of preserving still water at
rest (Vázquez-Cendón, 1999), regardless of the adopted discretization
form of the slope source term. The procedure proposed by Liang and
Marche (2009) for 1D uniform grids has been extended in the present
work to guarantee the C-property also in presence of 2D non-uniform
grids, as reported in detail in Appendix A.

The friction source term Sf is based on the Chezy-Manning equa-
tion and it is discretized using the implicit formulation proposed by
Caleffi et al. (2003) to avoid instabilities at small water depths.

Fluxes are calculated using a HLLC approximate Riemann solver
and second order accuracy in space is ensured by adopting a Monot-
one Upwind Schemes for Scalar Conservation Laws (MUSCL) inter-
polation with minmod limiter (Toro, 1999b); further details on the
MUSCL reconstruction are reported in Appendix A.

In order to prevent spurious non-physical velocities close to the
wet-dry front, the following correction proposed by Kurganov and
Petrova (2007) is adopted for the specific discharge:

where uhc is the corrected specific discharge in x – direction and ε is a
threshold value for the water depth. An identical correction is applied
to the specific discharge in y-direction vh.

The finite volume model is second order also in time: this is
achieved adopting the second order Runge-Kutta method:

where n represents the time level, i and j the cell positions, Δx and
Δy the grid sizes in x and y directions respectively, and Δtn is the
timestep calculated accordingly to the Courant–Friedrichs-Lewy con-
dition (Toro, 1999a,b).

(1)

(2)

(3)

(4)

UN
CO

RR
EC

TE
D

PR
OO

F

Environmental Modelling and Software xxx (2016) xxx-xxx 3

The operator Di(Ui,j) is defined as:

and Ui,j
n+1/2 is obtained as:

3. Block – Uniform Quadtree grid

The model is implemented in a CUDA/C++ code that exploits
parallel computation offered by GPU video cards. Here some basic
concepts are recalled and some insight into the novel contributions,
namely the capability of handling multiresolution grids, are provided.
In CUDA the basic work unit is represented by a thread and many
threads are grouped into blocks (NVIDIA, 2007). In the present model
each thread corresponds to a computational cell used to discretize the
physical domain, and M×M cells form a regular block. Each block of
data can be processed in parallel by a multicore of the GPU taking ad-
vantage of fast memory communication, which is fundamental for cell
neighborhood information exchange. When the domain is discretized
with a Cartesian grid, data are stored as a simple two-dimensional ar-
ray and therefore cell neighbors localization in memory is straightfor-
ward (the coordinate system used in the program corresponds to the
matrix indexes used to store the array).

The key idea of BUQ grids is to extend the scenario to a multires-
olution system, while preserving the computational organization of a
data block. Therefore each block, regardless its cell dimensions, con-
tains M×M cells, but various resolution levels are used: level 1 with
cell size Δ1, level 2 with cell size Δ2 = 2 × Δ1 up to level n with cell
size Δn = 2n−1 × Δ1. In the present work M has been assumed equal to
8 or 16, but it can be assumed equal to any power of two. This organi-
zation requires a different type of storage of the multiresolution grid:
blocks with various resolutions are tiled according to their code index
and therefore the original neighborhood relationships among blocks
is not maintained in the final tiling. Some additional information al-
lows to retrieve the original position in the grid, its resolution and the
neighboring blocks. Because of GPU limitations on threads organiza-
tion, blocks are actually tiled into a square with a power of two side,
large enough to contain all the blocks. Fig. 1 shows an example of
arrangement, where three different levels of resolution and 10 blocks
are rearranged into a 4 × 4 matrix of blocks. In Fig. 1-a the block posi-
tion in the physical space is represented, whereas the same blocks are
allocated in memory as shown in Fig. 1-b. Please note that different
colors correspond to different resolution levels. Blocks with different
resolution have different size in the physical space (Fig. 1-a), whereas
they have the same size in the memory space (Fig. 1-b), since each
block contains information about the same number of cells (8 × 8 or
16 × 16).

The other caveat when handling multiresolution blocks is to re-
trieve information about a cell's neighbor which lies on a different
block (this applies to cells on a block border). The procedure dif-
fers significantly from the uniform resolution version, since three
cases may apply: the neighbor block may have a higher/same/lower
resolution with respect to the current block, and therefore some in-
terpolation may be needed.

Fig. 1. Example of a BUQ grid represented in the physical space with 8 × 8 cell blocks
and three resolution levels (a) and its memory allocation (b).

Moreover, the actual memory location of the required cell(s) has to
be retrieved, since close-by blocks in the domain are not necessar-
ily stored in close-by memory locations. As an example, in Fig. 1-a,
the cell marked in red belongs to the block 3 and its north neighbor
has to be reconstructed from the interpolation of cells marked in blue
from the block 5. The spatial adjacency is clearly lost in the actual
memorization on the video card (see Fig. 1-b) and it is recovered by
on-the-fly index computations.

The preprocessing step determines the set of blocks (patches of
M × M cells) at different resolutions that partition the original high
resolution grid. Given n levels of different resolution, the procedure
starts with level 1 as the original and highest resolution; each next
level reduces the resolution by a factor of two compared to the previ-
ous level. During the partition process, the procedure ensures that the
number of blocks is kept minimal, while preserving the structural con-
straint (i.e. adjacent blocks may differ by one resolution level, at most)
and data dependent constraints (e.g. specific resolution can be im-
posed by the user). A minimal number of blocks provides the largest
reduction in cells to be computed. Compared to a standard quad-tree
like partitioning, the spatial division is equivalent, while the core dif-
ference is the association of each node of the quad-tree to a specific
block of cells, instead of a single cell. This allows a uniform GPU
computation within each block, while keeping an adaptive multi-reso-
lution division of the grid.

The flux computation requires information about the conserved
variables of the four neighboring cells, which therefore have to be read
from the memory. The procedure that computes one cell's neighbor
performs a reconstruction of actual memory addresses, based on pre-
computed information. This means that a few tests and arithmetic op-
erations are needed to recover the data and thus to optimize the neigh-
bors search algorithm.

Firstly, it is worth noting that the block discretization reduces the
overhead by transferring the problem only to cells lying on the block
borders, whereas the inner cells have neighbors of the same resolution
(grey cells in Fig. 2-a). During the grid partitioning, topological infor-
mation about neighbors for each block is stored, namely the Cartesian
position, eight neighboring blocks references and their resolution lev-
els. In case of a change in resolution between adjacent blocks, two spe-
cial cases may arise: two higher resolution blocks face a lower resolu-
tion block (two neighbors in place of one, Fig. 2-b), and the symmetric
case, where a higher resolution block face half lower resolution block
(Fig. 2-c). These two cases require extra information to be stored, in
order to reconstruct the topological relationships between cells during
computation.

When information about a neighboring cell on a different block is
requested (see Fig. 1, where the blue cell needs to retrieve the red cell),

(5)

(6)

UN
CO

RR
EC

TE
D

PR
OO

F

4 Environmental Modelling and Software xxx (2016) xxx-xxx

Fig. 2. Neighboring research for a cell (black one) in an 8 × 8 block (a): the neighbor
has higher (b) or lower (c) resolution.

the algorithm retrieves the neighbor block address. Moreover, depend-
ing on the position of the original cell, it adapts the neighbor cell ad-
dress in order to select the correct cell position within the block. If a
higher resolution is defined in the neighbor block, two different cells
need to be addressed.

If the neighbor block has a different resolution, the conserved vari-
ables at neighbor grid point n are reconstructed according to the nat-
ural neighboring interpolation procedure, with configurations shown
in Fig. 3 and the following weights (see for example Liang, 2011).

When quantities have to be updated on cell i and the East block has
a higher resolution then the following formula applies (see Fig. 3-a):

Conversely, when the neighbor block has a lower resolution two
different sub-cases are possible. If the South-East block has the same

resolution of the one where cell i is located, then the interpolation
scheme is as shown in Fig. 3-b and the weights are the following ones:

Finally, if the South-East block has the same resolution of the East
one, then the interpolation scheme is the one shown in Fig. 3-c and the
weights are:

Interpolations in West, North and South directions can be obtained
in the same way by rotating Fig. 3.

4. Grid generation procedure

As described in the Introduction, the aim of the model is to sim-
ulate flood propagation over large high-resolution domains, still pre-
serving an accurate geometrical description where necessary.

Fine resolution is typically required in specific zones to accurately
reproduce local phenomena: consider for instance the area close to a
dam in a dam-break problem, the region of a levee near a breach or a
motorway cloverleaf interchange.

The user can impose different resolution zones before the simula-
tion starts, by defining seeding points, each of which has an associ-
ated multi-resolution level. Then, an automatic grid generation proce-
dure has been implemented to respect the imposed requirements by
means of the seeding points. From an operational point of view seed-
ing points are listed in an input file containing their planimetric coor-
dinates and the associated resolution level.

The algorithm starts by dealing with the highest resolution block
(with grid size Δ1) and then it iterates among the lower resolution
ones. Firstly (Algorithm 1 - line 2), it identifies those cells that are re-
quired to have the highest resolution and recognizes the blocks with
resolution 1 that contain such cells (line 3–4).

There are two rules that are enforced by the algorithm. The first
one comes from the quad-tree block division. Recall that a square
region (i.e. a block with lower resolution) can be divided into 4
quadrants (i.e.

Fig. 3. Interpolation schemes at the interface between different resolution (see also Liang, 2011).

(7)

(8)

(9)

UN
CO

RR
EC

TE
D

PR
OO

F

Environmental Modelling and Software xxx (2016) xxx-xxx 5

4 blocks with higher resolution). If a subset of these quadrants are
identified, the remaining quadrants are forced to be at the same reso-
lution, in order to properly tile the area, since there would be no other
mean to assign the other quadrants to a different resolution level (line
5). An example of this procedure is shown in Fig. 4, assuming that
four different resolution levels are used and only one seeding point
that enforces resolution 1 is assigned. Due to the rule explained be-
fore, that seeding point enforces resolution 1 not just to the block that
contains the point (the traced one) but also to the other three neighbor-
ing blocks that, together with the original one, form a possible block
at resolution 2 (see Fig. 4-a).

The second rule forces a controlled decrease in resolution between
adjacent blocks in the partition: two neighboring blocks (including
diagonal adjacency) cannot differ more than one level in resolution.
Therefore, for each selected block at level 1 (line 8), the correspond-
ing block that includes it at resolution level 2 is retrieved (line 9), and
the neighbors of such block are forced to resolution level 2, if not al-
ready used at level 1 (line 11). Due to this rule, 8 blocks at resolution
2 are identified in Fig. 4-a.

The same procedure is then repeated for each resolution level i = 2
… n (loop at line 1 of Algorithm 1), considering the constraint as-
signed by the seeding points and those resulted from the resolution
level i-1. This means that, in the considered example, when the iter-
ation with resolution levels i = 2 and 3 are operated, the second rule
forces 12 blocks to be at resolution level 3 (Fig. 4-b) and 4 (Fig. 4-c),
respectively.

Besides the downsampling process previously described, the grid
generation excludes all the blocks outside the domain, which are not
even loaded in the GPU memory. Operationally, the domain is identi-
fied by means of a closed polyline (Fig. 5-a), and the information re-
lated to the blocks that are located outside are simply not taken into ac-
count. In comparison with Cartesian grids, where rectangular domains
have to be considered, this leads to a considerable reduction of the al-
located memory on the GPU, as it will be shown in Section 4.

Fig. 5 exemplifies the four steps of the grid generation process: in
(a) the selected domain and the two seeding points, in which the res-
olution levels are enforced equal to 1 and 3, respectively, are shown.
In (b) all the grey blocks outside the domain are not loaded in the
memory. Please note that blocks that are partially inside the polyline
are taken into account in the computation. In (c), the resolution lev-
els around the seeding points are defined according to the quad-tree
division and, finally, in (d) the resolution of the adjacent blocks is cor-
rected as to maintain the difference of just one level among each other.

Fig. 4. Example of a grid generation using 1seeding point at resolution 1 and 4 resolution levels.

UN
CO

RR
EC

TE
D

PR
OO

F

6 Environmental Modelling and Software xxx (2016) xxx-xxx

Fig. 5. BUQ grid generation procedure: the domain and two seeding points (a), the blocks which are not loaded in the memory (b), the resolution level definition (c) and the correction
of the adjacent blocks (d).

5. Test cases and assessment of the model performances

In this section the performances of the model are discussed through
four test cases. Firstly, a theoretical case with analytical solution, fo-
cusing on a steady-state vortex flow, is described; then the CADAM
(Concerted Action on Dam Break Modelling) (Soares Frazão et al.,
1998) dam-break laboratory experiment is reproduced. In the third and
fourth test cases a real and an hypothetical flood events are respec-
tively simulated.

All the simulations were run using a K40 T® GPU. For the first
three test cases accuracy and efficiency of the simulations are com-
pared against the results obtained with uniform Cartesian grids. The
computational efficiency of a particular simulation with BUQ grid is
verified by means of its compression rate CR and speed-up SU defined
as

where N and T are the number of allocated cells and the computational
time, respectively, for the considered simulation with the BUQ grid;
Nc and Tc are the same quantities referred to an identical simulation
run using a Cartesian Grid with grid size equal to the maximum reso-
lution adopted in the BUQ grid Δ1.

Due to the memory requirements, the fourth test case cannot be
simulated with uniform Cartesian grid and thus compression rate CR
and speed-up SU cannot be computed.

5.1. Vortex test case

In this test case a steady vortex circulating clockwise on a friction-
less and horizontal bed has been considered. The analytical solution
(Sanders and Bradford, 2006) is described in terms of water depth and
velocities by the relations:

where x0 and y0 are the coordinates of the vortex center, r = ,

(10)

(11)

(12)

(13)

UN
CO

RR
EC

TE
D

PR
OO

F

Environmental Modelling and Software xxx (2016) xxx-xxx 7

h0 is the water depth at the center of the vortex, U0 and r0 are a char-
acteristic velocity and length scales of the vortex, respectively. The
parameters were set at the following values: h0 = 10 m, U0 = 1.5 m/s,
r0 = 100 m, x0 = 0 m, y0 = 0 m, r = 2000 m. The velocity magnitude is
equal to zero in the center and reaches the maximum value equal to
U0e

−1 at r = r0.
Eighteen different simulations have been performed (Table 1) by

varying the resolution, the type of adopted mesh and the size of the
cell blocks. In particular three different minimum cell sizes Δxmin = 8,
4, 2 m have been used. For each Δxmin, the simulations have been run
with three different configurations:

- Cartesian grid with size Δxmin (16-C-x and 8-C-x in Table 1);
- BUQ grids with uniform resolution in the whole domain (16-U-x

and 8-U-x in Table 1);
- BUQ grids, where Δxmin corresponds to the resolution level 1 and

varying the resolution inside the domain (16-Q-x and 8-Q-x in
Table 1).

If the same Δxmin is adopted, the BUQ grid with uniform resolution
is identical to the Cartesian one, and thus produces identical results.
Nevertheless, as explained in Section 3, the underlying data structure
for the BUQ is created in such a way that it can potentially handle
non-uniform resolution, and thus the runtimes are different. Moreover,
with the aim of analyzing the influence of block size on efficiency,
simulations with BUQ grids have been performed with blocks of 8 × 8
and 16 × 16 cells.

In the non-uniform BUQ grids (16-Q-x and 8-Q-x) the highest res-
olution has been imposed in the region close to the center of the vor-
tex (dashed white circle in Fig. 6), where highest velocity and wa-
ter depths gradients occur, while decreasing values have been allowed
reaching the edge of the domain, up to resolution level 4. Fig. 7 shows
the non-uniform BUQ grids 8-Q-1 (a) and 16-Q-1 (b), whereas Fig. 6
shows the detail of the different resolutions for the grid 8-Q-1 in the
area close to the center of the vortex: the 1st level corresponds to cells
of Δx1 = 2 m, the 2nd level to Δx2 = 4 m, the 3rd level to Δx3 = 8 m
and the 4th level to Δx4 = 16 m.

It should be noticed that, if blocks of 8 × 8 cells are used, the re-
gion with the lower resolution is bigger than in the grid with blocks of
16 × 16 cells and this is confirmed also by the compression rate, equal
to 21 and 18, respectively.

As suggested by An and Yu (2014) the simulation was run for
1000 s of physical time, and then the results were compared with the
analytical solution. Figs. 8 and 9 show the water depth and velocity
magnitude, respectively, along y = 0 and y = x lines obtained for the
16-Q-1 and 8-Q-1 simulations. Both numerical results agree very well
with the analytical solution.

The L2 non-dimensional error norm of water depth and velocity
components has been calculated as follows:

where N is the total number of cells in the domain, f is the variable
of interest (water depth, velocity in x and y direction), fnum and fexact
are the numerical and analytical solutions and, finally, f0 is a reference
value, assumed equal to the parameters h0 and U0.

As shown in Table 1 the L2 error norms for the water depth variable
are in the range of 10−5-10−6 (close to the machine precision), while
10−3-10−4 is the range for the vx (or vy) velocity error norm. The L2 er-
ror norms confirm that uniform BUQ grids produce the same results
of the Cartesian ones, while the adoption of non-uniform BUQ grids
leads to a slight increase in the computed norm values. This is essen-
tially due to the unavoidable approximation introduced by the inter-
polation of the conserved variables at the interface between different
resolutions.

The efficiency of the BUQ grids, in comparison with the Carte-
sian grid, was then investigated both in term of runtimes and num-
ber of cells used to discretize the domain. Fig. 10 shows number of
cells and runtimes obtained for the simulations with minimum cell
size Δxmin = 2 m. To facilitate the comparison, data have been scaled
on the basis of the results obtained for simulation 16-C-1. The sim-
ulation run with the non-uniform BUQ grids (16-Q-1 and 8-Q-1) are
able to remarkably reduce the memory allocated and the runtimes,
in comparison with the analogous simulations with Cartesian grids:
the simulation with 8 × 8 cell blocks (8-Q-1) produces both the maxi-
mum reduction in terms of number of cells (0.05) and runtime (0.10).
Slightly higher − but substantially similar − values are obtained in the
(16-Q-1) simulation.

Table 1
ID, grid type, minimum and maximum cell sizes (Δxmin, Δxmax), number of cells, compression rate CR, run times, speed-up SU and L2 norms for water depth and velocity components
for the Vortex simulations.

ID Grid type Δxmin (m) Δxmax (m) # cells (106) CR (−) Run time (s) SU (−) L2 (h) L2 (vx) = L2 (vy)

16-C-1 Cartesian 2 2 4.194 1.00 501.38 1.00 4.59E-06 2.45E-04
8-C-1 Cartesian 2 2 4.194 1.00 583.91 1.00 4.59E-06 2.45E-04
16-U-1 BUQ 2 2 3.201 1.31 670.81 0.75 4.59E-06 2.45E-04
8-U-1 BUQ 2 2 3.164 1.33 691.86 0.84 4.59E-06 2.45E-04
16-Q-1 BUQ 2 16 0.240 17.50 54.63 9.18 9.55E-06 9.12E-04
8-Q-1 BUQ 2 16 0.201 20.84 48.30 12.09 1.03E-05 1.03E-03
16-C-2 Cartesian 4 4 1.049 1.00 74.16 1.00 9.94E-06 7.75E-04
8-C-2 Cartesian 4 4 1.049 1.00 84.08 1.00 9.94E-06 7.75E-04
16-U-2 BUQ 4 4 0.816 1.29 89.65 0.83 9.94E-06 7.75E-04
8-U-2 BUQ 4 4 0.797 1.31 97.29 0.86 9.94E-06 7.75E-04
16-Q-2 BUQ 4 32 0.083 12.64 11.70 6.34 2.89E-05 2.44E-03
8-Q-2 BUQ 4 32 0.060 17.39 8.74 9.62 3.36E-05 2.87E-03
16-C-3 Cartesian 8 8 0.262 1.00 12.16 1.00 2.98E-05 2.28E-03
8-C-3 Cartesian 8 8 0.262 1.00 13.12 1.00 2.98E-05 2.28E-03
16-U-3 BUQ 8 8 0.209 1.25 14.23 0.85 2.98E-05 2.28E-03
8-U-3 BUQ 8 8 0.202 1.30 15.67 0.84 2.98E-05 2.28E-03
16-Q-3 BUQ 8 32 0.040 6.56 3.60 3.37 6.82E-05 5.24E-03
8-Q-3 BUQ 8 64 0.022 12.19 2.57 5.10 9.09E-05 7.02E-03

(14)

UN
CO

RR
EC

TE
D

PR
OO

F

8 Environmental Modelling and Software xxx (2016) xxx-xxx

Fig. 6. Detail of the resulted 8-Q-1 non-uniform BUQ grid: evidence of the cell sizes
Δx1, Δx2, Δx3, Δx4. In background the map of the water levels at the end of the simula-
tion.

As explained before and demonstrated by the L2 error results, all
grids with uniform resolution 16-C-1, 8-C-1, 16-U-1 and 8-U-1 are
identical. Thus, by simply comparing their runtimes, the overhead pro-
duced by the data structure of the BUQ grid can be assessed. The
runtimes obtained with the 8 × 8 cell blocks highlight that simulation
8-U-1 is 19% slower (1.38/1.16) than 8-C-1. This is expected because,
as explained in Section 2, in BUQ grids the neighbors for cells lo-
cated at the edge of the blocks are not close in memory as in the Carte-
sian grids. This leads to a more expensive procedure to identify those
neighbors, and to a non – coalesced memory access, which in turn
causes the unavoidable overheads. This behavior is further confirmed
by the 16-U-1 mesh which, having a smaller ratio between the number
of cells on the edges and the total cells of the block, is more efficient
than the 8-U-1 one. Similar results can be found by analyzing the data
of a simulation performed with different resolution (Table 1).

In order to evaluate the scalability of the non-uniform BUQ grid
implementation, in Fig. 11 the normalized runtimes TN are plotted
against the total number of cells. TN is defined as follows:

where T is the total computational time (s), n the number of iterations
in time and N the total number of cells. The ratio has been calculated
separately for 8 × 8 and 16 × 16 blocks. In both cases the scalability
typical of GPUs process is achieved: the more cells are computed, the
less time is required for each cell. For more than 0.2∙106 cells the nor-
malized computational time remains almost constant, showing that the
numerical scheme is able to absorb the overheads for communication
and thread setup/switch.

5.2. CADAM test case

In order to test the numerical model on a laboratory case concern-
ing a dam-break flow, one of the well-known experiments carried out
by the CADAM group was considered (Soares Frazão et al., 1998;
Soares Frazão and Zech, 2002). As represented in Fig. 12 the labora-
tory facility consists in a reservoir connected with a rectangular chan-
nel characterized by a sharp 90° bend.

The reservoir is connected with the flat channel bottom through a
0.33 m positive step. At the beginning of the experiment the channel
is dry while in the reservoir there is a still water level of 0.53 m (0.2 m
upon the downstream channel bed level). The flow is triggered by the
instantaneous removal of the gate which separates the reservoir from
the downstream channel (Fig. 12).

The Manning coefficient was set equal to 0.012 s/m1/3. This value
is an average between bottom and walls roughness and allows to re-
produce in a correct way the advancing of the wetting front (Soares
Frazão et al., 1998; Aureli et al., 2004). At the outflow, a short, ficti-
tious steep lengthening of the channel bottom was added, in order to
distance the necessarily approximated boundary condition (far-field).
This allows a better reproduction of the cross waves up to the end of
the physical channel and, particularly, the time series recorded at the
G6 gauge.

The simulations were run for 40 s of physical time with the three
different grids:

- Cartesian grid with uniform resolution of Δxmin = 0.5 cm (16-C and
8-C);

Fig. 7. Resulted non-uniform BUQ grids for the 8-Q-1 (a) and 16-Q-1 (b) simulations.

(15)

UN
CO

RR
EC

TE
D

PR
OO

F

Environmental Modelling and Software xxx (2016) xxx-xxx 9

Fig. 8. Uniform (8-U-1) and non-uniform (8-Q-1) BUQ grid: comparison of the water depth trends along the y = 0 (a) and y = x (b) lines.

Fig. 9. Uniform (8-U-1) and non-uniform (8-Q-1) BUQ grid: comparison of the velocity magnitude trends along the y = 0 (a) and y = x (b) lines.

Fig. 10. Vortex test case with minimum cell sizes Δxmin = 2 m: number of cells (a) and non-dimensional computational times (b) rescaled on 16-C-1 simulation.

UN
CO

RR
EC

TE
D

PR
OO

F

10 Environmental Modelling and Software xxx (2016) xxx-xxx

Fig. 11. Analysis of the code scalability using non-uniform BUQ grids.

- BUQ grid with uniform resolution of Δxmin = 0.5 cm (16-U and
8-U);

- BUQ grid with non-uniform resolution with Δxmin = 0.5 cm and
Δxmax = 4 cm corresponding to resolution level 4 (16-Q and 8-Q);

and considering the 8 × 8 and 16 × 16 cell blocks for each grid
(see Table 2 for details of each simulation). In the BUQ grids with
non-uniform resolution (16-Q and 8-Q), the highest resolution level
(Δx1 = 5 mm) was set only in the channel, while in the upstream reser-
voir the computed grid sizes gradually increases to 4 cm (Figs. 13 and
14).

Fig. 15 shows the water elevation: (a) 1 s after the gate opening and
(b) 10 s after the opening, when the bore reflected by the sharp bend is
travelling upstream toward the reservoir and cross-waves characterize
the flow downstream the bend.

Fig. 16 shows the comparison between computed and experimen-
tal time series at the six gauging points G1÷G6 along the channel.
Firstly, it clearly emerges that the phenomenon is correctly described
both with non-uniform BUQ (8-Q) grids and with Cartesian ones
(8-C). The water elevation at G1 gauge shows the decrease of the
initial water elevation in the reservoir (20 cm above the channel flat
bottom), initially halved in 14 s and then gradually decreasing till
reaching the lowest value of 6 cm at 40 s. At the G2÷G4 gauging
points both the initial increase of the water level, due to the ar-
rival of the wetting front and the reflected front, caused by the ar-
rival of the bore at the elbow (which determines an instantaneous
raise of the water level) are correctly reproduced. Only the decrease
of water levels at G2, before the backward arrival of the bore re-
flected by the sharp bend, is overestimated by the model. However,
this behavior is similar to that obtained by

many other authors (Soares Frazão et al., 1998; Liang et al., 2004).
Also the numerical results obtained downstream the bend well repro-
duce the experimental data with the exception of a slight underestima-
tion of the peak of the water depth at gauge G5.

The efficiency of the numerical scheme was investigated compar-
ing the computational time and the number of cells between Carte-
sian and BUQ grids (Fig. 17). The compression rate CR for the sim-
ulation with uniform BUQ grid is equal to 2.67 and 2.79, adopting
16 × 16 (16-U) and 8 × 8 (8-U) cell blocks, respectively. The remark-
able reduction of allocated memory is due to the capability of BUQ
grid to exclude grid blocks located outside the domain. Nevertheless,
the computational time of simulations with uniform BUQ grids (8-U
and 16-U) are similar to the ones obtained with Cartesian grids (8-C
and 16-C). This is due the Block Deactivation optimization procedure,
which guarantees that cell blocks completely dry or located outside the
domain, although allocated in memory, are not processed (Vacondio
et al., 2014a,b).

On the other side, the use of non-uniform BUQ grids allows a fur-
ther reduction of the number of cells used to discretize the domain,
reaching the compression rate CR of 5.87 and 6.59 for the 16 × 16
(16-Q) and 8 × 8 (8-Q) cell blocks, respectively. The simulation with
non-uniform grids are also the most efficient in terms of computa-
tional times, reaching the speed-up SU of 1.9 and 2.3 for the 16 × 16
(16-Q) and 8 × 8 (8-Q) cell blocks, respectively.

5.3. October 2014 parma flooding event

In this section the simulation of the 13th October 2014 flood oc-
curred on the Parma River (Northern Italy), between the homonymous
town and the confluence in the Po River, is presented (Fig. 18). This
38 km long reach of the Parma River is characterized by a deep main
channel which meanders within two artificial earthen levees of re-
markable height above the surrounding lands. In some places flood
plains are directly connected with the main channel; elsewhere one
or more dikes must be overtopped before the inundation of the flood
plain commences.

The whole bathymetry (main channel and floodplains) was set up
starting from a 1 m resolution DTM obtained through a LiDAR survey
carried out during the dry season, in drought condition.

As upstream boundary condition the discharge hydrograph, ob-
tained through a stage-discharge relationship from the recorded water
levels at Parma Ponte Verdi gauging station, was imposed. The down-
stream boundary condition was the reconstructed time-series of water
levels at the confluence with the Po River.

The simulations were run with the three different grids:

- Cartesian grid with uniform resolution of Δxmin = 2 m (16-C and
8-C);

- BUQ grid with uniform resolution of Δxmin = 2 m (16-U and 8-U);

Fig. 12. CADAM laboratory facility schematization (dimension in m).

UN
CO

RR
EC

TE
D

PR
OO

F

Environmental Modelling and Software xxx (2016) xxx-xxx 11

Table 2
ID, grid type, minimum and maximum cell sizes (Δxmin, Δxmax), number of cells, com-
pression rate CR, run times and speed-up SU for the CADAM simulations.

ID Grid type
Δxmin
(cm)

Δxmax
(cm)

cells
(103)

Compression
rate CR (−)

Run
time (s)

Speed-up
SU (−)

16-C Cartesian 0.5 0.5 1115.48 1.00 318.09 1.00
8-C Cartesian 0.5 0.5 1115.48 1.00 367.56 1.00
16-U BUQ 0.5 0.5 418.30 2.67 350.50 0.91
8-U BUQ 0.5 0.5 400.32 2.79 366.63 1.00
16-Q BUQ 0.5 4 189.95 5.87 167.70 1.90
8-Q BUQ 0.5 4 169.34 6.59 159.48 2.30

- BUQ grid with non-uniform resolution with Δxmin = 2 m and
Δxmax = 16 m, corresponding to resolution level 4 (8-Q);

and considering the 8 × 8 and 16 × 16 cell blocks for each grid.
Table 3 summarizes the details of the six simulations.

Adopting a non-uniform BUQ grid, the resolution level in the main
channel has been forced to 2 m close to Colorno (Fig. 18) and 4 m
elsewhere. Fig. 19 (a) shows the seeding points used to set the resolu-
tion level to 4 m in the main channel. The influence of the block di-
mension in the non-uniform BUQ grid generation emerges by compar-
ing Fig. 19 (b), obtained with 8 × 8 cell blocks, and (c), obtained with
16 × 16 cell blocks. In this particular meandering reach of the Parma
River, the adoption of 16 × 16 cell blocks constrains the same resolu-
tion level (4 m) almost everywhere. The 8 × 8 cell blocks, instead, al-
low varying the resolution outside the main channel, with further re-
duction of the total number of cells.

Fig. 20 (b) and (c) show a portion of the non-uniform BUQ grids
near Colorno, where the resolution level in the main channel was
forced to 2 m (Fig. 20-a), adopting 8 × 8 and 16 × 16 cell blocks re-
spectively. Once again, the adoption of 8 × 8 cell blocks allows further
reduction of the number of cells, in comparison with the 16 × 16 cell
blocks.

The flooding event has been simulated from 12 a.m. of the 13th
October 2014, till 2.30 p.m. of the following day, for a total duration
of 26.5 h. Because of the particular river morphology previously high-
lighted, the flow field strongly varies at low (Figs. 21a and 22a), and
high discharge values (Figs. 21b and 22b). At the highest levels most
of the meanders are cut by the flow, flood plains are inundated and
contribute significantly to convey the total discharge, see for example
the C and D areas in Figs. 21b and 22b. Under these conditions, it is
quite clear that at least a 2D model is necessary to correctly simulate
the flood propagation.

During and soon after the flood, the Interregional Agency for
the Po River (AIPo) collected the maximum water levels reached in
N = 110 locations along the river main levees. To evaluate the perfor-
mance of the simulations the root mean square error, RMSE:

between observed and modeled maximum Water Surface Elevations
has been calculated and reported in Table 3. The differences of RMSE
values obtained in the six simulations are almost negligible, confirm-
ing that the use of non-uniform BUQ grids does not determine an ap-
preciable loss of accuracy. Instead, the adoption of BUQ grids with
uniform resolution guarantees a remarkable reduction of the allocated
memory, in comparison with the identical simulation run with Carte-
sian grid. As the river course resemble the shape of an overturned “L”
(Fig. 18), almost 40∙106 cells must be allocated in a Cartesian grid,
even if most of them are located outside the main river levees and thus
remain always dry (no levee overtopping nor breaches occur during
this simulation). Because the BUQ grids do not require to allocate a
rectangular domain, a compression rate CR of 23 or 25, with 16 × 16
(16-U) or 8 × 8 (8-U) cell blocks, respectively, can be achieved even
with uniform BUQ grids. However, as in the previous test case, the
compression rate obtained with uniform BUQ grids does not produce
a significant reduction of the computational time, thanks to the Block
Deactivation Optimization procedure, which excludes the completely
dry blocks from the computation even if a Cartesian grid is adopted.

Fig. 23-a highlights this significant reduction in the number of
computed cells obtained adopting a non-uniform BUQ grid. Focusing
for instance on 8 × 8 cell blocks, assumed the number of cells in the
Cartesian grid 8-C as reference (1), the uniform BUQ grid 8-U allo-
cate only the 4.4% (0.044) of cells and, finally, the non-uniform BUQ
grid 8-Q compute less than the 1% (0.009) of cells. With non-uniform
BUQ grids the values of the compression rate amount to 62 and 109
for the 16 × 16 (16-Q) and 8 × 8 (8-Q) cell blocks, respectively.

The analysis of the computational time (Fig. 23-b) shows that
8.73 h or 11.52 h are required for the simulation with Cartesian grid
and 16 × 16 cell blocks or 8 × 8 cell blocks, respectively. The increase
of the total computational time in simulation 8-C is due essentially
to the code routine that identifies wet blocks. This time, as expected,
roughly increases by a factor of 4 in the 8 × 8 Cartesian case, introduc-
ing an overhead that slows down the computation by a 1.3 factor.

For the same reason the 8-U simulation performs slightly better
than the 8-C one.

As shown in Table 3, the choice of non-uniform BUQ grids allows
simulating the flood event in about 3.64 (16 × 16 cell blocks) or 2.60
(8 × 8 cell blocks) hours, with speed-ups equal to 2.4 or 4.4, respec-
tively, and a ratio of physical to computational time of about 7.3 or
10.2.

Fig. 13. Resulted non-uniform BUQ grid using blocks with 8 (a) and 16 (b) cells per side.

(16)

UN
CO

RR
EC

TE
D

PR
OO

F

12 Environmental Modelling and Software xxx (2016) xxx-xxx

Fig. 14. Detail of the resulted 8-Q non-uniform BUQ grid: evidence of the cell sizes
Δx1, Δx2, Δx3, Δx4.

5.4. Flood inundation generated by a hypothetical levee breach

In order to assess the model performance in the simulation of
flooding events over large areas, the numerical results concerning
the flooding scenario induced by a hypothetical levee breaching in
the Secchia River (Northern Italy) are presented in this section. The
domain, whose extension is approximately 840 km2, includes the
83 km-long reach of the Secchia River between the town of Mod-
ena and the confluence in the Po River, and the potentially inundated
region located on its right bank, which is enclosed by the Panaro
River (to the east) and by a railway embankment (south), as shown
in Fig. 24-a. The bathymetry, derived from a 1 m-resolution DTM, is
also reported in Fig. 24-a.

The domain is discretized by means of a BUQ grid with non-uni-
form resolution, with Δxmin = 5 m and Δxmax = 40 m and 16 × 16 cell
blocks. The resolution level is forced to Δxmin along the Secchia River
(levees included) and along the main road embankments and chan-
nel dikes in the flooding plain, while it is allowed to increase gradu-
ally to Δxmax (according to the algorithm described in Section 3) else-
where. Fig. 24-b depicts the grid size distribution, the entire domain
is discretized by means of 7.3∙106 cells. The same area would require
99∙106 and 33∙106 cells if a Cartesian grid or a BUQ grid with uni-
form resolution (equal to Δxmin) were used, respectively. Please note
that this test case cannot be simulated with uniform resolution (both
Cartesian and BUQ grids) because the memory requirements exceed
the capability of the K40 T® GPU here adopted for the numerical com-
putations.

An inflow discharge hydrograph (50 years-return period) is im-
posed upstream, while a rating curve is set as downstream boundary
condition (very far from the breach location). The levee breach is gen-
erated on the right levee at the location indicated in Fig. 24-a after 22 h
of simulation, when the peak value of discharge is observed at that

cross-section. The simulation is prolonged for 58 h after the breach
opening, so that the entire event lasts 80 h. The Manning roughness
coefficient is assumed equal to 0.05 s/m1/3 everywhere. The first-order
accurate version of the scheme is used in this case.

Fig. 25 shows a detail of the flow field around the breach location
2 h after the breach opening. In particular, the water depth contour
map is represented in Fig. 25-a, while Fig. 25-b reports both the veloc-
ity vector and the velocity magnitude contour map. Different resolu-
tion zones are also sketched in Fig. 25-a. It can be noticed that part of
the water coming out from the breach moves eastward (and then north-
ward) “canalized” between the levee and a road embankment, while
the rest propagates southward. The subsequent flooding evolution in
time is outlined in Fig. 26, which reports a selection of water surface
elevation maps. An area of approximately 62 km2 is flooded at the end
of the simulation. The total run time is equal to 6.32 h, hence the ratio
of physical to computational time is approximately 12.6.

6. Conclusions and outlook

A fast and accurate 2D SWE model is fundamental to simulate
flooding events on rivers reaches, like the one here presented, where
the velocity field significantly varies, both in magnitude and direction,
from low to high discharges during the same event. Not to mention the
cases in which levee overtopping or breaching occurs, causing the in-
undation of large prone areas (Vacondio et al., 2016).

The novel Block-Uniform Quadtree (BUQ) grid, here implemented
in a CUDA code which solves the 2D-SWE, exploits the computa-
tional capability of GPUs with minimum overheads, allowing at the
same time to reproduce small scale effects, thus overcoming one of
the main limitations of the GPU codes based on Cartesian Grids. This
reduces the computational burden, with a substantial decrease of the
number of stored cells and of the runtimes.

The simulations of a theoretical and of a laboratory test case
demonstrate that the BUQ grids, compared to the Cartesian grid, al-
low reaching significant speed-ups (2–10). Moreover, the simulation
of a real flood event on a 38 km long river reach, reproduced using a
maximum resolution of 2 m, allows to achieve a ratio of physical to
computational time of about 10, without appreciable losses of accu-
racy with respect to a uniformly fine Cartesian Grid. In the simula-
tion of a hypothetical flooding over a domain with extension equal to
840 km2 the ratio of physical to computational time equal to 12.6 was
obtained, confirming the capability of the model to provide quite fast
flood simulations.

Since the time step is still constrained, all other things being equal,
by the smaller cell size, the use of a local time step, instead of a global
one (Dazzi et al., 2016), can further increase the model speed-up using
BUQ grids. This, together with the continuously increasing capabili-
ties of the new CUDA-GPU cards, could open scenarios of real-time
2D simulations in large (of the order of 103 km2) domains, still retain-
ing a high resolution where necessary.

Fig. 15. Water surface elevation for the CADAM test case: 1 s (a) and 10 s (b) after the gate opening.

UN
CO

RR
EC

TE
D

PR
OO

F

Environmental Modelling and Software xxx (2016) xxx-xxx 13

Fig. 16. Comparison between registered and simulated water levels at the six gauging points.

Acknowledgments

This work was partially supported by Ministry of Education, Uni-
versities and Research under the Scientific Independence of young
Researchers project, grant number RBSI14R1GP, CUP code
D92I15000190001. The authors gratefully acknowledge the support
of CINECA under project P-FLOOD2-HP10CHAL0S, NVIDIA for
providing support under the CUDA Research Center Program and the
support of INDAM/GNCS2015 and INdAM - GNCS Project 2016.
Interregional Agency for the Po River (AIPo) is also gratefully ac

knowledged for providing a copious amount of field data collected
during the October 2014 Parma flooding event.

Appendix A. Flux and source term calculation

To ensure the C-property in a uniform 1D grid Liang and Marche
(2009) proposed a formulation which has the power of preserving
the water depth positivity. In the present work the same procedure
has been extended and generalized to ensure the C-property in 2D
non-uniform grids, also in presence of wet-dry fronts.

UN
CO

RR
EC

TE
D

PR
OO

F

14 Environmental Modelling and Software xxx (2016) xxx-xxx

Fig. 17. CADAM test case: number of cells (a) and non-dimensional computational times (b) rescaled on 16-C simulation.

Fig. 18. Parma River reach from Parma to the confluence in the Po River: the locations
of the upstream and downstream boundary conditions are indicated.

Table 3
ID, grid type, minimum and maximum cell sizes (Δxmin, Δxmax), number of cells, com-
pression rate CR, run times, speed-up SU and RMSE for the October 2014 Parma flood-
ing event simulations.

ID Grid type
Δxmin
(m)

Δxmax
(m)

cells
(106)

Compression
rate CR (−)

Run
time
(hours)

Speed-
up SU
(−)

RMSE
(m)

16-C Cartesian 2 2 39.81 1.00 8.73 1.00 0.319
8-C Cartesian 2 2 39.81 1.00 11.52 1.00 0.326
16-U BUQ 2 2 1.75 22.76 10.28 0.85 0.316
8-U BUQ 2 2 1.61 24.67 10.71 1.08 0.323
16-Q BUQ 2 8 0.64 62.09 3.64 2.40 0.306
8-Q BUQ 2 16 0.36 109.41 2.60 4.43 0.335

Firstly the conserved variables (η, uh, vh) and the water depth h
are reconstructed at the four faces of each cell. For a cell i the re-
constructed values at the cell interface i+1/2 on the x coordinate (east
edge) are:

where ψi is a slope limiter evaluated separately for each considered
variable. In the present work the minmod limiter has been adopted.
The velocities are calculated as:

and forced to zero if the cell is dry. The bed elevation at the same cell
interface is calculated as:

Then, a single value of bed elevation zi+1/2,x is calculated at each
interface. Considering again the interface i+1/2 on the x coordinate:

and the water depths on the left and right interfaces are corrected to en

(A.1)

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

(A.7)

UN
CO

RR
EC

TE
D

PR
OO

F

Environmental Modelling and Software xxx (2016) xxx-xxx 15

Fig. 19. Detail of the non-uniform BUQ grid generation in a typical meander of the river: the seed points used to set the resolution level in the main channel (a), the resulted grids
adopting 8 × 8 (b) and 16 × 16 (c) cell blocks. In background the bathymetry.

Fig. 20. Detail of the non-uniform BUQ grid generation near Colorno town: the seed points used to set the resolution level in the main channel (a), the resulted grids adopting 8 × 8
(b) and 16 × 16 (c) cell blocks. In background the bathymetry.

sure their positivity:

Finally, the Riemann states are calculated as follows:

When a non-uniform resolution grid is used, cells with a neigh-
bor at higher resolution have to be updated using two different fluxes
to ensure the conservation of mass and momentum (Liang and
Borthwick, 2009). In Figure A1 the case of cell i, having two cells at
higher resolution on the east interface, is shown.

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

UN
CO

RR
EC

TE
D

PR
OO

F

16 Environmental Modelling and Software xxx (2016) xxx-xxx

Fig. 21. 8-Q simulation: water depth at low (a) and high (b) discharges in some typical meanders.

Consistently, if the C-property has to be ensured, the slope source
term Si,x for cell i has to be calculated as the average of the two terms
obtained considering the water surface and the bed elevations recon-
structed at the two interfaces i+1/2, along the x direction:

where

with ,

, and:

Fig. A1. Fluxes calculation for a cell i with higher resolution neighbors on the east edge:
(a) generic reconstructed conserved variables φ (η, uh, vh) at the cell edges, fluxes used
to update the conserved variables for cell i (b).

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

UN
CO

RR
EC

TE
D

PR
OO

F

Environmental Modelling and Software xxx (2016) xxx-xxx 17

Fig. 22. 8-Q simulation: velocity magnitude at low (a) and high (b) discharges in some typical meanders.

Fig. 23. October 2014 Parma flooding test case: number of cells (a) and non-dimensional computational times (b) rescaled on 16-C simulation.

UN
CO

RR
EC

TE
D

PR
OO

F

18 Environmental Modelling and Software xxx (2016) xxx-xxx

Fig. 24. Levee break on the Secchia River: bathymetry (a) and grid size distribution (b).

Fig. 25. Flow field around the levee breach: water depth (a) and velocity (b) contour maps.

where

In this way the C-property is guaranteed for BUQ grids, also in
presence of wet/dry fronts.

(A.21)

(A.22)

(A.23)

(A.24)

UN
CO

RR
EC

TE
D

PR
OO

F

Environmental Modelling and Software xxx (2016) xxx-xxx 19

Fig. 26. Water surface elevation maps of the flooding event at selected times: 3 h (a), 12 h (b), 24 h (c) and 58 h (d) after the breach opening.

References

Alfieri, L., Feyen, L., Dottori, F., Bianchi, A., 2015. Ensemble flood risk assessment in
Europe under high end climate scenarios. Glob. Environ. Change 35, 199–212.

An, H., Yu, S., 2014. An accurate multidimensional limiter on quadtree grids for shal-
low water flow simulation. J. Hydraul. Res. 52 (4), 565–574.

Aureli, F., Maranzoni, A., Mignosa, P., 2004. Two dimensional modeling of rapidly
varying flows by finite volume schemes. River Flow 2004. Department of Hy-
draulic and Environmental Engineering. In: Second International Conference on
Fluvial Hydraulics. vol. 2. Federico II University, pp. 837–847.

Begnudelli, L., Sanders, B.F., 2006. Unstructured grid finite-volume algorithm for
shallow-water flow and scalar transport with wetting and drying. J. Hydraul.
Eng. 132.4, 371–384.

Bennett, N.D., Croke, B.F.W., Guariso, G., Guillaume, J.H.A., Hamilton, S.H., Jake-
man, A.J., Marsili-Libelli, S., Newham, L.T.H., Norton, J.P., Perrin, C., Pierce,
S.A., Robson, B., Seppelt, R., Voinov, A.A., Fath, B.D., Andreassian, V., 2013.
Characterising performance of environmental models. Environ. Model.
Softw. 40, 1–20.

Borthwick, A.G.L., Marchant, R.D., Copeland, G.J.M., 2000. Adaptive hierarchical
grid model of water-borne pollutant dispersion. Adv. Water Resour. 23 (8),
849–865.

Brodtkorb, A.R., Saetra, M.L., Altinakar, M., 2012. Efficient shallow water simula-
tions on GPUs: implementation, visualization, verification, and validation. Com-
put. Fluids 55, 1–12.

Brufau, P., García-Navarro, P., Vázquez-Cendón, M.E., 2004. Zero mass error using
unsteady wetting–drying conditions in shallow flows over dry irregular topogra-
phy. Int. J. Numer. Meth. Fluids 45, 1047–1082.

Caleffi, V., Valiani, A., Zanni, A., 2003. Finite volume method for simulating extreme
flood events in natural channels. J. Hydraul. Res. 41, 167–177.

Casulli, V., 1990. Semi-implicit finite difference methods for the two-dimensional
shallow water equations. J. Comp. Phys. 86 (1), 56–74.

Caviedes-Voullieme, D., Morales-Hernández, M., López-Marijuan, I., García-Navarro,
P., 2014. Reconstruction of 2D river beds by appropriate interpolation of 1D
cross-sectional information for flood simulation. Environ. Model.
Softw. 61, 206–228.

Costabile, P., Macchione, F., 2015. Enhancing river model set-up for 2-D dynamic
flood modelling. Environ. Model. Softw. 67, 89–107.

Crespo, A.J.C., Domínguez, J.M., Rogers, B.D., Gómez-Gesteira, M., Longshaw, S.,
Canelas, R., Vacondio, R., Barreiro, A., García-Feal, O., 2015. DualSPHysics:
open-source parallel CFD solver based on smoothed particle hydrodynamics
(SPH). Comput. Phys. Commun. 187, 204–216.

Crossley, A., Lamb, R., Waller, S., 2010. Fast solution of the shallow water equations
using GPU technology. In: Proceedings of the British Hydrological Society 3rd In-
ternational Symposium, Newcastle, UK, 13–19 July 2010.

Dazzi, S., Maranzoni, A., Mignosa, P., 2016. Local time stepping applied to mixed
flow modelling. J. Hydraulic Res. http://dx.doi.org/10.1080/00221686.2015.
1132276.

De la Asunción, M., Castro, M.J., Fernández-Nieto, E., Mantas, J.M., Acosta, S.O.,
González-Vida, J.M., 2013. Efficient GPU implementation of a two waves
TVD-WAF method for the two-dimensional one layer shallow water system on
structured meshes. Comput. Fluids 80, 441–452.

De Moel, H., Jongman, B., Kreibich, H., Merz, B., Penning-Rowsell, E., Ward, P.J.,
2015. Flood risk assessments at different spatial scales. Mitig. Adapt. Strategies
Glob. Change 1–26.

Greaves, D.M., Borthwick, A.G.L., 1999. Hierarchical tree-based finite element mesh
generation. Int. J. Numer. Meth. Eng. 45 (4), 447–471.

Juez, C., Lacasta, A., Murillo, J., García-Navarro, P., 2016. An efficient GPU imple-
mentation for a faster simulation of unsteady bed-load transport. J. Hydraulic
Res. 54 (3), 275–288. http://dx.doi.org/10.1080/00221686.2016.1143042.

Kalyanapu, A.J., Shankar, S., Pardyjak, E.R., Judi, D.R., Burian, S.J., 2011. Assess-
ment of GPU computational enhancement to a 2D flood model. Environ. Model.
Softw. 26 (8), 1009–1016.

Kurganov, K., Petrova, G., 2007. A second-order well-balanced positivity preserving
central-upwind scheme for the Saint-Venant system. Commun. Math. Sci. 5 (1),
133–160.

Lacasta, A., Morales-Hernández, M., Murillo, J., García-Navarro, P., 2014. An opti-
mized GPU implementation of a 2D free surface simulation model on unstructured
meshes. Adv. Eng. Softw. 78, 1–15. http://dx.doi.org/10.1016/j.advengsoft.2014.
08.007.

UN
CO

RR
EC

TE
D

PR
OO

F

20 Environmental Modelling and Software xxx (2016) xxx-xxx

Lacasta, A., Juez, C., Murillo, J., García-Navarro, P., 2015a. An efficient solution for
hazardous geophysical flows simulation using GPUs. Comput. Geosciences 78 (0),
63–72. http://dx.doi.org/10.1016/j.cageo.2015.02.010.

Lacasta, A., Morales-Hernández, M., Murillo, J., García-Navarro, 2015b. GPU imple-
mentation of the 2D shallow water equations for the simulation of rainfall/runoff
events. Environ. Earth Sci. 74 (11), 7295–7305. http://dx.doi.org/10.1007/
s12665-015-4215-z.

Liang, Q., Borthwick, A.G.L., Stelling, G., 2004. Simulation of dam- and dyke-break
hydrodynamics on dynamically adaptive quadtree grids. Int. J. Numer. Meth. Flu-
ids 46, 127–162.

Liang, Q., Zang, J., Borthwick, A.G., Taylor, P.H., 2007. Shallow flow simulation on
dynamically adaptive cut cell quadtree grids. Int. J. Numer. Meth. Fluids 53 (12),
1777–1799.

Liang, Q., Du, G., Hall, J.W., Borthwick, A.G., 2008. Flood inundation modeling with
an adaptive quadtree grid shallow water equation solver. J. Hydraul. Eng. 134 (11),
1603–1610.

Liang, Q., Borthwick, A.G.L., 2009. Adaptive quadtree simulation of shallow flows
with wet-dry fronts over complex topography. Comput. Fluids 38, 221–234.

Liang, Q., Marche, F., 2009. Numerical resolution of well-balanced shallow water
equations with complex source terms. Adv. Water Resour. 32, 873–884.

Liang, Q., 2011. A structured but non-uniform Cartesian grid-based model for the shal-
low water equations. Int. J. Numer. Meth. Fluids 66, 537–554.

Lynch, D.R., Gray, W.G., 1979. A wave equation model for finite element tidal com-
putations. Comput. Fluids 7, 207–228.

NVIDIA CUDA, 2007. Compute Unified Device Architecture Programming Guide.
Rogers, B., Fujihara, M., Borthwick, A.G., 2001. Adaptive Q-tree Godunov-type

scheme for shallow water equations. Int. J. Numer. Meth. Fluids 35 (3), 247–280.
Sætra, M.L., Brodtkorb, A.R., Lie K, A., 2014. Efficient GPU-implementation of adap-

tive mesh refinement for the shallow-water equations. J. Sci. Comp. 63 (1), 23–48.

Sanders, B.F., Bradford, S.F., 2006. Impact of limiters on accuracy of high-resolution
flow and transport models. J. Eng. Mech. 132, 87–98.

Sanders, B.F., Schubert, J.E., Detwiler, R.L., 2010. Parbrezo: a parallel, unstructured
grid, godunov-type, shallow-water code for high-resolution flood inundation mod-
eling at the regional scale. Adv. Water Resour. 33 (12), 1456–1467. ISSN
0309–1708.

Soares Frazão, S., Sillen, X., Zech, Y., 1999. Dam-break flow through sharp bends
physical model and 2D boltzmann model validation. In: Proc., CADAM Meeting
Wallingford, U.K., 2–3 March 1998. European Commission, Brussels, Belgium,
pp. 151–169.

Soares Frazão, S., Zech, Y., 2002. Dam break in channels with 90° bend. J. Hydraul.
Eng. 128, 956–968.

Sousa, F.A., Dos Reis, R.J.N., Pereira, J.C.F., 2012. Simulation of surface fire fronts
using fireLib and GPUs. Environ. Model. Softw. 38, 167–177.

Toro, E., 1999a. Shock Capturing Methods for Free Surface Shallow Water Flows. Wi-
ley, New York.

Toro, E., 1999b. Riemann Solvers and Numerical Methods for Fluid Dynamics.
Springer.

Vacondio, R., Rogers, B.D., Stansby, P.K., Mignosa, P., 2012. SPH modeling of shal-
low flow with open boundaries for practical flood simulation. J. Hydraul.
Eng. 138, 530–541.

Vacondio, R., Dal Palù, A., Mignosa, P., 2014a. GPU-enhanced Finite Volume Shal-
low Water solver for fast flood simulations. Environ. Model. Softw. 57, 60–75.

Vacondio, R., Aureli, F., Ferrari, A., Mignosa, P., Dal Palù, A., 2016. Simulation of
the January 2014 flood on the Secchia River using a fast and high-resolution 2D
parallel shallow-water numerical scheme. Nat. Hazards 80 (1), 103–125. http://dx.
doi.org/10.1007/s11069-015-1959.

Vázquez-Cendón, M.E., 1999. Improved treatment of source terms in upwind schemes
for the shallow water equations in channels with irregular geometry. J. Comput.
Phys. 148 (2), 497–526.

