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Abstract 

The objective of the paper is to present an empirical Bayesian method combined with Akaike’s 

Bayesian Information Criterion (ABIC) to estimate the contaminant release history of a source in 

groundwater starting from few concentration measurements in space and/or in time. From the 

Bayesian point of view, the ABIC considers prior information on the unknown function, such as the 

prior distribution (assumed Gaussian) and the covariance function. The unknown statistical 

quantities, such as the noise variance and the covariance function parameters, are computed through 

the process; moreover the method quantifies also the estimation error through the confidence 

intervals. The methodology was successfully tested on three test cases: the classic Skaggs and 

Kabala release function, three sharp releases (both cases regard the transport in a one-dimensional 

homogenous medium) and data collected from laboratory equipment that consists of a two-

dimensional homogeneous unconfined aquifer. The performances of the method were tested with 
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two different covariance functions (Gaussian and exponential) and also with large measurement 

error. The obtained results were discussed and compared to the geostatistical approach of Kitanidis 

(1995). 

 

Highlights 

• A new approach to estimate the contaminant release history is presented 

• The procedure is very robust and efficient 

• The method has been tested on complex cases 

Keywords 

Akaike’s Bayesian Information Criterion; Groundwater; Pollutant transport; Release History; 

Inverse Problems. 

 

1 Introduction 

Contaminant release history identification has received considerable attention in the literature over 

the past several decades. Although a number of reasonable approaches have been developed during 

this time no panacea has yet emerged. This is in part due to its ill-posed nature, and frequently, 

either the data stream is of insufficient length, contains missing data points, or is inaccurate. The 

reader is referred to Atmadja and Batzoglou (2001), Michalak and Kitandis (2004), Sun et al. 

(2006) or Cupola et al. (2015) for extensive reviews of this specific problem in groundwater 

hydrology. 

Interest in this area continues because it is a good representative of an inverse problem in 

hydrology. Since mathematical inversion is a cornerstone-problem in geophysics, the impact of any 

successful works will be high. Inverse theory, in it’s truest sense, is different from standard 

parameter estimation problems in statistics in that the unknowns sought are functions and not a 

small set of numbers (Parker, 1977; Tarantola, 1985; Ulrych and Sacchi, 2005). This means that in 

principle, there are an infinite number of variables sought. A variety of approaches exist and there 
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are two main avenues to take. One of these deals with the ideal case of an infinite amount of exact 

data and the unknowns sought are continuous functions. For example, a Fourier transform and its 

inverse.  This is the realm of the applied mathematician and these approaches tend to be analytic or 

quasi-analytic in nature. Analytic techniques are sensitive to the way data are collected and to noise 

present. Nevertheless these approaches are useful for their results concerning uniqueness, stability 

and so on (see also Tarantola, 2005, Ch 5, functional space inversion). The other main avenue 

relates to the practical problems encountered in the geophysical sciences where the model is 

“parameterized” into a finite set of parameters and involves the collection of incomplete and noisy 

data. One could on purpose propose a small number of structures such that more data than 

unknowns are present. It is in this area where the vast majority of efforts in groundwater are 

concentrated and a variety of approaches are possible. The more computationally demanding, and 

perhaps interesting problems are those in which the parameterization is done so that a high degree 

of resolution is possible, if one is willing to tolerate the ambiguity of the result (e.g. Woodbury and 

Ulrych, 2000; Painter et al., 2007). Stability in the presence of noise is always an issue, as is 

uniqueness which is difficult to prove. The technique that permits unique and stable inverse 

solutions by introducing prior information is called regularization. The widely used Levenberg-

Marquardt method imposes “smoothness” to the model. This is essentially the basis for the well 

known PEST wrap-around code. In fact, Tikhonov showed that once an ill-posed problem becomes 

properly regularized it becomes stable. For these reasons, parameterized inverse problems are 

stabilized by weighting with error terms and are regularized to achieve some measure of uniqueness 

under one norm, or a variety of norms. The validity of the regularization terms becomes apparent, 

and perhaps justified when the inverse problem is approached from Bayesian or maximum entropy 

perspectives (Ulrych and Sacchi, 2005). 

Specifically, in our review of the literature on this subject (see the above references) suggests that 

improvements are needed in terms of a reliable procedure, one that is easy to implement, with only 

few hyperparameters to estimate, and is able to evaluate confidence intervals. For these reason the 
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purpose of this work is to propose an empirical Bayesian approach combined to the Akaike’s 

Bayesian Information Criterion (ABIC) to estimate the contaminant release history, and to 

demonstrate its effectiveness. 

This work estimates the temporal contaminant release history of a point source with the following 

simplifying assumptions: the solute is conservative, it is a 1-D or 2-D problem, the source location 

is known, the flow is uniform and steady, and the transport parameters are known at each point of 

the domain. These assumptions are necessary for the development and testing of the current 

methodology. Further, the release concentration is uncertain and its probability density function is 

assumed multivariate Gaussian. Specifically, we adopt a probabilistic approach to the inversion, 

assume a Gaussian likelihood and Gaussian prior to the problem, and seek the solution that 

minimizes Akaike’s Bayesian Information Criterion, the ABIC. We propose an important extension 

to the algorithm that constrains solutions to only positive models and we test the method out on 

three test cases: the classic Skaggs and Kabala (1994) source, a “midnight dump” example that 

consists of three delta-like sources and lastly a laboratory experimental dataset, consisting of two 

measurement points spatially but with synoptic observations, obtained from a laboratory equipment, 

that reproduces the response of a 2-D unconfined aquifer. 

2. Theory 

2.1 Contaminant Transport in Groundwater 

The following equation (1) describes the transport process in an aquifer reacting to the injection of a 

non-sorbing, non-reactive solute at a point source (Bear and Verruijt, 1987): 

( )( )
( ) ( )  ( ) ( )  ( ) )(,,,,

,
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xxxxxuxxD
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where:  [-] is the effective porosity, u(x,t) [LT-1] is the effective velocity at location x and time t 

[T], D(x) [L2T-1] is the dispersion tensor, C(x,t) [ML-3] is the concentration, m(x0,t)=cin(t)qin(x0,t) 

[MT-1] is the amount of pollutant per unit time injected into the aquifer through the source located 
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at , cin(t) [ML-3] is the concentration of the released contaminant at time t and qin(x0,t) [L3T-1] is 

the injection flow rate. 

Equation (1), considering uniform porosity, can be rewritten as: 

( )
( ) ( )  ( ) ( )  ( )  )(,,,,

t
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xxxxxuxxD
x

−+−=



 tmtCttC

tC
    (2) 

The solution of equation (2) when associated with the initial and boundary conditions: C(x,0) = 0; 

C(∞,t) = 0, is given by the convolution integral: 

( ) ( ) −=
t

dtgmtC
0

),(,,  xxx
0

         (3) 

where g(x,t-τ) [L-3] is the Kernel function that describes the effects at x at time t [T] by an impulse 

injection occurring at x0 at time τ. 

Under simple flow conditions (such as homogeneous, isotropic, absence of withdrawal or recharge) 

the Kernel functions can be determined analytically, for instance for 1-D flow 
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In non-uniform flow field it is necessary to employ numerical approaches, such as the Stepwise 

Input Function procedure methodology developed by Butera et al. (2006; 2013), that is a numerical 

strategy for Kernel functions calculation. The time derivative of equation (3), considering a constant 

and known input function ( ) ( )tHFtm =
00

,x , where H(t) [-] is the Heaviside step function and 

F0=c0qin(x0,t) [MT-1] is the amount of pollutant per unit time injected into the aquifer with constant 

and known concentration c0, results in: 
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Equation (5) shows that it is possible to compute the Kernel functions at a generic point x by 

processing the concentration history (breakthrough curve) at the same location due to a stepwise 

tracer injection at x0. The application of equation (5) under field conditions is rarely possible but it 

can be coupled with a numerical flow and transport model that can easily simulate the effect of a 

0
x
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pollutant injection on an aquifer and can calculate the response (breakthrough curve) at each 

monitoring point. 

Note that a continuous inverse problem can be converted into a discrete one by making an 

assumption that the model m() can be represented by a finite number of M coefficients, that is: 

( ) ( ) ( )tmm
M

j

jj
=

=

 0
1

         (6) 

One commonly used assumption is that the model is constant over a certain sub-region and in this 

case   is unity inside the subregion and zero outside of it. Other choices of ( )j  are possible and 

an alternative is the assumption that the 
j  are linear basis functions; that is, the model is assumed 

to vary linearly between point estimates. For whatever choice is made the forward problem 

becomes: 

1

M

i ij j

j

d G m
=

=             (7) 

where the discrete kernel is 

( ) ( )
0

t

ij i jG g d  =            (8) 

In a matrix form 

Gmd =             (9) 

In a typical linear inverse problem the observed data d* (N×1) are related to a set of model 

parameters m (M×1) that are partially hidden by noise υ (N×1), and M >> N, so that: 

υGmd +=*
            (10) 

The equation (3), thanks to the linearity of the problem, could be written as equation (10) and  

the matrix G is represented through the following: 
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where g(xi,t) is the kernel function computed at xi (observation location) at time t, T is the sampling 

time and t is the time interval. 

2.2. Empirical Bayes and Hyperparameter Estimation by ABIC 

In this work we follow a Bayesian paradigm to construct an inverse solution to the contaminant 

source problem as noted above. The Bayesian philosophy for inverse problems in groundwater is 

detailed in Woodbury (2007), amongst other sources, and is briefly restated below. 

If the conditional pdf of d* given m and prior information I, is given by ( )Ip ,*
md , Bayes’ rule 

dictates that: 

( )
( ) ( )
( ) ( )

=
mmmd

mmd
dm

dIpIp

IpIp
Ip

,

,
,

*

*

*
         (12) 

In (12) ( )Ip m  is the prior probability density (pdf) of the model parameters, given prior 

information, I, and ( )Ip ,*
md , is the likelihood of observing d* given the model parameters and the 

prior information. The left hand side of (12) is the posterior probability density and the term in the 

denominator is a normalizing constant which is important in this work, as it represents the pdf of 

observing data with the uncertainty in the model parameters marginalized out of consideration. This 

discussion will no doubt be familiar to the reader but it is appropriate here to repeat this for the sake 

of completeness and understanding of the notation used. 

Given the prior pdf and new information in the form of sample data, we compute expected values of 

the posterior pdf, which in this paradigm is taken as the “answer”. Here we also assume the 

observations have errors as described by matrix Cd. If the errors in the data and the prior 

information on the model parameters are described by the Gaussian hypothesis (covariance Cm and 

mean s) then the posterior probability in model space is also Gaussian. The latter assumption on the 

model space is a very common one to be made in the hydrologic sciences. According to many 

previous works (such as: Kitanidis and Vomvoris (1983); Carrera and Neuman (1986); Kitanidis 

(1995); Snodgrass and Kitanidis (1997); Woodbury and Ulrych (2000); Ulrych et al. (2001)) the 
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prior probability distribution of the unknowns is assumed as Gaussian. In assigning prior 

probabilities, the principle of indifference it is assumed, adopting probabilistic models with 

maximum entropy; for instance, if the mean and variance are known, the Gaussian is the maximum-

entropy assignment of probabilities. The first two moments of this pdf are given by Tarantola 

(1987), see also Woodbury (2011): 

( ) ( )GsdCGGCGCsm −++=
− *1

d

T

m

T

m
        (13) 

( )
md

T

m

T

mmq
GCCGGCGCCC

1−

+−=         (14) 

where m  and Cq are the expected value and covariance of the posterior pdf, respectively. These 

results are equally valid for the continuous inverse; the only difference between them is that 

probability densities are defined for discrete spaces and not for continuous ones. 

( ) /exp2

jiMm
tt −−=C  is typically assumed to have an exponential autocovariance (see Beck et 

al., 1992), where ti-tj is the separation distance (time units), 2

M the variance and  the integral scale. 

The premise of the empirical Bayesian approach is that the prior probability is considered flexible 

(Ulrych et al., 2001). This means that the noise Cd and matrix Cm with the statistical 

hyperparameters, such as the mean s, the variance 2

M  and the integral scale  may not be known 

initially, and are determined from information contained in the input data. In this way, the prior pdf 

is used constrain the solution to a form that is considered appropriate. For example constraining 

ln(K), the hydraulic conductivity, to follow a Gaussian distribution even though we may not know 

its mean and variance. 

Note the denominator of (12) represents the pdf of observing data, with the uncertainty in the model 

parameters marginalized out. In the empirical Bayes approach the denominator depends on any 

hyperparameters in the prior, for example: 

( ) ( ) ( ) ( ) ,,, 22***

dM
pIpdIpIp ddmmmd ==        (15) 
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(if, say three hyperparameters are present). For example, suppose there are two alternative 

assumptions related to the prior information, such that ( ) ( )2

*

1

* IpIp dd  ; we would want to select I1 

over I2 as the “best” candidate for the prior information. As will be shown in the sections below 

there are different ways that choice could be made. 

The particular approach that we adopt is based on the work of Akaike (1980), specifically Akaike’s 

Information Criterion (AIC) and the Akaike’s Bayesian Information Criterion (ABIC). A detailed 

derivation of the AIC may be found in Matsuoka and Ulrych (1986). The AIC is based on the 

Kullback-Liebler information measure (Shibata, 2002). The minimum AIC, AIC|min, is the best 

trade-off between errors in parameter estimation and errors in fitting of the model. Denoting the 

estimated model by m̂ , the form of the measure is (Ulrych et al., 2001) 

( )  kIp 2,m̂|ln2AIC
max

* +−= d          (16) 

In (16) the first term on the RHS is essentially the likelihood function, which for normally 

distributed errors is 2

M
s  is the residual sum of squares, and the second term is twice k is the number 

of parameters independently adjusted for the maximization of the likelihood (Akaike, 1974); most 

of the time k is equal to the dimension of m̂ . The minimum of the AIC allows the computation of 

the appropriate number of parameters, a particularly difficult task in many geophysical problems. 

The ABIC is similar in form to the AIC and is computed in terms of the Bayesian likelihood 

(Ulrych et al., 2001); it is appropriate when using Bayes’ rule and is defined in equation (17) 

( )  hNIp 2ln2ABIC * +−= d          (17) 

Nh is the number of hyperparameters evaluated at the minimum value of the ABIC. 

For the discrete linear inverse problem with Gaussian priors and likelihood, Mitsuhata (2004) after 

some manipulation showed that: 

( ) ( ) ( ) ( )
1/2/2* * 1 *1

2 exp
2

TN

dp dpp I 
−− − 

= − − − 
 

d C d Gs C d Gs      (18) 

Where 
d

T

mdp
CGGCC += . 
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The AIC is appropriate when there is no prior information on the model parameters, while the 

ABIC when prior information is considered in the form of a prior probability. Moreover, the AIC 

uses the quality of the optimum estimation, obtained under the model employed in the stage of 

deriving the criterion, which is treated in the form of an estimate of the probability density function; 

whereas the ABIC treats the overall approximation capability for the unknowns of the entire models 

(Ulrych et al., 2001; Shibata, 2002; Woodbury and Ferguson, 2006). 

For the simulations in this paper, we assume three principle hyperparameters are of interest. The 

first is 2

d , the variance of the noise in the observed data, such that IC
2

dd = . Second, there is an 

unknown scale parameter for the correlation matrix; i.e., 
mMc CC =2 . Third, embedded within the 

correlation matrix Cc is another hyperparameter,  the integral scale.  

According to the work of Mitsuhata (2004) and Woodbury and Ferguson (2006), combining 

equation (17) with (18) the ABIC is: 

( ) ( ) ( )
hdp

T

dp
N  N 2||||ln2lnABIC *1* +−−++= −

GsdCGsdC     (19) 

assuming three hyperparameters, 2Nh = 6. In the above, terms two and three both depend on 2

d  and 

2

M . 

The procedure for determining the hyperparameters through the ABIC and to estimate m  is as 

follows: 

1. input a starting value for 2

d ,  and 2

M , form Cm; 

2. form Cdp, decompose, compute the natural log of its determinant; 

3. form ( ) ( )GsdCGsd −− − *1*

dp

T  (the χ2 misfit) and minimize the ABIC for 2

M  and  holding 2

d  

fixed; 

4. compute m  and estimate 2

d  from the χ2 misfit between computed and observed data; 
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5. if the improvement in the objective function, computed between two successive iterations as 

 
11

ABICABIC/ABICABIC2
−−

+−
iiii

, converges to a stipulated tolerance then step out 

of the loop, otherwise go back to step 2; 

6. the iterations are complete and then compute the final model, covariance, the ABIC, and any 

other pertinent measures. 

Our procedure accounts for the uncertainty in 2

M  in any one iteration by including its variability in 

terms two and three in (19). It is important to remark that the determinant of the matrix Cdp for 

under-determined inverse problems can be very small and consequently its natural logarithmic is a 

significant negative number and therefore it has an important role in the computation of ABIC. In 

this work, we simultaneously estimated 2

M  and  holding 2

d  fixed during the iteration. 

This method is very effective and efficient (Kennedy et al., 2000; Hendry and Woodbury, 2007) but 

does not constrain the release m to only positive values, which is an issue with respect to 

concentrations whose values must only be positive. This issue is not of concern with respect to 

entropy based solutions (see Woodbury and Ulrych, 1998) as the solutions in MRE are naturally 

constrained as part of the theory. Non-positive models though, in Bayesian and other inversion 

techniques may suffer from side lobe “ringing” and this is often noted in geophysical problems. A 

solution can be obtained by working in a transformed space and solving the equations iteratively. 

Box and Cox (1964) and Snodgrass and Kitanidis (1997), with the aim at avoiding negative 

concentrations suggested the use of a power transformation of the unknown variable m. The new 

unknown function becomes: 

( )1α~ 1/α −= mm            (20) 

where  is a positive number and it is chosen as small as possible while ensuring α~ −
i

m . For 

α~ −
i

m  imaginary results from equation (20) are possible. This transformation is general: it 
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includes the unmodified m ( = 1), the square root of m ( = 2), and in the limit for large value of 

 it reduces to a logarithm transformation. 

Considering the variable transformation of equation (20), the equation (10) becomes: 

( ) += mgd
* ~~             (21) 

Where ( )
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m
gmg

~
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In this case the kernel function ( )mg ~~  is not linear with the transformed unknown m~ . The solution 

is reached iteratively starting from an initial estimate of the unknowns 
0

~m  and making the 

derivative of g~  with respect to m~  at 
0

~m : 
0

~~
0 ~

~~

mmm

g
G
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= . 

The procedure for determining the hyperparameters through the ABIC and to estimate m , given a 

value of s~  and , is: 

1. input the starting value for 2

d , , 2

M  and m~ ; 

2. compute the transformed Kernel function:
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3. compute ( ) ( ) 





dtg
t

−






 +
=  ,

~
~~

0

x
m

mg ; 

4. compute ( ) sGmgdd ~~~~** +−=l ; 

5. form Cm; 

6. form Cdp, decompose, compute the natural log of its determinant; 
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7. form ( ) ( )sGdCsGd ~~~~ *1* −− −

ldp

T

l
 (the χ2 misfit) and minimize the ABIC for 2

M  and  holding 2

d  

fixed; 

8. compute ( ) ( )sGdCGCGGCsm ~~~~~~~ *
1

−++=
−

ld

T

m

T

m
 and 

α

α

α~













 +
=

m
m  and estimate 2

d  

from the misfit between computed and observed data; 

9. if the improvement in the objective function, computed between two successive iterations as 

 11 ABICABIC/ABICABIC2 −− +− iiii
, converges to a stipulated tolerance then step out 

of the loop, otherwise go back to step 2; 

10. the iterations are completed and then compute the final model, covariance, the ABIC, 

resolution, and so on. 

Once that the iterative procedure is completed, it is possible to estimate the covariance as 

( )
md

T

m

T

mmq
CGCGCGGCCC

~~~~~ 1−

+−=  and the 95% confidence interval as: 
iiqCmC

~
96.1~~

intervals = , 

where 
iiqC

~  are the diagonal elements of 
qC

~
. The final step is the transformation of the confidence 

intervals as: 

α

intervals

α

α
~

intervalsconfidence 











 +
=

C
. 

The reader should also be aware of the conundrum that this poses to us, at least philosophically. 

In empirical Bayes we start out with an assumption about the likelihood function (Gaussian) and the 

model itself (Gaussian). Following the algorithm, the solution is also Gaussian and mean values, 

confidence limits and so on follow naturally and immediately. However, if we follow the 

transformation algorithm proposed above we now assume that the transformed variable m~ is 

Gaussian (not the actual model, m) with perhaps little justification. Practically speaking this poses 

really no issues and aids greatly in suppressing side lobes in the solution. More on these issues will 

written in sections below. 

2.3 Incorporation of prior information from observed data 
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The inverse procedure requires initial values of the hyperparameters in order to start the estimation 

process. Moreover, some general information, with regards to the phenomenon in study, is needed.  

The starting values for the hyperparameters should be selected preferring a simple, flat solution 

from which complexity in the form of release variability could be added by means the proposed 

approach when it is supported by the data. The initial estimate of the hyperparameters, see Butera 

and Tanda (2001), can be carried out assuming as initial variance a value that is greater than the 

variance of the observed values: 22

nsObservatioM
   and as initial correlation length  [T] a value that is 

smaller than the one of the observed values nsObservatio
  [L] divided by the mean effective velocity 

[L/T]: 
v

nsObservatio


  . The measurement error 2

d  can also be inferred from sampling methods and 

techniques. 

The proposed approach assumes the prior mean of the unknowns. This enforces the convergence of 

the procedure. An approximate idea on the mean could be obtained from a simple forward modeling 

of the phenomenon and a further weak calibration. Knowing the source location, the flow field and 

transport parameters, it is possible to simulate the injection into the aquifer of a flux with constant 

and known concentration. Considering a few (<5) injections with concentrations that present 

different orders of magnitude, the mean value could be chosen as the injected concentration that 

presents the minimum variance between the observed and computed values at the monitoring 

points. 

3. Study cases 

Three cases were considered to test and validate the methodology. The first is a widely regarded 

study case initially proposed by Skaggs and Kabala (1994) and successively adopted by several 

researchers (Woodbury and Ulrych, 1996; Snodgrass and Kitanidis, 1997; Butera and Tanda, 2003; 

Sun, 2007; Butera et al., 2013). The second study case, which we refer to as a “midnight dump” 

presents the same forward model of the first but considers a very simple but difficult release 

function that could be summarized in three uncorrelated and sharp releases (this case essentially 
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examines the ability to reconstruct a delta-like source). The third case uses data collected under 

controlled condition in a laboratory framework. All the study cases assumed the source location is 

known. 

3.1 CASE 1 - Skaggs and Kabala release function 

The problem consists of 1-D steady state flow and it can be reproduced through equations (3) and 

(4). The velocity v = 1 m/d, the dispersion coefficient D = 1 m2/d and the sampling time is 

T = 300 d. The adopted release function was the one initially proposed by Skaggs and Kabala 

(1994): 

( )
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Since ( )tqin ,0x  is of unit value, the identification of the release history m  is equivalent to the 

identification of the concentration history ( )tcin ,0x . The same observations (N = 25) and release 

history discretization (M = 300) of the work of Snodgrass and Kitanidis (1997) were considered in 

order to allow the reader a comparison to other Bayesian approaches (Figure 1). According to 

previous works the results are reported dimensionless. 

 



16 

 

Figure 1. CASE 1 – The blue line is the concentration observed after 300 time units, the circles denote the measurement 

locations used in the inverse procedure and the red crosses are the estimated concentration by means of the constrained 

case. The observed concentrations were not corrupted by errors. 

At first the release history (Figure 2) was recovered considering an exponential covariance function 

( ) /exp2

jiMm
tt −−=C , data without measurement errors and through the unconstrained case. 

Figure 2 shows the true release history, the best estimate and its 95% confidence intervals. The 

recovered release history is well recovered, but negative concentration values and confidence limits 

were estimated and appeared as side-lobes. In order to avoid these negative values the constrained 

approach was applied. 

 

Figure 2. CASE 1 – Unconstrained ABIC with exponential covariance function: the true solution (solid blue line), best 

estimate (dashed thick line), and 5-95% confidence interval (dotted lines). 

Figure 3 shows that the release history, with the same assumptions and dataset of the previous test, 

is very well recovered through the proposed approach; moreover Figure 1 reports the good 

agreement between the observed and computed concentrations. Figure 4 shows the results obtained 

using the dataset of the previous examples but considering a Gaussian covariance function: 

( )( )222 /exp 
jiMm

tt −−=C . It is clear that the release function is very well recovered and presents 
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a 95% confidence interval much smaller than the case with an exponential covariance function. A 

comparison between the results obtained under different covariance functions could be carried out 

comparing the final values of the ABIC considering the same initial values,  and convergence 

criteria. The estimate due to the Gaussian covariance function yields an ABIC = -347.88, while 

using the exponential covariance the ABIC = -367.00. It is clear that, in this case, the exponential 

covariance function identifies a solution that presents a marginally lower value of ABIC. Any 

observer analyzing a generic problem without knowing the true source release can identify the most 

appropriate covariance function choosing the one that generates the minimum ABIC value. 

 

Figure 3. CASE 1 – Constrained ABIC with exponential covariance function: the true solution (solid blue line), best 

estimate (dashed thick line), and 5-95% confidence interval (dotted lines). 



18 

 

 

Figure 4. CASE 1 – Constrained ABIC with Gaussian covariance function: the true solution (solid blue line), best 

estimate (dashed thick line), and 5-95% confidence interval (dotted lines). 

Finally, the observed concentrations were corrupted by a random normally distributed error with 

32 10−=d . Figure 5 shows that the release history is quite well recovered but only the two main 

peaks are detected and they are underestimated. Considering the quality of the dataset, the 

performance of the procedure was considered satisfactory and the “true” signal is contained within 

the upper and lower confidence limits. 
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Figure 5. CASE 1 – Constrained ABIC with exponential covariance function, observations added with normally 

distributed errors (σ2 = 10-3): the true solution (solid blue line), best estimate (dashed thick line), and 5-95% confidence 

interval (dotted lines). 

3.2 CASE 2 - Midnight dump 

The second case used the same forward model of the previous one but with the release function of 

Eq. (24). 
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In this case 30 observations equal spaced (from x = 10 to 300 m with x = 10 m) were considered in 

the inverse procedure (see Figure 6) and the release history was discretized in 400 unknowns with 

t = 0.75 days. 

 

Figure 6. CASE 2 –Concentration after 300 time units, the circles denote the observed concentrations used in the 

inverse procedure and the red crosses are the estimated concentration by means of the constrained case. The observed 

concentrations were not corrupted by errors. 
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This case is very difficult because it presents three uncorrelated peaks that could cause a 

convergence problem by way of a large step in the newton algorithm we use. This means the new 

estimate 
im  could have a greater ABIC value than the previous one 

1−im . In order to avoid this 

problem a relaxation factor was adopted: 

( )  +−= −11 iii mmm          (25) 

where δ is a scalar that defines the point along a line. In this case δ = 0.9 was considered 

appropriate with the aim at varying the estimate from one iteration to the next one very slowly and 

avoid oscillations. This implies a large number of iterations and to speed up the computation 

process the value of δ could be estimated at each iteration, as suggested by Zanini and Kitanidis 

(2009) for the geostatistical approach and choosing the one that minimizes the ABIC value. 

Figure 7 shows that the true release history is very well recovered and the observations are 

optimally reproduced (Figure 6). That indicates that the procedure, amended with the relaxation 

factor, is efficient also in complex cases. Also in this case, the observed concentrations were 

corrupted through a random normally distributed error with 92 10−=
d

 . Figure 8 shows that the 

approach underestimated the release concentrations, but identified the time of the peaks quite well. 
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Figure 7. CASE 2 – Constrained ABIC with exponential covariance function: the true solution (solid blue line), best 

estimate (dashed thick line), and 5-95% confidence interval (dotted lines). 

 

Figure 8. CASE 2 – Constrained ABIC with exponential covariance function, observations added with normally 

distributed errors (σ2 = 10-9): the true solution (solid blue line), best estimate (dashed thick line), and 5-95% confidence 

interval (dotted lines). 

3.3 CASE 3- Laboratory dataset 

The procedure was finally tested using data collected through a laboratory device (sandbox) 

following the work of Cupola et al. (2015). This is an important comparison to note in that the 

kernel matrix G here is developed from a numerical procedure, see Eq. (5), and not an analytic one. 

In this way all of these procedures here can be used for any inverse problem provided that the 

matrix G is provided. 

The sandbox reproduces an unconfined aquifer governed by two constant head levels (upstream and 

downstream). The porous medium consists of glass beads with diameter in the range between 0.75 

and 1 mm with a mean hydraulic conductivity of 0.652 cm/s and porosity of 0.37. A tracer solution 

(fluorescein sodium salt) with variable mass rate was injected through an injector positioned in the 

upstream part of the sandbox. It is important to notice that the experiments carried out by Citarella 
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et al. (2015) and Cupola et al. (2015) were performed under simple conditions; in fact, the porous 

medium, can represent a non-sorbing coarse sand, and the tracer, may be regarded as conservative 

under neutral or moderately basic pH (Smart and Laidlaw, 1977). All variables, such as upstream 

and downstream levels, injected discharge, temperature, background discharge, start and ending of 

injection, were acquired by means of a data acquisition system. The luminosity at each point of the 

sandbox was recorded by a digital camera and then converted in concentration through an imaging 

technique (for more details see Citarella et al., 2015). The average background flow rate was 

measured as 25 mL/s. The injector was located at the coordinates xinj= 14.25 cm, zinj = 32.75 cm and 

it was as wide as the central chamber. The test had a time length of 2,200 s. The injection started at 

time tstart = 310 s and finished at tend = 1,800 s considering a constant concentration of 20 mg/L and 

a variable injection rate (from 0 to about 3 mL/s); consequently the mass rate varied in a range 

between 0 and approximately 60 μg/s. Through a photographic survey, the tracer concentration was 

estimated at the monitoring points P1 and P2 (see Figure 3 of Cupola et al. (2015)) with coordinates 

xP1= 41.25 cm, zP1 = 30.71 cm and xP2= 60.25 cm, zP2 = 32.18 cm. At such point the concentration 

was estimated every 5 s for the whole duration of the test, but only 32 (see Figure 9) for each 

monitoring point were considered in the inverse procedure. The contaminant release history, in 

terms of mass rate, presented three peaks of different magnitude (Figure 10). As mentioned, this 

case considers an injection of a pollutant in a 2-D aquifer that does not have an analytical solution. 

For this reason the Kernel function was computed by means of a numerical flow and transport 

model (Citarella et al, 2015; Cupola et al, 2015) that was set up from the data collected at the 

experimental device. 
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Figure 9. CASE 3 – The blue and red lines are respectively the observed concentration at the monitoring point P1 and 

P2 and the circles denote the measurement locations. Time 0 s represents the time at which the injection starts (tstart). 

 

Figure 10. CASE 3 – Constrained ABIC with exponential covariance function: the true solution (solid blue line), best 

estimate (dashed thick line), and 5-95% confidence interval (dotted lines). Time 0 s represents the time at which the 

injection starts (tstart). 

The first tests estimated a very good agreement between the computed and observed concentrations 

and consequently a very small 2

d ; this caused the underestimation of the confidence intervals and 
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implied that the actual release history was not included in the confidence interval. An issue could be 

the choice of the covariance function and its parameters. Considering Figure 10, we have an actual 

release history that at early (100 s) and late (1500 s) time, it is constant for a short period. This 

implies long correlation, but in the middle of the two constant periods, the release history goes up in 

time and then back down. In order to study this problem, we used the actual release history with the 

Kernel matrix G to compute the observations (in order to obtain noise free data), then we corrupted 

the data with a measurement error and we estimated the release history. The inverse procedure was 

very efficient (the true release history was fully included in the 95% confidence interval) and able to 

reproduce the two constant release periods. This analysis highlights that there are other errors, than 

just strictly the measurement ones, which we should keep into account. In particular in this case we 

had had errors due to: image acquisition, calibration, numerical approximations and so on (see 

Cupola et al. 2015). 

In a problem of this kind, it is worthwhile to estimate the measurement error with a minimum 

boundary, which is obtained through data analysis. According to Cupola et al. (2015) we choose as 

minimum value mg/L3=
d

 . With this assumption, the true release history (Figure 10) is included 

in the 95% confidence interval and it was well estimated through the procedure except the “steps”, 

after about 100 s and at about 1500 s, which were difficult to reproduce due to the large 

measurement error. 

4. Comparison to other Bayesian approaches 

Another efficient method is the Bayesian extension to the geostatistical approach (GA) proposed by 

Kitanidis (1995) and applied to recovery the release history by Snodgrass and Kitanidis (1997).  

Both the approaches (ABIC and GA) start from Bayes’ theorem (Eq. (12)), are based on the 

assumption that the prior and the posterior probability functions are Gaussian, and can be 

summarized in two main steps: 1) estimation of the hyperparameters; 2) estimation of the unknown 

vector, m. 
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The first step, for both methodologies, is achieved maximizing the probability of the measurements 

called also “predictive distribution” ( )Ip *
d , for ABIC by means of Eq. (18) and for GA through 

Eq. (26), but starting from different prior information and hypotheses on the estimation of the 

unknown vector, m (see for more details Mitsuhata (2004) and Kitanidis (1995)). 

( ) 







− −

−
−− *1*

2/1
12/1*

2

1
exp dΞdGXΣGXΣd

TTTIp       (26) 

Where 
d

T

m CGGCΣ +=  and ( ) 11111 −−−−− −= ΣGXGXΣGXGXΣΣΞ
TTTT . In GA the unknown m is 

viewed as being the sum of a deterministic part and a stochastic part. It is characterized by a prior 

mean E[m] = s = Xβ and a covariance matrix Cm = E[(m- Xβ)(m- Xβ)T], where X is a known 

matrix and β are unknown drift coefficients. Here, embedded into the prior covariance is a vector θ 

which may contain the same hyperparameters as those in ABIC. The main assumption here is in the 

nature of the prior model s, which is a linear function of a set of drift parameters. In GA, essentially 

s is unknown at the prior stage but not in ABIC. 

The maximization of Eq. (26) could be simplified (Kitanidis, 1995) to the minimization of the 

following objective function respects to the hyperparameters: 

*1*1

2

1
ln

2

1
ln

2

1
L dΞdGXΣGXΣ

−− ++=
TTT

       (27) 

This is a non-linear estimation problem and minimization is achieved numerically, through a Gauss-

Newton iterative process, by taking the derivatives of L with respect to the hyperparameters and 

setting them to zero. 

The second step is carried out for ABIC by estimating the first moment of the posterior pdf through 

Eq. (13). For a linear inverse problem this step is entirely linear. The overall-iterative procedure is 

completed when the improvement of the normalized objective function is lower than a tolerance 

value. GA carries out the second step of maximizing the posterior probability 



26 

 

( ) ( ) ( ) ( ) ( )







−−−








−−− −−−−

XβmCXβmGmdCGmdQCdm ** 112/12/1*

2

1
exp

2

1
exp

m

T

d

T

d
p , which 

could be simplified by minimizing the following objective function (see Kitanidis, 1995): 

( ) ( )1T T

d

− = − − +* *
d Gm C d Gm m Hm         (28) 

where ( ) 11111 −−−−− −=
m

T

m

T

mm
CssCssCCH . The unknown vector m is finally estimated through a co-

Kriging system when, in the iterative algorithm, the improvement in the objective function is lower 

than a tolerance value, see Eqs. (14-19) of Kitanidis (1995). 

Analyzing the ABIC objective function we find that the first and the last term of Eq. (19) are 

constant and the second may be small compared to the others. The core of the function to be 

minimized is ( ) ( )GsdCGsd −− − *1*

dp

T
 which depends on the covariance function Cm, observations 

d*, observational error 2

d , forward model G and the mean of the prior pdf s. The objective function 

of the GA depends on two parts: the first ( ) ( )GmdCGmd
** −− −1

d

T  represents the misfit and is 

based on observations d*, observations error 2

d , forward model G and unknown vector m; and the 

second term Hmm
T

 that represents the misfit which in turn is based on the unknown vector m, the 

covariance function Cm and the mean of the unknown (in this case) vector s. 

5. Conclusions 

In this work we have outlined an empirical Bayesian approach to the inverse problem for the release 

history of a groundwater contaminant. This work utilizes Akaike’s Bayesian Information Criterion 

to estimate all hyperparameters within the Bayesian framework. The applied method, initially 

developed for heat flow inversion by Woodbury and Ferguson (2006), is for the first time applied to 

contaminant release history estimation, and it has subsequently been improved as noted below: 

1. To solve for only positive model unknowns by transforming parameters space with a power 

transformation and this has the effect of turning a purely linear inverse to a non-linear one; 
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2. A relaxation factor is introduced in order to keep into account strongly non-linear release 

functions and to ensure convergence. With this improvement, the ABIC objective function 

monotonically decreases from one iteration to the next; 

3. Confidence bands for the inverse model are produced even though results show skewed 

distribution for the posterior pdf; 

4. The simultaneous estimation of the covariance function parameters (the variance and the integral 

scale) and of the measurement error is carried out; 

5. To keep into account flow fields which are not described through analytical solutions. 

We thoroughly tested and verified the algorithm and produced very positive results in all three test 

cases: a classic benchmark, a very difficult three spike example and finally, actual data from a 

controlled experiment. Results show a complete suppression of side lobes, which is an improvement 

over previous results. The method is based on the hypothesis that both the prior and posterior pdfs 

are Gaussian and requires only the assumption of the mean of the unknown function, while the 

parameters of the covariance function and the error on measurements are estimated during the 

iterative process. As shown by the test cases the method is robust and efficient, and managed to deal 

with very complex cases. One important advantage of the proposed procedure is the small number 

of the hyperparameters that have to be estimated: the covariance function parameters and, if needed 

the measurement error. Moreover the mean of the unknowns is independent from the prior mean. At 

the same time the procedure is very robust, converges to a minimum (Mitsuhata, 2004) and it is 

relatively simple to implement. Finally a general approach to estimates the initial values of the 

hyperparameters is provided. 

As was demonstrated in CASE 3, the ABIC method is applicable to field cases by using a flow and 

transport numerical model of the test site. In fact, the kernel matrix G can be computed from a 

numerical procedure starting from laboratory/field dataset, and of course, could include more 

general conditions such as heterogeneity. Moreover, following the work of Butera et al. (2013), the 

procedure can be used also to simultaneously identify the source location and its release history. 
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Finally we show the linkage between ABIC and the geostatistical approach, first pioneered by 

Kitanidis (1995), and how the methods differ in philosophy. 
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