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Abstract 

Comprehensive information about the spatial distribution of the subsurface hydraulic properties is cru-

cial to model groundwater flow, to predict solute transport in aquifers and to design remediation actions. In 

this work, a Bayesian Geostatistical approach, as implemented in bgaPEST, was adopted to estimate the 

hydraulic properties of a well field located at the Campus of Science and Technology of the University of 

Parma (Northern Italy), in a contest of a highly parameterized inversion. Head data, collected by means of 

multi frequency oscillatory pumping tests, were used to both estimate the hydraulic parameters and validate 

the results. The groundwater flow processes were modelled by means of MODFLOW 2005 and an adjoint-

state formulation of the same software was used to efficiently calculate the sensitivity matrix, required by 

the inverse procedure. The Bayesian Geostatistical approach estimated the hydraulic conductivity and spe-

cific storage fields, handling a large number of parameters. The results of the inversion are consistent with 

the alluvial nature of the investigated aquifer and the preliminary traditional pumping tests carried out at 

the site. 
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1 Introduction 

The knowledge of spatial distribution of the hydraulic parameters, such as hydraulic conductivity and 

specific storage, is of main importance in groundwater modeling (Zhou et al. 2014). In particular, it allows 

to accurately forecast the fate of solutes in aquifers (Alberti et al. 2011), to estimate the source location and 

its release in time and to design remediation actions (Snodgrass and Kitanidis 1997; Cupola et al. 2015; 

Zanini and Woodbury 2016). In the last decades, different methods have been proposed and adopted to 

collect data useful for aquifer characterization and an extensive review is available in Cardiff et al. (2012). 

Pumping tests, and measurement of the associated changing in head, are still largely used to obtain such 

information. In addition to traditional pumping tests, with constant flow rate, sequential aquifer tests (hy-

draulic tomography) have been used in the last 20 years. A comprehensive literature review about hydraulic 

tomography, that analyzes advantages and drawbacks, is proposed by Cardiff and Barrash (2011). Accord-

ing to the Authors, most of the studies consider pumping with constant flow rate. On the other hand, re-

cently, Cardiff et al. (2013) used oscillatory pumping tests for aquifer heterogeneity characterization; the 

data were collected using a periodic signal, in which water is extracted during half a period and then 

reinjected in the other half. The Authors propose to use several pumping frequencies in order to provide 

information about aquifer heterogeneity. Recently Zhou et al. (2016) have tested this approach in a labora-

tory controlled environment. The Authors stimulated the "laboratory aquifer" through injection and extrac-

tion of water with a sinusoidal wave. Only few applications on real case study are available in the literature 

(Rabinovich et al. 2015). 

Once the data are collected, solving an inverse problem is a widely used method to characterize the 

aquifer hydraulic parameters (e.g. hydraulic conductivity, specific storage, etc.). In the literature, many 

approaches, both deterministic and stochastic, have been adopted to this aim and several review papers are 

available on the inverse problems. The works of Yeh (1986), McLaughlin and Townley (1996), Zimmer-

man et al. (1998), Carrera et al. (2005), Hendricks Franssen et al. (2009), Zhou et al. (2012, 2014) and 

Zanini et al. (2017) provide a complete, even if not exhaustive, overview of the available inverse procedures 

(Kitanidis 1997; Tarantola 2005). 

In this work, the hydraulic parameters (hydraulic conductivity and specific storage) of a well field lo-

cated at the University of Parma (Northern Italy) were estimated. At this aim, the Bayesian Geostatistical 

approach, developed by Kitanidis (1995), as implemented in bgaPEST (Fienen et al. 2013) was adopted. 
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Bayesian approaches using geostatistical simulations have been presented by several authors, such as Han-

sen et al. (2006), Rimstad et al. (2012), Grana et al. (2017) and Soares et al. (2017). Head data collected by 

means of multi frequency oscillatory pumping tests (Cardiff et al. 2013) were used in the inversion process. 

The oscillatory pumping tests were performed using only commercial equipment; this is a novelty with 

respect to previous studies. Two series of data were collected: the first (which has a period of 10 minutes) 

was used for estimation, while the second (with a period of 5 minutes) for validation. 

The remainder of this paper is organized as follows. After a description of the inverse methodology in 

Sect. 2, information about the test site, the pumping tests, the numerical model and the observations and 

parameters is reported in Sect. 3, results are presented in Sect. 4 and finally conclusions are drawn in Sect. 

5. 

2 Methods 

In this work, a Bayesian approach to the inverse problem combining prior information on the unknown 

parameters (aquifer hydraulic parameters) with available field data (observed head data) has been used. 

Different Bayesian methods are available in literature to solve inverse problems, such as the ensemble 

Kalman filter (EnKF, Evensen 2009; Xu et al. 2016) and its smoother variants (Chen and Oliver 2012; 

Emerick and Reynolds 2013; Li et al. 2015), the method of anchored distributions (MAD, Rubin et al. 

2010), the maximum a posteriori method (MAP, McLaughlin and Townley 1996) and the Bayesian Geo-

statistical approach (Kitanidis and Vomvoris 1983), among others. 

In the Bayesian Geostatistical (BG) approach (Kitanidis 1995), the term Bayesian refers to the inverse 

theory aspect, whereas Geostatistical deals with the way in which prior information about the unknown 

parameters is used (Fienen et al. 2013). In particular, the BG approach makes use of autocorrelated spatial 

or temporal functions (the correlation is specified by means of a prior covariance matrix or a generalized 

covariance function, see Kitanidis (1993)) to provide prior information about the parameters. Usually, the 

covariance model is a function of the separation distance (in space or time) between the parameters and 

describes their deviations from the mean behavior (Michalak et al. 2004). 

Hence, BG is a flexible highly parameterized inversion method suitable when the unknown parameters 

are distributed in space or time and are correlated with one another; highly parameterized models are char-

acterized by having more parameters than can be estimated uniquely on the basis of a given observation 

dataset, making the inverse problem ill-posed (Doherty and Hunt 2010). The inverse method was developed 

in the context of estimating spatial parameter fields (Kitanidis and Vomvoris 1983; Hoeksema and Kitanidis 
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1984; Fienen et al. 2009, among others) but has also been successfully used to evaluate auto-correlated time 

functions in different fields (e.g. Snodgrass and Kitanidis 1997; Michalak et al. 2004; Butera et al. 2013; 

D’Oria et al. 2014; D’Oria et al. 2015; Leonhardt et al. 2014). In the following, a brief description of the 

inverse procedure is introduced; detailed information is available in Kitanidis (1995) and Nowak and Cirpka 

(2004), for example. 

The estimation problem is usually expressed considering the measurement equation � � rshy �  that 

relates the vector of the available data y [ 1um ], with s [ 1un ], the state vector (unknown parameters in 

the inverse problem); � �sh represents the modeled values at the same locations and times of the observed 

data y (using the forward model) and r [ 1um ] is the epistemic error vector. According to the Bayes’ 

theorem, the posterior probability density function (pdf) of the parameters, for given data, � �ysp  may be 

written as 

� � � � � �sysys Lpp v ,         (1) 

where � �sp  is the prior pdf of s and � �syL  is the likelihood function, v indicates proportionality. In the 

BG approach, the unknown parameters are a-priori assumed normally distributed and characterized by their 

mean > @ Xβs  E  and covariance � �� �> @ ssQXβsXβs  �� TE , where E means the expected value, X  

[ pnu ] is a known matrix of basis functions, β  [ 1up ] is a vector of drift coefficients and ssQ  [ nnu ] 

indicates the prior covariance matrix. Multiple values of β can be used to both introduce a partitioning of 

the estimated area by imposing discontinuities in the stochastic field and allow the estimation of different 

parameter types (for example, hydraulic conductivity and specific storage). In this way different parameter 

types and/or different regions of the field (homogeneous or not) correspond to distinct mean values. The 

matrix of basis function, X , maps each unknown parameter with the appropriate mean value and if neces-

sary can be used to express a trend in the estimated fields. The prior covariance matrix is therefore censored 

by assigning zero values where elements of different regions or parameter types are considered. Consider-

ing that no information is available on the spatial variability of the hydraulic parameters and the alluvial 

nature of the investigated aquifer, the exponential covariance function (Eq. (2)) has been selected as the 

best compromise to characterize the hydraulic parameters of the well field. 

� � ¸
¸
¹

·
¨
¨
©

§
� 

l
l

d
dQss exp,, 22 VV ,        (2) 
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where 2V is the variance, l  is the integral scale (range parameter) and d  is the vector that contains the 

separation distances between nodes. The exponential model enforces continuity to the solution and pro-

vides a sill in the overall variance; it does not introduce smoothness constraints, allowing short range vari-

ability (Michalak et al. 2004). 

The likelihood function is also assumed normally distributed and characterizes the errors, which are 

modeled as a random process with zero mean and covariance matrix R . In case the epistemic errors are 

independent and identically distributed, the covariance matrix assumes the form IR 2
RV , where 2

RV  is 

the variance and I  [ mmu ] is the identity matrix. 

With the assumptions made, the posterior pdf assumes the form 

� � � � � � � �� � � �� �
������ 
������ 	������� 
������ 	�

   termLikelihood

1T

rmPrior   te

1T2

2
1exp

2
1exp,, ¸

¹
·

¨
©
§ ���¸

¹
·

¨
©
§ ���v �� shyRshyXβsQXβsθys ssRp V ,  (3) 

where θ  is the vector of the structural parameters (parameters of the prior covariance models, 2V and l  in 

this case). The solution of the inverse problem requires to obtain the β  and s  vectors; in addition, also the 

parameters of ssQ and R  (θ  and 2
RV ) can be estimated (Michalak et al. 2004); this is accomplished in two 

distinct steps. 

In the first step, the posterior best estimate of s  ( ŝ ) and β  ( β̂ ) is obtained maximizing, for given 

structural parameters and epistemic error variance, the Eq. (3) and represents the most likely values obtain-

able conditional on the data. In case the relation between the parameters and the observations is linear ( Hs  

replaces � �sh ), the solution can be found solving the system of Eqs. (4) and (5) in the form of the so-called 

cokriging equations (Kitanidis and Lee 2014) 

ξHQβXs ss
Tˆˆ � ,         (4) 

»
¼

º
«
¬

ª
 »

¼

º
«
¬

ª
»
¼

º
«
¬

ª �
0
y

β
ξ

0HX
HXRHHQ ss

ˆTT

T
.       (5) 

When the forward problem is nonlinear or nonlinearities are introduced working in a transformed esti-

mation space (in this work a logarithm transformation was adopted) the relation between the parameters 

and the observations, � �sh , can be successively linearized following the quasi-linear extension of the BG 
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approach (Kitanidis 1995). Indicating with ks  the current estimated parameter vector, � �sh  is approxi-

mated with � � � �kk ssHsh ��
~  and the measurements are corrected as � � kkk sHshyy ~

�� . The matrix H~  

represents the sensitivity of each observation with respect to each unknown parameters (Jacobian matrix) 

and is evaluated at each iteration in the linearization process. The quasi-linear extension of the BG approach 

presumes that the nonlinearities are not too extreme so that the linear approximation is effectively applica-

ble in the proximity of the best estimate and the posterior is then almost Gaussian (Kitanidis and Lee 2014). 

In some cases, especially in strongly nonlinear optimization tasks, overshooting and numerical instabilities 

can make the algorithm convergence difficult (Nowak and Cirpka 2014). In this work, as suggested by 

Zanini and Kitanidis (2009) an optimization procedure, “line search”, was used to drive the solution and 

address its oscillations. 

The right selection of the structural parameters is important to obtain a proper estimation of the spatial 

fields; this represents the second step in the estimation process. In the perspective of the “empirical Bayes”, 

the structural parameters θ  (and, optionally, the epistemic error variance), which regulate the level of fit 

between modeled data and observations, are inferred from the data. In this work, a Bayesian adaptation 

(Fienen et al. 2013) of the Restricted Maximum Likelihood method of Kitanidis (1995) was used. The 

nonlinearity of the estimation problem requires to evaluate structural parameters and unknown parameters 

( s ) iteratively (Fienen et al. 2009). 

Once the optimal solution has been achieved, the linearized uncertainty of the unknowns (i.e. the uncer-

tainty provided after the linearization process of the nonlinear forward problem) can be evaluated in terms 

of the posterior covariance matrix of the parameter estimates (Nowak and Cirpka 2004). The posterior 

uncertainty (in the nonlinear case) is only approximated (Cardiff and Barrash 2011) but it has an acceptable 

accuracy when compared with more computational expensive methods such as the Markov chain Monte 

Carlo approach (Liu et al. 2012). 

The free software package bgaPEST (Fienen et al. 2013), developed according to the PEST software 

concept (Doherty 2010), which implements the Bayesian geostatistical inversion above described has been 

adopted in this work. The inverse code is independent from, and can be linked to, the majority of forward 

models. 

3 Application 

3.1 Description of the test site 
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The well field is situated inside the Campus of Science and Technology of the University of Parma (see 

Fig. 1); it is located in an alluvial deposit between the Parma and Baganza rivers (with a mean elevation of 

82 m asl). Starting from literature works (Regione Emilia-Romagna 1998), the geology of the area has been 

refined according to a stratigraphic survey up to the depth of 30 m. The first 5 m (from the ground surface) 

are mainly constituted by a clay layer; from 5 m to 22 m there is a succession of gravel and clay that 

constitutes the shallow aquifer; from 22 m to 23 m there is a clay layer (aquitard) which separates the two 

aquifers; from 23 m to 27 m there are deposits of gravel which constitute the investigated aquifer (in the 

following named target aquifer); and from 27 m to 30 m there is a clay layer which is an impervious bound-

ary. According to the regional geology (Regione Emilia-Romagna 1998), the two aquifers, several hundred 

meters upstream (South-West direction), are connected due to the thinning of the aquitard (see Fig. 2 for a 

sketch). For this reason, during the recharge period (autumn/winter) the two aquifers present the same hy-

draulic head levels, while during the summer (irrigation period) the shallow aquifer has higher drawdowns 

with respect to the target one. Close to the investigated site, there is a small river (Cinghio River) that flows 

from South West to North East (see Fig. 1); from the 1980s the river is regulated in order to secure, from 

flooding, the South part of the city of Parma. Its riverbed is fully contained in the shallow clay layer; so it 

does not present any interaction with the underneath aquifers. 

Here Figure 1 

Here Figure 2 

The test site was completed in 2014 and consists of 8 wells: 4 are screened at the top of the shallow 

aquifer, between 8 m and 11 m below the ground surface (named with S in Fig. 2), and 4 are screened in 

the target aquifer, between 23 m and 27 m below the ground surface (named with P in Fig. 2). The wells 

have a diameter of 10 cm and they are surrounded by a filter pack of uniform gravel. Figure 3 shows the 

location of the wells and their mutual distances. 

The well field has been equipped with several instruments, which allow performing traditional and ad-

vanced pumping tests: a submersible pump, five pressure and temperature probes with integrated data log-

ging, a magnetic flow meter, a manual water level meter, a volumetric pump and a tank. Four pressure 

probes are installed in all the P wells to collect the data during the pumping tests in the investigated aquifer; 

the other probe (installed in one of the S wells) quantifies the influence of the withdrawal on the shallow 

aquifer. Several preliminary tests were carried out pumping from different locations in order to understand 

the response of each well. During these tests, it was noticed a clogging of the well P2; for this reason, it 
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was not used in the further investigations. 

The data collected by the Regional Agency for Environmental Protection (ARPA Emilia Romagna), 

available online at http://webbook.arpae.it/acque/acque-sotterranee/index.html (November 2016), were 

used to create water level contour maps (e.g. the blue lines in Fig. 3) to estimate the flow direction and the 

mean hydraulic gradient. 

Here Figure 3 

3.2 Pumping tests 

3.2.1 Constant rate pumping tests 

Several traditional pumping tests (Theis 1935), with different constant flow rates and different pumping 

locations, were carried out in order to evaluate the aquifer response to a stress. The results of these tests 

showed that the water level inside the monitoring wells decreases rapidly and then it stabilizes to a steady 

value according to the behavior of a leaky aquifer. Consequently, these traditional tests were evaluated 

through the Hantush (1956) method. The estimated average hydraulic conductivity was 5∙10-5 m/s and the 

storativity 1.5∙10-4; in addition, following the approach proposed by Veling and Maas (2010), the hydraulic 

conductivity of the aquitard was estimated in 4∙10-7 m/s. The shallow aquifer was not affected by the pump-

ing from the target aquifer. 

3.2.2 Oscillatory pumping tests 

A second set of pumping tests have been performed following the approach proposed by Cardiff et al. 

(2013). The method (named oscillatory hydraulic tomography, OHT) is an improvement of the hydraulic 

tomography (Yeh and Liu 2000; Fienen et al. 2008; Cardiff et al. 2011, 2012) and consists in characterizing 

the aquifer heterogeneities injecting and extracting water, according to a known periodic function, from a 

well and observing the response, in terms of frequency and amplitude, in the available monitoring wells. 

As noted by Cardiff et al. (2013), that used sinusoidal signals, this approach has several advantages relative 

to traditional characterization tests: 1. the water balance between injection and extraction is zero; 2. in case 

of polluted sites, there is not the necessity to treat significant quantities of contaminated water and plumes 

have less movement; 3. the use of signals with known frequencies allows to distinguish the responses at 

monitoring locations from the other hydrological processes or noises. 

Rabinovich et al. (2015) showed that using a sinusoidal wave in a real aquifer is difficult using commer-

cial equipment. For this reason, in the present work, the injection/extraction process was simplified using 

a square wave with a constant flow rate. This assumption has allowed to greatly simplify the field equipment 
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in: two pumps (one submersible and one centrifugal) and a tank (see Fig. 4). The equipment was completed 

by a flow meter, some regulation valves, the pressure sensors and a level probe to record the water level 

inside the tank. 

Here Figure 4 

When the test starts, the tank is full of water; the centrifugal pump injects this water into the aquifer, 

with a constant flow rate, for a fixed time interval (half period). After this period, the injection ceases and 

the submersible pump extracts water from the aquifer at the same flow rate of the injection and for the same 

time interval; the extracted water is temporarily stored in the tank. This sequence of injection/extraction is 

repeated several times. Figure 5 shows the data collected at two monitoring wells (P1 and P3) using two 

different square waves (half period equal to 5 min and 10 min) with the same extracting/injecting flow rate 

of 0.24 l/s (from well P4). All the data are accessible by contacting the corresponding author. 

Here Figure 5 

3.3 Numerical flow model 

The groundwater flow processes of the test site were modelled numerically using MODFLOW 2005 

(Harbaugh et al. 2005). The main objective of the model was the estimation of the hydraulic parameters 

(hydraulic conductivity and specific storage) at the well field. For this reason, the site was discretized with 

a small finite difference grid (0.2×0.2 m2) in the area between the wells (black square in the inset of Fig. 

3); the grid size increases up to 16 m × 18 m at the borders, with a ratio of 1.2 between adjacent cells. The 

model represents with three layers: the shallow aquifer, the aquitard and the target aquifer. Each layer has 

a total of 105×93 cells, covering an area of 530×350 m2. The top of the surface layer was modeled according 

to a regional topographic survey while the top and bottom of the other two layers follows the local stratig-

raphy. Constant head boundary conditions (according to the regional hydraulic head contours) were im-

posed at South-West and North-East boundaries. No flow boundary conditions were assigned at the other 

borders. As showed in Fig. 3, the model domain extends far from the well field to avoid influence of the 

boundary conditions on the solutions. 

The final pumping test configuration consisted in pumping from well P4 and observing the drawdowns 

in P1 and P3. In MODFLOW 2005, the pumping well P4 (placed in the third layer) was simulated using 

the well package, while the wells P1 and P3 were considered observation points. 

An adjoint-state formulation of MODFLOW 2005 (Clemo 2007) was used to efficiently calculate the 
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Jacobian matrix required by the inverse procedure. By means of the adjoint-state approach rather than cal-

culating the sensitivity matrix using a minimum of one forward run per parameter (plus one base run), the 

number of forward runs is associated to the number of observations. The suggestions of D’Oria and Fienen 

(2012) were also taken into account to speed up the computation. 

3.4 Observations and parameters 

Besides boundary conditions, the numerical model needs the definition of the hydraulic parameters of 

the three layers used to represent the study area stratigraphy. In particular, the hydraulic conductivity must 

be specified for each layer, the specific yield for the shallow unconfined aquifer and the specific storage 

for the aquitard and the target aquifer. To estimate these unknown parameters, the head data collected dur-

ing the oscillatory pumping test with square wave and half period equal to 10 min were considered. Two 

observation points (P1 and P3), two stimulation periods and one observation per minute were used. In 

summary, a total of 40 heads for each observation points represent the observed data. The observations are 

expressed in terms of water level differences with respect to the initial values (drawdowns or positive in-

crements). 

By means of PEST (Doherty 2010), a preliminary estimation of the unknown parameters was performed 

using homogeneous layers with the aim at finding initial values for the parameters. Then, in applying the 

Bayesian Geostatistical approach, only the focused area around the wells (inset of Fig. 3) and inside the 

target aquifer was considered as highly parameterized allowing at each cell to have a different parameter 

value; the outer zone and the other two layers were kept lumped. As a result, 1225 hydraulic conductivity 

values (35x35 cells) and 1225 specific storage values (35x35 cells) were estimated for the focused area 

together with the values of three homogenous zones: the hydraulic conductivity and specific storage of the 

outer zone of the target aquifer and the hydraulic conductivity of the aquitard; in total the number of un-

known parameters was 2453. The other parameters were kept constant and equal to the values estimated 

through the preliminary calibration. 

4 Results 

Using only the data collected by the oscillatory pumping test with square wave and half period equal to 

10 min, the best estimates, ŝ , of both the hydraulic conductivity and specific storage fields of the focused 

area were evaluated (Fig. 6); mean values of all the estimated parameters are reported in Table 1. With 

reference to Fig. 6, the hydraulic conductivity slightly increases from West to East and the mean value of 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



11 

 

Table 1 is consistent with the alluvial nature of the aquifer and the value estimated by means of the tradi-

tional aquifer tests reported at Sect. 3.2.1. In natural logarithm scale the hydraulic conductivity field pre-

sents a mean equal to -10.07 and a variance equal to 0.31 (i.e. -4.37 and 0.06 in log10 scale, respectively). 

The specific storage field is generally homogeneous with variations smaller than half an order of magnitude; 

also in this case the mean value reported in Table 1 agrees with the one derived from traditional tests. The 

estimated specific storage field presents a mean of -9.63 and variance equal to 0.005 in natural logarithm 

scale (i.e. -4.18 and 41095.9 ��  in log10 scale, respectively). Both the variances of the estimated hydraulic 

conductivity and specific storage fields are small and are indicative of an almost homogeneous area. 

Here Figure 6 

Here Table 1 

Figure 7 reports the comparison between the observed and modeled values at the monitoring wells P1 

and P3; Fig. 8 shows the observed values versus the modeled ones together with some performance metrics: 

mean error, root mean square error and the normalized one and the coefficient of determination based on 

the 1:1 line. Overall, there is a good agreement between observations and model outputs. 

Here Figure 7 

Here Figure 8. 

The starting values of structural parameters, for both the hydraulic conductivity and the specific storage 

fields, were set such that the first solution was flat. Complexity is introduced during the optimization pro-

cess only if supported by the data (D’Oria and Tanda 2012). After three iterations of the structural param-

eters estimation step, they almost became stable. Table 2 reports the initial values and the ones estimated 

at the end of the procedure (five iterations). 

The linearized uncertainties of the estimates have been evaluated on the basis of the posterior covariance 

matrix. Figure 9 shows the logarithm of the posterior standard deviation respectively for the hydraulic con-

ductivity and the specific storage fields. With reference to the hydraulic conductivity field, it is clear that 

the area with the smallest variance is between the pumping wells and the observation points. This is due to 

the higher amount of information provided during the stimulation of the aquifer through the oscillatory 

pumping tests. Meanwhile, considering the specific storage field, the posterior standard deviation is almost 

constant and relatively small. 

Here Figure 9 

Once estimated the hydraulic parameters, the results were validated by means of the head data collected 
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during the oscillatory pumping test with a square wave and half period equal to 5 min. Four periods and a 

total of 80 heads for each of the two observation points (P1 and P3) were considered. Fig. 10 shows the 

comparison between observations and model outputs; in this case the mean error is -3.8 mm, the RMSE 

19.9 mm, the nRMSE 3.8% and the coefficient of determination is 0.9896. These values, even if are larger 

than the one obtained in the calibration procedure, highlight the goodness of the parameter estimation. 

Here Figure 10 

5 Discussion and Conclusions 

The objective of the present work was the estimation of the hydraulic parameters of a leaky confined 

aquifer by means of a Bayesian Geostatistical approach using the bgaPEST inverse code (Fienen et al. 

2013). The BG approach estimated the hydraulic conductivity and the specific storage fields with a large 

number of parameters using the observations taken at two monitoring wells at several times. In order to 

collect the field data, the aquifer has been stimulated through oscillatory pumping tests using commercial 

equipment. The results of the inversion are consistent with the alluvial nature of the investigated aquifer 

and with the preliminary traditional pumping test carried out at the site. 

Despite the high number of estimable parameters, the hydraulic conductivity and specific storage fields 

obtained by means of the Bayesian Geostatistical inversion are smooth. In fact, it noteworthy that, in the 

contest of a highly parameterized inversion, the excess of flexibility can introduce the possibility of over-

fitting (Hill 2006). The use of prior information can control this issue that can be also mitigated by smooth-

ness constraints. The BG approach and the Bayesian adaptation of restricted maximum likelihood, estimat-

ing the structural parameters of the covariance matrix and/or the epistemic error variance, provides a best 

estimate which represents the smoothest solution consistent with the available observations (Fienen et al. 

2013). Since complexity is introduced only if supported by the data, the solution is probably smoother than 

reality (Fienen et al. 2009); however conditional realizations, that are samples from the posterior distribu-

tion (Kitanidis and Lee 2014; Kitanidis 1995; Zanini and Kitanidis 2009), can be obtained in addition to 

the best estimate. These equally likely realizations follow the spatial structure imposed by the covariance 

matrix and reproduce the observations within the level of fit imposed or estimated through the epistemic 

uncertainty. Conditional realizations can characterize the small scale variability of the solution and their 

mean, if the number of generations is large enough, would reproduce the best estimate ( ŝ  in Eq. (4), Micha-

lak et al. 2004). 
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Figure Captions 

Fig. 1 Study area and location of the well field 

 

Fig. 2 Sketch of the well field conceptual model; not to scale 

 

Fig. 3 Map of the area surrounding the well field with the finite difference grid of the numerical flow model; 

the blue lines are the regional hydraulic head contours; the values are in m asl 

 

Fig. 4 Sketch of the oscillatory pumping test and scheme of the field equipment, not to scale 

 

Fig. 5 Observed hydraulic heads at the monitoring points P1 and P3 

 

Fig. 6 Estimated hydraulic conductivity and specific storage fields in natural logarithm scale 

 

Fig. 7 Modeled and observed drawdown at P1 and P3, half period of 10 minutes. 

 

Fig. 8 Modeled versus observed drawdown and performance metrics: ME mean error, RMSE root mean 

square error and normalized one (nRMSE), R2 coefficient of determination based on the 1:1 line 

 

Fig. 9 Standard deviation of the estimated fields in natural logarithm scale 

 

Fig. 10 Modeled and observed drawdown at P1 and P3, half period of 5 minutes 

 
Table Captions 

Table 1 Mean values of the estimated hydraulic parameters: HK hydraulic conductivity, SS specific storage 

and SY specific yield 

 

Table 2 Initial and estimated structural parameters for the hydraulic conductivity and the specific storage 

fields; 2V  is the variance and l is the correlation length 
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Table 1 

 Shallow aquifer 
(Layer 1) 

Aquitard 
(Layer 2) 

Target aquifer 
focused area (Layer 3) 

Target aquifer 
outer zone (Layer 3) 

HK (m/s) 1.53∙10-5 2.71∙10-7 4.93∙10-5 2.18∙10-4 
SS (1/m) - 1.10∙10-5 6.56∙10-5 6.18∙10-7 

SY (-) 0.25 - - - 
 

 

Table 2 

 Hydraulic conductivity Specific storage 
 2V  l [m] 2V  l [m] 

Initial 0.0001 5.00 0.0001 5.00 
Estimated 0.0507 1.41 0.0134 10.88 
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