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RSSI-Based Indoor Localization and Identification
for ZigBee Wireless Sensor Networks

in Smart Homes
Valentina Bianchi , Paolo Ciampolini, and Ilaria De Munari

Abstract— Location-based services have increased in popu-
larity in recent years and can be fruitfully exploited in the
field of smart homes, opening the doors to a wide range of
personalized services. In this context, radio technology can be
widely employed since, other than connecting devices in the
home system, it offers solutions for the user localization issue
without the need of any extra device. Techniques based on
received signal strength indicator (RSSI) are often used, relying
on fingerprinting or proximity algorithms. In this paper, a novel
RSSI-based fingerprinting approach for room-level localization is
presented: it is a threshold algorithm based on receiver operating
characteristic analysis. Moreover, the actual user location is
estimated from his/her interaction with the home system devices
deployed in the house: if the home environment is inhabited
by more than one person, it becomes of utmost importance the
identification of who is actually interacting with a given device.
A proximity method is exploited for this purpose. Tests have been
carried out to characterize the approach, particularly, the effects
of RSSI samples, number and position, of the anchor nodes
have been analyzed. Finally, some considerations about power
consumption of the mobile node have been presented.

Index Terms— Ambient-assisted living (AAL), home automa-
tion system, identification, localization, received signal strength
indicator (RSSI), smart homes, wearable device, wireless sensors
network, ZigBee.

I. INTRODUCTION

SMART homes have been traditionally conceived for
automation and convenience; in recent years, home sys-

tems have been enhanced with more intelligent features to
add benefits in a large number of other fields. Among
these, the ambient-assisted living (AAL) context has particular
importance [1]. One of the aims of AAL technologies [2], [3]
is to create better conditions of life for older adults encour-
aging independence and self-confidence. Research interests
focus on monitoring the environment and registering the
user’s actions to detect dangerous situations for the occu-
pants or more generally to infer patterns and make predictions.
The system can perform some actions automatically, freeing
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the users from manual control, and at the same time, it can
implement behavioral analysis (BA) to detect anomalies in
the habits requiring particular attention, improving the users’
sense of safety [4]. These services can be enhanced by the
information about the user location. As an example, for secu-
rity and safety purposes, it is of crucial importance to detect
whether the person is near a hazardous area (e.g., leaving the
apartment, being alone in the bathroom, and so on) or in the
case of a dangerous event such as a fall, knowing in which
area it happened [5]. In this context, a coarse estimation of the
user position (e.g., room level) is often sufficient; moreover,
it is worth considering that an accurate localization can be
automatically carried out by detecting the interaction of the
user with the devices that are part of the automation system
and are deployed in the house, having a known and fixed
position. In this regard, especially for BA purposes, in an
environment populated by more than one end user, some
strategies must be implemented to identify the actual user who
interacted with a given sensor. In this sense, we can refer to
the user identification as an indirect localization method.

The services described earlier are location-based services
(LBSs): according to their definition [6], they are “services
that use the location of the target for adding value to the
service,” e.g., “automatically activating the service when a
target enters or leaves a predefined location.”

The LBSs have increased in popularity over recent years and
more consumer goods such as mobile phones and wearable
devices include a feature for locating the user [7], [8]. Out-
door, satellite navigation systems (e.g., GPS [9], Galileo [10],
GLONASS [11], and BeiDou [12]) can provide a high-
accurate positioning, but satellite signals are not available
indoor resulting in a very poor location. Therefore, some other
systems must be investigated to provide user location inside
a building. Currently, the commonly adopted indoor local-
ization techniques include Wi-Fi [13]–[15], Bluetooth [16],
ZigBee [17]–[19], ultrawideband [20]–[22], radio-frequency
identification (RFID) devices [23], and visual sensors [24].
The latter two technologies are often adopted also for user
identification [25], but vision involves well-known robustness
and scalability challenges while RFID devices suffer from
limitations in the reading range, thus relying on user awareness
and cooperation. In addition, dedicated hardware is needed for
both visual sensors and RFID management, which results in
higher implementation costs. This makes these techniques not
fully suitable for general applications, and solutions based on
more diffused technologies are to be preferred [26].
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In this paper, we describe a ZigBee-based solution for
both coarse/room-level localization and user identification.
The advantage of the ZigBee solution is that no other hard-
ware or specific configuration is needed with respect to that
already deployed for the other features of the home automation
system.

We propose a novel algorithm, fusing fingerprinting and
proximity techniques: performance of this solution will be
discussed and related to practical implementation on real
environments.

This paper is organized as follows. In Section II, the state of
the art in the field of indoor localization is presented, and the
proposed method is introduced. In Section III, the hardware
devices used to test the proposed method are described.
In Section IV, the proposed method is further detailed, and the
system performance is evaluated. In Section V, the conclusions
are drawn.

II. RELATED WORKS

Indoor localization techniques often use fingerprinting
(scene analysis) or proximity algorithms [27], [28]. Finger-
printing algorithms [29], [30] consist of two phases: in the
first one (training phase), some features (fingerprints) of the
environment are collected, and in a second phase (run phase),
they are matched with the online measurements to extrapolate
the mobile object position. The most basic proximity algo-
rithms rely on detecting human physical contact [27]. Other
examples of proximity algorithms are usually used for room-
level localization and rely on a set of antenna having a known
position (the so-called anchor nodes). When a mobile target is
in the range of one antenna, it is considered to be in the same
area, while when more than one antenna is involved, the one
receiving the highest signal level is selected [28].

The ZigBee solutions are often based on received signal
strength indicator (RSSI) approaches [31]–[35]: an RSSI can
be obtained for each ZigBee message and can be correlated
with the distance between the two transceivers involved in the
communication. The distance di, j between a given transceiver
couple (i, j ) can be related to an RSSI by the simple relation-
ship [36]

RSSIi, j = −mlog
(
di, j

) + C (1)

where m is a constant involving signal propagation features,
related to the actual signal path and C is a fixed constant.

RSSI can be used as a metric in both fingerprinting and
proximity algorithms. The latter are usually simpler to imple-
ment, but in a real environment, due to scattering phenomena
into the propagation signal path [37], it is not straightforward
that the difference between two RSSIs from two devices in
different locations is easily predictable, so a fingerprinting is
often actually necessary.

In this paper, we propose a localization algorithm exploiting
both fingerprinting and proximity techniques. A coarse, room
level, user localization is carried out using a threshold-based
fingerprinting matching algorithm exploiting a novel receiver
operating characteristic (ROC) analysis method. ROC curves
are usually used to evaluate the classification system per-
formance. In this paper, we use them not only to evaluate

the system performance in response to some parameters
change (i.e., anchor nodes position or the number of RSSI
measurements) but also, as a method, used in the training
phase, to compute a threshold (peculiar to each environment)
exploited into the online phase to discriminate in which room
the user is. Moreover, precise user’s position can be assessed
considering his/her interaction with a given sensor, deployed
into the home environment. In this case, considering that more
than one user can actually live in the home, an identification
feature is needed: to identify the user, we exploit an RSSI
proximity-based algorithm.

In [38]–[43], similar experiments are reported, exploit-
ing fingerprinting techniques with different metrics. In [38],
a room-level RSSI-based approach has been presented and
an accuracy of 93% is achieved. No details on the number
of RSSI samples and mobile node power consumption are
reported. In [39], a room-level threshold-based algorithm is
presented. The thresholds are computed taking into account the
size of the rooms and some RSSI measurements. No details
on the number of RSSI measures used to calibrate the propa-
gation model in the training phase are given. They obtain an
averaged accuracy of 90.1% and 94.4% into a home and office
environment, respectively. They use 10 RSSI measurements:
no analysis is carried out on the influence of the number
of RSSI measures on the accuracy obtained or the power
consumption of the mobile node. In [40], an algorithm based
on the heuristic passing through a boundary point between two
rooms (e.g., an entrance door) is reported. Although a good
accuracy of 97.1% is achieved, a standard method to repro-
duce the training set in other environments is not discussed:
200 RSSI measures for each room plus 100 measures for each
doorway have been collected, but an analysis of the influence
of these numbers on the gained accuracy and some details
about the positions in which measurements are collected
is not presented. Moreover, the number of RSSI samples
needed in the training phase is quite high: this increases
the installation burden, limiting the general adoption of the
system. In [41] and [42], occupancy detection approaches,
exploiting i-Beacon technology, have been proposed. Data
are elaborated through support vector machine classification
models. Corna et al. [41] achieve an accuracy of 94%;
Barsocchi et al. [42] exploit a multipower approach: the
RSSI values have been collected considering three different
time windows (1, 2.5, and 5 s) and accuracies of 92.5%,
96.4%, and 98.1% have been, respectively, obtained. In [43],
an occupancy detection strategy, exploiting a completely dif-
ferent technology, has been proposed. The authors analyzed
data from some environmental sensors (light, temperature,
humidity, and CO2): the best result, 98% of accuracy, has
been reached elaborating data from the light sensor, applying
a classification and regression trees model. The time response
of this system is, however, quite high, since data have been
acquired and averaged over a window of one minute. Can-
danedo and Feldheim [43] suggest that this good result could
be related to “higher sensor’s accuracies, resolution, and/or
sensor location”; however, a study on the sensor position is
not reported. Moreover, since the aim in [43] is to implement
smart energy management strategies, the identification of the
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user is not of particular interest, and therefore, the approach
described does not implement this feature. However, if the aim
of the system is to monitor the users’ behavior, the identity
of the person inside the room is significant, especially when
more people are living in the same home.

Comparing to these works, we demonstrate that it is possible
to obtain, with the proposed ROC-based method and with only
one anchor node per room, an accuracy equal to 98%, over a
time window of 1 s, without exploiting specific sensors, but
only the nodes of the system infrastructure and a personal
wearable sensor. Exploiting the interaction with some sensors
deployed in the house at a fixed location for behavioral
monitoring purposes, the exact position of the user can be also
inferred. Moreover, in this paper, we analyze the effect on the
algorithm performance of multiple RSSI samples, anchor node
position and number, aiming at providing some indications to
a practical deployment of such a system in a real home envi-
ronment, minimizing the number of RSSI measures needed
during the training phase and then the installation burden and
costs. Finally, some considerations about the increase in power
consumption due to the localization and identification features
in the mobile node are reported.

To collect the RSSI measures and test the proposed
solution a ZigBee home automation system named Computer-
Aided, Rule-based system for Domestic Environment Assis-
tance (CARDEA) [44], developed at the University of Parma,
has been exploited. The hardware devices designed for the
system and used in this paper are described in Section III.

III. HARDWARE DEVICES

CARDEA system merges environmental sensor functions
and wearable sensor for personal monitoring in the same
framework.

Environmental sensors provide data related to the user’s
interaction with the home environment. Examples of these
sensors are room presence sensors, bed or chair occupancy
sensors, fridge and cupboard sensors (to monitor feeding
habits), toilet sensors, and power meters (to monitor appliances
usage; e.g., TV set). Wearable devices provide information
about individual physical activity, also enabling fall detection
and emergency button services.

All devices are based on the ZigBee/IEEE 802.15.4 protocol
because of its low cost and low power consumption. CARDEA
system takes advantage of the ZigBee PRO version, in partic-
ular for the stochastic addressing and the “many to one source
routing” features [45].

Hence, devices for creation and management of a standard
ZigBee network (i.e., network coordinator and routers) are
also present. In the localization method proposed in this paper,
standard routers act as beacons in the room-level localization
feature, while the environmental sensors are exploited during
the identification phase, in the proximity technique.

To keep the implementation costs limited, three printed
circuit board (PCB) modules [46] have been designed, to be
configured and assembled in different ways, to implement a
complete devices family, both wearables and environmental,
as well as networking gear (the network coordinator and router
nodes).

Fig. 1. PCBs. (a) Environmental sensors radio module (top) and coordinator/
routers (bottom). (b) Environmental sensors carrier board.

The three basic modules (Fig. 1) are described in the
following.

A. Radio Module
A common board has been designed to equip both the

networking elements and the environmental sensors. The
coordinator, that acts also as the bridge between the ZigBee
network and the home gateway, and the routers were conceived
as universal serial bus (USB) sticks, thus resulting in the
19 mm×45 mm configurable board shown in Fig. 1(a). It is a
four-layer board, featuring four functional sections: the core,
the antenna, the power, and the I/O section.

1) Core Section: It is based on the CC2531 SoC by Texas
Instruments, which embeds an 8051 8-bit microcontroller unit.
It deals with both the Zigbee stack management and onboard
data processing. It integrates a USB port and three general-
purpose I/O ports, which can be exploited for physical sensor
interfacing.

2) Antenna Section: As already explained, signal propa-
gation properties are exploited to estimate distance among
interacting nodes, in order to implement the identification and
localization features. Therefore, an antenna radiation diagram
as omnidirectional as possible is required, not to introduce
artifacts in such a process. This, together with miniaturization
constraints, led us to avoid printed antennas and to select a chip
antenna: Fractus Reach Xtend [47] chip has been selected. The
antenna circuit is matched against the core circuit by using an
integrated Balun by Johanson Technology [48]. Care was taken
in the PCB design to keep the area around the antenna free
from ground planes and other interfering objects, and to keep
connecting paths as short as possible.

3) Power Section: The core section requires a supply volt-
age in the 3–5-V range. Depending on the actual configuration,
different power sources have been employed, when used as
router or coordinator, the board is powered (5 V) via the
USB port, whereas environmental sensors are typically battery
powered (3 V). Therefore, an optional dc–dc converter is
mounted on the board in the former case, whereas batteries
can be straightforwardly connected to through-hole pads.

4) I/O Section: Available pins are exploited according to the
actual needs, depending on the board destination. A couple of
LEDs and a reset button are present anyway. Then, coordi-
nator and router implementations require mounting the USB
connector. If the board fits environmental sensors instead, two
connectors are mounted for coupling to the sensor “carrier”
board [Fig. 1(b)], the physical interface between differ-
ent sensors and the common radio and processing module.
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Fig. 2. MuSA wearable sensor.

Also, an operational-amplifier buffer is mounted, to allow
for interfacing analog sensors through the CC2531 inter-
nal Analog-to-Digital Converter. Different types of sensors
have been implemented, interfacing the appropriate sensitive
element:

1) chair/bed sensor (pressure pad as a sensitive element);
2) presence sensor (passive infrared);
3) fridge/cupboard sensor (photoresistance and temperature

and humidity sensor);
4) toilet sensor (distance sensor);
5) door/window opening (magnetic contact).

B. Wearable Device Board

It exploits the same architectures introduced earlier for
the radio and processing module, but it has been redesigned
considering ergonomic constraints: size and weight have to be
minimized, to reduce the user’s burden. In Fig. 2, a view of
the MUltiSensor Assistant (MuSA) device [49], [50] is shown.

The device is aimed at monitoring user’s motion, detecting
falls and evaluating energy expenditure. It also features an
“emergency call” button. Depending on the actual purpose,
it can be worn on the user’s belt, in the pocket, at the
wrist, or as a necklace pendant.

The PCB is a four-layer board and can be divided into five
sections:

1) Core Section: Similarly, to the home sensors introduced
before, the board exploits the TI-CC2531 SoC to manage radio
communication and onboard data processing.

2) Antenna Section: The same chip antenna is exploited,
and similar design consideration applies.

3) Power Section: A tiny, rechargeable Li-ion battery is
exploited. It supplies a nominal voltage of 4.2 V, so that a
dc–dc converter is needed to power the CC2531-based core
module. A battery charger circuit, based on the BQ24400 chip
by Texas Instruments, is implemented as well, complemented
by a TPS63031 buck–boost converter, which allows exploiting
at best the full battery charge.

4) Sensors Section: The board is conceived as a multisensor
platform and can be configured on purpose at assembly time.
It mounts an ST-LSM9DS0 inertial measurement unit (IMU),
which features a 3-D accelerometer, gyroscope, and mag-
netometer, integrated into a single chip. The IMU provides
information about user motion, depending on the firmware
algorithm.

5) I/O Section: A couple of LEDs are used for communi-
cating the device status. The USB port (through a standard
micro-USB connector) is exploited to power the device,
recharge the battery, and communicate “off-line” data. A mem-
brane keyboard has been designed, which integrates two
buttons. One is used for control purposes (turning the device
ON and OFF, or configuration tasks) and the other allows for
the emergency call function.

All of these PCBs have been successfully tested for elec-
tromagnetic compatibility issues, qualifying for Conformité
Européenne certification.

IV. PROPOSED LOCALIZATION METHOD

The ZigBee system has been exploited to test and charac-
terize the proposed localization techniques. Considering that
each user wears a MuSA device, that in turn inherently brings
information about his/her identity, and that the ZigBee routers
can be used also as a radio beacon, the user position can
be assessed through the RSSIs collected from the messages
exchanged between the devices. A coarse localization tech-
nique based on a fingerprinting solution is used to assess in
which room the user is, while the actual user’s position can
be inferred from his/her interaction with the system devices
deployed in the house. For this purpose, it is possible to
assume that the user actually interacting with a given sensor is
(among possible many present in the same room) the one who
is closest to the sensor itself. Based on this, in environments
populated by more than one end user, the identification mech-
anism can also be devised: every time an environmental sensor
is activated, it polls all wearable devices within the home, and
compares the RSSIs from different users. The user wearing
the device that features the highest RSSI is identified as the
one actually interacting.

The environmental sensors equipped with the identification
feature are conceived for an individual user (i.e., toilet sensor,
chair sensor, door sensor, and fridge/cupboard sensor), so the
possibility of more than one user interacting with the same
device was not taken into account. The system has been tested
considering a minimum distance of one meter from a user to
another.

Since both localization and identification features do not
involve additional hardware components, we, therefore, imple-
mented such features into the firmware of all sensors in the
network: details about testing and performance of the proposed
solution are given in Sections IV-A–IV-D.

A. Setup of the Test Environment

The system performance was evaluated through some lab-
oratory tests simulating a real environment (Fig. 3).

In rooms A and C (both about 40 m2), a matrix of 25
measurement points was considered, while in room B only
five positions have been taken into account, due to the smaller
dimension of the corridor. An identification number indicates
each measurement point. The wearable sensors generate sig-
nals that are received by beacons (i.e., routers described in
Section III) or by environmental sensors (depending on the
feature that is under test) and from which an RSSI measure
can be extracted.
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Fig. 3. Test environment.

In the following paragraphs, details are given about the
characterization and the performance of the localization and
identification techniques.

B. Localization Feature
The localization algorithm relies on an RSSI-based finger-

printing technique. In the training phase, repeated measures of
the received power are necessary to build a map of the specific
environment peculiarities that induce scattering phenomena
and modify RSSIs along a given trajectory. Then, in the run
phase, the collected values during normal daily living activities
are compared to the off-line measures to estimate the user
location. The training phase may obviously complicate the
installation of the system. Therefore, it is necessary to provide
a method that limits both the number of measurement points
and the number of measures in each point and provides an
indication on the beacons optimal position (i.e., the position
that guarantees the best accuracy for the localization feature).
In some situations, a large number of beacons can provide
greater accuracy; however, it affects the cost of the entire
system and its deployment. For this reason, considering that
the target is to localize the user in an area (i.e., a room),
a beacon per room has been considered.

Intuitively, a good positioning criterion might be used to
place the beacons far from adjacent rooms. To verify this,
a total of eight beacons (indicated with a, b, c, d, e, f, g, and h)
were deployed in the laboratory environment as depicted
in Fig. 3.

To measure how the beacon location impacts on the system
performance in terms of sensitivity and specificity Fawcett’s
ROC theory has been exploited [51]. Considering a beacon,
the user positions inside the room in which the beacon is
being evaluated as positive instances, while those external are
negative ones.

From the ROC curves, it is possible to analyze the sensitivity
and the specificity of the system defined as

sensitivity = TP

TP + FN
(2)

TABLE I

DEFINITION OF TP, TN, FP, AND FN

specificity = TN

FP + TN
(3)

where TP, FN, TN, and FP are defined in Table I.
The sensitivity represents the rate of true positives; it, there-

fore, describes the system capability to correctly identify a
positive value. On the contrary, specificity is related to the
rate of true negatives.

The mean over 300 RSSIs for each of the 55 positions
indicated in Fig. 3 was carried out and sorted in a decreasing
order. The ROC curves for the eight beacons have been
calculated and they are shown in Fig. 4.

These plots have been obtained following the method
described in [51]: the samples are placed into the ROC graph
according to their class belonging (positive/negative instances).
Since the x-axis of the ROC curve represents “1-specificity”
and the y-axis represents the sensitivity, the bigger the area
under the curve the better the performance of the system.

From Fig. 4, it is confirmed that the beacons far from
the boundaries with other rooms are the best candidate for
an accurate user localization; we, therefore, selected beacon
a, e, and g for the subsequent tests.

Then, the minimum number of measurements in the training
phase has to be evaluated.

In order to keep the number of training position low (and
thus to limit the installation burden), in each room, a subset of
positions has been selected. To make these positions represen-
tative of the whole room, the positions in the corners (or at the
ends in the case of room B) and in the middle of the rooms
has been chosen. In Table II, the selected positions (according
to those defined in Fig. 3) for each room have been reported.

For each position, k RSSIs (with k equal to 1, 10, 20, 30, 40,
and 50) have been sampled from the set of 300 measurements
carried out to characterize beacon position. The mean of the
RSSIs gathered has been computed and an ROC curve is
carried out for each k. This experiment has been repeated
1000 times to acquire statistical significance.

The frequency of the k trials with a given sensitivity for
a specificity of 100% is shown in Fig. 5. On the x-axis, the
sensitivity (in percentage) is reported. The optimal ROC curve
is obtained with a sensitivity equal to 100%.

Averaging over 50 RSSI samples guarantees a good
accuracy of the approach. Considering that the time inter-
val between two RSSI measurements has been estimated
in 100 ms, the duration of the training phase in our example
with 13 positions is about 10 min (considering also the time
for the user to move from a position to another one) and it is
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Fig. 4. ROC curves for the eigth beacons. For each plot, the x-axis represents
“1—specificity,” while the y-axis represents the sensitivity.

TABLE II

POSITIONS SELECTED FOR THE TRAINING PHASE

definitely acceptable. Obviously, the actual assessment of the
user position during daily living activities cannot rely on a such
number of measurements: to obtain a much faster localization,
the number of samples during the live phase is reduced to 10:
this ensure that the time spent to locate the user is only 1 s.

Exploiting ROC curve during the training phase has another
important advantage: it allows to intrinsically carry out a
threshold value that is appropriate to discriminate in which
room the user is. Once the RSSIs are sorted to compute the
RSSI curve, the selected threshold will be the RSSI value
that best manages to properly separate the positive instances
from the negative ones. This threshold somehow describes the
peculiarities of signal propagation in a specific environment,

Fig. 5. Probability of obtaining a given sensitivity for a specificity of 100%.

and it is related to the room in which it is computed. In order
to determine the position of the user in the environment,
the parameter Dx has been considered

Dx = RSSIm − thx (4)

where thx is the threshold carried out in the training phase for
the beacon x , the RSSIm is the mean of the RSSI computed in
the run phase, and Dx the difference between RSSIm and the
threshold related to the beacon x . In the run phase, the user
will be assigned to the room with the beacon that shows the
greater Dx value.

Some tests have been set up to evaluate the whole procedure.
A training phase has been performed considering 50 RSSI
measurements in the 13 sample points defined earlier, five in
rooms A and C and three in room B. An ROC curve and a
threshold have been carried out for the three selected beacons
(and then for the three rooms), and they are reported in Fig. 6.

In the run phase, 10 measurements are sampled for each of
the 55 positions and then averaged. According to (4), Dx is
carried out for each beacon and it is evaluated to assign the
user to a room. This is repeated for 1000 times in order to
assess the performance of the method, in terms of sensitivity,
specificity, and accuracy. The latter is defined as

accuracy = TP + TN

TP + TN + FP + FN
. (5)

To consider only fair statistics (i.e., cases with positive
instance number quite similar to the negatives one), we analyze
the case of room A occupancy and room C occupancy. The
related system performance is reported in Table III.

These statistics result in an overall accuracy of 98.2%.
In order to better evaluate the performance of the proposed

method, another metric has been evaluated using the maximum
RSSI: in this case, the user is assigned to the room in
which the beacon receiving the maximum RSSI is located.
With this algorithm, an accuracy of 85% in the case of
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Fig. 6. ROC curve computed in training phase for selected beacons, with
associated threshold.

TABLE III

PERFORMANCE OF LOCALIZATION FEATURE

room A occupancy and 87% for room C, has been obtained.
This can be explained considering the differences between
the environments that affect the signal propagation. If, for
example, for a particular beacon, the RSSI values are generally
lower, a threshold approach can consider it, resulting in a better
performance.

C. Tests and Characterization: Identification

The same environment has been exploited also to assess the
performance of the action tagging strategy.

The test procedure is the following: we replaced the
beacon c with a ZigBee environmental device, according to
Fig. 3, and then two people wearing their own MuSA wearable
device have been considered. The first one (U1) stands close

Fig. 7. Probability of obtaining given accuracy during identification task.

to the sensor (position 25), while the second one (U2) moves
at the other locations into the environment. Different positions
for the sensor and user U1 were tested; here, we refer to the
“worst case” test, in which the sensor node is in a position
that maximizes the chances of misinterpretation (considering
adjacent rooms).

Other sensor positions tested, although yielded better results
than those illustrated in the following.

The test aims at evaluating the identification accuracy,
i.e., checking how reliably the procedure correctly identifies
the closest user (U1). As in the case of localization, the use of
a “single-shot” RSSI measurement, it is not reliable: a good
accuracy in identifying the user can be obtained only averaging
k samples and using the mean in the comparison. This concept
is illustrated in Fig 7: the probability of obtaining a given
degree of accuracy (i.e., the number of tests in which the
user U1 is correctly identified versus the total number of
tests, over all 55 positions) varying the number of samples,
is reported.

As shown earlier, the tests with k = 1 are far from
being satisfactory, as expected, due to the nonidealities in the
room, with several trials reporting accuracy well below 80%.
This can be better appreciated by looking at the box diagrams
of the distributions of the two set of measurements: in Fig. 8,
it is shown that U1 and U2 RSSI distributions may actually
overlap, and it is possible that a measure of set U2 results
greater than corresponding one in set U1, thus causing a false
attribution.

Selecting k value larger than 15 guarantees good results and
it is fully compatible with practical implementation. We need
to keep the procedure short enough with respect to the action
to be tagged (not to miss shortest events). This results in an
upper limitation of k value: assuming a maximum procedure
duration of 2 s (which is suitable for the application at hand)
and considering a 100-ms time interval between subsequent
RSSI samplings, we may account for k up to 20, which yields
excellent accuracy already.

However, a larger number of exchanged messages also
entail an increased energy consumption. As wearable devices
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Fig. 8. Box plot of RSSI measurements for user A (unfilled boxes) and
user B (filled boxes). Cross markers represent outliers.

Fig. 9. Measurement of MuSA sensor current.

are battery powered this could lead to a shortening of the
device lifetime. In Section IV-D, some considerations about
this matter are reported.

D. Energy Considerations

According to the ZigBee protocol specifications, each mes-
sage sent from an end device (such as the MuSA platform)
need to be followed by a “data request” (DR) message,
to check for pending messages. If messages are closely packed
into a 100-ms interval stream, the stack just waits for the end
of the stream to issue a new DR. Hence, for a given k, the
energy Etag required by the whole procedure can be estimated
as follows:

Etag = k × ERSSI + EDR (6)

where ERSSI and EDR are the energy required by a single
RSSI evaluation and by the DR message, respectively. Such
energies can be estimated by measuring the absorbed current
by the sensor during corresponding phases. Fig. 9 shows the
actual measured current, highlighting RSSI, and DR messages.

From such current, ERSSI and EDR can be evaluated:

ERSSI =
∫

tRSSI

Vdd Idt = 635 µJ (7)

EDR =
∫

tDR

Vdd Idt = 642 µJ (8)

where Vdd is the supply voltage, I is the measured current,
tRSSI is the time for sending an RSSI message, and tDR is the
time for a DR message.

We can thus correlate the number of sample directly to the
energy expense. Assuming, for instance, k = 10, as in the case
of localization feature, (6) yields

Etagk10
= 6.99 mJ. (9)

We can double this value for the identification feature.
Correlating such figure to the battery lifetime is not straight-

forward since it mostly depends on the sensors primary tasks
and on the frequency of activation of identification/localization
procedures. As a rough estimate, if we assume a 500-mAh
battery capacity and consider (largely overestimated) one
identification and one localization procedure every minute
(during daily hours, with events occurring during the sleeping
time), we end up with a daily consumption which is in the
order of 0.3% of the battery capacity. However, introducing the
identification feature may involve a further, indirect increase
in energy demand: in fact, in its typical use, the information
flow related to the wearable device is mostly unidirectional,
with sensor uploading data to the home gateway. When no
data are to be received by the sensor, DR messages have
basically a keepalive function and their frequency can be rather
low. By introducing the action tagging feature, information
flow becomes actually bidirectional, with wearable devices
receiving polling messages issued by the environmental sensor.
In order to ensure suitable responsiveness, DR messages need
thus to be issued at a higher frequency than that needed for
mere keepalive purpose. If we raise the DR rate at 1 Hz,
the cumulative daily overhead introduced by the tagging
procedure rises to 0.9% of the battery capacity.

Since, due to other tasks, the MuSA battery lifetime (with-
out the localization/identification feature) is in the order of a
few days, it appears that such overhead introduced is actually
negligible.

V. CONCLUSION

In this paper, a novel RSSI-based algorithm for user local-
ization in an environment controlled by a ZigBee home
automation system is presented. The user position estimation
has been carried out without adding dedicated hardware,
lowering the impact on the deployment costs. For the user
room-level localization, a fingerprinting method is exploited
and a threshold-based algorithm is applied. Due to scattering
phenomena on the radio-frequency signal, the threshold values
depend on the environmental characteristics. To overcome this
problem, a novel method, based on the ROC analysis, has
been adopted to compute the thresholds. To calculate the
actual user position, instead, the interaction of the user with a
given sensor already deployed in the house for BA purposes
has been considered. In this case, in environments populated
by more than one user, the identification of the person who
interacted with the device is of utmost importance. In this
regard, an RSSI-based proximity algorithm has been used.
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For both localization and identification procedures, it is
shown that a straightforward, “one shot,” implementation does
not provide a suitable accuracy. Averaging techniques are thus
implemented, allowing to increase accuracy to the desired
level, without impacting to a significant extent on power
consumption and battery lifetime. Some considerations about
the position of the anchor nodes are also presented. Tests have
been carried out and an accuracy of 98% with a sensitivity and
specificity higher than 96% has been reached.
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