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21 Abstract

22 The emergence of “highly pathogenic” isolates of porcine reproductive and respiratory syndrome 

23 virus (HP-PRRSV) has raised new concerns about PRRS control. Cells from the porcine monocyte-

24 macrophage lineage represent the target for this virus, which replicates mainly in the lung, and 

25 especially in HP-PRRSV strains, also in lymphoid organs, such as the thymus. This study aimed at 

26 evaluating the impact of two PRRSV strains of different virulence on thymic macrophages as well 

27 as after heterologous vaccination. After experimental infection with PR11 and PR40 PRRSV1 

28 subtype 1 strains (low and high virulent, respectively) samples from thymus were analysed by 

29 histopathology and immunohistochemistry for PRRSV N protein, TUNEL, CD172a, CD163, 

30 CD107a and BA4D5 expression. Mortality was similar in both infected groups, but lung lesions and 

31 thymus atrophy were more intense in PR40 group. Animals died at 10-14 dpi after PR11 or PR40 

32 infection showed the most severe histopathological lesions, with a strong inflammatory response of 

33 the stroma and extensive cell death phenomena in the cortex. These animals presented an increase 

34 in the number of N protein, CD172a, CD163 and BA4D5 positive cells in the stroma and the cortex 

35 together with a decrease in the number of CD107a positive cells. Our results highlight the 

36 recruitment of macrophages in the thymus, the increase in the expression of CD163 and the 

37 regulation of the host cytotoxic activity by macrophages. However, no marked differences were 

38 observed between PR11- and PR40-infected animals. Heterologous vaccination restrained virus 

39 spread and lesions extent in the thymus of PR40-infected animals.

40

41 Keywords: virulence; PRRSV; macrophages; thymus; cell death.
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42 1. Introduction 

43 Porcine reproductive and respiratory syndrome virus (PRRSV) is a major swine pathogen that 

44 induces severe respiratory symptoms in growing and finishing pigs and reproductive failure in gilts 

45 and sows, causing considerable economic losses worldwide. The genome, of approximately 15 kb 

46 in length, consists of a positive-stranded RNA and contains 11 open reading frames (ORFs), coding 

47 for structural and non-structural proteins, which are subject to insertions and deletions determining 

48 the genetic diversity of the virus (Murtaugh et al., 2010). Recently, the two genotypes of the virus, 

49 type 1 or PRRSV1 (European) and type 2 or PRRSV2 (North American), have been included as 

50 different viral species within the genus Betaarterivirus, particularly Betaartevirus suid 1 species for 

51 PRRSV1 and Betaarterivirus suid 2 species for the PRRSV2, respectively (Gorbalenya et al., 

52 2018).Porartevirus (Adams et al., 2017). Both viruses present high internal variability, with 

53 PRRSV1 being divided into at least four subtypes (pan-European subtype 1, encompassing different 

54 lineages, and East European subtypes 2, 3 and 4) and PRRSV2 into at least nine lineages (Nelsen et 

55 al., 1999; Stadejek, et al. 2006, 2013; Balka et al., 2018). During the last decade, virulent variants of 

56 the virus, referred to as highly pathogenic (HP), have emerged within both PRRSV1 and PRRSV2 

57 (Lunney et al., 2010). These virulent strains often result in severe clinical signs, higher mortality 

58 rates and higher tropism and viral load in blood and tissues than low virulent PRRSV strains (Tian 

59 et al., 2007; Karnychuk et al., 2010; Canelli et al., 2017). Although virulent PRRSV1 strains have 

60 been traditionally associated to subtype 3 strains (Lena and SU1-bel strains), strains with similar 

61 characteristics have been identified within subtypes 1 (13V091, AUT15-33 and PR40/2014 strain) 

62 and 2 (BOR59 strain) (Karniychuk et al., 2010; Morgan et al., 2013; Frydas et al., 2015; Sinn et al., 

63 2016; Canelli et al., 2017; Stadejek et al., 2017).

64

65 The efficacy of modified live virus (MLV) vaccines (PRRSV1 and PRRSV2) have been recently 

66 tested in challenge trials with virulent isolates (Trus et al., 2014; Do et al., 2015; Bonckaert et al., 

67 2016; Canelli et al., 2018). Partial cross-protection of these vaccines against virulent strains has 
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68 been reported under experimental conditions with a reduction of the viremia, the severity of clinical 

69 signs and lesions, and the duration of the clinical phase. Nevertheless, none of the tested vaccines 

70 was able to prevent the transplacental transmission or the respiratory infection. 

71

72 The main cell target for PRRSV replication is the pulmonary alveolar macrophage (PAM) but viral 

73 replication has been also widely reported in other macrophage subpopulations from lungs as well as 

74 from lymphoid organs of infected animals (Duan et al., 1997; Gómez-Laguna et al., 2010; Barranco 

75 et al., 2012). Among lymphoid organs, the thymus particularly plays a central role in the 

76 development of the immune system through the differentiation and maturation of T cells (Pearse et 

77 al., 2006b). PRRSV infection is characterised by an immunosuppression state associated with, 

78 among other factors, atrophy of the thymus and a major decrease in the number of thymocytes in 

79 the cortex with marked differences according to the virulence of the PRRSV strain (Amarilla et al., 

80 2016). Thus, so-called HP-PRRSV strains cause more severe clinical signs, long-lasting viremia, 

81 higher virus level in blood and tissues, and higher frequency of mortality (Lunney et al., 2010); 

82 moreover, these strains predispose piglets to weak cellular immunity together with thymus atrophy, 

83 T cell depletion and impairment of the development of naïve T cells (Han et al., 2017).  

84

85 In a general context, macrophages perform three main functions: antigen presentation, phagocytosis 

86 and synthesis and secretion of cytokines (Geissman et al., 2010). However, the whole range of 

87 functions of thymic macrophages is still nowadays unclear. The macrophage population in the 

88 thymus is evenly distributed in the cortex and in the medulla and is particularly designated, at least, 

89 to phagocytose and remove apoptotic bodies and self-reactive lymphocytes as well as to release 

90 mediators involved in thymocytes maturation (Pearse et al., 2006a). As a myeloid cell, the main 

91 macrophage marker extensively used is CD172a, which is strongly expressed from the early stages 

92 of differentiation onwards (Summerfield et al., 1997). A restricted marker to monocyte and 

93 macrophages is CD163, a member of the family of proteins with scavenger receptor cysteine-rich 
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94 domains (Law et al., 1993). Particularly, CD163 has been identified to be the major receptor for 

95 PRRSV uncoating and genome release (Calvert et al., 2007; Van Breedam et al., 2010), with well 

96 described effects of the deletion of its SRCR5 domain on PRRSV infection (Whithworth et al., 

97 2016; Burkard et al., 2017). CD107a, or lysosomal-associated membrane protein 1 (LAMP-1), 

98 despite not being restricted to macrophages, has been demonstrated to be useful for identifying 

99 macrophages populations in tissue sections, especially, tingible body macrophages in lymphoid 

100 organs as well as macrophages from the thymus cortex and medulla (Bullido et al., 1997; 

101 Domenech et al., 2003). An interesting marker with a restricted expression for the macrophage 

102 linage is the antigen recognized by the monoclonal antibody BA4D5, which shows features that 

103 resemble those of CD68. Thus, this molecule/antigen presents a predominant intracellular location 

104 in phagolysosomes with a low expression on the cell surface and has been detected on macrophages 

105 from the thymus cortex as well as on other macrophages from spleen and lymph nodes (Ezquerra et 

106 al., 2009).

107

108 Considering the role of macrophages in PRRSV replication and on the onset of the host immune 

109 response, the impact of two Italian subtype 1 PRRSV1 strains (PR40/2014 and PR11/2014), with 

110 different in vivo virulence (Canelli et al., 2017), was evaluated in this study. In addition, the effect 

111 of a heterologous vaccination on histopathological lesions as well as on macrophages populations of 

112 the thymus of HP-PRRSV infected animals was examined. 

113

114 2. Materials and Methods

115 2.1. Animals and experimental infection 

116 The in vivo study is part of a large project carried out to investigate the pathogenesis and control of 

117 PRRSV1 strains of differing virulence; materials analysed in the present study were collected from 

118 experiments published elsewhere (Canelli et al., 2017, 2018). Briefly, a total of twelve 4-week-old 

119 conventional pigs were assigned to three different experimental groups, as described in Canelli et 
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120 al. (2017): (i) PR40 group (PR40), with 5 pigs inoculated intra-nasally (IN) with 2 ml, containing 

121 105 TCD50 of PRRSV1 PR40/2014, per pig; (ii) PR11 group (PR11), with 4 piglets inoculated IN 

122 with 2 ml, containing 105 TCD50 of PRRSV1 PR11/2014, per pig; and, (iii) Control group (C), with 

123 3 animals inoculated IN with sterile medium (mock/negative control). In addition, two different 

124 vaccinated groups, described in Canelli et al. (2018), were included: (i) VAC-C: 2 pigs were IM-

125 vaccinated against PRRSV at 4 weeks of age (Porcilis® PRRS, MSD Animal Health; DV strain; 

126 vaccine batch A208AD01) and left uninfected; (ii) VAC-PR40: 6 pigs were IM-vaccinated against 

127 PRRSV and IN infected with PR40 at 35 days post-vaccination (dpv) (day 0 post-inoculation, dpi) 

128 (Fig. 1).

129

130 No relevant pathogens (PRRSV, SIV, PCV2) were detected in the animals before the beginning of 

131 the studies. Animals suffering from severe clinical signs with a fatal prognosis were humanely 

132 euthanized according to standard protocols. All the survivors were humanely euthanized at 35 dpi 

133 (end of the experiment). At necropsy gross pathology was recorded and thymus samples were 

134 collected and fixed in buffered-formalin pH 7.4 for histopathology and immunohistochemical 

135 studies. The experimental design and all the procedures were fully in agreement and approved by 

136 the Ethical Committee and by the Ministry of Health in Italy according to European and National 

137 rules on experimental infection studies and animal welfare.

138

139 2.2. Histopathology and grading of thymus 

140 Four µm tissue sections were stained with haematoxylin and eosin (H&E). The severity of the 

141 lesions in thymus was scored as follows (adapted and modified from Amarilla et al., 2016): (i) 

142 Grade 0, the cortex:medulla ratio (C/M) is about 2:1 with typical histological characteristics of the 

143 thymus; (ii) Grade I, diffuse cortical reduction with focal cortical disappearance, 5–9 tingible body 

144 macrophages/mm2 within the thymic cortex, typical medulla and stroma; (iii) Grade II, focal or 

145 multifocal decrease of C/M (<2:1), decrease of cortical layer with slight proportional increase of the 
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146 stroma and 10–15 tingible body macrophages/mm2 within the thymic cortex; (iv) Grade III, focal to 

147 multifocal blurring of normal corticomedullary demarcation, increase of the stroma, occasional 

148 increase in the number of lymphocytes, mast and plasma cells and ≥ 16 tingible body 

149 macrophages/mm2, with a “starry sky” appearance of the tissue; and, (v) Grade IV, extensive cell 

150 death of cortical thymocytes with complete disappearance of corticomedullary boundary 

151 demarcation and increase of the stroma. 

152

153 Manual quantification of tingible body macrophages in thymic cortex was assessed in 25 non-

154 overlapping, consecutively selected high magnification fields of 0.2 mm2. Results were expressed 

155 as number of cells per mm2.

156

157 2.3. Immunohistochemistry 

158 The Avidin–Biotin–Peroxidase complex technique (ABC Vector Elite, Vector laboratories, USA) 

159 was used for the immunolabelling of PRRSV antigen and the different macrophages markers. 

160 Terminal dUTP Nick End-Labeling (TUNEL) was carried out by using a commercial kit (In Situ 

161 Cell Death Detection Kit, POD, Roche, Germany) following manufacturer’s instructions. Briefly, 4 

162 µm tissue sections were dewaxed and rehydrated in a gradient of ethanol, followed by endogenous 

163 peroxidase inhibition with 3 % H2O2 solution in methanol for 30 minutes (min). After treatment 

164 with different antigen retrieval methods (Table 1), the slides were washed with PBS (pH 7.4) and 

165 incubated for 30 min at room temperature with 100 µl of blocking solution in a humid chamber. 

166 Primary antibodies were incubated overnight at 4 °C in a humid chamber (see dilutions in Table 1 

167 for each antibody), while for the negative controls the primary antibody was replaced by either an 

168 isotype control or by blocking solution. Biotinylated secondary antibody was incubated for 30 min 

169 at room temperature. An avidin-biotin-peroxidase complex (Vector Laboratories) was applied for 

170 1 hour at room temperature in the darkness. Labelling was visualized by application of the 
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171 NovaRED™ substrate kit (Vector Laboratories). Sections were counterstained with Harris’s 

172 haematoxylin, dehydrated and mounted.

173

174 Hybridomas secreting monoclonal antibodies (mAbs) to porcine CD107a (4E9/11, IgG1), CD163 

175 (2A10/11, IgG1), CD172a (BA1C11, IgG1) and BA4D5 (IgG2b) were derived from fusion of 

176 myeloma cells with spleen cells from Balb/c mice immunized with pulmonary alveolar 

177 macrophages. The characterization of these mAbs has been described elsewhere (Bullido et al., 

178 1997; Sánchez et al., 1999; Álvarez et al., 2000; Ezquerra et al., 2009). MAbs were used in the 

179 assays as hybridoma supernatants.

180

181 Labelled cells were analysed in 25 non-overlapping and consecutive high magnification fields of 

182 0.2 mm2. The expression of all markers was manually counted and the results were expressed as the 

183 number of cells per mm2.

184

185 3. Results

186 3.1. Thymus from PR11- and PR40-infected pigs at 10-14 dpi showed strong inflammatory response 

187 of the stroma and extensive cell death phenomena in the cortex

188 The clinical signs and gross lesions have been previously described elsewhere (Canelli et al., 2017, 

189 2018). Mortality rate was similar in the two infected groups, with two and three pigs euthanized due 

190 to welfare conditions in PR40 and PR11 groups, respectively, between 10 and 14 dpi. Lung lesions 

191 were more severe in the PR40 group compared to the PR11 group and consisted of interstitial 

192 pneumonia with multifocal, mottled, tanned appearance of the lungs accompanied, in some cases, 

193 by bronchopneumonia associated to secondary bacterial infections. Atrophy of the thymus was 

194 detected in both infected groups, with an almost complete atrophy of the cervical part of the thymus 

195 in the PR40 group. Control animals did not exhibit significant gross or microscopic lesions.

196
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197 The thymus of the infected animals groups with any of both viruses (either PR11 or PR40) was 

198 characterised by diffuse cortical reduction, disappearance of the corticomedullary boundary, and, in 

199 some cases, a consistent inflammation of the stroma. The most intense changes were observed in 

200 the thymus from PR11- and PR40-infected pigs that died at 10-14 dpi, which presented extensive 

201 cell death phenomena in the cortex with a strong disappearance of the corticomedullary boundary 

202 (Table 2) (Fig. 2A-2B). In most of these animals, a marked interstitial inflammatory infiltrate of the 

203 stroma by abundant neutrophils and mononuclear cells (macrophages, lymphocytes and plasma 

204 cells in a lesser extent) together with oedema of the connective tissue was also observed (Fig. 2C). 

205 This infiltrate was particularly intense at perivascular area and was associated with intravascular 

206 trafficking of these immune cells (Fig. 2D). 

207

208 3.2. PRRSV N protein positive cells were increased in PR40- and PR11-infected animals at 10-14 

209 dpi mainly associated to the inflammatory foci in the stroma

210 PRRSV N protein was not detected in the thymus of control animals (groups C and VAC-C). 

211 PRRSV antigen was observed in the cytoplasm of macrophages from the thymic cortex and the 

212 stroma, and in a lesser extent in macrophages from the medulla of the thymus of PR40 and PR11 

213 infected animals at 35 dpi (Fig. 3A). Interestingly, PR40 and PR11 infected animals that died 

214 between 10-14 dpi, presented a marked increase in the number of PRRSV positive cells, mainly 

215 associated to a marked infiltrate of PRRSV positive cells within the inflammatory reaction observed 

216 in the stroma of these animals (Fig. 3B-3C). 

217

218 In case of vaccinated PR40-inoculated animals (VAC-PR40), only 3 out of 5 animals presented 

219 PRRSV positive cells with a similar frequency and distribution than non-vaccinated PR40-

220 inoculated animals at 35 dpi.

221

222 3.3. TUNEL labelling was increased in association to an intense increase of cell death in the cortex
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223 TUNEL labelling was mainly observed within tingible body macrophages in phagocytised non-fully 

224 degraded cellular fragments and occasionally in free apoptotic bodies (Fig. 3D). TUNEL staining 

225 was mostly observed in the cortex and, to a lesser extent, in the medulla of the thymus of all piglets. 

226 No differences were observed either between infected animals and controls or among infected 

227 groups at 35 dpi (Table 2). However, a marked increase of TUNEL labelling was observed in the 

228 cortex of PR11 and PR40 infected animals at 10-14 dpi which showed a diffuse labelling associated 

229 to an intense increase of cell death which occupied most of the cortex (Fig. 3E). 

230

231 3.4. CD172a positive cells were increased in the thymic cortex and stroma of PR11- and PR40-

232 infected pigs at 10-14 dpi

233 Labelling against CD172a was mainly observed in the cell surface and cytoplasm of monocytes and 

234 macrophages as well as, in a lesser extent, in granulocytes and occasionally in dendritic-like cells 

235 (Fig. 4D). Tingible body macrophages did not stain for this marker. CD172a positive cells were 

236 more numerous in the thymic medulla than in the cortex and stroma of control animals. The thymus 

237 of the animals infected with PR11 and PR40 and killed at 35 dpi showed a similar distribution of 

238 CD172a positive cells than the control group (Fig. 4A). Interestingly, the expression of CD172a in 

239 PR11- and PR40-infected pigs that died at 10-14 dpi was dramatically different; specifically, these 

240 animals presented a major increase of positive cells in the stroma and minor in the cortex, together 

241 with a decrease of CD172a positive cells in the medulla (Fig. 4A). These changes were more 

242 pronounced in PR40 infected animals which presented a stunning increase in the number of 

243 CD172a positive cells in the stroma (Fig. 4A-4D). In addition, a marked increase in the number of 

244 intravascular CD172a positive cells was observed within blood vessels of the cortex, medulla and 

245 stroma from both PR11 and PR40 infected animals dead at 10-14 dpi and from PR40 infected 

246 animals killed at 35 dpi (data not shown). 

247
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248 Both vaccinated groups (VAC-C and VAC-PR40) showed a similar distribution of CD172a positive 

249 cells than control animals (CON), with a mild increase in the cortex and medulla of VAC-PR40 

250 animals (Fig. 4A). 

251

252 3.5. A general increase of CD163 positive cells in cortex, medulla and stroma as well as at 

253 intravascular level was observed in the PR40 group (10-14 dpi)

254 CD163 positive immunolabelling was visualized in the cytoplasm and cell surface of positive 

255 macrophages. Tingible body macrophages from the cortex were also stained against with CD163 

256 antibody (Fig. 4F). The highest number of cells expressing CD163 was found in the thymic cortex 

257 for all groups. In the control group, the expression of CD163 was also detected in the medulla and, 

258 secondly, in the stroma. A general increase in the number of CD163 positive cells was observed in 

259 the cortex and in the stroma of infected animals; particularly, in PR40-infected pigs that died at 10-

260 14 dpi, which showed an overall enhancement in the three compartments (cortex, medulla and 

261 stroma) together with a moderate increase in the frequency of intravascular CD163 positive cells in 

262 the cortex and the medulla (Fig. 4B-4F).

263

264 No changes were observed in the distribution of CD163 positive cells in the thymus of VAC-C and 

265 VAC-PR40 animals (Fig. 4B).

266

267 3.6. The number of CD107a positive cells was decreased in all infected animals

268 The staining for CD107a was mainly observed in the cytoplasm of macrophages, being also 

269 observed in tingible body macrophages from the cortex (Fig. 5C). The number of CD107a positive 

270 cells in all experimental groups, except for the control group (CON), was lower than the one 

271 detected for CD172a and CD163 positive cells (Fig. 5A). In control animals, the expression of 

272 CD107a was mainly found in the thymic cortex, with lower expression in the medulla and only few 

273 positive cells in the stroma. A general decrease in the number of CD107a positive cells was 
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274 observed in all infected animals with only a moderate increase being observed in the stroma of 

275 PR11- and PR40-infected animals at 10-14 dpi (Fig. 5A-5D). 

276

277 Interestingly, vaccinated groups (VAC-C and VAC-PR40) presented a similar trend among them 

278 showing the lowest number of CD107a positive cells (Fig. 5A). 

279

280 3.7. A mild increase of BA4D5 positive cells was observed in PR11- and PR40-infected pigs at 10-

281 14 dpi and in vaccinated groups

282 The staining for BA4D5 was very low in all experimental groups being observed in the cytoplasm 

283 of macrophages of cortex, medulla and stroma of the thymus (Fig. 5B). Perivascular positive cells 

284 were found in the thymic medulla of some animals, whereas intravascular positive cells were 

285 scattered (Fig. 5E-5F). No changes were observed in PR11- and PR40-infected animals at 35 dpi 

286 when compared with control animals. The animals infected with PR11 and PR40 that died at 10-14 

287 dpi showed an increase of BA4D5 positive cells in the cortex and in a lesser extent in the stroma 

288 (Fig. 5B). Vaccinated groups displayed an increase in the number of positive cells to this marker in 

289 the medulla and in the stroma, being more pronounced in the VAC-C group (Fig. 5B).

290

291 4. Discussion

292 Porcine Reproductive and Respiratory Syndrome (PRRS) is one of the main viral diseases in pig 

293 production, causing huge economic losses to the industry. A high genetic variability has been 

294 reported for PRRSV, leading to the current recognition of two independent viral species (PRRSV1 

295 and PRRSV2) (Adams et al., 2017) with also a marked intraspecies variability (Stadejek et al., 

296 2008; Stadejek et al., 2013). During the last decade, several PRRS outbreaks characterised by 

297 severe clinical signs as well as high morbidity and mortality rates have been reported in many 

298 countries from Europe and Southeast Asia (Lunney et al., 2010). Thus, Canelli and co-authors 

299 (2017) characterised the strain PR40/2014, an Italian variant of the so-called HP-PRRSV1 subtype 
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300 1. According to the severe clinical signs and lesions observed in HP-PRRSV outbreaks as well as 

301 the partial cross-protection conferred by commercial MLV vaccines, the study of the host-pathogen 

302 interaction, with special emphasis on the role of target and primary lymphoid organs, such as the 

303 thymus, is imperative. Therefore, the present study describes the impact of the infection with 

304 PRRSV1 strains of different virulence, namely PR11/2014 and PR40/2014, on the macrophages 

305 population of the thymus. Furthermore, the effect of a heterologous vaccination in the thymus of 

306 animals challenged with the virulent strain PR40 was examined. 

307

308 Thymic atrophy was observed in both PR11- and PR40-infected animals with more intense changes 

309 in animals that died at 10-14 dpi. Microscopically, no differences were observed among both 

310 infected groups, which presented disappearance of the corticomedullary boundary, extensive cell 

311 death phenomena in the cortex and a stunning oedema and interstitial infiltration of the stroma at 

312 10-14 dpi. However, the highest number of PRRSV positive cells was observed in a PR40-infected 

313 animal dead at 10 dpi. Our results agree with previous reports that describe a trend for highly 

314 pathogenic strains of the virus to highly replicate in the thymus (Butler et al., 2014), but contrast 

315 with the thymus atrophy, cortical T cell depletion and consequent dysfunction of host immune 

316 regulation associated to the virulence of the PRRSV strain (Amarilla et al., 2016; Han et al., 2017). 

317 These discrepancies may be associated to the intrinsic differences between each experimental 

318 setting as well as to the criteria for classifying a PRRSV strain as a virulent strain. Thus, exhaustive 

319 criteria need to be established to categorize the virulence of PRRSV strains.

320

321 PRRSV is well known by its ability to induce cell death, being TUNEL labelling widely used for 

322 the assessment of this goal (He et al., 2012; Gómez-Laguna et al., 2013; Amarilla et al., 2016). In 

323 the present study, TUNEL stainingstainingpositive cells were was mainly found in cellular 

324 fragments phagocytised by tingible body macrophages and apoptotic bodies from the thymic cortex 

325 at 35 dpi. Noteworthy, pigs infected with PR11 and PR40 strains that died at 10-14 dpi presented 
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326 marked cell death phenomena in the cortex (Grade IV) with an intense and diffuse TUNEL 

327 labelling. These animals also showed a higher number of PRRSV positive cells compared with 

328 infected animals at 35 dpi. The severity of cell death phenomena in these animals together with the 

329 number and location of PRRSV positive cells support the role of both direct and indirect induction 

330 of cell death by PRRSV (Rodríguez-Gómez et al., 2013).

331

332 The remarkable inflammatory reaction observed in the stroma of the thymus at 10-14 dpi was 

333 associated with a high number of PRRSV positive cells both in the cortex and in the stroma of the 

334 thymus. These findings suggest that during the acute phase of the disease, PRRSV may be able to 

335 actively replicate and disseminate, reaching other organs besides lungs, such as the thymus, through 

336 haematogenous dissemination. This hypothesis is also supported by the peak of viremia at 10 dpi 

337 (PR11 group) and 7 dpi (PR40 group) detected in a parallel study by Canelli and co-authors (2017).

338

339 PR40-vaccinated animals (VAC-PR40) presented minimal histopathological lesions in the thymus 

340 when compared with vaccinated control animals (VAC-C). In addition, a low number of PRRSV 

341 positive cells was detected in the thymus of vaccinated and challenged animals. These results agree 

342 with the partial protection conferred by MLV vaccines previously reported by other authors (Trus et 

343 al., 2014; Do et al., 2015; Bonckaert et al., 2016; Canelli et al., 2018) and highlight the role of 

344 heterologous vaccination in controlling the extension of the lesions and the spread of the virus in 

345 animals infected with a virulent PRRSV strain. 

346  

347 Macrophages are a central myeloid component of the innate immune system. They are not only 

348 activators but also one of the main regulators of the inflammation, being implicated in its resolution 

349 and in triggering off the reparative process. Herein, the macrophage population of the thymus was 

350 examined by CD172a, CD163, CD107a and BA4D5 immunolabelling. These markers have been 

351 previously used in many studies to characterise porcine tissue macrophages (Bullido et al., 1997; 
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352 Domenech et al., 2003; Pérez et al., 2008). CD172a is one of the markers most commonly used and 

353 identifies myeloid cells from precursor stages until cellular differentiation (Summerfield et al., 

354 1997). CD163, recognised as a major receptor for PRRSV (Calvert et al., 2007)(Van Breedam et al., 

355 2010), play also a role as a scavenger receptor and in the induction of the anti-inflammatory 

356 mediators haptoglobin and IL-10 (Philippidis et al., 2004). Moreover, CD107a is directly related to 

357 the cytotoxic activity and has been demonstrated to be a useful marker of macrophage populations 

358 in tissues (Bullido et al., 1997; Aktas et al., 2008).

359

360 Our results showed no differences in CD172a immunolabelling between control group, infected 

361 animals at 35 dpi and vaccinated animals. However, an enhancement in the number of CD172a 

362 positive cells was observed in the cortex and especially in the stroma of infected animals at 10-14 

363 dpi. These changes were more pronounced in PR40-infected pigs which also presented positive 

364 cells within the blood vessels. The number of CD163 positive cells was increased in infected 

365 animals throughout the study, and particularly in PR40-infected pigs at 10-14 dpi which displayed a 

366 general increase of CD163 labelling in all the compartments (cortex, medulla and stroma) with 

367 abundant intravascular CD163 positive cells. The increase in the number of CD172a and CD163 

368 positive cells observed in both infected groups at 10-14 dpi was associated with the marked 

369 inflammatory infiltrate of the stroma of the thymus as well as with the extensive cell death of 

370 cortical thymocytes. Thus, monocytes/macrophages may be migrating from the bloodstream and 

371 other tissues to the thymus through chemotaxis from inflammatory foci as well as from a high 

372 demand of phagocytosis of cell death debris in the thymic cortex. The identification of intravascular 

373 CD172a and CD163 positive cells observed in the present study supports this hypothesis. 

374 Furthermore, the increase in the number of CD163 positive cells may also get along with the 

375 induction of this surface molecule in resident tissue macrophages from the thymus. Interestingly, 

376 the induction of CD163 has been proved in CD163 negative monocytes from bone marrow after in 

377 vitro PRRSV infection (Fernández-Caballero et al.,2018)  The higher frequency of CD163 positive 
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378 cells observed in both infected groups along our study may answer to different strategies of the 

379 virus: (1) to increase the number of susceptible cells to virus replication (Patton et al. 2009); (2) to 

380 allow PRRSV persistence in the thymus (Patton et al. 2009); (3) to lead to the modulation of the 

381 inflammatory and immune response through the induction of haptoglobin and IL-10 (Philippidis et 

382 al., 2004)  or (4) to increase the phagocytic activity of macrophages through the binding of the 

383 scavenger receptor to Gram-positive and Gram-negative bacteria (Fabriek et al., 2009).

384

385 CD107a immunolabelling was mainly found in the thymic cortex in the control group, while a 

386 generalised decrease in the frequency of positive cells was observed in infected animals, with the 

387 only exception of infected animals at 10-14 dpi, which presented a mild increase of CD107a 

388 positive cells in the stroma. Compared with the other markers, the number of BA4D5 positive cells 

389 was much lower, with an enhancement in the number of positive cells mainly in the cortex of both 

390 infected groups at 10-14 dpi and in a lesser extent in the thymic medulla of vaccinated animals. The 

391 decrease in the number of CD107a positive cells together with the increase in the number of 

392 BA4D5 positive cells highlight different mechanisms of regulation of the cytotoxic activity not only 

393 in infected pigs but also in vaccinated animals, which may be potentially involved in the 

394 modulation of the host immune response. BA4D5 antibody is thought to be specific for porcine 

395 CD68, which is mainly expressed by cells from the monocyte lineage, by circulating macrophages 

396 and by tissue macrophages (Taylor et al., 2005). Among other functions CD68 plays a role in the 

397 cytotoxic activity, with a predominant intracellular location in phagolysosomes (Kurushima et al., 

398 2000); phagocytic activity, associated to the scavenger receptor family and promoting cellular 

399 debris clearance (Taylor et al., 2005) and mediating the recruitment and activation of macrophages 

400 through binding to specific lectins and selectins (Song et al., 2011). In our study, the increase in the 

401 number of perivascular and intravascular BA4D5 positive cells observed in animals from both 

402 infected groups at 10-14 dpi as well as in vaccinated animals support the potential role of this 

403 molecule in macrophages recruitment observed mainly in infected pigs at 10-14 dpi.

https://en.wikipedia.org/wiki/Monocyte
https://en.wikipedia.org/wiki/Macrophage
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404

405 The main evidence observed in the present work was the presence of severe histopathological 

406 lesions in the thymus of the animals infected with PR11 and PR40 PRRSV strains that died at 10-14 

407 dpi, and the increase in the number of macrophages in the different compartments of the thymus. 

408 The different markers used in this study allow us identifying the recruitment of macrophages 

409 associated to the strong and early inflammatory response in the stroma of the thymus, the increase 

410 in the expression of the major receptor of PRRSV and the regulation of the host cytotoxic activity 

411 by macrophages. Interestingly, no marked differences were observed between the low virulent 

412 PR11 and the virulent PR40 strains used in this study. Our results give some light to the 

413 dysregulation of the host immune response by PRRSV and how the infection of the macrophage 

414 population during the early phases of the disease may influence the decrease of the T cell 

415 population, already demonstrated in other studies (Canelli et al., 2017). Finally, our results point out 

416 that heterologous vaccination is a useful strategy to restrain virus spread as well as the extent of the 

417 lesions observed in animals infected with virulent strains of PRRSV.  

418
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620 Figure captions

621 Fig. 1. Experimental design

622 Fig. 2. Representative photomicrographs of the thymus from a control pig (A; Haematoxylin-eosin, 

623 HE; Bar, 100 µm), a PR11-infected pig dead at 10-14 dpi with a strong disappearance of the 

624 corticomedullary boundary (B; HE; Bar, 100µm; Hassall’s corpuscles are identified with two black 

625 arrows), and a PR40-infected pig dead at 10-14 dpi with a marked interstitial inflammatory infiltrate 

626 of the stroma by abundant neutrophils and mononuclear cells (macrophages, lymphocytes and 

627 plasma cells in a lesser extent) particularly intense at perivascular level is showed (C; HE; Bar, 

628 100µm; a Hassall’s corpuscle is identified with an asterisk). A higher magnification of the 

629 perivascular infiltrate, highlighted with a black dashed line in C, is showed (D; HE; Bar, 50µm).

630 Fig. 3. (A) Counts for PRRSV N protein positive cells in the thymic cortex (blue column), medulla 

631 (red column), stroma (green column) and total (the empty circles represent individual values; the 

632 mean is showed as a black solid line). (B) N protein positive cells (arrows) in the thymic cortex of a 

633 PR11-infected pig that died at 10-14 dpi (IHC, Bar, 50µm). (C) High number of N protein positive 

634 cells in the stroma and in the thymic cortex of a PR40-infected pig that died at 10-14 dpi (IHC, Bar, 

635 50µm). Inset, detail of the cytoplasmic staining against PRRSV N protein in a macrophage from the 

636 stroma of a PR40-infected pig that died at 10-14 dpi (IHC, Bar, 20µm). (D) TUNEL labelling of 

637 tingible body macrophages in the cortex of the thymus of a control animal (TUNEL, Bar, 50µm). 

638 (E) Marked increase of TUNEL labelling in the cortex of a PR11-infected animal at 10-14 dpi, with 

639 a diffuse labelling associated to an intense increase of cell death (TUNEL, Bar, 50µm).

640 Fig. 4. Counts for CD172a (A) and CD163 (B) positive cells in the thymic cortex (blue column), 

641 medulla (red column), stroma (green column) and total (the empty circles represent individual 

642 values; the mean is showed as a black solid line). (C) CD172a positive cells in the thymic medulla 

643 of a PR40-infected animal and killed at 35 dpi (IHC, Bar, 5100µm). (D) An increased number of 

644 CD172a positive cells in the stroma and the cortex of the thymus from a PR11-infected animal that 

645 died at 10-14 dpi (IHC, Bar, 5100µm). Inset, detail of the cytoplasmic staining against CD172a in 



27

646 several macrophages from the stroma of a PR11-infected pig that died at 10-14 dpi (IHC, Bar, 

647 20µm). (E) Scattered CD163 positive cells in the cortex and medulla of the thymus from a PR11-

648 infected animal that died at 10-14 dpi (IHC, Bar, 50µm). (F) Numerous macrophages and tingible 

649 body macrophages within the thymic cortex and stroma of a PR40-infected pig at 10-14 dpi (IHC, 

650 Bar, 50µm). Inset, detail of the cytoplasmic staining against CD163 in macrophages from the 

651 stroma of a PR40-infected pig at 10-14 dpi (IHC, Bar, 20µm).

652 Fig. 5. Counts for CD107a (A) and BA4D5 (B) positive cells in the thymic cortex (blue column), 

653 medulla (red column), stroma (green column) and total (the empty circles represent individual 

654 values; the mean is showed as a black solid line). (C) Numerous tingible body macrophages 

655 immunolabelled against CD107a in the thymic cortex of a control animal at 35 dpi (IHC, Bar, 

656 2100µm). Inset, detail of the cytoplasmic staining against CD107a in a macrophage with 

657 cytoplasmic prolongations in the thymic cortex from the same animal (IHC, Bar, 20µm). (D) 

658 Scattered CD107a positive cells in the cortex and medulla of the thymus from a PR40-infected 

659 animal that died at 10-14 dpi (IHC, Bar, 2100µm). (E) BA4D5 positive cells in the medulla and at 

660 perivascular level in the thymus from a VAC-PR40 animal at the end of the study (IHC, Bar, 

661 250µm). (F) Higher magnification of another field of the thymus from the same animal with a 

662 marked perivascular infiltrate by BA4D5 positive cells (IHC, Bar, 20µm).

663

664
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665 Table 1. Clones, sources and dilutions of the primary antibodies used for the immunohistochemical detection of macrophages markers.

666 N.A.: Not applicable; aProtease Type XIV (Sigma-Aldrich): 8 min at 37 ºC in water bath; bProteinase K (Roche): 15 min at 37 ºC in heat incubator.

667

Specifiticy (clone) Type of 
antibody

Commercial origin Fixative Blocking 
solution

Dilution Antigen retrieval

Anti-PRRSV (clone SDOW17) mAb Rural Technologies Inc., Brookings, SD, 
USA

Formalin BSA 1% 1:500 Protease Type 
XIVa 

TUNEL N.A. Roche Diagnostics, Indianapolis, USA Formalin N.A. N.A. Proteinase Kb

Anti-CD172a (BA1C11) mAb In house, INIA Formalin BSA 1% Neat Citrate pH 3.2

Anti-CD163 (2A10/11) mAb In house, INIA Formalin BSA 1% Neat Citrate pH 3.2

Anti-CD107a (4E9/11) mAb In house, INIA Formalin BSA 1% Neat Citrate pH 3.2

Anti-BA4D5 (BA4D5) mAb In house, INIA Formalin BSA 1% Neat Citrate pH 3.2
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Table 2. Histopathology grading of the thymus of piglets from each experimental group and average number of tingible body macrophages and 

TUNEL positive cells (expressed as the mean ± SD).

 
CON               

(35 dpi)
PR11                

(35 dpi)
PR40          

(35 dpi)
PR11              

(10-14 dpi)
PR40             

(10-14 dpi)  VAC-C VAC-PR40

Grades
0 2/3 - 1/3 - - - 3/5
I - - - - - - 1/5

II 1/3 1/1 2/3 - - 2/2 1/5
III - - - - - - -
IV - - - 3/3 2/2 - -

Tingible body macrophages 9.87 ± 1.79 7 8.87 ± 6.82 ND* ND* 13.1 ± 8.63 10.4 ± 1.79

TUNEL positive cells 54.97 ± 63.40 67.91 43.53 ± 31.07 ND* ND*  53.82 ± 40.20 53.18 ± 34.59

ND*: Not determined due to extensive cell death of thymocytes in the cortex.
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21 Abstract

22 The emergence of “highly pathogenic” isolates of porcine reproductive and respiratory syndrome 

23 virus (HP-PRRSV) has raised new concerns about PRRS control. Cells from the porcine monocyte-

24 macrophage lineage represent the target for this virus, which replicates mainly in the lung, and 

25 especially in HP-PRRSV strains, also in lymphoid organs, such as the thymus. This study aimed at 

26 evaluating the impact of two PRRSV strains of different virulence on thymic macrophages as well 

27 as after heterologous vaccination. After experimental infection with PR11 and PR40 PRRSV1 

28 subtype 1 strains (low and high virulent, respectively) samples from thymus were analysed by 

29 histopathology and immunohistochemistry for PRRSV N protein, TUNEL, CD172a, CD163, 

30 CD107a and BA4D5 expression. Mortality was similar in both infected groups, but lung lesions and 

31 thymus atrophy were more intense in PR40 group. Animals died at 10-14 dpi after PR11 or PR40 

32 infection showed the most severe histopathological lesions, with a strong inflammatory response of 

33 the stroma and extensive cell death phenomena in the cortex. These animals presented an increase 

34 in the number of N protein, CD172a, CD163 and BA4D5 positive cells in the stroma and the cortex 

35 together with a decrease in the number of CD107a positive cells. Our results highlight the 

36 recruitment of macrophages in the thymus, the increase in the expression of CD163 and the 

37 regulation of the host cytotoxic activity by macrophages. However, no marked differences were 

38 observed between PR11- and PR40-infected animals. Heterologous vaccination restrained virus 

39 spread and lesions extent in the thymus of PR40-infected animals.

40

41 Keywords: virulence; PRRSV; macrophages; thymus; cell death.
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42 1. Introduction 

43 Porcine reproductive and respiratory syndrome virus (PRRSV) is a major swine pathogen that 

44 induces severe respiratory symptoms in growing and finishing pigs and reproductive failure in gilts 

45 and sows, causing considerable economic losses worldwide. The genome, of approximately 15 kb 

46 in length, consists of a positive-stranded RNA and contains 11 open reading frames (ORFs), coding 

47 for structural and non-structural proteins, which are subject to insertions and deletions determining 

48 the genetic diversity of the virus (Murtaugh et al., 2010). Recently, the two genotypes of the virus, 

49 type 1 or PRRSV1 (European) and type 2 or PRRSV2 (North American), have been included as 

50 different viral species within the genus Betaarterivirus, particularly Betaartevirus suid 1 species for 

51 PRRSV1 and Betaarterivirus suid 2 species for the PRRSV2, respectively (Gorbalenya et al., 

52 2018). Both viruses present high internal variability, with PRRSV1 being divided into at least four 

53 subtypes (pan-European subtype 1, encompassing different lineages, and East European subtypes 2, 

54 3 and 4) and PRRSV2 into at least nine lineages (Nelsen et al., 1999; Stadejek, et al. 2006, 2013; 

55 Balka et al., 2018). During the last decade, virulent variants of the virus, referred to as highly 

56 pathogenic (HP), have emerged within both PRRSV1 and PRRSV2 (Lunney et al., 2010). These 

57 virulent strains often result in severe clinical signs, higher mortality rates and higher tropism and 

58 viral load in blood and tissues than low virulent PRRSV strains (Tian et al., 2007; Karnychuk et al., 

59 2010; Canelli et al., 2017). Although virulent PRRSV1 strains have been traditionally associated to 

60 subtype 3 strains (Lena and SU1-bel strains), strains with similar characteristics have been 

61 identified within subtypes 1 (13V091, AUT15-33 and PR40/2014 strain) and 2 (BOR59 strain) 

62 (Karniychuk et al., 2010; Morgan et al., 2013; Frydas et al., 2015; Sinn et al., 2016; Canelli et al., 

63 2017; Stadejek et al., 2017).

64

65 The efficacy of modified live virus (MLV) vaccines (PRRSV1 and PRRSV2) have been recently 

66 tested in challenge trials with virulent isolates (Trus et al., 2014; Do et al., 2015; Bonckaert et al., 

67 2016; Canelli et al., 2018). Partial cross-protection of these vaccines against virulent strains has 
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68 been reported under experimental conditions with a reduction of the viremia, the severity of clinical 

69 signs and lesions, and the duration of the clinical phase. Nevertheless, none of the tested vaccines 

70 was able to prevent the transplacental transmission or the respiratory infection. 

71

72 The main cell target for PRRSV replication is the pulmonary alveolar macrophage (PAM) but viral 

73 replication has been also widely reported in other macrophage subpopulations from lungs as well as 

74 from lymphoid organs of infected animals (Duan et al., 1997; Gómez-Laguna et al., 2010; Barranco 

75 et al., 2012). Among lymphoid organs, the thymus particularly plays a central role in the 

76 development of the immune system through the differentiation and maturation of T cells (Pearse et 

77 al., 2006b). PRRSV infection is characterised by an immunosuppression state associated with, 

78 among other factors, atrophy of the thymus and a major decrease in the number of thymocytes in 

79 the cortex with marked differences according to the virulence of the PRRSV strain (Amarilla et al., 

80 2016). Thus, so-called HP-PRRSV strains cause more severe clinical signs, long-lasting viremia, 

81 higher virus level in blood and tissues, and higher frequency of mortality (Lunney et al., 2010); 

82 moreover, these strains predispose piglets to weak cellular immunity together with thymus atrophy, 

83 T cell depletion and impairment of the development of naïve T cells (Han et al., 2017).  

84

85 In a general context, macrophages perform three main functions: antigen presentation, phagocytosis 

86 and synthesis and secretion of cytokines (Geissman et al., 2010). However, the whole range of 

87 functions of thymic macrophages is still nowadays unclear. The macrophage population in the 

88 thymus is evenly distributed in the cortex and in the medulla and is particularly designated, at least, 

89 to phagocytose and remove apoptotic bodies and self-reactive lymphocytes as well as to release 

90 mediators involved in thymocytes maturation (Pearse et al., 2006a). As a myeloid cell, the main 

91 macrophage marker extensively used is CD172a, which is strongly expressed from the early stages 

92 of differentiation onwards (Summerfield et al., 1997). A restricted marker to monocyte and 

93 macrophages is CD163, a member of the family of proteins with scavenger receptor cysteine-rich 
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94 domains (Law et al., 1993). Particularly, CD163 has been identified to be the major receptor for 

95 PRRSV uncoating and genome release (Calvert et al., 2007; Van Breedam et al., 2010), with well 

96 described effects of the deletion of its SRCR5 domain on PRRSV infection (Whithworth et al., 

97 2016; Burkard et al., 2017). CD107a, or lysosomal-associated membrane protein 1 (LAMP-1), 

98 despite not being restricted to macrophages, has been demonstrated to be useful for identifying 

99 macrophages populations in tissue sections, especially, tingible body macrophages in lymphoid 

100 organs as well as macrophages from the thymus cortex and medulla (Bullido et al., 1997; 

101 Domenech et al., 2003). An interesting marker with a restricted expression for the macrophage 

102 linage is the antigen recognized by the monoclonal antibody BA4D5, which shows features that 

103 resemble those of CD68. Thus, this molecule/antigen presents a predominant intracellular location 

104 in phagolysosomes with a low expression on the cell surface and has been detected on macrophages 

105 from the thymus cortex as well as on other macrophages from spleen and lymph nodes (Ezquerra et 

106 al., 2009).

107

108 Considering the role of macrophages in PRRSV replication and on the onset of the host immune 

109 response, the impact of two Italian subtype 1 PRRSV1 strains (PR40/2014 and PR11/2014), with 

110 different in vivo virulence (Canelli et al., 2017), was evaluated in this study. In addition, the effect 

111 of a heterologous vaccination on histopathological lesions as well as on macrophages populations of 

112 the thymus of HP-PRRSV infected animals was examined. 

113

114 2. Materials and Methods

115 2.1. Animals and experimental infection 

116 The in vivo study is part of a large project carried out to investigate the pathogenesis and control of 

117 PRRSV1 strains of differing virulence; materials analysed in the present study were collected from 

118 experiments published elsewhere (Canelli et al., 2017, 2018). Briefly, a total of twelve 4-week-old 

119 conventional pigs were assigned to three different experimental groups, as described in Canelli et 
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120 al. (2017): (i) PR40 group (PR40), with 5 pigs inoculated intra-nasally (IN) with 2 ml, containing 

121 105 TCD50 of PRRSV1 PR40/2014, per pig; (ii) PR11 group (PR11), with 4 piglets inoculated IN 

122 with 2 ml, containing 105 TCD50 of PRRSV1 PR11/2014, per pig; and, (iii) Control group (C), with 

123 3 animals inoculated IN with sterile medium (mock/negative control). In addition, two different 

124 vaccinated groups, described in Canelli et al. (2018), were included: (i) VAC-C: 2 pigs were IM-

125 vaccinated against PRRSV at 4 weeks of age (Porcilis® PRRS, MSD Animal Health; DV strain; 

126 vaccine batch A208AD01) and left uninfected; (ii) VAC-PR40: 6 pigs were IM-vaccinated against 

127 PRRSV and IN infected with PR40 at 35 days post-vaccination (dpv) (day 0 post-inoculation, dpi) 

128 (Fig. 1).

129

130 No relevant pathogens (PRRSV, SIV, PCV2) were detected in the animals before the beginning of 

131 the studies. Animals suffering from severe clinical signs with a fatal prognosis were humanely 

132 euthanized according to standard protocols. All the survivors were humanely euthanized at 35 dpi 

133 (end of the experiment). At necropsy gross pathology was recorded and thymus samples were 

134 collected and fixed in buffered-formalin pH 7.4 for histopathology and immunohistochemical 

135 studies. The experimental design and all the procedures were fully in agreement and approved by 

136 the Ethical Committee and by the Ministry of Health in Italy according to European and National 

137 rules on experimental infection studies and animal welfare.

138

139 2.2. Histopathology and grading of thymus 

140 Four µm tissue sections were stained with haematoxylin and eosin (H&E). The severity of the 

141 lesions in thymus was scored as follows (adapted and modified from Amarilla et al., 2016): (i) 

142 Grade 0, the cortex:medulla ratio (C/M) is about 2:1 with typical histological characteristics of the 

143 thymus; (ii) Grade I, diffuse cortical reduction with focal cortical disappearance, 5–9 tingible body 

144 macrophages/mm2 within the thymic cortex, typical medulla and stroma; (iii) Grade II, focal or 

145 multifocal decrease of C/M (<2:1), decrease of cortical layer with slight proportional increase of the 
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146 stroma and 10–15 tingible body macrophages/mm2 within the thymic cortex; (iv) Grade III, focal to 

147 multifocal blurring of normal corticomedullary demarcation, increase of the stroma, occasional 

148 increase in the number of lymphocytes, mast and plasma cells and ≥ 16 tingible body 

149 macrophages/mm2, with a “starry sky” appearance of the tissue; and, (v) Grade IV, extensive cell 

150 death of cortical thymocytes with complete disappearance of corticomedullary boundary 

151 demarcation and increase of the stroma. 

152

153 Manual quantification of tingible body macrophages in thymic cortex was assessed in 25 non-

154 overlapping, consecutively selected high magnification fields of 0.2 mm2. Results were expressed 

155 as number of cells per mm2.

156

157 2.3. Immunohistochemistry 

158 The Avidin–Biotin–Peroxidase complex technique (ABC Vector Elite, Vector laboratories, USA) 

159 was used for the immunolabelling of PRRSV antigen and the different macrophages markers. 

160 Terminal dUTP Nick End-Labeling (TUNEL) was carried out by using a commercial kit (In Situ 

161 Cell Death Detection Kit, POD, Roche, Germany) following manufacturer’s instructions. Briefly, 4 

162 µm tissue sections were dewaxed and rehydrated in a gradient of ethanol, followed by endogenous 

163 peroxidase inhibition with 3 % H2O2 solution in methanol for 30 minutes (min). After treatment 

164 with different antigen retrieval methods (Table 1), the slides were washed with PBS (pH 7.4) and 

165 incubated for 30 min at room temperature with 100 µl of blocking solution in a humid chamber. 

166 Primary antibodies were incubated overnight at 4 °C in a humid chamber (see dilutions in Table 1 

167 for each antibody), while for the negative controls the primary antibody was replaced by either an 

168 isotype control or by blocking solution. Biotinylated secondary antibody was incubated for 30 min 

169 at room temperature. An avidin-biotin-peroxidase complex (Vector Laboratories) was applied for 

170 1 hour at room temperature in the darkness. Labelling was visualized by application of the 
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171 NovaRED™ substrate kit (Vector Laboratories). Sections were counterstained with Harris’s 

172 haematoxylin, dehydrated and mounted.

173

174 Hybridomas secreting monoclonal antibodies (mAbs) to porcine CD107a (4E9/11, IgG1), CD163 

175 (2A10/11, IgG1), CD172a (BA1C11, IgG1) and BA4D5 (IgG2b) were derived from fusion of 

176 myeloma cells with spleen cells from Balb/c mice immunized with pulmonary alveolar 

177 macrophages. The characterization of these mAbs has been described elsewhere (Bullido et al., 

178 1997; Sánchez et al., 1999; Álvarez et al., 2000; Ezquerra et al., 2009). MAbs were used in the 

179 assays as hybridoma supernatants.

180

181 Labelled cells were analysed in 25 non-overlapping and consecutive high magnification fields of 

182 0.2 mm2. The expression of all markers was manually counted and the results were expressed as the 

183 number of cells per mm2.

184

185 3. Results

186 3.1. Thymus from PR11- and PR40-infected pigs at 10-14 dpi showed strong inflammatory response 

187 of the stroma and extensive cell death phenomena in the cortex

188 The clinical signs and gross lesions have been previously described elsewhere (Canelli et al., 2017, 

189 2018). Mortality rate was similar in the two infected groups, with two and three pigs euthanized due 

190 to welfare conditions in PR40 and PR11 groups, respectively, between 10 and 14 dpi. Lung lesions 

191 were more severe in the PR40 group compared to the PR11 group and consisted of interstitial 

192 pneumonia with multifocal, mottled, tanned appearance of the lungs accompanied, in some cases, 

193 by bronchopneumonia associated to secondary bacterial infections. Atrophy of the thymus was 

194 detected in both infected groups, with an almost complete atrophy of the cervical part of the thymus 

195 in the PR40 group. Control animals did not exhibit significant gross or microscopic lesions.

196
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197 The thymus of the infected animals with any of both viruses (either PR11 or PR40) was 

198 characterised by diffuse cortical reduction, disappearance of the corticomedullary boundary, and, in 

199 some cases, a consistent inflammation of the stroma. The most intense changes were observed in 

200 the thymus from PR11- and PR40-infected pigs that died at 10-14 dpi, which presented extensive 

201 cell death phenomena in the cortex with a strong disappearance of the corticomedullary boundary 

202 (Table 2) (Fig. 2A-2B). In most of these animals, a marked interstitial inflammatory infiltrate of the 

203 stroma by abundant neutrophils and mononuclear cells (macrophages, lymphocytes and plasma 

204 cells in a lesser extent) together with oedema of the connective tissue was also observed (Fig. 2C). 

205 This infiltrate was particularly intense at perivascular area and was associated with intravascular 

206 trafficking of these immune cells (Fig. 2D). 

207

208 3.2. PRRSV N protein positive cells were increased in PR40- and PR11-infected animals at 10-14 

209 dpi mainly associated to the inflammatory foci in the stroma

210 PRRSV N protein was not detected in the thymus of control animals (groups C and VAC-C). 

211 PRRSV antigen was observed in the cytoplasm of macrophages from the thymic cortex and the 

212 stroma, and in a lesser extent in macrophages from the medulla of the thymus of PR40 and PR11 

213 infected animals at 35 dpi (Fig. 3A). Interestingly, PR40 and PR11 infected animals that died 

214 between 10-14 dpi, presented a marked increase in the number of PRRSV positive cells, mainly 

215 associated to a marked infiltrate of PRRSV positive cells within the inflammatory reaction observed 

216 in the stroma of these animals (Fig. 3B-3C). 

217

218 In case of vaccinated PR40-inoculated animals (VAC-PR40), only 3 out of 5 animals presented 

219 PRRSV positive cells with a similar frequency and distribution than non-vaccinated PR40-

220 inoculated animals at 35 dpi.

221

222 3.3. TUNEL labelling was increased in association to an intense increase of cell death in the cortex
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223 TUNEL labelling was mainly observed within tingible body macrophages in phagocytised non-fully 

224 degraded cellular fragments and occasionally in free apoptotic bodies (Fig. 3D). TUNEL staining 

225 was mostly observed in the cortex and, to a lesser extent, in the medulla of the thymus of all piglets. 

226 No differences were observed either between infected animals and controls or among infected 

227 groups at 35 dpi (Table 2). However, a marked increase of TUNEL labelling was observed in the 

228 cortex of PR11 and PR40 infected animals at 10-14 dpi which showed a diffuse labelling associated 

229 to an intense increase of cell death which occupied most of the cortex (Fig. 3E). 

230

231 3.4. CD172a positive cells were increased in the thymic cortex and stroma of PR11- and PR40-

232 infected pigs at 10-14 dpi

233 Labelling against CD172a was mainly observed in the cell surface and cytoplasm of monocytes and 

234 macrophages as well as, in a lesser extent, in granulocytes and occasionally in dendritic-like cells 

235 (Fig. 4D). Tingible body macrophages did not stain for this marker. CD172a positive cells were 

236 more numerous in the thymic medulla than in the cortex and stroma of control animals. The thymus 

237 of the animals infected with PR11 and PR40 and killed at 35 dpi showed a similar distribution of 

238 CD172a positive cells than the control group (Fig. 4A). Interestingly, the expression of CD172a in 

239 PR11- and PR40-infected pigs that died at 10-14 dpi was dramatically different; specifically, these 

240 animals presented a major increase of positive cells in the stroma and minor in the cortex, together 

241 with a decrease of CD172a positive cells in the medulla (Fig. 4A). These changes were more 

242 pronounced in PR40 infected animals which presented a stunning increase in the number of 

243 CD172a positive cells in the stroma (Fig. 4A-4D). In addition, a marked increase in the number of 

244 intravascular CD172a positive cells was observed within blood vessels of the cortex, medulla and 

245 stroma from both PR11 and PR40 infected animals dead at 10-14 dpi and from PR40 infected 

246 animals killed at 35 dpi (data not shown). 
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248 Both vaccinated groups (VAC-C and VAC-PR40) showed a similar distribution of CD172a positive 

249 cells than control animals (CON), with a mild increase in the cortex and medulla of VAC-PR40 

250 animals (Fig. 4A). 

251

252 3.5. A general increase of CD163 positive cells in cortex, medulla and stroma as well as at 

253 intravascular level was observed in the PR40 group (10-14 dpi)

254 CD163 positive immunolabelling was visualized in the cytoplasm and cell surface of positive 

255 macrophages. Tingible body macrophages from the cortex were also stained with CD163 antibody 

256 (Fig. 4F). The highest number of cells expressing CD163 was found in the thymic cortex for all 

257 groups. In the control group, the expression of CD163 was also detected in the medulla and, 

258 secondly, in the stroma. A general increase in the number of CD163 positive cells was observed in 

259 the cortex and in the stroma of infected animals; particularly, in PR40-infected pigs that died at 10-

260 14 dpi, which showed an overall enhancement in the three compartments (cortex, medulla and 

261 stroma) together with a moderate increase in the frequency of intravascular CD163 positive cells in 

262 the cortex and the medulla (Fig. 4B-4F).

263

264 No changes were observed in the distribution of CD163 positive cells in the thymus of VAC-C and 

265 VAC-PR40 animals (Fig. 4B).

266

267 3.6. The number of CD107a positive cells was decreased in all infected animals

268 The staining for CD107a was mainly observed in the cytoplasm of macrophages, being also 

269 observed in tingible body macrophages from the cortex (Fig. 5C). The number of CD107a positive 

270 cells in all experimental groups, except for the control group (CON), was lower than the one 

271 detected for CD172a and CD163 positive cells (Fig. 5A). In control animals, the expression of 

272 CD107a was mainly found in the thymic cortex, with lower expression in the medulla and only few 

273 positive cells in the stroma. A general decrease in the number of CD107a positive cells was 
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274 observed in all infected animals with only a moderate increase being observed in the stroma of 

275 PR11- and PR40-infected animals at 10-14 dpi (Fig. 5A-5D). 

276

277 Interestingly, vaccinated groups (VAC-C and VAC-PR40) presented a similar trend among them 

278 showing the lowest number of CD107a positive cells (Fig. 5A). 

279

280 3.7. A mild increase of BA4D5 positive cells was observed in PR11- and PR40-infected pigs at 10-

281 14 dpi and in vaccinated groups

282 The staining for BA4D5 was very low in all experimental groups being observed in the cytoplasm 

283 of macrophages of cortex, medulla and stroma of the thymus (Fig. 5B). Perivascular positive cells 

284 were found in the thymic medulla of some animals, whereas intravascular positive cells were 

285 scattered (Fig. 5E-5F). No changes were observed in PR11- and PR40-infected animals at 35 dpi 

286 when compared with control animals. The animals infected with PR11 and PR40 that died at 10-14 

287 dpi showed an increase of BA4D5 positive cells in the cortex and in a lesser extent in the stroma 

288 (Fig. 5B). Vaccinated groups displayed an increase in the number of positive cells to this marker in 

289 the medulla and in the stroma, being more pronounced in the VAC-C group (Fig. 5B).

290

291 4. Discussion

292 Porcine Reproductive and Respiratory Syndrome (PRRS) is one of the main viral diseases in pig 

293 production, causing huge economic losses to the industry. A high genetic variability has been 

294 reported for PRRSV, leading to the current recognition of two independent viral species (PRRSV1 

295 and PRRSV2) (Adams et al., 2017) with also a marked intraspecies variability (Stadejek et al., 

296 2008; Stadejek et al., 2013). During the last decade, several PRRS outbreaks characterised by 

297 severe clinical signs as well as high morbidity and mortality rates have been reported in many 

298 countries from Europe and Southeast Asia (Lunney et al., 2010). Thus, Canelli and co-authors 

299 (2017) characterised the strain PR40/2014, an Italian variant of the so-called HP-PRRSV1 subtype 
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300 1. According to the severe clinical signs and lesions observed in HP-PRRSV outbreaks as well as 

301 the partial cross-protection conferred by commercial MLV vaccines, the study of the host-pathogen 

302 interaction, with special emphasis on the role of target and primary lymphoid organs, such as the 

303 thymus, is imperative. Therefore, the present study describes the impact of the infection with 

304 PRRSV1 strains of different virulence, namely PR11/2014 and PR40/2014, on the macrophages 

305 population of the thymus. Furthermore, the effect of a heterologous vaccination in the thymus of 

306 animals challenged with the virulent strain PR40 was examined. 

307

308 Thymic atrophy was observed in both PR11- and PR40-infected animals with more intense changes 

309 in animals that died at 10-14 dpi. Microscopically, no differences were observed among both 

310 infected groups, which presented disappearance of the corticomedullary boundary, extensive cell 

311 death phenomena in the cortex and a stunning oedema and interstitial infiltration of the stroma at 

312 10-14 dpi. However, the highest number of PRRSV positive cells was observed in a PR40-infected 

313 animal dead at 10 dpi. Our results agree with previous reports that describe a trend for highly 

314 pathogenic strains of the virus to highly replicate in the thymus (Butler et al., 2014), but contrast 

315 with the thymus atrophy, cortical T cell depletion and consequent dysfunction of host immune 

316 regulation associated to the virulence of the PRRSV strain (Amarilla et al., 2016; Han et al., 2017). 

317 These discrepancies may be associated to the intrinsic differences between each experimental 

318 setting as well as to the criteria for classifying a PRRSV strain as a virulent strain. Thus, exhaustive 

319 criteria need to be established to categorize the virulence of PRRSV strains.

320

321 PRRSV is well known by its ability to induce cell death, being TUNEL labelling widely used for 

322 the assessment of this goal (He et al., 2012; Gómez-Laguna et al., 2013; Amarilla et al., 2016). In 

323 the present study, TUNEL staining was mainly found in cellular fragments phagocytised by tingible 

324 body macrophages and apoptotic bodies from the thymic cortex at 35 dpi. Noteworthy, pigs 

325 infected with PR11 and PR40 strains that died at 10-14 dpi presented marked cell death phenomena 
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326 in the cortex (Grade IV) with an intense and diffuse TUNEL labelling. These animals also showed a 

327 higher number of PRRSV positive cells compared with infected animals at 35 dpi. The severity of 

328 cell death phenomena in these animals together with the number and location of PRRSV positive 

329 cells support the role of both direct and indirect induction of cell death by PRRSV (Rodríguez-

330 Gómez et al., 2013).

331

332 The remarkable inflammatory reaction observed in the stroma of the thymus at 10-14 dpi was 

333 associated with a high number of PRRSV positive cells both in the cortex and in the stroma of the 

334 thymus. These findings suggest that during the acute phase of the disease, PRRSV may be able to 

335 actively replicate and disseminate, reaching other organs besides lungs, such as the thymus, through 

336 haematogenous dissemination. This hypothesis is also supported by the peak of viremia at 10 dpi 

337 (PR11 group) and 7 dpi (PR40 group) detected in a parallel study by Canelli and co-authors (2017).

338

339 PR40-vaccinated animals (VAC-PR40) presented minimal histopathological lesions in the thymus 

340 when compared with vaccinated control animals (VAC-C). In addition, a low number of PRRSV 

341 positive cells was detected in the thymus of vaccinated and challenged animals. These results agree 

342 with the partial protection conferred by MLV vaccines previously reported by other authors (Trus et 

343 al., 2014; Do et al., 2015; Bonckaert et al., 2016; Canelli et al., 2018) and highlight the role of 

344 heterologous vaccination in controlling the extension of the lesions and the spread of the virus in 

345 animals infected with a virulent PRRSV strain. 

346  

347 Macrophages are a central myeloid component of the innate immune system. They are not only 

348 activators but also one of the main regulators of the inflammation, being implicated in its resolution 

349 and in triggering off the reparative process. Herein, the macrophage population of the thymus was 

350 examined by CD172a, CD163, CD107a and BA4D5 immunolabelling. These markers have been 

351 previously used in many studies to characterise porcine tissue macrophages (Bullido et al., 1997; 
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352 Domenech et al., 2003; Pérez et al., 2008). CD172a is one of the markers most commonly used and 

353 identifies myeloid cells from precursor stages until cellular differentiation (Summerfield et al., 

354 1997). CD163, recognised as a major receptor for PRRSV (Calvert et al., 2007), play also a role as 

355 a scavenger receptor and in the induction of the anti-inflammatory mediators haptoglobin and IL-10 

356 (Philippidis et al., 2004). Moreover, CD107a is directly related to the cytotoxic activity and has 

357 been demonstrated to be a useful marker of macrophage populations in tissues (Bullido et al., 1997; 

358 Aktas et al., 2008).

359

360 Our results showed no differences in CD172a immunolabelling between control group, infected 

361 animals at 35 dpi and vaccinated animals. However, an enhancement in the number of CD172a 

362 positive cells was observed in the cortex and especially in the stroma of infected animals at 10-14 

363 dpi. These changes were more pronounced in PR40-infected pigs which also presented positive 

364 cells within the blood vessels. The number of CD163 positive cells was increased in infected 

365 animals throughout the study, and particularly in PR40-infected pigs at 10-14 dpi which displayed a 

366 general increase of CD163 labelling in all the compartments (cortex, medulla and stroma) with 

367 abundant intravascular CD163 positive cells. The increase in the number of CD172a and CD163 

368 positive cells observed in both infected groups at 10-14 dpi was associated with the marked 

369 inflammatory infiltrate of the stroma of the thymus as well as with the extensive cell death of 

370 cortical thymocytes. Thus, monocytes/macrophages may be migrating from the bloodstream and 

371 other tissues to the thymus through chemotaxis from inflammatory foci as well as from a high 

372 demand of phagocytosis of cell death debris in the thymic cortex. The identification of intravascular 

373 CD172a and CD163 positive cells observed in the present study supports this hypothesis. 

374 Furthermore, the increase in the number of CD163 positive cells may also get along with the 

375 induction of this surface molecule in resident tissue macrophages from the thymus. Interestingly, 

376 the induction of CD163 has been proved in CD163 negative monocytes from bone marrow after in 

377 vitro PRRSV infection (Fernández-Caballero et al.,2018)  The higher frequency of CD163 positive 
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378 cells observed in both infected groups along our study may answer to different strategies of the 

379 virus: (1) to increase the number of susceptible cells to virus replication (Patton et al. 2009); (2) to 

380 allow PRRSV persistence in the thymus (Patton et al. 2009); (3) to lead to the modulation of the 

381 inflammatory and immune response through the induction of haptoglobin and IL-10 (Philippidis et 

382 al., 2004)  or (4) to increase the phagocytic activity of macrophages through the binding of the 

383 scavenger receptor to Gram-positive and Gram-negative bacteria (Fabriek et al., 2009).

384

385 CD107a immunolabelling was mainly found in the thymic cortex in the control group, while a 

386 generalised decrease in the frequency of positive cells was observed in infected animals, with the 

387 only exception of infected animals at 10-14 dpi, which presented a mild increase of CD107a 

388 positive cells in the stroma. Compared with the other markers, the number of BA4D5 positive cells 

389 was much lower, with an enhancement in the number of positive cells mainly in the cortex of both 

390 infected groups at 10-14 dpi and in a lesser extent in the thymic medulla of vaccinated animals. The 

391 decrease in the number of CD107a positive cells together with the increase in the number of 

392 BA4D5 positive cells highlight different mechanisms of regulation of the cytotoxic activity not only 

393 in infected pigs but also in vaccinated animals, which may be potentially involved in the 

394 modulation of the host immune response. BA4D5 antibody is thought to be specific for porcine 

395 CD68, which is mainly expressed by cells from the monocyte lineage, by circulating macrophages 

396 and by tissue macrophages (Taylor et al., 2005). Among other functions CD68 plays a role in the 

397 cytotoxic activity, with a predominant intracellular location in phagolysosomes (Kurushima et al., 

398 2000); phagocytic activity, associated to the scavenger receptor family and promoting cellular 

399 debris clearance (Taylor et al., 2005) and mediating the recruitment and activation of macrophages 

400 through binding to specific lectins and selectins (Song et al., 2011). In our study, the increase in the 

401 number of perivascular and intravascular BA4D5 positive cells observed in animals from both 

402 infected groups at 10-14 dpi as well as in vaccinated animals support the potential role of this 

403 molecule in macrophages recruitment observed mainly in infected pigs at 10-14 dpi.
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404

405 The main evidence observed in the present work was the presence of severe histopathological 

406 lesions in the thymus of the animals infected with PR11 and PR40 PRRSV strains that died at 10-14 

407 dpi, and the increase in the number of macrophages in the different compartments of the thymus. 

408 The different markers used in this study allow us identifying the recruitment of macrophages 

409 associated to the strong and early inflammatory response in the stroma of the thymus, the increase 

410 in the expression of the major receptor of PRRSV and the regulation of the host cytotoxic activity 

411 by macrophages. Interestingly, no marked differences were observed between the low virulent 

412 PR11 and the virulent PR40 strains used in this study. Our results give some light to the 

413 dysregulation of the host immune response by PRRSV and how the infection of the macrophage 

414 population during the early phases of the disease may influence the decrease of the T cell 

415 population, already demonstrated in other studies (Canelli et al., 2017). Finally, our results point out 

416 that heterologous vaccination is a useful strategy to restrain virus spread as well as the extent of the 

417 lesions observed in animals infected with virulent strains of PRRSV.  

418
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620 Figure captions

621 Fig. 1. Experimental design

622 Fig. 2. Representative photomicrographs of the thymus from a control pig (A; Haematoxylin-eosin, 

623 HE; Bar, 100 µm), a PR11-infected pig dead at 10-14 dpi with a strong disappearance of the 

624 corticomedullary boundary (B; HE; Bar, 100µm; Hassall’s corpuscles are identified with two black 

625 arrows), and a PR40-infected pig dead at 10-14 dpi with a marked interstitial inflammatory infiltrate 

626 of the stroma by abundant neutrophils and mononuclear cells (macrophages, lymphocytes and 

627 plasma cells in a lesser extent) particularly intense at perivascular level is showed (C; HE; Bar, 

628 100µm; a Hassall’s corpuscle is identified with an asterisk). A higher magnification of the 

629 perivascular infiltrate, highlighted with a black dashed line in C, is showed (D; HE; Bar, 50µm).

630 Fig. 3. (A) Counts for PRRSV N protein positive cells in the thymic cortex (blue column), medulla 

631 (red column), stroma (green column) and total (the empty circles represent individual values; the 

632 mean is showed as a black solid line). (B) N protein positive cells (arrows) in the thymic cortex of a 

633 PR11-infected pig that died at 10-14 dpi (IHC, Bar, 50µm). (C) High number of N protein positive 

634 cells in the stroma and in the thymic cortex of a PR40-infected pig that died at 10-14 dpi (IHC, Bar, 

635 50µm). Inset, detail of the cytoplasmic staining against PRRSV N protein in a macrophage from the 

636 stroma of a PR40-infected pig that died at 10-14 dpi (IHC, Bar, 20µm). (D) TUNEL labelling of 

637 tingible body macrophages in the cortex of the thymus of a control animal (TUNEL, Bar, 50µm). 

638 (E) Marked increase of TUNEL labelling in the cortex of a PR11-infected animal at 10-14 dpi, with 

639 a diffuse labelling associated to an intense increase of cell death (TUNEL, Bar, 50µm).

640 Fig. 4. Counts for CD172a (A) and CD163 (B) positive cells in the thymic cortex (blue column), 

641 medulla (red column), stroma (green column) and total (the empty circles represent individual 

642 values; the mean is showed as a black solid line). (C) CD172a positive cells in the thymic medulla 

643 of a PR40-infected animal and killed at 35 dpi (IHC, Bar, 50µm). (D) An increased number of 

644 CD172a positive cells in the stroma and the cortex of the thymus from a PR11-infected animal that 

645 died at 10-14 dpi (IHC, Bar, 50µm). Inset, detail of the cytoplasmic staining against CD172a in 
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646 several macrophages from the stroma of a PR11-infected pig that died at 10-14 dpi (IHC, Bar, 

647 20µm). (E) Scattered CD163 positive cells in the cortex and medulla of the thymus from a PR11-

648 infected animal that died at 10-14 dpi (IHC, Bar, 50µm). (F) Numerous macrophages and tingible 

649 body macrophages within the thymic cortex and stroma of a PR40-infected pig at 10-14 dpi (IHC, 

650 Bar, 50µm). Inset, detail of the cytoplasmic staining against CD163 in macrophages from the 

651 stroma of a PR40-infected pig at 10-14 dpi (IHC, Bar, 20µm).

652 Fig. 5. Counts for CD107a (A) and BA4D5 (B) positive cells in the thymic cortex (blue column), 

653 medulla (red column), stroma (green column) and total (the empty circles represent individual 

654 values; the mean is showed as a black solid line). (C) Numerous tingible body macrophages 

655 immunolabelled against CD107a in the thymic cortex of a control animal at 35 dpi (IHC, Bar, 

656 20µm). Inset, detail of the cytoplasmic staining against CD107a in a macrophage with cytoplasmic 

657 prolongations in the thymic cortex from the same animal (IHC, Bar, 20µm). (D) Scattered CD107a 

658 positive cells in the cortex and medulla of the thymus from a PR40-infected animal that died at 10-

659 14 dpi (IHC, Bar, 20µm). (E) BA4D5 positive cells in the medulla and at perivascular level in the 

660 thymus from a VAC-PR40 animal at the end of the study (IHC, Bar, 20µm). (F) Higher 

661 magnification of another field of the thymus from the same animal with a marked perivascular 

662 infiltrate by BA4D5 positive cells (IHC, Bar, 20µm).
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665 Table 1. Clones, sources and dilutions of the primary antibodies used for the immunohistochemical detection of macrophages markers.

666 N.A.: Not applicable; aProtease Type XIV (Sigma-Aldrich): 8 min at 37 ºC in water bath; bProteinase K (Roche): 15 min at 37 ºC in heat incubator.

667

Specifiticy (clone) Type of 
antibody

Commercial origin Fixative Blocking 
solution

Dilution Antigen retrieval

Anti-PRRSV (clone SDOW17) mAb Rural Technologies Inc., Brookings, SD, 
USA

Formalin BSA 1% 1:500 Protease Type 
XIVa 

TUNEL N.A. Roche Diagnostics, Indianapolis, USA Formalin N.A. N.A. Proteinase Kb

Anti-CD172a (BA1C11) mAb In house, INIA Formalin BSA 1% Neat Citrate pH 3.2

Anti-CD163 (2A10/11) mAb In house, INIA Formalin BSA 1% Neat Citrate pH 3.2

Anti-CD107a (4E9/11) mAb In house, INIA Formalin BSA 1% Neat Citrate pH 3.2

Anti-BA4D5 (BA4D5) mAb In house, INIA Formalin BSA 1% Neat Citrate pH 3.2
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1627
1628
1629
1630
1631
1632
1633
1634
1635
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1642
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1644
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1646
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Table 2. Histopathology grading of the thymus of piglets from each experimental group and average number of tingible body macrophages and 

TUNEL positive cells (expressed as the mean ± SD).

 
CON               

(35 dpi)
PR11                

(35 dpi)
PR40          

(35 dpi)
PR11              

(10-14 dpi)
PR40             

(10-14 dpi)  VAC-C VAC-PR40

Grades
0 2/3 - 1/3 - - - 3/5
I - - - - - - 1/5

II 1/3 1/1 2/3 - - 2/2 1/5
III - - - - - - -
IV - - - 3/3 2/2 - -

Tingible body macrophages 9.87 ± 1.79 7 8.87 ± 6.82 ND* ND* 13.1 ± 8.63 10.4 ± 1.79

TUNEL positive cells 54.97 ± 63.40 67.91 43.53 ± 31.07 ND* ND*  53.82 ± 40.20 53.18 ± 34.59

ND*: Not determined due to extensive cell death of thymocytes in the cortex.
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acclimatation
inoculation
(CON, PR11, PR40)

0 dpi- 6 dpi

4 weeks-old

35 dpi10-14 dpi*

*humanely killing of animals due to animal welfare issues

70 dpi

acclimatation
vaccination
(VAC-C, VAC-PR40)

0 dpi- 6 dpi

4 weeks-old

35 dpi

inoculation
(VAC-PR40)










