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A hybrid metaheuristic routing 1 

algorithm for low-level picker-to-part 2 

systems 3 

Abstract 4 

An application of an adapted Harmony Search (HS) algorithm is proposed in this study in order to 5 

minimize manual warehouses’ pickers travel distance. Firstly, the distance matrix has been determined 6 

through a hybrid algorithm, and then HS is used to compute the pickers' travel distance, developing a 7 

MATLAB® simulation model. This model performance is tested on twenty-five scenarios, resulting from 8 

variable length of the order pick lists and different manual storage configurations. Thirty picklists are 9 

evaluated for each scenario, for a total of 750 simulations. The results provided by the algorithm, 10 

compared with those returned by a metaheuristic algorithm and two heuristic routing policies, suggest 11 

that HS provides better outputs results than the remaining algorithms. The algorithm is also very efficient 12 

from a computational perspective, which allows marking out the pickers route in real-time.  13 

Keywords: picking; manual warehouse; routing; travel distance; Floyd-Warshall; Harmony Search. 14 

1 Introduction 15 

Warehouses are typically used for storing or buffering (de Koster, Le-Duc & Roodbergen, 2007) raw 16 

materials, WIP, products, consisting of different areas (Roodbergen, Sharp & Vis, 2008; Cao, Jiang, Liu 17 

& Jiang, 2018).  Supply chain costs are influenced by essential warehouse management activities (Pan, 18 

Shih & Wu, 2015). Logistic areas such as shipping, warehousing, receiving, and order picking are crucial 19 

to each supply chain (van Gils, Ramaekers, Caris & de Koster, 2018). Among warehouses processes, 20 

order picking is the most decisive, as a matter of fact, engraves the total operating costs for  50-70% 21 

(Isler, Righetto & Morabito, 2016; Henn & Schmid, 2013; Accorsi, Manzini & Bortolini, 2012; Petersen 22 

& Aase, 2004; Hsieh & Tsai, 2006). Typically, a customer’s order is converted into a pick list, where 23 

the items’ location, number, and the picking sequence are detailed. In a manual process, a picker moves 24 

into the warehouse, picking and transporting the items from stock, till the central location for packaging 25 

and distribution (Hall, 1993; Marchet, Melacini & Perotti, 2015). Among the activities of this process, 26 

traveling is the dominant component. Furthermore, travel time has no value for the picking process and 27 

is only a cost in terms of a labor hour. Hence, minimizing it is a suitable way for improving the order 28 

picking performance (Lu, McFarlane, Giannikas & Zhang, 2016). Routing policies sequence the picklist 29 
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items to minimize travel times (Roodbergen, Sharp & Vis, 2008). In particular, the pickers’ routing 30 

through a warehouse is a particular NP-hard traveling salesman problem (TSP) case in which travel is 31 

restricted to following aisles (Hall, 1993). In single block storage, different heuristic procedures exist 32 

for routing order pickers. In particular, six different strategies – Traversal (also known as S-shape), 33 

Return, Midpoint, Largest gap, Combined and Optimal – occur and vary from basic to structured 34 

(Petersen, 1997; Dukić & Oluić, 2014). However, although the procedures are very flexibles and simple, 35 

optimization algorithms are always the core research (Lu, McFarlane, Giannikas & Zhang, 2016; 36 

Petersen, 1999). Optimization problems come up with Heuristic algorithms to find problems better 37 

solutions, even if it is not sure to get the optimum (Raouf & Metwally, 2013). Heuristic algorithms are 38 

overcome from metaheuristic one, literally intended to find solutions using higher-level techniques 39 

(Yang, 2009).  40 

For the TSP, few precise algorithms can identify the optimal solution, and, in any case, these algorithms 41 

only apply under specific conditions (De Santis, Montanari, Vignali & Bottani, 2018). Nonetheless, 42 

(Bouzidi & Riffi, 2014) presented a metaheuristic HS adapted to solve the TSP efficiently. Indeed, the 43 

study stated the adaptation efficacy of the HS algorithm related to other methods for solution quality, 44 

research time, and results in improvement (i.e., reduction in the percentage of errors). Downstream of 45 

these studies, this work proposes an adaptation of the HS metaheuristic algorithm in a manual warehouse 46 

to show the adaptability of this Metaheuristic algorithm to pickers’ time problem. By comparing the 47 

output elaborated by the adapted HS algorithm through the results of the WWO algorithm developed by 48 

Bottani, Rinaldi, Montanari, Murino & Centobelli (2016) and with two heuristic algorithms, the paper 49 

will also establish that the proposed identify the best pickers path and is computational efficiently. 50 

In the remainder of this paper, a deep literature analysis has been conducted about the optimization of 51 

the routing manual warehouses, contextualizing the picking process application based on the HS 52 

algorithm implementation discussing the most critical aspects in the literature.  Then the traditional HS 53 

metaheuristic algorithm is described. Hence the designed framework is presented and a numerical 54 

example is also proposed to detail the computational procedure in a simple scenario fully.  Subsequently 55 

the approach is applied to various more complex warehouse configurations to evaluate its capability to 56 

get better solutions to the defined problem, and the results returned are discussed. Finally, the study's 57 

key findings, discussing the implications, limitations, and suggestions for future research studies are 58 

summerized. 59 

2 Literature analysis 60 

Routing policies state the order sequence used by the picker to take the requested items off (Grosse & 61 

Glock, 2015). Routing order pickers can easily be interpreted as an alternative to the NP-hard TSP, and 62 

indeed, general TSP model formulations are used for the picking problem (Scholz, Henn, Stuhlmann & 63 

Wäscher, 2016). In simple warehouse layout, fast and exact algorithms for optimal route subsist whilst  64 
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for complex storage configurations, no exact algorithm is achievable (Scholz & Wäscher, 2017; Theys 65 

et  al. 2010). The first exact approach was proposed by Ratliff & Rosenthal (1983) using dynamic 66 

programming and is valid for a single block warehouse. A 50-aisle problem can be solved in about 1 67 

minute, and the picking list size does not influence much on the solution time using this procedure. 68 

Nowadays, optimal routes can be designated in less than 1 second (Tarczynski, 2013). In order to 69 

minimize the pickers travel distance  in a warehouse, heuristic algorithms are mostly used, e.g., the so-70 

called S-shape (Bahrami, Aghezzaf & Limere, 2017; Roodbergen & de Koster, 2001a). Moving from 71 

this consideration, de Koster & Der Poor (1998) have compared the performance of heuristic algorithms 72 

and the optimal one. They found that the algorithm of Ratliff & Rosenthal (1983) can be modified in 73 

such a way that shortest order picking routes can be found both in centralized and decentralized 74 

warehouses. The extended algorithm optimizes in average 25%  per travel time route. Roodbergen & de 75 

Koster (2001b) have constructed an algorithm, where aisle is variable for the front, the rear, and in the 76 

middle, thanks to a cross-aisle.  77 

For difficult layout warehouse configurations, don’t exist exact algorithms because the dynamic 78 

programming problem is not easy to be generalized for two or more cross-aisles. As a result, heuristic 79 

algorithms with added cross-aisle have been found (De Santis et  al. 2018, Hall 1993). Theys et al. 80 

(2010) have studied the order pickers’ route in warehouses with multi parallel aisle. The authors have 81 

reformed the TSP applying  the Lin-Kernighan-Helsgaun algorithm and reported a 47% lower distance 82 

route compared to traditional TSP heuristics. 83 

As mentioned above, metaheuristics are intended to find solutions using higher-level modern 84 

techniques. Some metaheuristic algorithms have been adapted and applied in the picking problem. To 85 

be more precise, Bottani, Cecconi, Vignali & Montanari (2012) have focused on items reallocation to 86 

minimize the pickers’ path. In particular, the authors formulated a Genetic Algorithm for a new items’ 87 

allocatio. Batch picking and picker routing problem have been jointly solved by Cheng, Chen, Chen & 88 

Yoo (2015) through an innovative hybrid-algorithm consisting of the PSO and the ACO algorithms. The 89 

PSO found the best batch picking strategy by minimizing the sum of travel distances, while the ACO 90 

searched for the most effective path for each batch. Wisittipanich & Kasemset (2015) elaborated two 91 

innovative metaheuristic algorithms – Differential Evolution (DE) and Global Local and Near-Neighbor 92 

Particle Swarm Optimization (GLNPSO) – to address warehouse cell optimization in order to minimize 93 

the entire travel distances to fill the given picking list. Bottani, Rinaldi, Montanari, Murino & Centobelli 94 

(2016) have proposed the more recent WWO algorithm (Zheng, 2015) for identifying the optimal picker 95 

routing in a rectangular warehouse. A MATLAB® model was used to optimize the adapted WWO 96 

algorithm. The authors demonstrated that this study identifies efficiently the shortest pickers’ route. 97 

Cortés et. al. (2017) have formulated, solving the picking routing problems in medium and large 98 

distribution centres. Two TS-hybrid added to a general TS have implemented. The statistical analysis 99 

showed that the two-hybrid algorithms presented better results than TS and SA. De Santis et al. (2018) 100 
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introduced an algorithm to optimize the pickers’ routing in warehouses. The FW-ACO algorithm 101 

combined the ACO metaheuristic and the Floyd-Warshall (FW) algorithm. The authors concluded that 102 

this study added excellent results related to other studies. 103 

Öztürkoğlu & Hoşer (2017; 2019) have proposed the HS algorithm in the picking field; however, these 104 

studies did not focus on the routing problem. Instead, the authors have presented a layout design problem 105 

for composite warehouses. The HS algorithm finds out the tunnel position minimizing the average picker 106 

travel time in a randomized storage policy case. The authors have used the Harmony Search algorithm 107 

since more adaptable for design best solutions (Saka et al.2011). 108 

Because metaheuristic algorithms provide better results than traditional techniques and HS algorithm in 109 

picking context is poorly discussed, this research focuses on implementing this metaheuristic algorithm 110 

for the routing problem and  to optimize the travel distance and the computational time. 111 

3 The HS algorithm 112 

The HS algorithm (Geem, Kim & Loganathan 2001) is a metaheuristic population-based method able 113 

to solve hard and combinatorial or discrete optimization problems (Mansor, Abas, Shibghatullah & 114 

Rahman, 2017). HS follows the musical process of a musician who is searching for a perfect harmony 115 

(Lee & Geem, 2005). Musical harmony reflects the solution vector, while the musician's improvisations 116 

reflect the local/global search schemes followed by the algorithm during the optimization. When 117 

improvising, a musician can: 1) repeat a famous tune exactly from his/her memory; 2) play something 118 

similar to that tune, again on the basis of its memory; or 3) compose a new set of notes randomly. These 119 

three processes can be translated into as many options in a quantitative optimization process, namely: 120 

1) the usage of harmony memory (HM); 2) the process of pitch adjusting; and 3) randomization (Yang, 121 

2009; Geem, Kim & Loganathan, 2001).  122 

The steps for the application of the HS algorithm are as follows:  123 

Step 1. Initialization of the problem and parameters setting: harmony memory size (HMS), 124 

harmony memory considering rate (HMCR), pitch adjusting rate (PAR) and number of 125 

improvisations (NI); 126 

Step 2. Initialization of the HM; 127 

Step 3. Improvisation of a new harmony from HM on the basis of memory considerations, pitch 128 

adjustments, and random selection; 129 

Step 4. Inclusion of the newly generated harmony in HM if it performs better than the worst 130 

harmony; 131 

Step 5. If termination criteria are not satisfied, return to Step 3. 132 

The overall scheme of the HS algorithm is shown in Figure 1. 133 

Insert Figure 1 134 
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HS algorithm was very appropriate to optimize problems like job shop scheduling (Wanga, Pan & 135 

Tasgetiren, 2011), university programs formulation (Al-Betar, Khader & Zaman, 2012; Shahrakia & 136 

Ebrahimib, 2015) and network design (Liu, Yu & Li, 2012; Baskan, 2014; Geem, Tseng & Williams, 137 

2009). 138 

3.1 Problem initialization and parameter setting 139 

For a minimization problem, the problem is formulated as follows: 140 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥)  141 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥𝑖 ∈ 𝑋𝑖 , 𝑖 = 1,2,… ,𝑁        (1) 142 

where: 143 

𝑓(𝑥) is the objective function; 144 

𝑥 is a possible solution which typically consists in 𝑁 decision variables (𝑥𝑖); 145 

𝑋𝑖 denotes the possible range of values for each variable, i.e.  146 

𝑋𝑖 = {𝑥𝑖(1), 𝑥𝑖(2), … , 𝑥𝑖(𝑘)} for discrete decision variables (𝑥𝑖(1) < 𝑥𝑖(2) < ⋯ <147 

𝑥𝑖(𝐾)); or 148 

𝑥𝐿 𝑖 ≤ 𝑋𝑖 ≤ 𝑥𝑈 𝑖 for continuous decision variables. In this case, 𝑥𝐿 𝑖 and 𝑥𝑈 𝑖 are the 149 

lower and upper bounds for each decision variable, respectively; 150 

𝐾 is the number of possible values for a discrete variable. 151 

As far as the remaining HS parameters are concerned, HMS is the number of solution vectors (i.e. the 152 

total number of members in the population) in the HM. HMCR is instead a parameter of the 153 

improvisation process, used to determine whether the value of a decision variable is to be selected for 154 

the solution stored in the HM or randomly chosen from the available range of possible values. PAR is 155 

used to determine whether the decision variables are to be adjusted to a neighbor value; finally, NI 156 

corresponds to the number of iterations allowed to reach convergence (Al-Betar, Khader & Zaman, 157 

2012; Das, Mukhopadhyay, Roy, Abraham & Panigrahi, 2011).  158 

3.2 HM initialization 159 

For initialization purpose, the HM matrix is to be filled with as many randomly generated solution 160 

vectors as the HMS. 161 

𝐻𝑀 =

[
 
 
 
 
 

𝑥1
1 𝑥2

1 … 𝑥𝑁−1
1 𝑥𝑁

1

𝑥1
2 𝑥2

2 … 𝑥𝑁−1
2 𝑥𝑁

2

… … … … …
𝑥1

𝐻𝑀𝑆−1 𝑥2
𝐻𝑀𝑆−1 … 𝑥𝑁−1

𝐻𝑀𝑆−1 𝑥𝑁
𝐻𝑀𝑆−1

𝑥1
𝐻𝑀𝑆 𝑥2

𝐻𝑀𝑆 … 𝑥𝑁−1
𝐻𝑀𝑆 𝑥𝑁

𝐻𝑀𝑆 ]
 
 
 
 
 

      (2) 162 
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The number of rows, in particular, equals the HMS, while the number of columns equals the number of 163 

variables of each possible solution.  164 

3.3 Harmony improvisation from HM 165 

During improvisation, a new harmony vector, 𝑥′ = (𝑥1
′ , 𝑥2

′ , … , 𝑥𝑁
′ ), is to be generated from HM based 166 

on memory considerations, pitch adjustments, and random selection. In the memory consideration, the 167 

value of the first decision variable (𝑥1
′) for the new vector can be chosen from any of the values in the 168 

specified HM range (𝑥1
′1~𝑥1

′𝐻𝑀𝑆). Values of the remaining decision variables (𝑥𝑖
′) can be chosen in the 169 

same manner, or, alternatively, new values can be determined using the HMCR parameter, as follows: 170 

𝑥𝑖
′ = {

𝑥𝑖
′ ∈ {𝑥𝑖

′1, 𝑥𝑖
′2, … , 𝑥𝑖

′𝐻𝑀𝑆}   𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐻𝑀𝐶𝑅

𝑥𝑖
′ ∈ 𝑋𝑖                                              𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (1 − 𝐻𝑀𝐶𝑅)

    (3) 171 

Every element of the new harmony vector, 𝑥′ = (𝑥1
′ , 𝑥2

′ , … , 𝑥𝑁
′ ), is therefore evaluated to check whether 172 

it should be pitch-adjusted. This procedure makes use of the PAR, that sets the rate of adjustment for 173 

the pitch chosen from the HM as follows: 174 

𝑝𝑖𝑡𝑐ℎ 𝑎𝑑𝑗𝑢𝑠𝑡𝑖𝑛𝑔 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑓𝑜𝑟 𝑥𝑖
′ = {

𝑌𝑒𝑠                       𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦             𝑃𝐴𝑅
𝑁𝑜              𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦             (1 − 𝑃𝐴𝑅)

   (4) 175 

The value of (1 − 𝑃𝐴𝑅) sets the rate of doing nothing. If the pitch adjustment decision for 𝑥𝑖is 𝑌𝑒𝑠 and 176 

𝑥𝑖
′ is assumed to be 𝑥𝑖(𝑘), i.e., the 𝑘𝑡ℎ element in 𝑋𝑖, the pitch-adjusted value of 𝑥𝑖(𝑘) will be: 177 

𝑥𝑖
′ = 𝑥𝑖(𝑘 + 𝑚)    𝑓𝑜𝑟 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 178 

𝑥𝑖
′ = 𝑥𝑖

′ + 𝛼           𝑓𝑜𝑟 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠       (5) 179 

where:  180 

𝑚 ∈ {… ,−2,−1,1,2,… } is the neighboring index;  181 

𝛼 is the product 𝑏𝑤 ∗ 𝑢; 182 

𝑏𝑤 is an arbitrary distance bandwidth for the continuous design variable; and 183 

𝑢 ∈ [−1; 1] is a uniform probability distribution. 184 

HMCR and PAR help the algorithm find globally and locally improved solutions, respectively (Afkousi-185 

Paqaleh, Rashidinejad & Pourakbari-Kasmaei, 2010). 186 

3.4 HM updating  187 

Whenever the new harmony vector 𝑥′ = (𝑥1
′ , 𝑥2

′ , … , 𝑥𝑁
′ ) fits the objective function better than the worst 188 

harmony vector in the HM, the new harmony will replace the existing worst harmony in the HM. 189 



7 

 

3.5 Termination criterion 190 

If the termination criterion (maximum NI) is satisfied, the computation stops. Otherwise, step 3 and step 191 

4 are repeated. 192 

4 The proposed approach: adaptation of HS algorithm for picking 193 

The framework of the approach proposed in this study is shown in Figure 2. In Table 1 the relating 194 

notation is presented. 195 

Insert Table 1 196 

From figure 2 it can be seen that the adapted approach includes additional steps compared to the 197 

traditional HS metaheuristic, such as some preliminary steps and the implementation of the FW 198 

algorithm (cf. (De Santis, et al., 2018)). In particular, this latter algorithm is required to implement and 199 

develop the HS algorithm for searching the shortest distance in different warehouses configurations. For 200 

clarity, a description of the main steps of the approach is provided in the section that follows; for further 201 

details about graphical storage depiction the reader is referred to (De Santis, et al., 2018). 202 

Insert Figure 2 203 

4.1 Warehouse layout structure 204 

The layout structure consists of several picking aisles that have storage locations on both sides. Order 205 

pickers can change pick aisle using the cross-aisles positioned perpendicular to the aisles themselves 206 

(Roodbergen, Sharp & Vis, 2008). Every time cross-aisles are present, the number of cross aisles equals 207 

the number of blocks plus one (Roodbergen & de Koster, 2001a). The main advantage of having extra 208 

cross-aisles in a warehouse is the increased number of routing options, resulting in lower travel distance 209 

(Vaughan & Petersen, 1999). Three blocks with five aisles with 6 storage locations per aisle side is 210 

represented in Figure 3. Solid black squares in the figure indicate the exemplary positions in the rack – 211 

picking location – from which items have to be picked (Roodbergen & Vis, 2006). 212 

Insert Figure 3 213 

4.2 Model hypothesis  214 

The proposed model is explained through the following hypotheses: 215 

 Multi-block rectangular warehouse; 216 

 No vertical movements to pick up items (i.e., low-level picking); 217 

 During the picker tour, the direction can be changed; 218 

 Aisles can be traveled in both directions; 219 

 The picking aisle is narrow enough to pick items from both sides without covering additional 220 

distance; 221 
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 The picker starts from the bottom left corner of the depot and returns back once the picklist is 222 

completed (i.e., one picker per picking list); 223 

 The amount of items picked in each picklist never saturates the capacity of the picker; hence, 224 

capacity constraints are not considered in modeling the problem. 225 

4.3 The FW and HS algorithm 226 

Calculating the shortest path between all vertices in an edge-weighted directed graph through the FW 227 

algorithm implementation (Hougardy, 2010). The FW algorithm, determining the shortest path using 228 

the graph theory, makes use of the “distance matrix”, built as follows: 229 

Step 1. Initialization. The solution matrix same as the input graph is initialized. At the start 230 

point process (h=0), the distance matrix structure is initialized as follows: 231 

𝐷(0) = (𝐷𝑖𝑗
0 ) 𝑤ℎ𝑒𝑟𝑒 𝐷𝑖𝑗

0 = {

𝑑𝑖𝑗 , 𝑖𝑓 𝑎 𝑑𝑖𝑟𝑒𝑐𝑡 𝑟𝑜𝑢𝑡𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑠 𝑛𝑜𝑑𝑒 𝑖 𝑎𝑛𝑑 𝑗

0,   𝑖𝑓 𝑖 = 𝑗

∞, 𝑖𝑓 𝑛𝑜 𝑑𝑖𝑟𝑒𝑐𝑡 𝑟𝑜𝑢𝑡𝑒𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡 𝑛𝑜𝑑𝑒 𝑖 𝑎𝑛𝑑 𝑗

     (6) 232 

Step 2. Matrix update. The solution matrix is updated by considering all vertices as an 233 

intermediate vertex. A new node is then added for the computation of the shortest path between 234 

nodes i and j. Therefore, the distance matrix is updated to 𝐷𝑖𝑗
ℎ  applying the following formula: 235 

𝐷𝑖𝑗
ℎ = 𝑚𝑖𝑛{𝐷𝑖𝑗

ℎ−1, 𝐷𝑖ℎ
ℎ−1 + 𝐷ℎ𝑗

ℎ−1} 𝑖𝑓 𝑖 ≠ 𝑗      (7) 236 

𝐷𝑖𝑗
ℎ  is the nodes i to j updated  distance considering h intermediate nodes {1,… , ℎ}. 237 

Step 3. Checking the termination condition. If ℎ = 𝑁𝑇, the algorithm ends. The 𝐷𝑖𝑗
𝑁𝑇 element 238 

of the distance matrix is the length of the shortest path from nodes i to j. 239 

The FW algorithm is an input in the proposed model. It is the set of the total number of nodes (NT) 240 

indicating the picking positions where to pick up the item requested by the customer. The algorithm 241 

generates a NT*NT distance matrix. The FW algorithm was implemented in MATLAB®, to 242 

automatically determine the distance matrices in the different warehouse configurations analyzed. 243 

Starting from the FW algorithm's distance matrix, the next step is to determine the shortest path for a 244 

given picklist through the HS algorithm. 245 

Step 1. The first step is the same of that of the original algorithm described above. In particular, 246 

the optimization problem is defined as follows:  247 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝐷𝑗,𝑗+1
𝑛𝑝−1
𝑗=1 ,    ∀𝑗 = 1,2, … , 𝑛𝑝      (8) 248 

Moreover, as mentioned before, the HS algorithm parameters required to solve the optimization 249 

problem are specified. A static method has been chosen for setting the parameters’ value. 250 

Step 2. This is the same as the second step (HM initialization) of the traditional HS procedure.  251 
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Step 3. This is almost the same as the third step (Harmony improvisation from HM) of the 252 

traditional HS procedure. The new harmony vector, 𝑥𝑛𝑒𝑤 = {𝑥1
𝑛𝑒𝑤, … 𝑥𝑗

𝑛𝑒𝑤, 𝑥𝑛𝑝
𝑛𝑒𝑤}, 𝑗 =253 

1,… , 𝑛𝑝, will be generated using memory considerations, pitch adjustments, and random 254 

selection. The choice of the values for the decision variables follows the same rules of the 255 

harmony improvisation, and in particular any value can be chosen from the specified HM range 256 

(𝑥1
𝑛𝑒𝑤1~𝑥1

𝑛𝑒𝑤𝐻𝑀𝑆) or, alternatively, new values can be determined using the HMCR parameter: 257 

𝑥𝑗
𝑛𝑒𝑤 = {

𝑥𝑖,𝑗
𝐻𝑀  𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐻𝑀𝐶𝑅 (𝑖 = 𝑟𝑎𝑛𝑑[1,𝐻𝑀𝑆] 𝑎𝑛𝑑 𝑗 𝑓𝑖𝑥𝑒𝑑)

𝑥𝑖,𝐽
𝐻𝑀𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝐻𝑀𝐶𝑅 (𝑖 = 𝑟𝑎𝑛𝑑 [1, 𝐻𝑀𝑆] 𝑎𝑛𝑑 𝑗 = 𝑟𝑎𝑛𝑑[1, 𝑛𝑝]

 (9) 258 

Then, the components of the new harmony vector, 𝑥𝑛𝑒𝑤 = (𝑥1
𝑛𝑒𝑤 , 𝑥2

𝑛𝑒𝑤, … , 𝑥𝑁
𝑛𝑒𝑤), should be 259 

analysed to determine whether they should be pitch-adjusted; the procedure for pitch-adjustment 260 

is described in eq.10: 261 

𝑥𝑗
𝑛𝑒𝑤 = {

𝑥𝑖,𝑗
𝐻𝑀                       𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦             𝑃𝐴𝑅

𝑥𝑗
𝑛𝑒𝑤               𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦             (1 − 𝑃𝐴𝑅)

     (10) 262 

Step 4. As per the traditional HS approach, in case the new harmony vector, 𝑥𝑛𝑒𝑤, fits the 263 

objective function better than the worst harmony vector in the HM, the new harmony is kept in 264 

the HM, while the worst harmony is removed. 265 

Step 5. If the termination condition (i.e. maximum NI) has been reached, the computation stops. 266 

Otherwise, the algorithm is repeated stating from steps 3. 267 

4.4 Numerical example 268 

For the sake of clarity, the application of the proposed approach is shown in a numerical example in this 269 

section. For testing purpose, a simple scenario (small warehouse and short picklist) is taken, to allow 270 

the computational procedure to be almost entirely reproduced. The chosen warehouse layout consists of 271 

2 blocks, with 3 aisles per block and 3 storage locations per aisle side; kx=5 [m] and ky=1 [m] are set for 272 

this warehouse. A picklist composed of np=7 elements (nodes: 2, 7, 11, 14, 16, 19, 23) is considered. 273 

Insert Figure 4 274 

As Figure 4 shows, the graph of this representative warehouse consists of 27 total nodes (NT). The cells 275 

highlighted to represent the storage locations of items (7) in the picklist. The distance matrix (27*27) 276 

generated by the FW algorithm is shown in Table 2. 277 

Insert Table 2 278 

Once the distance matrix has been obtained, the minimum path is calculated by implementing the HS 279 

algorithm. 280 

As mentioned above, HMCR and PAR help the HS algorithm find globally and locally improved 281 

solutions (Dell'orco, Baskan & Marinelli, 2013). To ensure good performance of the algorithm, Geem, 282 
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2006; Bouzidi & Riffi, (2014) have recommended that HMCR values range from 0.70 to 0.95, 0.20, 283 

PAR values from 0.2 to 0.50, and HMS values from 10 to 50. In line with these considerations, and after 284 

performing a preliminary series of hand-tuning experiments on the adapted HS algorithm, the 285 

parameters were set as follows: HMS=np; HMCR=0.95; PAR=0.45; NI=500. 286 

The modified HS algorithm was implemented under the commercial software MATLAB®. The 287 

simulation procedure was run on an AMD Athlon, 3GHz with 4GB RAM desktop computer equipped 288 

with Windows 7 Professional. Once the last iteration has been completed, the HS algorithm returns the 289 

following picking sequence, whose path is shown in Figure 5. 290 

0 – 11 – 19 – 23 – 14 – 16 – 7 – 2 – 0 291 

Insert Figure 5 292 

The specific results of the performance evaluation for the HS algorithm, shown for distance, 293 

computational time, and convergence, are highlighted in Figure 6 and Table 3. 294 

Insert Figure 6 295 

Insert Table 3 296 

The results in Table 3 show that the shortest path, for this configuration, is 42 meters, obtained after 241 297 

iterations (see also Figure 6), i.e., less than 5% of the whole set of solutions (7! = 5040) for the problem 298 

under examination. Moreover, the computational time required to run the algorithm amounts to 2.51 299 

seconds. 300 

5 Application and discussion 301 

5.1 Warehouse layouts 302 

An exhaustive test of performance of the proposed approach was made on five warehouse 303 

configurations, obtained by varying the number of blocks (1-5, step 1); length of the order picklist was 304 

varied as well (10-50 items, step 10). Twenty-five scenarios (5 sizes of pick lists x 5 warehouse 305 

configurations) were examined overall, and 30 different pick lists were tested for each scenario to ensure 306 

significance of the results obtained; the total number of simulations was 750.  307 

The experiments were carried out considering a representative warehouse layout, with longitudinal 308 

aisles, where shelves are placed on both sides, and with 32 picking positions for each aisle side. In the 309 

multi-block layouts, the picking positions (ppa and ppb) in the sub-aisles of the two- and four-block 310 

warehouses are equally distributed and accounts for 16 and 8, respectively. In the three- and five-block 311 

configurations, instead, the picking positions are divided differently. In the first case (three blocks), in 312 

the sub-aisles of two blocks farthest from the depot, there are ten picking positions, while in the 313 

remaining block, there are 12 picking positions. In the five-block layout, there are 6 picking positions 314 
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in the sub-aisles of the four blocks furthest from the depot, while there are 8 picking positions in the 315 

remaining block. 316 

In general, while the total number of picking positions remains the same (i.e., 640) in each warehouse 317 

layout, the number of NT changes (and in particular increases) as a function of the number of blocks, 318 

consistently with the increase in the number of cross-aisles and, therefore, of service nodes.  319 

A rectangular warehouse, with a base of 55 meters and a depth that ranges from 40 to 52 meters 320 

depending on the number of blocks, is assumed. The aisle width is 3 meters. 321 

5.2 Experimental results 322 

As mentioned before, the validation of the HS algorithm results was made by comparing the travel 323 

distance obtained with that resulting from the application of one metaheuristic algorithm (i.e., WWO 324 

algorithm) and two traditional routing policies (i.e., S-shape and largest gap). The WWO was chosen as 325 

a suitable algorithm for benchmarking the results of the proposed approach as WWO proved to be 326 

always able to identify the global optimal solution in the tests carried out by Bottani, Rinaldi, Montanari, 327 

Murino & Centobelli (2016). Table 4 reports the results of the proposed approach in terms of distance 328 

travelled and computational time, depending on the warehouse configuration and problem complexity; 329 

these outcomes were obtained with the parameters settings detailed in Section 4. In Table 4, the 330 

percentage of the standard deviation of the outcomes is also reported. Data in bold highlight the best 331 

result(s) obtained for each scenario, as well as the algorithm(s) that returned the most effective 332 

solution(s).  333 

Insert Table 4 334 

5.3 Discussion 335 

From the results in Table 4, the following primary considerations emerge. In terms of the picking 336 

distance, it is evident that the HS and WWO algorithms provide almost identical results. In particular, 337 

the HS algorithm generates better solutions in 18 configurations out of 25, compared to 7 for the WWO 338 

algorithm. To be more precise, as can be seen from Table 4, with ten order lines the HS algorithm 339 

provided slightly worse results than the WWO (i.e., 200.60 vs. 200.00 meters) in one configuration only, 340 

i.e., the three-block warehouses; the same consideration holds true for order lines of 30 and 50 items. 341 

With order lines of 20 or 40 items, instead, the WWO algorithm turned out to be better than the HS in 342 

two configurations (i.e., the three- and four-block warehouses). Nonetheless, the travel distance returned 343 

by the HS is better than that of the WWO algorithm by approximately 0.37% on average. In four- and 344 

five-block configurations, the improvement is more significant, reaching 0.55% and 0.59%, 345 

respectively. Moreover, in five-block warehouses, the HS approach generates solutions that are always 346 

better than those of the WWO algorithms. 347 
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These outcomes do not contradict the results reported in Bottani, Rinaldi, Montanari, Murino & 348 

Centobelli (2016). Indeed, although these authors found that WWO was always able to find the optimal 349 

solution in their testing scenarios, the configurations tested referred to one-block warehouses only, while 350 

no tests were proposed for multiple-blocks warehouses. Therefore, the outcomes of the present study 351 

rather complement the findings previously available and allow us to argue that the HS approach 352 

overcomes the WWO algorithm for complex warehouse configurations.  353 

Outcomes also show that the performance of the two metaheuristics varies as a function of the picklist 354 

size. In general terms, the HS overcomes the WWO algorithm, with a peak of 1.05% reduction in the 355 

length of the picking tour for pick lists of 30 items. A greater size of the picking list involves a lower 356 

difference in the performance of the two algorithms (0.23% and 0.05% respectively for 40 and 50 items 357 

in the picking list). The standard deviation of the calculated distances decreases as well: this is probably 358 

due to the fact that with more items in the picklist, the positions of items become closer in the warehouse, 359 

so that the tour is almost defined and the heuristic algorithms have less room for shortening the total 360 

travel distance. On the contrary, for small pick lists, items to be picked are sparse in the warehouse, so 361 

that their specific picking position and the way it is reached can make the difference in terms of the total 362 

distance travelled. 363 

Compared to the remaining heuristic routing policies, it is immediate to see that the travel distance 364 

returned by the modified HS algorithm is always shorter; this result was expected (and obviously 365 

desirable); in fact, to prove its effectiveness, it is almost essential that a newly proposed metaheuristic 366 

algorithm overcomes at least the performance of the heuristic routing policies. The results obtained show 367 

that the modified HS approach generates a travel distance, which, on average, is 26.90% and 11.46% 368 

shorter than that obtained by applying the S-shape and largest gap policies, respectively. 369 

With respect to the computational time, results show once again that the performance of the HS 370 

algorithm is much better than that of the WWO algorithm. In particular, HS shows an average 371 

computational time approximately 24% lower than that of WWO. This effective performance can be 372 

attributed to the quite simple structure of the HS algorithm as well as to its combination with the FW 373 

approach, which in previous studies (e.g. De Santis, Montanari, Vignali & Bottani, 2018) was 374 

demonstrated to enhance the performance of metaheuristic algorithms. 375 

6 Conclusions 376 

This study has proposed an adapted approach to reduce the picking distance in manual warehouses. To 377 

be more precise, this paper has: 1) suggested the combination of the HS metaheuristic algorithm with 378 

the FW one; 2) shown its application to the picking problem in a manual warehouse; and 3) tested its 379 

performance in terms of travel distance and computational time. 380 



13 

 

The adapted approach includes some preliminary steps, which basically refer to the implementation of 381 

the FW algorithm; this latter was applied as a useful approach to mathematically reproduce the different 382 

warehouse configurations and to preliminarily derive the shortest distance between each pair of nodes 383 

in the warehouse. Then, the proposed framework includes 5 steps that reflect the logic of the traditional 384 

HS algorithm; this latter is used to determine the shortest distance for each picking tour in the various 385 

warehouse configurations. All steps were coded in MATLAB® to be run automatically. 386 

The implementation of the proposed approach was first shown with respect to a typical warehouse 387 

layout, simple enough to allow the detailed description of all the steps of the procedure. The algorithm 388 

performance was then tested on five different warehouse configurations, with variable number of blocks 389 

and picking list size. Twenty-five scenarios were considered overall, with 30 random picking lists for 390 

each of them, for a total of 750 simulations. 391 

From a theoretical perspective, the outcomes obtained highlights how the proposed approach 392 

outperforms both the heuristic routing policies and the WWO algorithm in determining the shortest route 393 

of pickers. Moreover, by analysing the computational time, it is easy to deduce that the HS algorithm 394 

adds quality compared to some well-known heuristic policies and to the WWO algorithm. In summary 395 

this study has proposed a metaheuristic hybrid algorithm whose results encourage its application in 396 

practice. Besides, the approach proposed in this paper contains a set of additional steps compared to the 397 

traditional HS algorithm, which enhance its effectiveness in minimising the travel distances of pickers 398 

in warehouses. From a practical perspective, this paper focuses on manual warehouses and has been 399 

tested in some selected configurations. Nonetheless, this study can be implemented in additional layouts 400 

or configurations, to test its performance in further scenarios. As the proposed approach was effective 401 

in improving the order picking performance in the scenarios tested, it is expected to provide interesting 402 

outcomes in different configurations too. 403 

Although the outcomes of this paper can be seen as of general validity, this paper has some limitations 404 

that should be mentioned. As an example, in this study, random storage of items in the warehouse was 405 

assumed; however, for picking lists of small sizes it would probably be preferable to use a class-based 406 

storage policy, to further decrease the travel distance. For picking lists of greater size, instead, a random 407 

storage policy is likely to provide results similar to the class-based one, which suggests that testing this 408 

latter policy would not be essential. Moreover, in this study, the picker starts from the receiving area 409 

and returns to the same place once he has picked the full set of items in the picking list; however, for 410 

order pick lists of 40 or 50 items, it would be appropriate to include the capacity of the picker as a 411 

constraint of the problem. To this end, it could be interesting to apply a multi-objective optimization 412 

procedure to reduce the travel distance and maximize the saturation of the picker's capacity, to evaluate 413 

whether (and to what extent) the capacity of the picker could affect the travel distance. Moreover, further 414 

research might take into consideration a different type of layouts, with a particular attention to non-415 

conventional warehouses (Fishbone, U-Shaped, and Flying-V). Indeed, changing the warehouse layout 416 
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would certainly involve variations in the distance travelled and in the time taken to complete a picking 417 

tour, which could lead to additional insights. Further research may also concern on the presence of 418 

different width of aisles (wide aisle o ultra-narrow aisle), which would lead to congestion in the aisles.  419 
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