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Abstract 

This paper develops a reverse inventory model where the recoverable manufacturing process is 

affected by the learning theory. We propose the inclusion of the fuzzy demand rate of the serviceable 

products and the fuzzy collection rate of the recoverable products from customers in the total cost 

function of the model. Two popular defuzzification methods, namely the signed distance technique, a 

ranking method for fuzzy numbers, and the graded mean integration representation (GMIR) method 

are employed to find the estimate of the total cost function per unit time in the fuzzy sense. We 

provide a comprehensive numerical example to illustrate and compare the results obtained by the two 

mentioned defuzzification methods. This is one of the only few attempts in the related literature 

comparing the performance of these methods with the effect of the fuzziness of both of the demand 

and the collection rate in the presence of the learning simultaneously. The results indicate that 

deciding on which method could be used depends on the target strategy that could focus on the total 

cost, ordering lot size, or recovery lot size.   

Keywords: Fuzzy set theory; Signed distance; Graded mean integration representation; Reverse 

logistics; Inventory management; Economic order/production quantity  
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A fuzzy reverse logistics inventory system integrating economic 

order/production quantity models  
 

Abstract 

This paper develops a reverse inventory model where the recoverable manufacturing process is 

affected by the learning theory. We propose the inclusion of the fuzzy demand rate of the serviceable 

products and the fuzzy collection rate of the recoverable products from customers in the total cost 

function of the model. Two popular defuzzification methods, namely the signed distance technique, a 

ranking method for fuzzy numbers, and the graded mean integration representation (GMIR) method 

are employed to find the estimate of the total cost function per unit time in the fuzzy sense. We 

provide a comprehensive numerical example to illustrate and compare the results obtained by the two 

mentioned defuzzification methods. This is one of the only few attempts in the related literature 

comparing the performance of these methods with the effect of the fuzziness of both of the demand 

and the collection rate in the presence of the learning simultaneously. The results indicate that 

deciding on which method could be used depends on the target strategy that could focus on the total 

cost, ordering lot size, or recovery lot size.  

Keywords: Fuzzy set theory; Signed distance; Graded mean integration representation; Reverse 

logistics; Inventory management; Economic order/production quantity 

 

1. Introduction  

The topics of reverse supply chain (RSC) and reverse logistics activities have been of great interest 

for more than two decades both in academia and practice. In the literature, RSC activities are defined 

as “the process of planning, implementing, and controlling the efficient, cost effective flow of raw 

materials, in-process inventory, finished goods and related information from the point of consumption 

to the point of origin for the purpose of recapturing value or proper disposal” [1]. This attention is 

evident by the vast number of publications in the scientific journals, which have been published in 

recent years. In this context, authors investigated many aspects such as distribution planning, 

inventory control, and production planning [2–4], managerial remanufacturing [5], empirical [6], 

inventory management [7], mathematical modeling [8], business perspective [9], quantitative models 

[10], strategic issues [11, 12], strategic level decisions [13], social sides [14], and pricing models [15]. 

However, compared with its counterpart, forward logistics, research in reverse logistics is still in its 

infancy [16].  

Previous literature has described a broad range of inventory issues on the RSC structures and 

analyzed a variety of problems. Inventory management studies play a major role in the operational 

level of the supply chain by investigating the optimal order quantities and other inventory related 

decisions regarding remanufacturing effects and return products [17]. The objective of inventory 

management is to control the external component orders and the internal component recovery process 

to guarantee a required service level and to minimize the fixed and variable costs, or interchangeably, 

to maximize the total profit [2]. Research on ‘production planning and inventory management’, in 

accord with its quantitative profile, tends to be analytical in content and favors techniques such as 

simulation, optimization and mathematical programming [3]. Since the first work by Schrady [18], 

who developed an economic order quantity (EOQ) model for repaired items, a surge of valuable 

studies has been conducted in this area and many aspects of inventory management and control 

systems are arguably discussed and analyzed in the reverse and closed-loop models.  



These studies have some deficiencies. Although some factors in the problems discussed in the 

inventory management are inherently uncertain, most of the related works in the reverse inventory 

literature suppose that input parameters and variables such as the demand and the return rate are 

precise. In fact, they are usually uncertain due to the lack of historical data or flexible situation, which 

is an inherent part of the business environment. In this regard, one of the most powerful tools to deal 

with the mentioned factors in uncertain situations is the fuzzy set theory introduced by Zadeh [19]. 

Another shortcoming in the earlier reverse inventory models is ignoring the effects of learning 

phenomena based on the learning theory. However, the learning procedure could affect the inventory 

policies. According to this theory, when an operator performs a process repetitively, his/her 

knowledge and experience naturally increase. In a long time horizon, this leads to an improvement in 

the performance and learning occurs [20]. Only a handful of references dealing with the learning 

theory in the reverse inventory models are available [21, 22].  

To fill the identified gaps in the literature, this paper extends a reverse inventory model with the 

fuzzy demand rate of the serviceable products and the fuzzy collection rate of the recoverable 

products, which are receiving from customers. Building upon the research of Tsai [22], who addressed 

the effect of learning considering an optimal integrated economic order quantity (EOQ) and economic 

production quantity (EPQ) policy, we compare the performance of two defuzzification methods, 

namely the signed distance and the graded mean integration representation, to find the estimation of 

the total cost function per unit time in the fuzzy sense and the corresponding optimal values. To the 

best of our knowledge, this study is the first to explain the difference between different 

defuzzification methods in a reverse inventory system considering the mentioned parameters being 

fuzzified as triangular fuzzy numbers (TFNs).  

The paper is organized as follows. In the next Section, we review some previous literature. Section 

3 is devoted to explain the notations, assumptions, and crisp model. Required preliminaries are 

described in Section 4. We develop fuzzy mathematical models in Section 5. A comprehensive 

numerical example is investigated in Section 6. The applicability of the model is shown in Section 7. 

In the last Section, the paper is concluded.  

 

2. Literature review  

We review the EOQ/EPQ models in the reverse inventory literature. Then, the fuzzy EOQ/EPQ 

models are reviewed. For a complete discussion, we refer the interested readers to the works that 

thoroughly reviewed many inventory problems on the RSC [4, 7, 15, 23]. In addition, Bushuev et al. 

[24] have recently provided a review of the previously published papers on the inventory models.  

 

2.1. Review of the EOQ/EPQ models in the RSC  

After the first work by Schrady [18], researchers paid much attention to develop the EOQ/EPQ 

models in the reverse logistics context. Nahmias and Rivera [25] extended Schrady’s work with a 

finite recycling/repair rate. Considering capital budget restriction, a multi-product model, which is 

another extension of the EOQ-type reverse logistics model of Schrady was developed by Mabini et al. 

[26]. By incorporating the collection point into the model, Richter [27, 28] considered modified 

versions of the model of Schrady with the constant disposal and used-product collection rates by 

assuming multiple production/repair cycles within a time interval. He obtained a formula for the total 

average cost without deriving a simple one for the optimal lot size. Along the same line of research, 

Richter [29] extended his earlier works for the case which the return rate was a decision variable. He 

concluded that the optimal policy has an external property that is, “dispose all” or “recover all”. 

Furthermore, Richter and Dobos [30] developed a waste disposal model where the return rate is a 

decision variable.  



By assuming different holding cost rates for produced and recovered serviceable items, Teunter 

[31] developed a deterministic EOQ inventory model. Koh et al. [32] proposed a model with finite 

manufacturing/remanufacturing rates. Other models similar to those of Schrady and Richter, but with 

different assumptions could be found in [33–39].  

Assuming deterministic demand and return fraction with zero production lead times, Oh and 

Hwang [40] suggested an optimal policy for a recycling model. A periodic review inventory model 

with finite horizon and manufacturing/remanufacturing options was studied by Konstantaras and 

Papachristos [41]. In their subsequent works, Konstantaras and Papachristos [42, 43], extended works 

of Koh et al. [32] and Teunter [34], respectively. Besides, Jaber and El Saadany [44] developed a 

model by assuming that the newly produced and remanufactured items are perceived differently by 

customers. Konstantaras and Skouri [45] studied a production–remanufacturing inventory system with 

a cost structure consists of the EOQ-type setup, holding, and shortage costs. Deterministic 

mathematical models were presented by El Saadany and Jaber [46] for multiple remanufacturing and 

production cycles. In a follow-up study, Konstantaras et al. [47] introduced the inspection and the 

sorting of returned items.  

Alinovi et al. [48] formulated a stochastic EOQ-based inventory control model for a mixed 

manufacturing/remanufacturing system. El Saadany and Jaber [49] considered a production-

remanufacturing inventory model that a subassembly has its own inventory control policy. Alamri 

[50] presented a unified general inventory model for an integrated production. Regarding an EOQ 

model and remanufacturing, Hasanov et al. [51] modeled some stock-out situations. Widyadana and 

Wee [52] developed an EPQ model for deteriorating items with rework. Moreover, an EOQ-based 

production, remanufacturing and waste disposal model for a two-level chain with the consignment 

stock policy as a coordination mechanism was extended by Jaber et al. [53]. Matar et al. [54] 

formulated a reverse logistics inventory model for the production-recycling-reuse of plastic beverage 

bottles. They indicated that the outcome of the total system unit time cost is mainly affected by the 

amount of bottles collected during the recycling process. Recently, Nonaka and Fujii [55] have 

extended the work of Dobos and Richter [56] by proposing a new EOQ model for the reuse and 

recycling, which introduces a sequentially accumulated marginal reuse rate as a parameter to keep the 

balance of product demand and supply. Zouadi et al. [57] investigated a lot-sizing problem by 

considering two types of inventories in which the demand for the items could be satisfied by both the 

new and the remanufactured products. Taking the effect of learning into account, Singh, Rathore [58, 

59] developed two different reverse logistics inventory models for deteriorating items.  

 

2.2. Review of the fuzzy EOQ/EPQ models  

One of the underlying assumptions in the basic EOQ model and its extensions, especially the EPQ 

model, is that all the input parameters and decision variables are certain and known in the inventory 

system. However, these quantities have little deviations from their exact values. In the uncertain 

situations of the real world, we can deal with the uncertainty in an inventory system applying the 

fuzzy set concept. In the following, we review some related papers.  

Lee and Yao [60] analyzed a fuzzy EOQ model with fuzzifying the demand and the production 

quantities as TFNs. Hsieh [61] employed trapezoidal fuzzy numbers in a fuzzy production inventory 

model. A fuzzy EPQ model considering imperfect quality items was studied by Chang [62]. An 

extension of the fuzzy inventory model proposed by Ouyang and Yao [63] was formulated by Chang 

et al. [64]. In addition, Vijayan and Kumaran [65] applied the signed distance method for obtaining 

the crisp estimation of the fuzzy total cost function in an EOQ model. For a review of the related 

papers in this area till 2008, Guiffrida [66] conducted a survey to gather and categorize studies 

including fuzzy inventory models.  



Björk [67] addressed an inventory model assuming both demand and lead-time as fuzzy numbers. 

He also presented a fuzzy inventory model with a finite production rate and without shortage where 

the model was fuzzified using symmetric TFN [68]. Shekarian et al. [69] considered a fuzzy EPQ 

model that generates defective items in a single stage production system with planned backorders. 

Also, Shekarian et al. [70] developed a fuzzy lot size model for a single-stage production system 

producing defective items that need to be reworked. They considered the rate of defectives and the 

demand rate as TFNs. Guchhait et al. [71] formulated a retailer’s profit maximization problem for 

both crisp and fuzzy inventory costs. 

Recently some fuzzy inventory models have been investigated by researchers. Sharifi et al. [72] 

developed an EOQ model for items with imperfect quality and partial backordered shortage under 

screening error. Pal et al. [73] considered an EPQ model for deteriorating items with ramp type 

demand rate under the effect of inflation, shortages and fuzziness. Kumar and Goswami [74] extended 

an EPQ model considering the learning effect, and used fuzzy expectation and signed distance 

methods to transform the fuzzy random cost function into an equivalent crisp one. Guchhait et al. [75] 

discussed an inventory model for deteriorating items assuming that some inventory costs such as the 

purchase, holding and setup costs are fuzzy triangular type in nature. A periodic review inventory 

model with a fuzzy demand was discussed by Sarkar and Mahapatra [76] with the aim of minimizing 

the expected total annual cost. Yadav et al. [77] studied a fuzzy inventory system by taking the 

opportunity cost, interest earned/paid rates as TFNs. They used the function principle as arithmetic 

operation and the signed distance method to defuzzify the fuzzy profit function. Mahata [78] 

addressed the learning effect of the unit production time on the optimal lot size for an imperfect 

production process where the setup, holding, backorder, raw material and labor costs were 

characterized as fuzzy variables. Moreover, Kazemi et al. [79] developed an EOQ model for imperfect 

quality items using the learning effect on fuzzy parameters. Finally, the fuzzy EOQ model proposed 

by Björk [67] was modified by Kazemi et al. [80] to incorporate human learning in an uncertain 

environment.  

 

3. Reverse inventory model  

3.1. Notations and assumptions  

To develop the proposed model, the following notations are defined:  

𝑦 Recovery lot size for each production run (unit/run) (Decision variable)  

𝑛 Number of orders for the newly purchased products during a cycle (Decision variable) 

𝑄 Ordering lot size for the newly purchased products (unit/order) 

𝑘 Demand rate of the serviceable products (unit/time) (Fuzzified parameter) 

𝑟 
Collection rate of the recoverable products from customers (unit/time) (Fuzzified 

parameter) 

𝐶𝑠 Setup cost for the recovery process ($/setup) 

𝐶𝑜 Ordering cost for the newly purchased products ($/order)  

𝐻𝑟 Inventory holding cost for the collected products ($/unit/time) 

𝐻𝑠 Inventory holding cost for the serviceable products ($/unit/time)  

𝐿𝑟 Learning rate in recovery production  

𝑏 Learning exponent  

𝐶𝑙 Labor production cost per unit time ($/time)  

𝐶𝑝 Unit purchase cost for the newly purchased products ($/unit)  

𝐶𝑏 Unit buyback cost for the recovered products ($/unit) 

𝑇𝐶𝑈(𝑦, 𝑛) Total cost function per unit time ($) 

�̃�(𝑦, 𝑛) Fuzzified total cost function per unit time ($) 

The assumptions made in this paper are as follows:  



1. Shortages are not allowed.  

2. All of the collected products can be recovered and made acceptable to customers.  

3. The ordering lots are of equal size through the time.  

4. The demand rate is greater than the collection rate of the recoverable products.  

5. The time period is infinite.  

6. The demand rate for the serviceable products and the collection rate of the recoverable products 

from customers are treated as fuzzy numbers and shown by TFNs.  

 

According to the above assumptions and notations, Tsai [22] obtained the total cost function per 

unit time in a proposed reverse inventory system with a single setup for recovery and multi-order 

policy which is termed as (1, 𝑛) policy.  

 

 𝑇𝐶𝑈(𝑦, 𝑛) =
𝑟(𝑛𝐶𝑜 + 𝐶𝑠)

𝑦
+ 𝐻𝑟 (

𝑦

2
−

𝑎𝑟𝑦𝑏+1

𝑏 + 2
) + 𝐻𝑠 [

𝑦(𝑘 − 𝑟)2

2𝑛𝑘𝑟
+

𝑟𝑦

2𝑘
−

𝑎𝑟𝑦𝑏+1

(𝑏 + 1)(𝑏 + 2)
]  

 + (
𝑎𝑟𝑦𝑏

𝑏 + 1
) 𝐶𝑙 + (𝑘 − 𝑟)𝐶𝑝 + 𝑟𝐶𝑏 

 

(1) 
 

It should be noted that the demand is satisfied using both the recovered and the newly purchased 

products. Due to the learning effect, the unit production time for the recovered products decreases 

when the number of units produced increases. Wright’s learning curve [20] is considered as below: 

 

 𝑈(𝑥) = 𝑇𝑥𝑏 (2) 
 

where 𝑈(𝑥) is the time to produce the 𝑥th unit, 𝑇 is the time to produce the first unit, and 𝑥 is the 

production account. 𝑏 can be calculated as 𝑏 = log 𝐿𝑟 / log 2. In this study, it is assumed that −1 <

𝑏 ≤ 0 [81]. Furthermore, the ordering lot size for the newly purchased products is given as below:  
 

 𝑄 =
𝑦(𝑘 − 𝑟)

𝑛𝑟
 

 

(3) 

 

4. Preliminaries  

4.1. Fundamental definitions 

In order to treat the fuzziness of the reverse logistics inventory system for the demand rate of the 

serviceable products and the collection rate of the recoverable products from customers, some related 

definitions and propositions are required to state as follows [82, 83]:  

 

Definition 1. Triangular fuzzy number (TFN) �̃� is a special type of fuzzy numbers denoted by triplet 

(𝑏1, 𝑏2, 𝑏3) where satisfies 𝑏1 < 𝑏2 < 𝑏3, and 𝑏1, 𝑏2 and 𝑏3 are defined on 𝑅. The membership 

function of �̃� is defined as:  

 

 𝜇�̃�(𝑥) = {

(𝑥 − 𝑏1) (𝑏2 − 𝑏1)⁄ , 𝑏1 ≤ 𝑥 ≤ 𝑏2,

(𝑏3 − 𝑥) (𝑏3 − 𝑏2)⁄ , 𝑏2 ≤ 𝑥 ≤ 𝑏3,
0,                                            otherwise.

 (4) 

 

Function principle: Let �̃� = (𝑏1, 𝑏2, 𝑏3), and �̃� = (𝑐1, 𝑐2, 𝑐3) be two TFNs, and let 𝑘 be a real 

number. Based on Chen and Chang [84], we have operations of the function principle as follows:  
  

 �̃� ⊕ �̃� = (𝑏1 + 𝑐1, 𝑏2 + 𝑐2, 𝑏3 + 𝑐3),  (5) 

 �̃� ⊖ �̃� = (𝑏1 − 𝑐3, 𝑏2 − 𝑐2, 𝑏3 − 𝑐1),  (6) 
 

If 𝑏1, 𝑏2, 𝑏3, 𝑐1, 𝑐2 and 𝑐3 are all nonzero positive real numbers, then  

 �̃� ⊗ �̃� = (𝑏1𝑐1, 𝑏2𝑐2, 𝑏3𝑐3),  (7) 



 �̃� ⊘ �̃� = (𝑏1/𝑐3, 𝑏2/𝑐2, 𝑏3/𝑐1),  (8) 

 {
𝑘 ⊗ �̃� = (𝑘𝑏1, 𝑘𝑏2, 𝑘𝑏3), 𝑘 ≥ 0,

𝑘 ⊗ �̃� = (𝑘𝑏3, 𝑘𝑏2, 𝑘𝑏1), 𝑘 < 0.
 (9) 

 

Definition 2. Fuzzy set �̃�𝛼 for 0 ≤ 𝛼 ≤ 1 and a range of 𝑥 ∈ 𝑅 is called an 𝛼-level fuzzy point whose 

membership function has a form  

 

 𝜇�̃�𝛼
(𝑥) = {

𝛼, 𝑥 = 𝑎,
0, 𝑥 ≠ 𝑎. 

(10) 

 

Remarks 1. If 𝛼 = 1, the membership function of the 1-level fuzzy point �̃�1 becomes the 

characteristic function, i.e.,  

 

 𝜇�̃�1
(𝑥) = {

1, 𝑥 = 𝑎,
0, 𝑥 ≠ 𝑎.

 (11) 

 

In this case, the fuzzy point �̃�1 and the real number 𝑎 ∈ 𝑅 are similar except for their representation.    

 

Remarks 2. When 𝑏1 = 𝑏2 = 𝑏3 = 𝑏′, then the TFN �̃� = (𝑏′, 𝑏′, 𝑏′) is identical to the 1-level fuzzy 

point �̃�1.  

 

Definition 3. For 0 ≤ 𝛼 ≤ 1 and 𝑎 < 𝑏, the fuzzy set [𝑎𝛼 , 𝑏𝛼] defined on 𝑅 is called an 𝛼-level fuzzy 

interval if its membership function is given by 

 

 𝜇[𝑎𝛼,𝑏𝛼](𝑥) = {
𝛼, 𝑎 ≤ 𝑥 ≤ 𝑏,
0, otherwise.

 (12) 

 

Definition 4. Let �̃� be a fuzzy set on 𝑅, and 0 ≤ 𝛼 ≤ 1, then the 𝛼-cut of �̃� (i.e. 𝐵(𝛼)) includes 

points 𝑥 such that 𝜇�̃�(𝑥) ≥ 𝛼; that is 𝐵(𝛼) = {𝑥|𝜇�̃�(𝑥) ≥ 𝛼}.  

 

Property 1. For 𝛼 ∈ [0,1], the 𝛼-cut of TFN �̃� = (𝑏1, 𝑏2, 𝑏3) is 𝐵(𝛼) = [𝐵𝐿(𝛼), 𝐵𝑅(𝛼)], where 

𝐵𝐿(𝛼) = 𝑏1 + (𝑏2 − 𝑏1)𝛼 and 𝐵𝑅(𝛼) = 𝑏3 − (𝑏3 − 𝑏2)𝛼.  

 

Principle of decomposition theory: Suppose that �̃� is a fuzzy set on 𝑅, 0 ≤ 𝛼 ≤ 1, and its 𝛼-cut is 

𝐵(𝛼) = [𝐵𝐿(𝛼), 𝐵𝑅(𝛼)] which is a closed interval, then we have:  

 

 �̃� = ⋃ [𝐵𝐿(𝛼)𝛼, 𝐵𝑅(𝛼)𝛼]0≤𝛼≤1 = ⋃ 𝛼𝐵(𝛼)0≤𝛼≤1   (13) 
 

or 

 

 𝜇�̃�(𝑥) = ⋁ 𝜇[𝐵𝐿(𝛼)𝛼,𝐵𝑅(𝛼)𝛼](𝑥)0≤𝛼≤1 = ⋁ 𝛼𝐶𝐵(𝛼)(𝑥)0≤𝛼≤1   (14) 
 

where 

 

(𝑖) 𝛼𝐵(𝛼) is a fuzzy set with the membership function:  

 

 𝜇𝛼𝐵(𝛼)(𝑥) = {
𝛼, 𝑥 ∈ 𝐵(𝛼),
0,       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

  

 

(𝑖𝑖) 𝐶𝐵(𝛼)(𝑥) is a characteristic function of 𝐵(𝛼); that is  

 

 𝐶𝐵(𝛼)(𝑥) = {
1, 𝑥 ∈ 𝐵(𝛼),
0,         𝑥 ∉ 𝐵(𝛼).

  

 

For any 𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑘 ∈ 𝑅, 𝑎1 < 𝑎2, and 𝑏1 < 𝑏2, the interval operations are as follows:  

 

 [𝑎1, 𝑎2](+)[𝑏1, 𝑏2] = [𝑎1 + 𝑏1, 𝑎2 + 𝑏2], (15.1) 

 [𝑎1, 𝑎2](−)[𝑏1, 𝑏2] = [𝑎1 − 𝑏2, 𝑎2 − 𝑏1]. (15.2) 



 𝑘(∙)[𝑎1, 𝑎2] = {
[𝑘𝑎1, 𝑘𝑎2],      𝑘 > 0,
[𝑘𝑎2, 𝑘𝑎1],      𝑘 < 0.

 (15.3) 

 

Besides, if 0 < 𝑎1, and 0 < 𝑏1, then 

 

 [𝑎1, 𝑎2](∙)[𝑏1, 𝑏2] = [𝑎1𝑏1, 𝑎2𝑏2] (15.4) 

 [𝑎1, 𝑎2](÷)[𝑏1, 𝑏2] = [
𝑎1

𝑏2
,
𝑎2

𝑏1
]. (15.5) 

   

4.2. Defuzzification methods  

In the following, the concepts of the signed distance and the graded mean integration representation 

for the fuzzy sets are introduced [85, 86].  

 

4.2.1. The signed distance (SD) method  

Definition 5. For any 𝑎 ∈ 𝑅, the signed distance from 𝑎 to 0 is defined as 𝑑0(𝑎, 0) = 𝑎. If 𝑎 is 

positive, then the distance from 𝑎 to 0 is 𝑎 = 𝑑0(𝑎, 0); if 𝑎 is negative, the distance from 𝑎 to 0 is 

𝑎 = −𝑑0(𝑎, 0). This is the reason why 𝑑0(𝑎, 0) is referred as the distance from 𝑎 to 0.  

 

Assume that Ψ be the family of all fuzzy sets �̃� defined on 𝑅 with which the 𝛼-cut 𝐵(𝛼) =

[𝐵𝐿(𝛼), 𝐵𝑅(𝛼)] exists for every 𝛼 ∈ [0,1], and both 𝐵𝐿(𝛼), and 𝐵𝑅(𝛼) are continuous functions on  

0 ≤ 𝛼 ≤ 1. Then, for any �̃� ∈ Ψ from (13), we have  

 

 �̃� = ⋃ [𝐵𝐿(𝛼)𝛼, 𝐵𝑅(𝛼)𝛼]0≤𝛼≤1   (16) 
 

According to Definition 5, the signed distance of two end points 𝐵𝐿(𝛼), and 𝐵𝑅(𝛼) of the 𝛼-cut of �̃� 

(i.e. 𝐵(𝛼) = [𝐵𝐿(𝛼), 𝐵𝑅(𝛼)]) to the origin 0 is 𝑑0(𝐵𝐿(𝛼), 0) = 𝐵𝐿(𝛼), and 𝑑0(𝐵𝑅(𝛼), 0) = 𝐵𝑅(𝛼), 

respectively.  

 

Definition 6. 𝑑0([𝐵𝐿(𝛼), 𝐵𝑅(𝛼)],0) = [𝑑0(𝐵𝐿(𝛼), 0) + 𝑑0(𝐵𝑅(𝛼), 0)] 2⁄ = [𝐵𝐿(𝛼) + 𝐵𝑅(𝛼)] 2⁄ .  

 

We have the following one-to-one mapping relationship between 𝛼-level fuzzy interval 

[𝐵𝐿(𝛼)𝛼, 𝐵𝑅(𝛼)𝛼], and the real interval [𝐵𝐿(𝛼), 𝐵𝑅(𝛼)], that is 

 

 [𝐵𝐿(𝛼)𝛼, 𝐵𝑅(𝛼)𝛼] ↔ [𝐵𝐿(𝛼), 𝐵𝑅(𝛼)]  (17) 
 

Because the 1-level fuzzy point 0̃1 has a one-to-one correspondence with the real number 0, the signed 

distance of [𝐵𝐿(𝛼)𝛼, 𝐵𝑅(𝛼)𝛼] to 0̃1can be give as:  

 

 𝑑([𝐵𝐿(𝛼)𝛼 , 𝐵𝑅(𝛼)𝛼], 0̃1) = 𝑑0([𝐵𝐿(𝛼), 𝐵𝑅(𝛼)], 0) = [𝐵𝐿(𝛼) + 𝐵𝑅(𝛼)] 2⁄   (18) 
 

Furthermore, for �̃� ∈ Ψ, since the above function is continuous on 0 ≤ 𝛼 ≤ 1, the integration can be 

applied to obtain the mean value of the signed distance as follows:  

 

 ∫ 𝑑([𝐵𝐿(𝛼)𝛼, 𝐵𝑅(𝛼)𝛼], 0̃1)𝑑𝛼 =
1

2
∫ [𝐵𝐿(𝛼) + 𝐵𝑅(𝛼)]𝑑𝛼

1

0

1

0
  (19) 

 

Definition 7. For �̃� ∈ Ψ, we can define the signed distance of �̃� to 0̃ as:  

 

 𝑑(�̃�, 0̃1) = ∫ 𝑑([𝐵𝐿(𝛼)𝛼, 𝐵𝑅(𝛼)𝛼], 0̃1)𝑑𝛼 =
1

2
∫ [𝐵𝐿(𝛼) + 𝐵𝑅(𝛼)]𝑑𝛼

1

0

1

0
  (20) 

 

Property 2. For the TFN �̃� = (𝑏1, 𝑏2, 𝑏3), the signed distance from �̃� to 0̃ is given as:   

 

 𝑑(�̃�, 0̃1) = ∫ 𝑑([𝐵𝐿(𝛼)𝛼, 𝐵𝑅(𝛼)𝛼], 0̃1)𝑑𝛼 =
1

4
(𝑏1 + 2𝑏2 + 𝑏3)

1

0
  (21) 

 



Considering (15.1)-(15.5) and (17), for two fuzzy sets �̃�, �̃� ∈ Ψ where �̃� = ⋃ [𝐵𝐿(𝛼)𝛼, 𝐵𝑅(𝛼)𝛼]0≤𝛼≤1  

and �̃� = ⋃ [𝐶𝐿(𝛼)𝛼, 𝐶𝑅(𝛼)𝛼]0≤𝛼≤1 , and 𝑘 ∈ 𝑅, we have 

 

 �̃�(+)�̃� = ⋃ [(𝐵𝐿(𝛼) + 𝐶𝐿(𝛼))𝛼 , (𝐵𝑅(𝛼) + 𝐶𝑅(𝛼))𝛼]0≤𝛼≤1 ,  (22.1) 

 �̃�(−)�̃� = ⋃ [(𝐵𝐿(𝛼) − 𝐶𝑅(𝛼))𝛼, (𝐵𝑅(𝛼) − 𝐶𝐿(𝛼))𝛼]0≤𝛼≤1 ,  
(22.2) 

 

 �̃�1(∙)�̃� = {

⋃ [(𝑘𝐵𝐿(𝛼))𝛼, (𝑘𝐵𝑅(𝛼))𝛼]0≤𝛼≤1 ,       𝑘 > 0,

⋃ [(𝑘𝐵𝑅(𝛼))𝛼 , (𝑘𝐵𝐿(𝛼))𝛼]0≤𝛼≤1 ,      𝑘 < 0,

0̃1,                                                               𝑘 = 0.

  (22.3) 

 

Property 3. For two fuzzy sets �̃�, �̃� ∈ Ψ and 𝑘 ∈ 𝑅, 

 

 𝑑(�̃�(+)�̃�, 0̃1) = 𝑑(�̃�, 0̃1) + 𝑑(�̃�, 0̃1),  (23.1) 

 𝑑(�̃�(−)�̃�, 0̃1) = 𝑑(�̃�, 0̃1) − 𝑑(�̃�, 0̃1),  
(23.2) 

 

 𝑑(�̃�1(∙)�̃�, 0̃1) = 𝑘𝑑(�̃�, 0̃1).  (23.3) 

 

4.2.2. Graded mean integration representation (GMIR) method  

If we consider �̃� = (𝑏1, 𝑏2, 𝑏3) as a TFN with 𝛼-cut: [𝐵𝐿(𝛼) + 𝐵𝑈(𝛼)], according to Chen and Hsieh 

[86], its GMIR is given by 

 

 Φ(�̃�) =
∫ 𝛼[𝐵𝐿(𝛼) + 𝐵𝑈(𝛼)]

1

0
𝑑𝛼

2 ∫ 𝛼𝑑𝛼
1

0

=
∫ 𝛼[𝑏1 + 𝑏3 + (2𝑏2 − 𝑏1 − 𝑏3)𝛼]

1

0
𝑑𝛼

2 ∫ 𝛼𝑑𝛼
1

0

  

 =
(𝑏1 + 4𝑏2 + 𝑏3)

6
 (24) 

 

where 𝐵𝐿(𝛼) and 𝐵𝑅(𝛼) could be determined from Property 1.  

 

5. Fuzzy reverse inventory model  

In this section, the reverse inventory model presented in Section 3 is modified by incorporating the 

fuzziness of the demand rate of the serviceable products 𝑘 and the collection rate of the recoverable 

products 𝑟. To do so, we fuzzify 𝑟 and 𝑘 to be two TFNs �̃� and �̃�, respectively, where �̃� = (𝑟 −

𝜃1, 𝑟, 𝑟 + 𝜃2), 0 < 𝜃1 < 𝑟, 𝜃2 > 0, and �̃� = (𝑘 − 𝜃3, 𝑘, 𝑘 + 𝜃4), 0 < 𝜃3 < 𝑘, 𝜃4 > 0. It should be 

noted that 𝜃1, 𝜃2, 𝜃3, and 𝜃4 could be determined by decision makers. By fuzzifying the mentioned 

parameters, the total cost per unit time which is also a fuzzy function can be expressed as  

 

 �̃� ≡ �̃�(𝑦, 𝑛) =
�̃�(𝑛𝐶𝑜 + 𝐶𝑠)

𝑦
+ 𝐻𝑟 (

𝑦

2
−

𝑎�̃�𝑦𝑏+1

𝑏 + 2
) + 𝐻𝑠 [

𝑦(�̃� − �̃�)
2

2𝑛�̃��̃�
+

�̃�𝑦

2�̃�
−

𝑎�̃�𝑦𝑏+1

(𝑏 + 1)(𝑏 + 2)
] 

 

 

 + (
𝑎�̃�𝑦𝑏

𝑏 + 1
) 𝐶𝑙 + (�̃� − �̃�)𝐶𝑝 + �̃�𝐶𝑏 

 

(25) 
 

In the next sections, we defuzzify the �̃�(𝑦, 𝑛) by using the GMIR and the SD method.  

 

5.1. Defuzzification by the SD method  

From Property 3, the signed distance of �̃� to 0̃1 is given by  

 

 𝑑(�̃�, 0̃) =
(𝑛𝐶𝑜 + 𝐶𝑠)

𝑦
𝑑(�̃�, 0̃1) +

𝑦

2
𝐻𝑟 −

𝐻𝑟𝑎𝑦𝑏+1

𝑏 + 2
𝑑(�̃�, 0̃1) +

𝑦𝐻𝑠

2𝑛
𝑑 (

�̃�

�̃�
, 0̃1)  

 

 

 

 +
𝑦𝐻𝑠

2𝑛
𝑑 (

�̃�

�̃�
, 0̃1) −

𝑦𝐻𝑠

𝑛
+

𝑦𝐻𝑠

2
𝑑 (

�̃�

�̃�
, 0̃1) −

𝑎𝑦𝑏+1𝐻𝑠

(𝑏 + 1)(𝑏 + 2)
𝑑(�̃�, 0̃1)  



 + (
𝑎𝑦𝑏

𝑏 + 1
) 𝐶𝑙𝑑(�̃�, 0̃1) + 𝐶𝑝𝑑((�̃� − �̃�), 0̃1) + 𝐶𝑏𝑑(�̃�, 0̃1) 

 

(26) 
 

where 𝑑(�̃�, 0̃1), 𝑑(�̃�/�̃�, 0̃1), and 𝑑((�̃� − �̃�), 0̃1) are measured as follows. From Property 2, the signed 

distance of fuzzy number �̃� to 0̃1 is  

 𝑑(�̃�, 0̃1) =
1

4
[(𝑟 − 𝜃1) + 2𝑟 + (𝑟 + 𝜃2)] = 𝑟 +

1

4
(𝜃2 − 𝜃1)  (27) 

The left and right end points of the 𝛼-cut of �̃�, and �̃� (0 ≤ 𝛼 ≤ 1) are 𝑟𝐿(𝛼) = (𝑟 − 𝜃1) + 𝜃1𝛼, 

𝑟𝑅(𝛼) = (𝑟 + 𝜃2) − 𝜃2𝛼, 𝑘𝐿(𝛼) = (𝑘 − 𝜃3) + 𝜃3𝛼, and 𝑘𝑅(𝛼) = (𝑘 + 𝜃4) − 𝜃4𝛼, respectively. 

Since 0 < 𝑟𝐿(𝛼) < 𝑟𝑅(𝛼), 0 < 𝑘𝐿(𝛼) < 𝑘𝑅(𝛼), from (15.1)-(15.5), the left and right end points of the 

𝛼-cut of �̃�/�̃�, �̃� − �̃�, and �̃�/�̃� are  

 

 (
𝑘

𝑟
)

𝐿
(𝛼) =

𝑘𝐿(𝛼)

𝑟𝑅(𝛼)
=

(𝑘 − 𝜃3) + 𝜃3𝛼

(𝑟 + 𝜃2) − 𝜃2𝛼
 (28) 

 (
𝑘

𝑟
)

𝑅
(𝛼) =

𝑘𝑅(𝛼)

𝑟𝐿(𝛼)
=

(𝑘 + 𝜃4) − 𝜃4𝛼

(𝑟 − 𝜃1) + 𝜃1𝛼
 (29) 

 (𝑘 − 𝑟)𝐿(𝛼) = 𝑘𝐿(𝛼) − 𝑟𝑅(𝛼) = (𝑘 − 𝜃3) − (𝑟 + 𝜃2) + (𝜃2 + 𝜃3)𝛼 (30) 

 (𝑘 − 𝑟)𝑅(𝛼) = 𝑘𝑅(𝛼) − 𝑟𝐿(𝛼) = (𝑘 + 𝜃4) − (𝑟 − 𝜃1) − (𝜃1 + 𝜃4)𝛼 (31) 

 (
𝑟

𝑘
)

𝐿
(𝛼) =

𝑟𝐿(𝛼)

𝑘𝑅(𝛼)
=

(𝑟 − 𝜃1) + 𝜃1𝛼

(𝑘 + 𝜃4) − 𝜃4𝛼
 (32) 

 (
𝑟

𝑘
)

𝑅
(𝛼) =

𝑟𝑅(𝛼)

𝑘𝐿(𝛼)
=

(𝑟 + 𝜃2) − 𝜃2𝛼

(𝑘 − 𝜃3) + 𝜃3𝛼
 (33) 

 

respectively. Thus, from Definition 7, the signed distance of �̃�/�̃�, �̃� − �̃�, and �̃�/�̃� to 0̃1 are 

 

 𝑑 (
�̃�

�̃�
, 0̃1) =

1

2
∫ [(

𝑘

𝑟
)

𝐿
(𝛼) + (

𝑘

𝑟
)

𝑈
(𝛼)]

1

0

𝑑𝛼  

 =
1

2
[
𝑟𝜃4 + 𝑘𝜃1

𝜃1
2 𝐿𝑛

𝑟

𝑟 − 𝜃1
−

𝜃4

𝜃1
+

𝑟𝜃3 + 𝑘𝜃2

𝜃2
2 𝐿𝑛

𝑟 + 𝜃2

𝑟
−

𝜃3

𝜃2
] 

 
(34) 

 𝑑 (
�̃�

�̃�
, 0̃1) =

1

2
∫ [(

𝑟

𝑘
)

𝐿
(𝛼) + (

𝑟

𝑘
)

𝑈
(𝛼)]

1

0

𝑑𝛼  

 =
1

2
[
𝑘𝜃2 + 𝑟𝜃3

𝜃3
2 𝐿𝑛

𝑘

𝑘 − 𝜃3
−

𝜃2

𝜃3
+

𝑘𝜃1 + 𝑟𝜃4

𝜃4
2 𝐿𝑛

𝑘 + 𝜃4

𝑘
−

𝜃1

𝜃4
] 

 
(35) 

 𝑑 ((�̃� − �̃�), 0̃1) =
1

2
∫ [(𝑘 − 𝑟)𝐿(𝛼) + (𝑘 − 𝑟)𝑈(𝛼)]

1

0

𝑑𝛼  

 =
1

2
([(𝜃2 + 𝜃3) − (𝜃1 + 𝜃4)]

1

2
+ (𝑘 − 𝜃3) + (𝑘 + 𝜃4) − (𝑟 + 𝜃2) − (𝑟 − 𝜃1)) 

 
(36) 

 

respectively. Substituting the results obtained by (34)-(36) into (26), we have 

 

 𝑉(𝑛, 𝑦) ≡ 𝑑(�̃�, 0̃)  

 = 𝑑(�̃�, 0̃1) [
(𝑛𝐶𝑜 + 𝐶𝑠)

𝑦
−

𝐻𝑟𝑎𝑦𝑏+1

𝑏 + 2
−

𝑎𝑦𝑏+1𝐻𝑠

(𝑏 + 1)(𝑏 + 2)
+ (

𝑎𝑦𝑏

𝑏 + 1
) 𝐶𝑙 + 𝐶𝑏]  

 +𝑑 (
�̃�

�̃�
, 0̃1)

𝑦𝐻𝑠

2𝑛
+ 𝑑 (

�̃�

�̃�
, 0̃1) [

𝑦𝐻𝑠

2𝑛
+

𝑦𝐻𝑠

2
] + 𝑑((�̃� − �̃�), 0̃1)𝐶𝑝  −

𝑦𝐻𝑠

𝑛
+

𝑦

2
𝐻𝑟 

 
(37) 

 

 𝑉(𝑛, 𝑦) ≡ 𝑑(�̃�, 0̃)  

 = [𝑟 +
1

4
(𝜃2 − 𝜃1)] [

(𝑛𝐶𝑜 + 𝐶𝑠)

𝑦
−

𝐻𝑟𝑎𝑦𝑏+1

𝑏 + 2
−

𝑎𝑦𝑏+1𝐻𝑠

(𝑏 + 1)(𝑏 + 2)
+ (

𝑎𝑦𝑏

𝑏 + 1
) 𝐶𝑙 + 𝐶𝑏]  

 +
𝑦𝐻𝑠

4𝑛
[
𝑟𝜃4 + 𝑘𝜃1

𝜃1
2 𝐿𝑛

𝑟

𝑟 − 𝜃1
−

𝜃4

𝜃1
+

𝑟𝜃3 + 𝑘𝜃2

𝜃2
2 𝐿𝑛

𝑟 + 𝜃2

𝑟
−

𝜃3

𝜃2
]  



 +
(1 + 𝑛)𝑦𝐻𝑠

4𝑛
[
𝑘𝜃2 + 𝑟𝜃3

𝜃3
2 𝐿𝑛

𝑘

𝑘 − 𝜃3
−

𝜃2

𝜃3
+

𝑘𝜃1 + 𝑟𝜃4

𝜃4
2 𝐿𝑛

𝑘 + 𝜃4

𝑘
−

𝜃1

𝜃4
]  

 + (𝑘 − 𝑟 −
𝜃2 + 𝜃3 − 𝜃1 − 𝜃4

4
) 𝐶𝑝  −

𝑦𝐻𝑠

𝑛
+

𝑦

2
𝐻𝑟 

 
(38) 

𝑉(𝑛, 𝑦) is considered as the estimate of the total cost per unit time in fuzzy situation. The next step is 

to determine the optimal recovery lot size to minimize the total cost function 𝑉(𝑛, 𝑦). By setting the 

first derivative of 𝑑(�̃�, 0̃) with respect to 𝑛 equal to zero, we can obtain 𝑦 as follow  

 
𝜕𝑑(�̃�, 0̃)

𝜕𝑛
= 0 → 𝑦 = 𝑛√

2𝐶𝑜𝑑(�̃�, 0̃1)

𝐻𝑠∆
= 𝑛𝜌  

 

 

(39) 
 

where 

  

∆= 𝑑 (
�̃�

�̃�
, 0̃1) + 𝑑 (

�̃�

�̃�
, 0̃1) − 2 and  𝜌 = √

2𝐶𝑜𝑑(�̃�, 0̃1)

𝐻𝑠∆
 

 

By setting the first derivative of 𝑑(�̃�, 0̃) with respect to 𝑦, we have  

 

 𝜕𝑑(�̃�, 0̃)

𝜕𝑦
= −

(𝑛𝐶𝑜 + 𝐶𝑠)

𝑦2
𝑑(�̃�, 0̃1) +

1

2
𝐻𝑟 −

(𝑏 + 1)𝐻𝑟𝑎𝑦𝑏

𝑏 + 2
𝑑(�̃�, 0̃1) +

𝐻𝑠

2𝑛
𝑑 (

�̃�

�̃�
, 0̃1)  

 

 
+

𝐻𝑠

2𝑛
𝑑 (

�̃�

�̃�
, 0̃1) −

𝐻𝑠

𝑛
+

𝐻𝑠

2
𝑑 (

�̃�

�̃�
, 0̃1) −

𝑎𝑦𝑏𝐻𝑠

(𝑏 + 2)
𝑑(�̃�, 0̃1) 

 

 

 
+ (

𝑎𝑏𝑦𝑏−1

𝑏 + 1
) 𝐶𝑙𝑑(�̃�, 0̃1) = 0 

 
(40) 

 

and after substituting 𝑦 from (39) into (40), �̃�(𝑛) can be derived as  
 

 
�̃�(𝑛) = −

(𝑛𝐶𝑜 + 𝐶𝑠)

𝑛2𝜌2
𝑑(�̃�, 0̃1) +

1

2
𝐻𝑟 −

(𝑏 + 1)𝐻𝑟𝑎𝑛𝑏𝜌𝑏

𝑏 + 2
𝑑(�̃�, 0̃1) +

𝐻𝑠

2𝑛
 

 

 
+

𝐻𝑠

2𝑛
(𝑑 (

�̃�

�̃�
, 0̃1) + 𝑑 (

�̃�

�̃�
, 0̃1) − 2) +

𝐻𝑠

2
𝑑 (

�̃�

�̃�
, 0̃1) −

𝑎𝑛𝑏𝜌𝑏𝐻𝑠

(𝑏 + 2)
𝑑(�̃�, 0̃1) 

 

 
+ (

𝑎𝑏𝑛𝑏−1𝜌𝑏−1

𝑏 + 1
) 𝐶𝑙𝑑(�̃�, 0̃1) 

 
(41) 

 

Letting (𝑦∗, 𝑛∗) shows the solution for the considered problem. To prove that 𝑦∗ and 𝑛∗ are the 

optimal recovery lot size and the optimal number of orders, respectively, Theorem 1 and 2 are 

necessary.  

 

Theorem 1: The optimal solution of (𝑦∗, 𝑛∗) not only exists, but is also unique. It is clear that it 

should satisfy �̃�(𝑛) = 0, and 𝑦 − 𝑛𝜌 = 0, simultaneously.  

Proof. See Appendix A.  □  
 

Theorem 2: 𝑑(�̃�, 0̃) has a global minimum at (𝑦∗, 𝑛∗), where this point is the solution for �̃�(𝑛) = 0, 

and 𝑦 − 𝑛𝜌 = 0.  

Proof. See Appendix B.  □ 
 

Solution procedure. Finding a closed-form solution is not possible for �̃�(𝑛) = 0. Instead of a direct 

method, we can find 𝑛∗ by a one-dimensional search procedure. When 𝑛∗ can be found, 𝑦∗ can be 

obtained by Eq. (40). As 𝑛∗ is a positive integer, the proposed solution algorithm in the next section 

can be applied to find the optimal values.  

 



Remarks 3. From Eqs. (3) and (34), we can estimate the ordering lot size for the newly purchased 

products 𝑄 as 𝑑(�̃�, 0̃) =
𝑦

𝑛
𝑑(

�̃�

�̃�
, 0̃) −

𝑦

𝑛
 .  

 

5.2. Defuzzification by the GMIR method  

By applying the fuzzy arithmetic operations of the function principle method described in Section 4.1 

and Definition 1, the fuzzy total cost per unit time in Eq. (25), can be written as follows:  

 

 �̃�(𝑦, 𝑛) = (𝜒1, 𝜒2, 𝜒3)  (42) 

where 

 

 𝜒1 =
(𝑟 − 𝜃1)(𝑛𝐶𝑜 + 𝐶𝑠)

𝑦
+ 𝐻𝑟 [

𝑦

2
−

𝑎(𝑟 + 𝜃2)𝑦𝑏+1

𝑏 + 2
] + 𝐶𝑙

𝑎(𝑟 − 𝜃1)𝑦𝑏

𝑏 + 1
  

 +𝐻𝑠 (
𝑦[(𝑘 − 𝜃3) − (𝑟 + 𝜃2)]2

2𝑛(𝑘 + 𝜃4)(𝑟 + 𝜃2)
+

𝑦(𝑟 − 𝜃1)

2(𝑘 + 𝜃4)
−

𝑎(𝑟 + 𝜃2)𝑦𝑏+1

(𝑏 + 1)(𝑏 + 2)
)  

 +[(𝑘 − 𝜃3) − (𝑟 + 𝜃2)]𝐶𝑝 + (𝑟 − 𝜃1)𝐶𝑏 (43) 

 

 𝜒2 =
𝑟(𝑛𝐶𝑜 + 𝐶𝑠)

𝑦
+ 𝐻𝑟 [

𝑦

2
−

𝑎𝑟𝑦𝑏+1

𝑏 + 2
] + 𝐻𝑠 (

𝑦[𝑘 − 𝑟]2

2𝑛𝑘𝑟
+

𝑦𝑟

2𝑘
−

𝑎𝑟𝑦𝑏+1

(𝑏 + 1)(𝑏 + 2)
)  

 +𝐶𝑙

𝑎𝑟𝑦𝑏

𝑏 + 1
+ (𝑘 − 𝑟)𝐶𝑝 + 𝑟𝐶𝑏 

 

(44) 

 

 𝜒3 =
(𝑟 + 𝜃2)(𝑛𝐶𝑜 + 𝐶𝑠)

𝑦
+ 𝐻𝑟 [

𝑦

2
−

𝑎(𝑟 − 𝜃1)𝑦𝑏+1

𝑏 + 2
] + 𝐶𝑙

𝑎(𝑟 + 𝜃2)𝑦𝑏

𝑏 + 1
  

 +𝐻𝑠 (
𝑦[(𝑘 + 𝜃4) − (𝑟 − 𝜃1)]2

2𝑛(𝑘 − 𝜃3)(𝑟 − 𝜃1)
+

𝑦(𝑟 + 𝜃2)

2(𝑘 − 𝜃3)
−

𝑎(𝑟 − 𝜃1)𝑦𝑏+1

(𝑏 + 1)(𝑏 + 2)
)  

 +[(𝑘 + 𝜃4) − (𝑟 − 𝜃1)]𝐶𝑝 + (𝑟 + 𝜃2)𝐶𝑏 (45) 
 

According to the GMIR method explained in Section 4.2.2, the defuzzified value of �̃� can be given as 

below: 

 

 Φ (�̃�(𝑦, 𝑛)) =
1

6
(𝜒1 + 4𝜒2 + 𝜒3) (46) 

 

The next step is to determine the optimal recovery lot size to minimize the total cost function 

Φ(�̃�(𝑦, 𝑛)). By setting the first derivative of Φ(�̃�(𝑦, 𝑛)) with respect to 𝑛 equal to zero, we can 

obtain 𝑦 as follows:  

 

 
𝜕Φ(�̃�(𝑦, 𝑛))

𝜕𝑛
= 0 → 𝑦 = 𝑛𝜋  (47) 

 

where 

 

 𝜋 =
√

𝐶𝑜[(𝑟 − 𝜃1) + 4𝑟 + (𝑟 + 𝜃2)]

𝐻𝑠 (
[(𝑘 − 𝜃3) − (𝑟 + 𝜃2)]2

2(𝑘 + 𝜃4)(𝑟 + 𝜃2)
+

2(𝑘 − 𝑟)2

𝑘𝑟
+

[(𝑘 + 𝜃4) − (𝑟 − 𝜃1)]2

2(𝑘 − 𝜃3)(𝑟 − 𝜃1)
)
  

 

By setting the first derivative of Φ(�̃�(𝑦, 𝑛)) with respect to 𝑦, and after substituting 𝑦 = 𝑛𝜋, 𝑓(𝑛) can 

be derived as 

 

 𝑓(𝑛) = −
𝛾𝐶𝑠

6𝑛2𝐶𝑜
+

(𝛽 + 𝛿)𝑛𝑏 + 휁𝑛𝑏−1

6
+ 휀 (48) 

 

where 

 



𝛼 = −
(𝑛𝐶𝑜 + 𝐶𝑠)𝛾

𝐶𝑜
 , 𝛽 = −

𝑎(𝑏 + 1)𝐻𝑟[(𝑟 + 𝜃2) + 4𝑟 + (𝑟 − 𝜃1)]𝜋𝑏

𝑏 + 2
 , 

𝛾 = 𝐻𝑠 (
[(𝑘 − 𝜃3) − (𝑟 + 𝜃2)]2

2(𝑘 + 𝜃4)(𝑟 + 𝜃2)
+

2(𝑘 − 𝑟)2

𝑘𝑟
+

[(𝑘 + 𝜃4) − (𝑟 − 𝜃1)]2

2(𝑘 − 𝜃3)(𝑟 − 𝜃1)
) , 

𝛿 = −
𝑎𝐻𝑠𝜋𝑏

(𝑏 + 2)
((𝑟 − 𝜃1) + 4𝑟 + (𝑟 + 𝜃2)) , 휁 = 𝑎𝑏𝐶𝑙𝜋𝑏−1 [

(𝑟 − 𝜃1) + 4𝑟 + (𝑟 + 𝜃2)

𝑏 + 1
] , 

휀 =
1

2
𝐻𝑟 +

1

6
𝐻𝑠 [

(𝑟 − 𝜃1)

2(𝑘 + 𝜃4)
+

2𝑟

𝑘
+

(𝑟 + 𝜃2)

2(𝑘 − 𝜃3)
]  

 

Letting (𝑦∗, 𝑛∗) shows the solution for the considered problem. To prove that 𝑦∗ and 𝑛∗ are the 

optimal recovery lot size and the optimal number of orders, respectively, Theorem 3 and 4 are 

required.  
 

Theorem 3: The optimal solution of (𝑦∗, 𝑛∗) not only exists, but is also unique. It is clear that it 

should satisfy 𝑓(𝑛) = 0, and 𝑦 − 𝑛𝜋 = 0, simultaneously.  

Proof. See Appendix C.  □  
 

Theorem 4: Φ(�̃�(𝑦, 𝑛)) has a global minimum at (𝑦∗, 𝑛∗), where this point is the solution for 𝑓(𝑛) =

0, and 𝑦 − 𝑛𝜋 = 0.  

Proof. See Appendix D.  □ 
 

Solution procedure. Finding a closed-form solution is not possible for 𝑓(𝑛) = 0. Instead of a direct 

method, we can find 𝑛∗ by a one-dimensional search procedure. When 𝑛∗ can be found, 𝑦∗ can be 

obtained by 𝜕𝑑(�̃�, 0̃)/𝜕𝑦 = 0. As 𝑛∗ is a positive integer, the following solution algorithm can also 

be applied to find the optimal values.  
 

Solution algorithm. Consider a pre-determined error value 𝜏 > 0. Set 𝑛𝑙 and 𝑛𝑢 as suggested guesses 

of the root such that 𝑓(𝑛𝑢) > 0 and 𝑓(𝑛𝑙) < 0. The optimal values could be found by the proposed 

flowchart in Fig. 1. In this flowchart, ⌊𝑛⌋ and ⌈𝑛⌉ show the nearest integers smaller and larger than 𝑛∗.  

 

 

 

 

 

 

 

 

 

  

 

Fig. 1. Proposed flowchart to find the optimal recovery lot size and the number of orders  

𝑛∗ = 𝑛𝑏 

𝑛𝑏 = (𝑛𝑙 + 𝑛𝑢)/2 

𝑛∗ ∈ ℤ No 

Yes 

No 

No 

 

 

 

𝑓(𝑛𝑏)𝑓(𝑛𝑙) < 0 

Find 𝑉(⌊𝑛⌋, 𝑦⌊𝑛⌋
∗ ) and 𝑉(⌈𝑛⌉, 𝑦⌈𝑛⌉

∗ ) in SD method 

Find Φ(�̃�(⌊𝑛⌋, 𝑦⌊𝑛⌋
∗ )) and Φ(�̃�(𝑉(⌈𝑛⌉, 𝑦⌈𝑛⌉

∗ )) in GMIR method 

 

 
For SD method consider: 

𝑉(𝑛∗, 𝑦∗) = 𝑀𝑖𝑛{𝑉(⌊𝑛⌋, 𝑦⌊𝑛⌋
∗ ), 𝑉(⌈𝑛⌉, 𝑦⌈𝑛⌉

∗ ) } 
 

For GMIR method consider: 

Φ(�̃�(𝑛∗, 𝑦∗)) = 𝑀𝑖𝑛{Φ(�̃�(⌊𝑛⌋, 𝑦⌊𝑛⌋
∗ )), Φ(�̃�(𝑉(⌈𝑛⌉, 𝑦⌈𝑛⌉

∗ ))} 

 

|𝑓(𝑛𝑏)| < 𝜏 

 

 

𝑛𝑙 = 𝑛𝑏 

 

Yes 

Find 𝑦⌊𝑛⌋
∗  and 𝑦⌈𝑛⌉

∗  by 𝜕𝑑(�̃�, 0̃)/𝜕𝑦 = 0 in SD method 

Find 𝑦⌊𝑛⌋
∗  and 𝑦⌈𝑛⌉

∗  by 𝜕Φ(�̃�(𝑦, 𝑛))/𝜕𝑦 = 0 in GMIR method 

Obtain 𝑦∗ by 𝜕𝑑(�̃�, 0̃)/𝜕𝑦 = 0 in SD method 

Obtain 𝑦∗ by 𝜕Φ(�̃�(𝑦, 𝑛))/𝜕𝑦 = 0 in GMIR method 

 

 

 

𝑛𝑢 = 𝑛𝑏 

 Obtain 𝑉(𝑛∗, 𝑦∗) as the estimate of TCU in SD method 

Obtain Φ(�̃�(𝑛∗, 𝑦∗)) as the estimate of TCU in GMIR method 

 

 

 
𝑛∗, 𝑦∗and 𝑉(𝑛∗, 𝑦∗) are the optimal values in SD method 

 

𝑛∗, 𝑦∗and Φ(�̃�(𝑛∗, 𝑦∗)) are the optimal values in GMIR method 

Yes 

 



Remarks 4. From Eqs. (3) and (24), we can estimate ordering lot size for the newly purchased 

products 𝑄 as Φ(�̃�) =
1

6
(𝑞1 + 4𝑞2 + 𝑞3) =

1

6
(

𝑦[(𝑘−𝜃3)−(𝑟+𝜃2)]

𝑛(𝑟+𝜃2)
+

4𝑦(𝑘−𝑟)

𝑛𝑟
+

𝑦[(𝑘+𝜃4)−(𝑟−𝜃1)]

𝑛(𝑟−𝜃1)
).  

 

6. Comprehensive numerical example  

In this section, we analyze and explain the effects of fuzzification on the developed model through a 

comprehensive numerical example. We expound the results of each model, separately. Besides, 

defining some comparative criteria, these results will be compared with each other simultaneously.  

 

Table 1. Considered fuzzy numbers 

𝜽𝟏 𝜽𝟐 �̃�  𝜽𝟑 𝜽𝟒 �̃� 𝜽𝟑 𝜽𝟒 �̃�  
5 55 (95,100,155)  20 14 (230,250,264) 40 50 (210,250,300)  

25 50 (75,100,150)  20 20 (230,250,270) 60 40 (190,250,290)  
40 40 (60,100,140)  20 26 (230,250,276) 60  60 (190,250,310)  
50 25 (50,100,125)  40 30 (210,250,280) 60 80 (190,250,330)  
55 5 (45,100,105)  40 40 (210,250,290)     

  

Table 2. The results of effecting the crisp model by the GMIR method  

No. 𝜽𝟏 𝜽𝟐 𝜽𝟑 𝜽𝟒 𝒏∗ 𝒚∗ 𝑸∗ 𝑻𝑪𝑼∗ 𝚽(�̃�) 𝚽(�̃�/�̃�) 𝚽(�̃�/�̃�) 𝚽(�̃� − �̃�) 

1 5 55 20 14 4 678 233 41469.90 108.333 2.377 0.439 140.667 

2    20 4 677 235 41686.67 108.333 2.388 0.438 141.667 

3    26 4 676 236 41904.77 108.333 2.398 0.436 142.667 

4   40 30 4 668 231 41480.96 108.333 2.384 0.446 140.000 

5    40 5 712 200 41849.07 108.333 2.401 0.444 141.667 

6    50 5 709 201 42216.42 108.333 2.419 0.442 143.333 

7   60 40 5 702 194 41311.76 108.333 2.380 0.457 138.330 

8     60 5 696 197 42059.24 108.333 2.415 0.454 141.667 

9    80 5 689 200 42819.22 108.333 2.450 0.451 145.000 

10 25 50 20 14 5 701 212 42096.73 104.167 2.509 0.423 144.833 

11    20 5 700 213 42319.71 104.167 2.522 0.422 145.833 

12    26 5 698 214 42543.94 104.167 2.536 0.421 146.833 

13   40 30 5 688 209 42137.25 104.167 2.522 0.430 144.167 

14    40 5 684 211 42520.33 104.167 2.544 0.429 145.833 

15    50 5 681 213 42906.78 104.167 2.567 0.427 147.500 

16   60 40 5 674 205 41998.27 104.167 2.522 0.441 142.500 

17    60 5 665 208 42786.72 104.167 2.567 0.439 145.833 

18    80 5 656 211 43588.19 104.167 2.611 0.436 149.167 

19 40 40 20 14 5 675 226 42744.49 100.000 2.674 0.406 149.000 

20    20 5 672 227 42978.14 100.000 2.690 0.405 150.000 

21    26 5 670 229 43213.12 100.000 2.707 0.404 151.000 

22   40 30 5 659 223 42823.76 100.000 2.694 0.413 148.333 

23    40 6 698 200 43225.10 100.000 2.722 0.412 150.000 

24    50 6 693 202 43621.69 100.000 2.750 0.411 151.667 

25   60 40 6 686 194 42712.89 100.000 2.698 0.424 146.667 

26    60 6 676 198 43522.93 100.000 2.754 0.422 150.000 

27    80 6 665 201 44345.71 100.000 2.810 0.420 153.333 

28 50 25 20 14 6 692 214 43384.83 95.833 2.853 0.389 153.167 

29    20 6 689 215 43621.97 95.833 2.873 0.388 154.167  

30    26 6 686 216 43860.42 95.833 2.893 0.387 155.167 

31   40 30 6 675 212 43474.18 95.833 2.880 0.396 152.500 

32    40 6 669 213 43882.84 95.833 2.913 0.395 154.167 

33    50 6 664 215 44294.95 95.833 2.947 0.394 155.833 

34   60 40 6 658 207 43376.64 95.833 2.887 0.405 150.833 

35    60 6 646 210 44220.43 95.833 2.953 0.403 154.167 

36    80 7 674 194 45061.16 95.833 3.020 0.402 157.500 

37 55 5 20 14 6 669 224 43949.34 91.667 3.010 0.371 157.333 

38    20 6 666 226 44190.54 91.667 3.032 0.371 158.333 

39    26 6 663 227 44433.11 91.667 3.054 0.370 159.333 

40   40 30 6 653 222 44040.65 91.667 3.037 0.377 156.667 

41    40 6 647 224 44457.32 91.667 3.074 0.376 158.333 

42    50 7 681 205 44871.33 91.667 3.111 0.375 160.000 

43   60 40 7 676 197 43940.99 91.667 3.042 0.385 155.000 

44    60 7 663 200 44784.16 91.667 3.116 0.383 158.333 

45    80 7 650 203 45640.21 91.667 3.190 0.381 161.667 

 



In order to compare the results of the investigated model with those of the crisp one, let us 

consider the data in Tsai [22]. These data include 𝑘 = 250 units/day, 𝑟 = 100 units/day, 𝐶𝑠 =

$20,000/setup, 𝐶𝑜 = $2,000/order, 𝐶𝑝 = $200/unit, 𝐶𝑏 = $40/unit, 𝐻𝑟 = $4/unit/day, 𝐻𝑠 =

$20/unit/day, 𝐶𝑙 = $1000/day, 𝑎 = 0.003 day/unit, 𝑏 = −0.089. Furthermore, as it is shown in 

Table 1, assuming some arbitrary sets for 𝜃𝑖, 𝑖 = 1,2,3,4, the behaviour of the fuzzified models is 

examined. These parameters are selected such that 0 < 𝜃1 < 𝑟, 0 < 𝜃3 < 𝑘, and 0 < 𝜃2, 𝜃4. Due to 

the uncertainties inherent in the data and lack of existing knowledge about the whole of the inventory 

system, these parameters are usually determined according to the experiences of experts as decision 

makers. We combined the mentioned fuzzy parameters to build 45 iterations. For the fuzzified 

parameters 𝑘 and 𝑟, five and nine levels of fuzziness are assumed, respectively.  

Table 2 presents the results of the GMIR method. From Table 2, it is clear that for the fixed values 

of (𝜃1, 𝜃2), and constant values of the optimal number of orders 𝑛∗, when the level of fuzziness 

increases by varying the values of (𝜃3, 𝜃4), the optimal recovery lot size 𝑦∗ decreases, but the optimal 

ordering lot size and the optimal total cost function per unit time increase.  

 
Table 3. The results of effecting the crisp model by the SD method  

No. 𝜽𝟏 𝜽𝟐 𝜽𝟑 𝜽𝟒 𝒏∗ 𝒚∗ 𝑸∗ 𝑻𝑪𝑼∗ 𝒅(�̃�, �̃�𝟏) 𝒅(�̃�/�̃�, �̃�𝟏) 𝒅(�̃�/�̃�, �̃�𝟏) 𝒅(�̃� − �̃�, �̃�𝟏) 

1 5 55 20 14 4 700 224 40758.79 112.500 2.278 0.456 136.000  

2    20 4 699 226 41067.34 112.500 2.293 0.454 137.500 

3    26 4 698 228 41376.43 112.500 2.309 0.452 139.000 

4   40 30 4 694 222 40631.95 112.500 2.282 0.464 135.000 

5    40 4 693 227 41148.65 112.500 2.308 0.461 137.500 

6    50 4 692 231 41666.59 112.500 2.334 0.458 140.000 

7   60 40 4 688 219 40213.02 112.500 2.271 0. 475 132.500 

8     60 4 685 227 41249.79 112.500 2.323 0.469 137.500 

9    80 4 682 234 42290.74 112.500 2.374 0.464 142.500 

10 25 50 20 14 4 668 243 41669.98 106.250 2.456 0.432 142.250 

11    20 5 714 211 41980.99 106.250 2.475 0.430 143.750 

12    26 5 713 213 42291.53 106.250 2.493 0.428 145.250 

13   40 30 4 662 243 41553.24 106.250 2.467 0.440 141.250 

14    40 5 707 212 42072.27 106.250 2.497 0.437 143.750 

15    50 5 705 215 42592.09 106.250 2.527 0.434 146.250 

16   60 40 4 656 239 41136.63 106.250 2.459 0.451 138.750 

17    60 5 698 212 42181.57 106.250 2.520 0.446 143.750 

18    80 5 695 220 43225.26 106.250 2.580 0.441 148.750 

19 40 40 20 14 5 682 226 42545.29 100.000 2.657 0.407 148.500 

20    20 5 681 228 42860.38 100.000 2.677 0.405 150.000 

21    26 5 680 231 43175.82 100.000 2.698 0.404 151.500 

22   40 30 5 676 226 42430.64 100.000 2.672 0.415 147.500 

23    40 5 674 230 42957.30 100.000 2.707 0.412 150.000 

24    50 5 672 234 43484.75 100.000 2.742 0.410 152.500 

25   60 40 5 670 223 42014.63 100.000 2.667 0.426 145.000 

26    60 5 666 231 43069.90 100.000  2.736 0.421 150.000 

27    80 5 661 239 44127.79 100.000 2.806 0.417 155.000 

28 50 25 20 14 5 651 242 43400.39 93.750 2.860 0.381 154.750 

29    20 6 692 217 43716.64 93.750 2.883 0.380 156.250 

30    26 6 691 220 44031.79 93.750 2.906 0.378 157.750 

31   40 30 5 645 242 43281.22 93.750 2.879 0.389 153.750 

32    40 6 685 219 43807.99 93.750 2.917 0.386 156.250 

33    50 6 683 223 44334.75 93.750 2.956 0.384 158.750 

34   60 40 5 639 240 42855.40 93.750 2.874 0.399 151.250 

35    60 6 677 220 43913.43 93.750 2.951 0.395 156.250 

36    80 6 673 228 44969.57 93.750 3.029 0.391 161.250 

37 55 5 20 14 6 664 226 44180.64 87.500 3.044 0.355 161.000 

38    20 6 663 229 44497.05 87.500 3.068 0.354 162.500 

39    26 6 662 231 44813.73 87.500 3.093 0.353 164.000 

40   40 30 6 659 226 44047.28 87.500 3.061 0.361 160.000 

41    40 6 657 230 44575.80 87.500 3.102 0.359 162.500 

42    50 6 655 234 45104.92 87.500 3.143 0.357 165.000 

43   60 40 6 654 224 43608.03 87.500 3.054 0.370 157.500 

44    60 6 650 231 44666.59 87.500 3.136 0.366 162.500 

45    80 6 646 239 45727.15 87.500 3.218 0.363 167.500 

 



In Table 2, for the fixed values of (𝜃3, 𝜃4), as the estimate of the collection rate of the recoverable 

products Φ(�̃�) decreases by varying (𝜃1, 𝜃2), the optimal recovery lot size 𝑦∗ decreases for fixed 𝑛∗, 

but the optimal ordering lot size and the optimal total cost function per unit time increase. However, 

when 𝑛∗ increases, 𝑦∗ and 𝑇𝐶𝑈∗ increase, and 𝑄∗decreases. Besides, when (𝜃1, 𝜃2, 𝜃3) are fixed, the 

optimal ordering lot size, and the optimal total cost function per unit time increase for fixed 𝑛∗.  

Table 3 shows the results of the signed distance method. Based on the columns 7, 8 and 9 of the 

Table 3, for the fixed values of (𝜃1, 𝜃2), and the constant values of the optimal number of orders 𝑛∗, 

the behavior of the optimal recovery lot size 𝑦∗, the optimal ordering lot size 𝑄∗, and the optimal total 

cost function per unit time 𝑇𝐶𝑈∗ is similar to that one which is explained in the GMIR method. 

However, one of the major differences between them is that as 𝜃1 increases, the decrease in 𝑦∗ is 

higher for the GMIR method as compared to the signed distance method. Moreover, for the fixed 

values of (𝜃3, 𝜃4), as the estimate of the collection rate of the recoverable products 𝑑(�̃�, 0̃1) decreases 

by varying (𝜃1, 𝜃2), the reduction in the optimal recovery lot size 𝑦∗ is lower than that of the GMIR 

method for fixed 𝑛∗, and therewith, the optimal ordering lot size 𝑄∗, and the optimal total cost 

function per unit time 𝑇𝐶𝑈∗ have the similar trends similar to the GMIR method.  

 
Table 4. Comparing the results of the GMIR and SD methods with the crisp ones 

No. 𝒏∗ 𝒚𝑺𝑫
∗ % 𝑸𝑺𝑫

∗ % 𝑻𝑪𝑼𝑺𝑫
∗ % 𝒏∗ 𝒚𝑮𝑴𝑰𝑹

∗ % 𝑸𝑮𝑴𝑰𝑹
∗ % 𝑻𝑪𝑼𝑮𝑴𝑰𝑹

∗ % 

1 4 -0.709 5.660 -4.263 4 -3.830 9.906 -2.593 
2 4 -0.851 6.604 -3.538 4 -3.972 10.849 -2.084 

3 4 -0.993 7.547 -2.812 4 -4.113 11.321 -1.571 

4 4 -1.560 4.717 -4.561 4 -5.248 8.962 -2.567 
5 4 -1.702 7.075 -3.347 5 0.993 -5.660 -1.702 

6 4 -1.844 8.962 -2.131 5 0.567 -5.189 -0.839 

7 4 -2.411 3.302 -5.545 5 -0.426 -8.491 -2.964 
8 4 -2.837 7.075 -3.110 5 -1.277 -7.075 -1.208 

9 4 -3.262 10.377 -0.665 5 -2.270 -5.660 0.577 

10 4 -5.248 14.623 -2.123 5 -0.567 0.000 -1.120 
11 5 1.277 -0.472 -1.392 5 -0.709 0.472 -0.597 

12 5 1.135 0.472 -0.663 5 -0.993 0.943 -0.070 

13 4 -6.099 14.623 -2.397 5 -2.411 -1.415 -1.025 
14 5 0.284 0.000 -1.178 5 -2.979 -0.472 -0.125 

15 5 0.000 1.415 0.043 5 -3.404 0.472 0.782 

16 4 -6.950 12.736 -3.375 5 -4.397 -3.302 -1.352 
17 5 -0.993 0.000 -0.921 5 -5.674 -1.887 0.500 

18 5 -1.418 3.774 1.530 5 -6.950 -0.472 0.401 

19 5 -3.262 6.604 -0.067 5 -4.255 6.604 0.401 
20 5 -3.404 7.547 0.673 5 -4.681 7.075 0.950 

21 5 -3.546 8.962 1.414 5 -4.965 8.019 1.502 

22 5 -4.113 6.604 -0.336 5 -6.525 5.189 0.587 
23 5 -4.397 8.491 0.901 6 -0.993 -5.660 1.530 

24 5 -4.681 10.377 2.140 6 -1.702 -4.717 2.462 

25 5 -4.965 5.189 -1.313 6 -2.695 -8.491 0.327 
26 5 -5.532 8.962 1.166 6 -4.113 -6.604 2.230 

27 5 -6.241 12.736 3.650 6 -5.674 -5.189 4.162 
28 5 -7.660 14.151 1.942 6 -1.844 0.943 1.905 

29 6 -1.844 2.358 2.685 6 -2.270 1.415 2.462 

30 6 -1.986 3.774 3.425 6 -2.695 1.887 3.022 
31 5 -8.511 14.151 1.662 6 -4.255 0.000 2.115 

32 6 -2.837 3.302 2.899 6 -5.106 0.472 3.075 

33 6 -3.121 5.189 4.136 6 -5.816 1.415 4.043 
34 5 -9.362 13.208 0.662 6 -6.667 -2.358 1.886 

35 6 -3.972 3.774 3.147 6 -8.369 -0.943 3.868 

36 6 -4.539 7.547 5.628 7 -4.397 -8.491 5.843 
37 6 -5.816 6.604 3.774 6 -5.106 5.660 3.231 

38 6 -5.957 8.019 4.518 6 -5.532 6.604 3.798 

39 6 -6.099 8.962 5.262 6 -5.957 7.075 4.368 
40 6 -6.525 6.604 3.461 6 -7.376 4.717 3.446 

41 6 -6.809 8.491 4.703 6 -8.227 5.660 4.424 

42 6 -7.092 10.377 5.946 7 -3.404 -3.302 5.397 
43 6 -7.234 5.660 2.430 7 -4.113 -7.075 3.212 

44 6 -7.801 8.962 4.916 7 -5.957 -5.660 5.192 

45 6 -8.369 12.736 7.407 7 -7.801 -4.245 7.203 

Average  -3.997 7.285 0.809  -3.959  0.073 1.446  



The collection rate of the recoverable products from customers is an important factor in the reverse 

logistics literature. For positive levels of fuzziness, the estimations of this factor by the signed 

distance method are higher than those that are obtained applying the GMIR method. Besides, it is 

observed that, for negative levels of fuzziness, the estimations of the mentioned factor using the 

GMIR method returns higher value than the signed distance method. These interesting results should 

be taken into consideration in practical situations. In both methods, the optimal number of orders 𝑛∗ 

increases by decreasing 𝜃2. In other words, the more the estimation of the difference between the 

demand rate of the serviceable products and the collection rate of the recoverable products (𝑘 − 𝑟), 

the higher the optimal number of orders 𝑛∗ will be.  

Regarding a criterion defined in Eq. (49), the values of percentage changes for the optimal 

recovery lot size 𝑄∗, and the optimal total cost function per unit time 𝑇𝐶𝑈∗ compared to the crisp 

ones are calculated in Table 4. For example, the 3th column of Table 4 shows the percentage changes 

of optimal recovery lot size using the signed distance method (𝑦𝑆𝐷
∗ %).  

 

 (
Optimal Fuzzy Value − Optimal Crisp Value

Optimal Crisp Value
) × 100 (49) 

 

In order to have a better comparison, based on this criterion, the behavior of the fuzzified model by 

both methods is compared for the mentioned optimal values in Figure 2 and 3, simultaneously. In 

Figure 2, the white stars show the situations that the optimal number of orders 𝑛∗ increase one unit in 

the GMIR method, while the black stars show the similar increase in the signed distance method.  

According to the Figure 2, in states that the levels of fuzziness are similar, and also, the optimal 

number of orders 𝑛∗ are equal, the percentage changes of the optimal recovery lot size in the GMIR 

method are negative 𝑦𝐺𝑀𝐼𝑅
∗ % < 0, and moreover, in these conditions, the difference between 𝑦𝑆𝐷

∗ % 

and 𝑦𝐺𝑀𝐼𝑅
∗ % is always positive (𝑦𝑆𝐷

∗ % − 𝑦𝐺𝑀𝐼𝑅
∗ % > 0). The average of percentage changes for the 

signed distance and the GMIR method is −3.997, and −3.959, respectively.  

Figure 3 indicates that taking the percentage changes of the optimal total cost function per unit 

time into account, in general, there are similar increasing trends for both methods. When 𝜃2 > 𝜃1, 

except for two cases, the percentage changes of the optimal total cost by the signed distance method 

𝑇𝐶𝑈𝑆𝐷
∗ % are negative. Moreover, when 𝜃2 < 𝜃1, those are positive in all cases. Generally, the GMIR 

method takes priority than the signed distance method in adopting positive value for the percentage 

changes of the optimal total cost. Besides, the average percentage change of the total cost function for 

the GMIR method (1.446) is greater than the similar one for the signed distance method (0.809).  

Table 5 presents some descriptive statistics for the optimal values in each level of fuzziness for the 

collection rate of the recoverable products 𝑟, separately. In Table 5, “level of fuzziness” is a measure 

defined as the percentage deviation from the crisp value in each level of fuzziness. It is clear that the 

mentioned measure for the GMIR method is smaller than the similar one by the signed distance 

method. Although the overall average value of the total cost by the signed distance method is smaller 

than the calculated one by the GMIR method, its standard deviation in the GMIR method (1053) is 

smaller than the similar value (1345) by the signed distance method. It indicates that the GMIR 

method is more stable than the signed distance regarding the total cost. Considering the average for all 

levels, both methods lead to the same optimal value (677) for the recovering lot size. However, in this 

situation, the standard deviation by the signed distance is higher than the one obtained by the GMIR. 

Therefore, deciding on which method could be used depends on the target strategy that could focus on 

the total cost, the ordering lot size or the recovery lot size.  

Besides, Table 6 shows the results of the descriptive statistics for the optimal values according to 

the criterion defined in Eq. (49) by varying 𝜃1 and 𝜃2, regardless of whether the percentage change is 

positive or negative. Unlike Table 5, in Table 6, these two methods are compared based on the 

optimal crisp values.  



 

Fig. 2. Comparing the SD and the GMIR method simultaneously considering the relative variation between the 

crisp and fuzzy situation for the optimal recovery lot size  

 

 

 

Fig. 3. Comparing the SD and the GMIR method simultaneously considering the relative variation between the 

crisp and fuzzy situation for the optimal total cost function per unit time  
         

 
Table 5. Comparing the difference between the results of the GMIR and the SD method  

 

 

(θ1,θ2) 

GMIR method SD method  

Level of 

fuzziness 

𝒚∗ 𝑸∗ 𝑻𝑪𝑼∗ Level of 

fuzziness 

𝒚∗ 𝑸∗ 𝑻𝑪𝑼∗ 

(µ,σ)* (µ,σ)* (µ,σ)* (µ,σ)* (µ,σ)* (µ,σ)* 
(5,55) 8.33%  (690,15)  (214,18) (41866.45,437) 12.50% (692,6)  (226,4) (41155.92,571) 

(25,50) 4.17% (683,15)  (211,3) (42544.21,471) 6.25% (691,21)  (223,13) (42078.17,575) 
(40,40) 0% (677,12)  (211,14) (43243.09,496) 0% (674,7)  (230,5) (42962.94,582) 

(50,25) ‒ 4.17% (673,14)  (211,6) (43908.60,517) ‒ 6.25% (671,19)  (228,10) (43812.35,582) 

(55,5) ‒ 8.33%  (663,11)  (214,12) (44478.63,521) ‒ 12.50% (657,6)  (230,4) (44580.13,582) 

FOR ALL LEVELS (677,16) (212,12) (43208.20,1053)  (677,19) (227,9) (42917.91,1345) 
 

*µ, σ stands for mean, and standard deviation of the optimal values, respectively.   
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Table 6. Comparing the difference between the results of the GMIR and SD method based on the crisp values  

 

 

(θ1,θ2) 

GMIR method  SD method  

𝒚∗ 𝑸∗ 𝑻𝑪𝑼∗ 𝒚∗ 𝑸∗ 𝑻𝑪𝑼∗ 

(µ,σ)* (µ,σ)* (µ,σ)* (µ,σ)* (µ,σ)* (µ,σ)* 
(5,55) (2.52%, 1.70%)  (8.12%, 2.20%) (1.79%, 0.78%)  (1.80%, 0.84%)  (6.81%, 2.00%) (3.33%, 1.34%) 

(25,50) (3.12%, 2.12%)  (1.05%, 0.96%) (0.66%, 0.42%)  (2.60%, 2.54%)  (5.35%, 6.23%) (1.51%, 0.94%) 

(40,40) (3.96%, 1.72%)  (6.39%, 1.24%) (1.57%, 1.17%)  (4.46%, 0.95%)  (8.39%, 2.13%) (1.30%, 1.01%) 
(50,25) (4.60%, 2.03%)  (1.99%, 2.39%) (3.14%, 1.21%)  (4.87%, 2.72%)  (7.49%, 4.69%) (2.91%, 1.37%) 

(55,5) (5.94%, 1.54%)  (5.56%, 1.21%) (4.47%, 1.22%)  (6.86%, 0.81%)  (8.49%, 2.04%) (4.71%, 1.37%) 

Overall (4.03%, 2.19%) (4.62%, 3.18%) (2.33%, 1.67%) (4.12%, 2.53%) (7.31%, 4.01%) (2.75%, 1.75%) 
 

*µ, σ stands for mean, and standard deviation of the optimal values, respectively.  

   

     
 

Fig. 4. Estimating a simple regression relationship 

between the values obtained by 𝑇𝐶𝑈𝑆𝐷
∗ % 

and summation of 𝜃1 and 𝜃4.  

Fig. 5. Estimating a simple regression relationship    

between the values obtained by 𝑇𝐶𝑈𝐺𝑀𝐼𝑅
∗ % 

and summation of 𝜃1 and 𝜃4. 

 

There is an interesting statistical relationship between the summations of the first and second 

deviation values of the collection rate of the recoverable products from customers and demand rate of 

the serviceable products in the fuzzy situation, respectively, and the percentage changes of the optimal 

total cost function by the signed distance and GMIR method. They are calculated with a simple 

regression in Figures 4 and 5 for the signed distance and GMIR method, respectively. As it is 

depicted, we have considered (𝜃1 + 𝜃4) as independent variable; and 𝑇𝐶𝑈𝑆𝐷
∗ % and 𝑇𝐶𝑈𝐺𝑀𝐼𝑅

∗ % as 

dependent variable. The estimation of the percentage changes of the optimal total cost in the GMIR 

regression is about 10 percent better than the one obtained by signed distance regression because the 

value of R-square in the first one is about 10 units greater than the second one.  

 

7. Practical implications and application  

The applicability of the model is investigated through a real supply chain where a Milk Distribution 

Company buys the raw milk from the hundreds of local farms, and then, sells the gathered milk in 

gallons made of plastic polyethylene terephthalate (PET) to other Dairy Factories. These gallons can 

be bought from a supplier, and at the same time, the factories are motivated to take advantage of some 

discounts if they return the defective containers. Because of the recyclable characteristics of the 

defective gallons, the company can do some processes to renew them. Since production of the milk 

has flexibility in each season, there is uncertainty in the demand and the collection rate of the 

mentioned gallons. According to the provided data, we have the following information:  

 



𝑘 = 1500units/month, 𝑟 = 300units/month, 𝐶𝑠 = $10,000/setup, 𝐶𝑜 = $1100/order, 𝐶𝑝 = 80$/unit, 

𝐶𝑏 = $20/unit, 𝐻𝑟 = $4/unit/day, 𝐻𝑠 = $10/unit/day, 𝐶𝑙 = $5000/day, 𝑎 = 0.008day/unit, 𝑏 =

−0.152.  

Table 7. The results of affecting the inventory system by two defuzzification methods 

(Parameter/Level of fuzziness) 
 GMIR method SD method 

 𝒏∗  𝒚∗  𝑸∗  𝑻𝑪𝑼∗ 𝒏∗  𝒚∗  𝑸∗  𝑻𝑪𝑼∗  

(𝒌/10%; 𝒓/10%)  10  244  113  7497.04 7  265  160  7593.89  

(𝒌/10%; 𝒓/30%)  10  293  152  9002.76 6  303  227  9116.66  

(𝒌/30%; 𝒓/10%)  22  234  75  11508.65 10  262  201  10666.23  

(𝒌/30%; 𝒓/30%)  19  252  110  14705.84 8  283  305  12795.70  

 

Table 7 shows the results for two different levels of fuzziness. As it is clear, in this case when 

there is the lowest level of fuzziness in the system, the GMIR method gives the lower total cost per 

unit time. On the other hand, for the maximum level of fuzziness, the total cost per unit time derived 

by the SD method is lower.  

 

8. Conclusion and future research 

One of the most important issues in the reverse inventory models is the lack of historical data for the 

demand and return (collection) rate. We are accordingly unable to estimate the probability 

distributions of such parameters. Therefore, these parameters are not determined, and usually it is not 

logical to decide based on the crisp values while the situation is uncertain. With these perspectives, it 

is worthwhile to reconsider the reverse inventory system with the learning effect presented by Tsai 

[22] and provide an alternative approach.  

In this research, two fuzzy models were proposed for a reverse inventory problem with the 

learning effect. In both models, the demand rate of the serviceable products and the collection rate of 

the recoverable products from customers were presented as fuzzy numbers. To estimate the total cost 

function per unit time in the fuzzy sense, and then the corresponding optimal recovery lot size and the 

number of orders for the newly purchased products, in the first model, the signed distance method was 

employed for the defuzzification, while the GMIR was used in the second one. These models were 

explained and solved by a comprehensive numerical example. We compared the results of both 

methods. Besides, we concluded that it is important to decide which method should be chosen 

regarding the considered strategies. 

It is noteworthy that although there are some papers in the forward supply chain literature, which 

considered fuzzy EOQ/EPQ, there is no similar work in the reverse supply chain literature that 

compares the performance of the well-known defuzzification methods such as the GMIR and the 

signed distance. In this study, we compared the performance of these methods in the presence of 

learning in a reverse inventory model. Future works can apply these methods on the other reverse 

EOQ/EPQ models. Besides, the other defuzzification methods such as the centroid method could be 

used [87].  
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Appendix A 

 

By taking the first derivative of the �̃�(𝑛) with respect to 𝑛, we have  
 

 
𝜕�̃�(𝑛) 

𝜕𝑛
= 𝑏(𝛽′ + 𝛿′)𝑛𝑏−1 −

2𝛼′

𝑛3
+ (𝑏 − 1)휁′𝑛𝑏−2 −

𝛾′

𝑛2
> 0 

 

(A.1) 
 

where  
 

𝛼′ = −
(𝑛𝐶𝑜 + 𝐶𝑠)𝐻𝑠∆

2𝐶𝑜
 , 𝛽′ = −

(𝑏 + 1)𝐻𝑟𝑎𝜌𝑏

𝑏 + 2
𝑑(�̃�, 0̃1) , 𝛾′ =

𝐻𝑠

2
∆ , 

𝛿′ = −
𝑎𝜌𝑏𝐻𝑠

(𝑏 + 2)
𝑑(�̃�, 0̃1) , 휁′ = (

𝑎𝑏𝜌𝑏−1

𝑏 + 1
) 𝐶𝑙𝑑(�̃�, 0̃1) , 휀′ =

1

2
𝐻𝑟 +

𝐻𝑠

2
𝑑 (

�̃�

�̃�
, 0̃1)  

 

It is positive for all value of 𝑛 > 0. Hence, �̃�(𝑛) is a strictly increasing function for 0 < 𝑛 < ∞. 

Moreover, we have the following limitations   

 

 lim
𝑛→+∞

�̃�(𝑛) = 휀′ > 0 (A.2) 

 lim
𝑛→0+

�̃�(𝑛) = −∞ (A.3) 
 

Thus, by the Intermediate Value Theorem, there exists a unique 0 < 𝑛∗ < ∞ such that �̃�(𝑛∗) = 0.  

 

Appendix B 

 

From Theorem 1, it is clear that (𝑦∗, 𝑛∗) is the only critical point. Therefore, to prove the Theorem 2, 

we should firstly calculate the Hessian Matrix of 𝑑(�̃�, 0̃) as follows  

 

 
𝜕2𝑑(�̃�, 0̃)

𝜕𝑦2
=

𝜕2𝑉(𝑛, 𝑦)

𝜕𝑦2
=

2(𝑛𝐶𝑜 + 𝐶𝑠)

𝑦3
𝑑(�̃�, 0̃1) −

𝑏(𝑏 + 1)𝐻𝑟𝑎𝑦𝑏−1

𝑏 + 2
𝑑(�̃�, 0̃1)  



 −
𝑏𝑎𝑦𝑏−1𝐻𝑠

(𝑏 + 2)
𝑑(�̃�, 0̃1) + (

(𝑏 − 1)𝑎𝑏𝑦𝑏−2

𝑏 + 1
) 𝐶𝑙𝑑(�̃�, 0̃1) 

 
(B.1) 

 

For all 𝑦 > 0, 𝑛 > 0, 𝜕2𝑑(�̃�, 0̃) 𝜕𝑦2⁄  > 0 

 

 
𝜕2𝑑(�̃�, 0̃)

𝜕𝑛2
=

𝑦𝐻𝑠

𝑛3
∆ (B.2) 

 

For all 𝑦 > 0, 𝑛 > 0, 𝜕2𝑑(�̃�, 0̃) 𝜕𝑛2⁄ > 0.  

 

 
𝜕2𝑉(𝑛, 𝑦)

𝜕𝑦𝜕𝑛
= −

𝐶𝑜𝑑(�̃�, 0̃1)

𝑦2
−

𝐻𝑠

2𝑛2
∆ (B.3) 

 

Substituting 𝑦∗ = 𝜌𝑛∗ into Eqs. (B.1)-(B.3), and after some simplifications, determinant of the 

Hessian Matrix of 𝑑(�̃�, 0̃) at (𝑦∗, 𝑛∗) could be given as below:  

 

 

|
|

𝜕2𝑉(𝑛, 𝑦)

𝜕𝑦2
|(𝑦∗,𝑛∗)

𝜕2𝑉(𝑛, 𝑦)
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𝜕𝑦𝜕𝑛
|(𝑦∗,𝑛∗)

𝜕2𝑉(𝑛, 𝑦)

𝜕𝑛2
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|
|

=
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𝑏 + 1
) 𝐶𝑙𝑑(�̃�, 0̃1)] +

𝐻𝑠
2∆2𝐶𝑠

𝑛∗5𝐶𝑜
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(B.4) 

 

Hessian Matrix of 𝑑(�̃�, 0̃) is positive. Hence, 𝑑(�̃�, 0̃) has a global minimum at point (𝑦∗, 𝑛∗).  

 

Appendix C 

 

The first derivative of the 𝑓(𝑛) is positive for all value of 𝑛 > 0.  

 

 
𝜕𝑓(𝑛)

𝜕𝑛
=

2𝛾𝐶𝑠

6𝑛3𝐶𝑜
+

𝑏(𝛽 + 𝛿)𝑛𝑏−1 + 휁(𝑏 − 1)𝑛𝑏−2

6
> 0 (C.1) 

 

Hence, 𝑓(𝑛) is a strictly increasing function for 0 < 𝑛 < ∞. Moreover, we have the following 

limitations  

 

 lim
𝑛→+∞

𝑓(𝑛) = 𝜖 > 0 (C.2) 

 lim
𝑛→0+

𝑓(𝑛) = −∞ (C.3) 

Thus, by the Intermediate Value Theorem, there exists a unique 0 < 𝑛∗ < ∞ such that 𝑓(𝑛∗) = 0.  

 

Appendix D 

 

From Theorem 3, it is clear that (𝑦∗, 𝑛∗) is the only critical point. Therefore, to prove the Theorem 4, 

we should firstly calculate the Hessian Matrix of Φ(�̃�(𝑦, 𝑛)) as follows  

 

 
𝜕2Φ(�̃�(𝑦, 𝑛))

𝜕𝑦2
=

2(𝑛𝐶𝑜 + 𝐶𝑠)(6𝑟 + 𝜃2 − 𝜃1)

𝑦3
−

𝑏𝑎(𝑏 + 1)𝐻𝑟(6𝑟 + 𝜃2 − 𝜃1)𝑦𝑏−1

𝑏 + 2
  

 −
𝑏𝑎𝑦𝑏−1𝐻𝑠(6𝑟 + 𝜃2 − 𝜃1)

(𝑏 + 2)
+

𝑎𝑏𝐶𝑙(𝑏 − 1)(6𝑟 + 𝜃2 − 𝜃1)𝑦𝑏−2

𝑏 + 1
 (D.1) 

 

For all 𝑦 > 0, 𝑛 > 0, 𝜕2Φ(�̃�(𝑦, 𝑛)) 𝜕𝑦2⁄ > 0 
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 (D.2) 

  

For all 𝑦 > 0, 𝑛 > 0, 𝜕2Φ(�̃�(𝑦, 𝑛)) 𝜕𝑛2⁄ > 0.  
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 (D.3) 

 

Substituting 𝑦∗ = 𝜋𝑛∗ into Eqs. (D.1)-(D.3), and after some manipulations, determinant of the 

Hessian Matrix of Φ(�̃�(𝑦, 𝑛)) at (𝑦∗, 𝑛∗) could be given as below:  

 

 

|
|
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𝜕𝑦2
|(𝑦∗,𝑛∗)

𝜕2Φ(�̃�(𝑦, 𝑛))

𝜕𝑦𝜕𝑛
|(𝑦∗,𝑛∗)

𝜕2Φ(�̃�(𝑦, 𝑛))

𝜕𝑦𝜕𝑛
|(𝑦∗,𝑛∗)

𝜕2Φ(�̃�(𝑦, 𝑛))

𝜕𝑛2
|(𝑦∗,𝑛∗)

|
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(D.4) 

 

Hessian Matrix of Φ(�̃�(𝑦, 𝑛)) is positive. Hence, Φ(�̃�(𝑦, 𝑛)) has a global minimum at point (𝑦∗, 𝑛∗). 


