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Fatty acid amide hydrolase (FAAH) inhibitors: a patent review (2009-2014) 

 

Importance of the field: Fatty acid amide hydrolase (FAAH) is a key enzyme responsible for 

the degradation of the endocannabinoid anandamide. FAAH inactivation is emerging as a 

strategy to treat several CNS and peripheral diseases, including inflammation and pain. The 

search for effective FAAH inhibitors has thus become a key focus in present drug discovery. 

Areas covered: Patents and patent applications published from 2009 to 2014 in which novel 

chemical classes are claimed to inhibit FAAH. 

Expert Opinion: FAAH is a promising target for treating many disease conditions including 

pain, inflammation and mood disorders. In the last few years, remarkable efforts have been 

made to develop new FAAH inhibitors (either reversible and irreversible) characterized by 

excellent potency and selectivity, to complete the arsenal of tools for modulating FAAH 

activity. The failure of PF-04457845 in a phase II study on osteoarthritis pain has not 

flattened the interest in FAAH inhibitors. New clinical trials on “classical” FAAH inhibitors are 

now ongoing, and new strategies based on compounds with peculiar in vivo distribution (e.g. 

peripheral) or with multiple pharmacological activities (e.g., FAAH and COX) are under 

investigation and could boost the therapeutic potential of this class in the next future. 

 

Keywords: endocannabinoid system, FAAH, fatty acid amide hydrolase, fatty acid 

ethanolamides, PF-04457845, URB597. 
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1. Anandamide and other neuromodulatory fatty acid ethanolamides 

Arachidonoylethanolamide (anandamide, AEA, Figure 1) is an endogenous 

cannabinoid that exerts most of its action by binding and activating two G-protein-coupled-

receptors known as CB1 and CB2 receptors.1,2 Along with 2-arachidonoylglycerol (2-AG, 

Figure 1),3 AEA is the most comprehensively investigated endocannabinoid. AEA is also 

member of the fatty acid ethanolamide (FAE) family, 4 a group of endogenous lipid 

neuromodulators that includes the palmitoylethanolamide (PEA, Figure 1), involved in a 

variety of biological functions related to pain and inflammation5,6 and the oleoylethanolamide 

(OEA, Figure 1) which controls feeding and body weight in mammals.7  

 

Figure 1. Structures of neuromodulatory FAEs and of 2-AG. 

 

These FAEs are present throughout the body and their levels are finely regulated by a 

complex system of enzymes involved in their synthesis and inactivation. 8,9 Anandamide and 

the other FAEs are not stored in vesicles like classical neurotransmitters, rather they are 

synthetized on demand10 from the membrane by a N-arachidonoyl phosphatidylethanolamine 

precursor in a process catalyzed by selective N-acyl phosphatidylethanolamine-

phospholipase D (NAPE-PLD).11,12 Following their synthesis and release, these FAEs are 

removed from their sites of action by cellular uptake, also mediated by a specific process 
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involving specific molecular transporters13,14,15 and degraded by at least two enzymes, fatty 

acid amide hydrolase (FAAH),16,17 mainly responsible for the hydrolysis of AEA18,19 and N-

acylamino acid amidase (NAAA),20 mainly responsible of the hydrolysis of PEA.21 

The interest in the enzymes responsible for the degradation of FAE, particularly of 

AEA, comes from the observation that the reduction in the tissue levels of this 

endocannabinoid can lead to the insurgence of several pathological conditions such as 

neurological disorders, inflammatory states and chronic pain, at least in animal models.22 

Consistently with the central role of anandamide in these pathological states, genetic (with 

FAAH-/- mice)23 or chemical inactivation of FAAH leads to elevated endogenous levels of AEA 

and concomitant analgesic, anxiolytic, anti-depressant, and anti-inflammatory phenotypes.24 

Crucially, these phenotypes are not accompanied by the classical signs of an indiscriminate 

CB1 activation, obtained with the administration of an exogenous CB1 agonist, such as 

hypomotility, hypothermia and catalepsy and, in particular, FAAH inhibition lacks reinforcing 

effects.25 Moreover, FAAH inhibitors have been found to counteract addiction-related effects 

of nicotine in different animal models, including primates.26 These observations promoted 

FAAH as a potential therapeutic target for a range of nervous system and peripheral 

disorders.27  

 

2. FAAH: structure and function 

FAAH (EC: 3.5.1.99) is the main responsible for the inactivation of FAEs28 and, in 

particular, it terminates the signal brought by AEA catalysing its hydrolysis to arachidonic 

acid and ethanolamine (Figure 2).   
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Figure 2. Reaction catalysed by FAAH. 
 

 
FAAH has a distinctive catalytic triad consisting of two serines (Ser217 and Ser241) 

and one lysine (lys142), rather than the typical serine-histidine-aspartate triad of other serine 

hydrolases The catalytic mechanism of FAAH has been widely investigated with both 

experimental28 and computational methods.29 These studies indicate that Lys142 acts as a key 

base and acid in distinct steps of the catalytic process. In the early phase of the catalysis, 

neutral Lys142 activates Ser241 nucleophile for attack on the substrate carbonyl, an event 

that leads to the formation of a tetrahedral intermediate. In the final step of the reaction, the 

positively charged Lys142 protonates the substrate leaving group, leading to its expulsion and 

to the formation of an acylenzyme. The impact of Lys142 on Ser241 nucleophile strength and 

on leaving group protonation occurs indirectly, via the bridging Ser217 of the triad, which 

acts as a proton shuttle. The catalytic cycle of FAAH terminates with the hydrolysis of the 

acylenzyme, which restores a functional FAAH catalytic core. Typically, serine hydrolases 

cleave ester substrates at higher rates compared with structurally similar amides, reflecting 

the relative intrinsic reactivity of these compounds. FAAH represents a noteworthy exception 

to this principle, as it hydrolyses amides faster than esters. In vivo, FAAH catalyses the 

hydrolysis of FAEs in a microenvironment rich of endogenous esters, therefore if FAAH acted 

as a conventional serine hydrolase, it would rapidly be saturated by esters and failed to work 

as an amidase.28  

FAAH has been crystallized in the presence of several covalent and non-covalent 

inhibitors. The first resolved structure has been the covalent adduct between FAAH and the 

inhibitor methyl arachidonylfluorophosphonate (MAFP).30 Visual inspection of this structure 

reveals that FAAH has a series of channels and cavities that are crucial for its biological 

function (Figure 3). These include: i. the membrane access channel (MAC), connecting the 
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active site to a hole located at the membrane-anchoring face of the enzyme; ii. the cytosolic 

access (CA) channel, allowing the exit of hydrophilic products from the active site; iii. the acyl 

chain-binding pocket (ABP) that accommodates the arachidonoyl chain of co-crystallized 

inhibitor. Identification of multiple pockets in the proximity of the catalytic core of FAAH has 

offered a unique opportunity to design inhibitors featured by a wide array of binding 

mechanisms. Indeed, beside the well-established classes of active site-directed inhibitors of 

FAAH that covalently bind its Ser241, a number of non-covalent inhibitors targeting the 

membrane access channel (MAC) of FAAH has been reported in the recent literature.31 

  

Figure 3. Substrate binding pocket for FAAH, modelled with anandamide (AEA, yellow carbon 
atoms).   
 

 

3. FAAH inhibitors: from substrate-derived inhibitors to carbamoylating agents with 

drug-like properties 
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The non-selective serine hydrolase inhibitor, phenylmethylsulfonyl fluoride (1, PMSF, 

Figure 4) was probably the first compound employed to block FAAH activity. Other inhibitors 

of FAAH, such as methyl arachidonyl fluorophosphonate (2, MAFP, Figure 4) and 

palmitylsulfonyl fluoride (3 AM374, Figure 4) were also used, but these compounds were still 

too reactive for in vivo investigation.32 Looking for more drug-like inhibitors, less reactive 

compounds were thus taken into consideration, leading to a class of α-ketoheterocycles, 

which includes potent and selective inhibitors such as 4 (OL-92) and 5 (OL-135), that inhibit 

recombinant human FAAH with Ki of 2.0 and 4.7 nM, respectively.33 Compounds from this 

class reversibly inhibit FAAH through the formation of a hemiketal species involving the 

nucleophile Ser241, as confirmed by X-ray crystallography.34  Although these first α-

ketoheterocycles were potent in vitro, they enhanced endocannabinoid signaling in vivo only 

at high doses and only for a brief period of time,35 likely due to rapid metabolism in rodents 

(vide infra). 

A breakthrough in the search for FAAH inhibitors able to significantly sustain AEA 

levels in rodents was obtained with a class of N-alkylcarbamic acid O-aryl esters, exemplified 

by the structure of 6 (URB524, Figure 4) and co-developed by three universities (University of 

California at Irvine, Università degli Studi di Parma and Università degli Studi di Urbino, 

“Carlo Bo”) and Kadmus Pharmaceuticals.36 This class includes the potent inhibitor 7 

(URB597, rat FAAH IC50 = 4.6 nM; human FAAH kinact/Ki = 1,590 M-1 s-1),24,37 able to block 

FAAH activity through irreversible carbamoylation of the catalytic nucleophile Ser241,38 with 

its biphenyl moiety serving as the leaving group. Recent QM/MM simulations suggested that 

stabilization of the cyclohexyl carbamic ester structure by hydrogen bonds taken with the 

FAAH active site reduces the speed of the hydrolysis reaction, leading to prolonged 

inhibition.39 Investigation of FAAH function and relevance was greatly advanced by the use of 

URB597 in vivo, a consequence of its favorable pharmacological properties.40 Intraperitoneal 
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injections of URB597 produced a profound dose-dependent inhibition of rat brain FAAH 

activity, with half-maximal effect at the dose of 0.15 mg/kg. FAAH inhibition onset was rapid 

(<15 min), persistent (>12 h) and accompanied by significant elevations in the brain content 

of anandamide and other fatty-acid ethanolamides that are substrates of FAAH. Similar 

changes in FAAH activity and FAE levels were observed in peripheral tissues.  Furthermore, 

URB597 did not alter the brain content of the endocannabinoid 2-AG, the key substrate of 

monoglyceride lipase (MGL).  

Another class of N-alkylcarbamic acid O-aryl ester inhibitors having a bis-

arylalkylimidazole substituent at the nitrogen atom as in the case of compound 8 (BMS-1, 

Figure 4), was disclosed by Bristol-Myers Squibb. Compound 8 inhibited rat FAAH in vitro 

with an IC50 of 2 nM and dose-dependently (0.1–10 mg/kg, iv) potentiates the effects of 

exogenous anandamide (1 mg/kg, iv) in a rat thermal escape test, and showed antinociceptive 

activity in animal models of neuropathic pain.41 

A series of O-alkylcarbamate inhibitors was reported by Sanofi-Aventis in a number of 

patent applications filed in 2005. Despite the paucity of information available, these 

compounds have been claimed to enter clinical trials “for what appears to be anxiety and 

depression”.42 However, no further pharmacological data have been disclosed so far. 

The ability of carbamate inhibitors to produce prolonged inhibition of FAAH in vivo has 

prompted research efforts toward the development of other classes of irreversible inhibitors. 

This led to the discovery of piperidine/piperazine urea inhibitors (e.g., 11, PF-750, Figure 4) 

which, despite lacking a reactive fragment in their structure, resulted to be able to 

carbamoylate the nucleophile Ser241, taking advantage of FAAH’s special aptitude to function 

as a C(O)-N bond hydrolase.43 The urease activity of FAAH stems from its ability to 

deplanarize the aniline nitrogen atom of urea inhibitors, enhancing their reactivity versus 

nucleophiles.44 Optimization of PF-750 (kinact/Ki = 791 M-1 s-1 on human FAAH) by Pfizer led to 
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12 (PF-3845), a highly potent and selective FAAH inhibitor (human FAAH kinact/Ki = 14,310 M-

1 s-1) endowed with anti-hyperalgesic effects in models of inflammatory pain.45 At the same 

time Johnson&Johnson and Takeda developed new classes of piperazine-urea inhibitors, 

exemplified by compound 13 (JNJ-1661010)46 that potently blocks rat FAAH and attenuates 

tactile allodynia in the rat mild thermal injury model of acute tissue damage and in the rat 

spinal nerve ligation model of neuropathic pain.47 Further optimization of PF-3845 structure 

by Pfizer eventually led to the clinical candidate 14 (PF-04457845, Figure 4) which contains a 

pyridazinyl moiety instead of the 3-aminopyridyl within the leaving group. PF-04457845 

exhibited excellent potency (human FAAH kinact/Ki = 40,300 M-1 s-1) and a favourable 

pharmacokinetic profile, but unfortunately, it failed to induce effective analgesia in patients 

with pain due to osteoarthritis of the knee.48  

 

4. From covalent to non-covalent FAAH inhibitors 

Non covalent inhibitors of FAAH firstly appeared in a few patent applications filed by 

Renovis in 2009 (vide infra) and, more recently, in the scientific literature. Medicinal 

chemistry efforts allowed Min et al.49 to reduce the reactivity of the arylurea inhibitor 15 

(Amgen-1, Figure 4), identifying a novel class of non-covalent inhibitors characterized by a 

ketobenzimidazole scaffold (16, Amgen-2, Figure 4). The X-ray structure of FAAH in complex 

with 16 showed that this compound is accommodated far apart from catalytic Ser241, 

occupying a portion of the ABP, proximal to the oxyanion hole, and the membrane access 

channel (MAC) of FAAH. Compound 16 is reported to inhibit recombinant human FAAH with 

high potency (IC50 of 28 nM), due to shape complementarity with the active site and strong 

hydrophobic interactions, and to possess excellent selectivity and pharmacokinetic 

properties. 
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Figure 4. Reference FAAH inhibitors reported in the literature.  
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5. FAAH inhibitors: advances in the recent patent literature (2009-2014) 

Encouraged by the therapeutic potential of FAAH inhibitors belonging to the 

carbamate and piperidine/piperazine urea classes, numerous pharmaceutical industries and 

university research groups have developed several structurally different FAAH inhibitors.50 

Electrophilic functions with different degrees of reactivity have been used to target the 

nucleophile Ser241, investigating structure-activity relationships which proved to be of great 

value for the optimization of potency, selectivity and pharmacokinetic properties of the new 

classes of FAAH inhibitors.51 Moreover, FAAH inhibitors devoid of reactive functions were 

also reported, especially in more recent years. These compounds act as competitive and 

reversible inhibitors of FAAH and show in vitro potencies comparable to those of covalent 

FAAH inhibitors.50 

Herein, we summarize the results disclosed in the patent literature in the 2009-2014 

period. Two main tracks were followed by industrial and academic groups active in the field: 

i) chemical expansion of previously known classes of FAAH inhibitors, with the aim to 

overcome open pharmacological or pharmacokinetic issues; ii) disclosure of novel 

chemotypes characterized by new mechanisms of inhibition for FAAH. The FAAH inhibitors 

described in this review are grouped into the following categories: (1) α-ketoheterocycles; (2) 

carbamates; (3) arylureas; (4) boronic acids; (5) azole derivatives; (6) 

ethylaminopyrimidines; (7) tetrahydronaphthyridines; (8) miscellaneous classes. 

 

5.1 α-ketoheterocycles 

Starting from the lead compound 5 (OL-135), the Boger group at the Scripps Research 

Institute recently investigated the influence of the heterocycle on inhibitor potency. Several 

compounds characterized by an oxadiazole ring were synthesized, which allowed the 

identification of the 1,3,4- (17, Figure 5) and the 1,2,4-oxadiazole (18) analogs of OL-135 with 
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subnanomolar Ki vs human FAAH.52 A class of conformationally constrained inhibitors, 

characterized by a tetrahydronaphthalene or an indane scaffold directly linked to the oxazolyl 

ketone, was also described in another patent application.53 The tetrahydronaphthalene 

derivative 19 was one of the most stereoselective inhibitors, with the (S)-enantiomer 20 

displaying a Ki of 4 nM vs human FAAH, nearly 60-fold lower than that of the (R)-enantiomer 

21. In the X-ray crystal structure, compound 20 was found to form a hemiketal adduct with 

Ser241, similarly to what had been observed for other α-ketoheterocycles.54 Administration 

of 20 to rats (50 mg/kg, po) caused significant accumulation of AEA, PEA and OEA in the brain 

and their high levels were maintained for several hours, similarly to what had been observed 

with the carbamate inhibitor URB597. The prolonged activity of the inhibitor 20, compared to 

the reversible inhibition of FAAH observed in vitro for α-ketoheterocycles, was attributed to 

the presence of steric hindrance close to the keto group protecting it from in vivo reductive 

metabolism. Compound 20 was reported to have analgesic effects in vivo (50 mg/kg, po) 

significantly attenuating mechanical and cold allodynia.54 

Janssen Pharmaceutica also reported oxazolyl-ketones as FAAH inhibitors. A key 

element in the series was the replacement of the phenylhexyl group of OL-135 with a 

propylpiperidine55 or a piperidine ring.56 This led to new α-ketoheterocycle inhibitors 

displaying subnanomolar potency, as in the case of compounds 22 or 23, with IC50 values of 

0.4 nM and 2 nM on human FAAH, respectively. 
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Figure 5. α-Ketoheterocycle derivatives disclosed as FAAH inhibitors. 

 

5.2 Carbamate inhibitors 

URB597 has become the reference compound for pharmacological studies on FAAH, as 

well as a benchmark for the design and development of new inhibitors. However, URB597 is 

characterized by two main drawbacks: inhibition of plasma and liver carboxylesterases, and 

short in vivo half-life, which limits its use in chronic dosing studies.22 To overcome these 

issues, a second-generation of carbamate FAAH inhibitors has been devised, by the 

introduction of electron-donating polar groups at the phenyl ring attached to the carbamate 

oxygen.57 These include the para-hydroxyphenyl inhibitor 24 (URB694, Figure 6) that 

displayed decreased activity toward carboxylesterases and increased in vivo half-life 

compared to URB597, while preserving comparable in vivo potency in rats (ID50 = 0.19 mg/kg 

for URB597 and 0.16 mg/kg for URB694).58  More recently, starting from URB597 and 
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URB694 structures, a series of FAAH inhibitors with restricted access to the central nervous 

system (CNS) was developed. Compound 25 (URB937, Figure 6) is able to inhibit peripheral 

FAAH, increase peripheral AEA levels and attenuate behavioral responses indicative of 

persistent pain in rodent models of inflammation and peripheral nerve injury, although it 

does not inhibit FAAH activity in the CNS. 59  This indicates that a high degree of analgesia can 

be obtained by heightening the activity of AEA-based signalling involved in the regulation of 

nociceptive homeostasis outside of the CNS. URB937 was the subject of a patent application 

claiming its effectiveness in the treatment of pain, inflammation and immunity disorders.60  

The existence of structural commonalities between the N-cyclohexylcarbamic acid O-

biphenyl-3-yl ester class of FAAH inhibitors and the 2-arylpropionic acid class of non-

steroidal anti-inflammatory drugs (NSAIDs) was exploited by the Drug Discovery and 

Development group at the Italian Institute of Technology to design compounds able to 

simultaneously target FAAH, COX-1, and COX-2. This research led to a patent application 

covering carbamate derivatives incorporating the scaffold of flurbiprofen (26, (RS)-2-(2-

fluorobiphenyl-4-yl)propanoic acid) in their structure, exemplified by compound 27 

(ARN2508, Figure 6).61 This compound, initially tested as a racemic mixture, was reported to 

inhibit rat FAAH with an IC50 of 31 nM, and COX-1 and COX-2 with IC50 values of 12 and 430 

nM, respectively. In the patent application, the activity of the pure enantiomers is also 

reported. While the two enantiomers inhibit FAAH with the same potency, the (+)-isomer 

inhibits COX-1 and COX-2 with IC50 of 0.01 and 100 nM, respectively, and the (-)-isomer 

inhibits these two enzymes only at high micromolar concentrations. In the follow-up 

publication, ARN2508 resulted effective in a model of intestinal inflammation where a pure 

FAAH inhibitor was weakly active and the COX inhibitor flurbiprofen aggravated 

inflammation. This indicates that the simultaneous blockade of FAAH and COX-1/COX-2 

results in a combination of profound anti-inflammatory and tissue-protective actions.62 
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Figure 6. Carbamate-type FAAH inhibitors described by academic groups.  

 

 

An interesting class of enol carbamates was recently disclosed by Sigma-Tau as FAAH 

inhibitors.63 The authors of a paper published in 2010 propose that hydrolysis of the 

carbamate group, catalyzed by FAAH, releases an enol leaving group, which would 

tautomerize to the more stable keto form, thus shifting the equilibrium toward formation of 

the products. Nonlinear regression analysis of the Michaelis-Menten curves suggested that 

these compounds act as non-competitive inhibitors of FAAH, i.e., they significantly reduce 

FAAH Vmax without affecting the Km for AEA.64 The most potent compound of the series (28, 

ST-4070, Figure 7) was more than 1000-fold selective for FAAH over several related proteins 

including CB1, CB2, MAGL, DAGL and NAPE-PLD. Compound 28 was active in several models 

for neuropathic pain after oral administration at 10-100 mg/kg in rodents.65  Sigma-Tau also 

developed a carbamoyl oxime class, exemplified by compound 29 (ST-4020, Figure 7) having 

an IC50 value in the nanomolar range (<10 nM) in the inhibition of mouse FAAH.66  Sigma-Tau 

also reported a class of carbamates closely related to URB597. Compound 30 (ST4068, Figure 

7) inhibits FAAH in the nanomolar range and is active in vivo at 30 and 100 mg/kg per os in a 
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mechanical hyperalgesia assay.67 Compounds of the class reported in this patent application 

were later disclosed in a publication by Campiani et al.68 Differently from URB597, ST4068 

and derivatives act as reversible inhibitors of FAAH. 

Carbamate-based inhibitors were also thoroughly investigated by Sanofi-Aventis. 

Several compounds were reported, in which the aromatic substituent at the oxygen atom of 

the first generation of carbamic acid esters was replaced by an alkyl-thiazolyl69 (e.g., 31, 

Figure 7) or by an alkyl-isoxazolyl substituent (32, Figure 7).70 Sanofi-Aventis also reported 

inhibitors in which the carbamate nitrogen atom was inserted in a ring, as in the case of 

compound 33.71 Compounds 31-33 were described as potent inhibitors of mouse FAAH with 

potencies in the nanomolar range (IC50 = 1, 3, and 0.46 nM, for compound 31, 32 and 33, 

respectively). Compounds belonging to these classes display analgesic activity when 

administered to mice by the oral route at doses within 1-30 mg/kg range. 

Astellas developed a class of tertiary carbamates characterized by a N-(pyridin-3-

yl)oxycarbonyl-piperidin-4-yl core attached to an arylazole moiety, as in compounds 34 and 

35 (Figure 7), carrying a 3-phenyl-1,2,4-oxadiazol-5-yl or a 4-phenyl-1,2,3-triazol-2-yl 

substituent. These two compounds were reported to inhibit human FAAH, expressed in a 

bladder-derived cell line (HTB-9), with IC50 values of 0.077 and 0.047 nM, respectively.72 
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Figure 7. Carbamate-type FAAH inhibitors described by Sigma-Tau, Sanofi-Aventis and 

Astellas. 

 

 

5.3 Aryl ureas 
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Urea-based FAAH inhibitors were mainly investigated and advanced to clinical trials by 

Pfizer. Several patents appeared in literature, covering the chemical space around 14 (PF-

04457845, the first FAAH inhibitor to reach clinical phase II), including ether benzylidene 

piperidine73 and benzylidene 3-methylpiperidine derivatives. 74 Most of these compounds 

(exemplified by 36-38, Figure 8) show inactivation efficiencies on human FAAH similar to 

that of PF-04457845 (i.e. kinact/Ki ratio close to 40,000 M-1 s-1). Pfizer also reported new 

classes of FAAH inhibitors characterized by the 7-azaspiro[3,5]nonane-7-carboxamide75 or by 

the 1-oxa-8-azaspiro[4,5]decane-8-carboxamide nucleus bearing heteroaryl leaving groups 

different from the classical pyridin-3-yl or pyridazin-3-yl ones (Figure 8). 76 With few 

exceptions (i.e., 39, kinact/Ki ratio of 21,700 M-1 s-1; and 40, kinact/Ki ratio of 30,800 M-1 s-1) 

these compounds were generally less efficient than PF-04457845 at inhibiting FAAH. 

Compounds 39 and 40 were reported to have analgesic activity in rats at the dose of 3 mg/kg, 

when tested in the Freund’s adjuvant (CFA) assay of inflammatory pain. Pfizer’s aryl ureas 

based on the spirocyclic cores were recently reported in the scientific literature,77 with the 

disclosure of PF-04862853 as an orally efficacious inhibitor of FAAH for the treatment of 

pain.78 Despite this compound inhibits human FAAH less efficiently than other reported 

derivatives (kinact/Ki ratio of 4,190 M-1 s-1) it displays a favorable pharmacokinetic profile in 

dogs and a good efficacy in the CFA assay in rats.  
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Figure 8. Aryl ureas covered by Pfizer. 

 

Other companies also developed their own urea classes.79 Vernalis disclosed the 

structure of different series of azetidine urea derivatives (Figure 9). A first series of azetidin-

1-yl(piperidin-1-yl)methanone derivatives, exemplified by compound 42 (VER-156084), was 

also described in the scientific literature.80 This compound was reported to be a time-

dependent inhibitor of human FAAH, displaying an IC50 value of 1031 nM, after 1 h of pre-

incubation. Vernalis attempted to improve the in vitro potency on human FAAH, as well as to 

reduce microsomal metabolism of azetidin-1-yl(piperidin-1-yl)methanone analogues of VER-

156084, but without success interrupted the development of VER-156084 in favor of 
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alternative chemotypes.81 The second series developed by Vernalis was characterized by a N-

(pyridazin-3-yl)azetidine-1-carboxamide core, as exemplified by compound 43, which 

inhibits human FAAH with an IC50 of 38 nM after 1 h of pre-incubation. Compound 43 exhibits 

a dose-dependent analgesic activity in a rat model of thermal pain sensitivity after oral 

administration of the compound at the dose of 1, 3 or 10 mg/kg.82   

 

 

Figure 9. Azetidine urea derivatives described by Vernalis. 

 

Janssen Pharmaceutica reported several patents covering heteroaryl-substituted 

ureas8384 exemplified by compounds 44 and 45 (Figure 10), which inhibit human and rat 

FAAH in the nanomolar range and are effective in a mild effect thermal injury model when 

administered orally to rats at 10 or 20 mg/kg.85 Janssen also reported a class of spirocyclic 

diamine ureas as single digit nanomolar inhibitors of human and rat FAAH, exemplified by 

compounds 46 and 47 (JNJ-42119779, Figure 10). 86 The chemical synthesis and the 

pharmacological characterization of JNJ-42119779 have been very recently reported in the 

literature, where this compound has been shown to be effective in the spinal nerve ligation 

(Chung) model of neuropathic pain at 20 and 60 mg/kg, po. 87 

Piperazine ureas were reported to inhibit rat FAAH. In particular, compound 48, which 

possesses an IC50 of 18 nM, controls ventricular pressure in rats and is not toxic at 300 mg/kg, 

after daily administration per os for 4 consecutive days.88   More recently, Janssen also 

reported a patent application specifically covering compound 49 (4-(2,2-difluoro-
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benzo[1,3]dioxol-5-ylmethyl)-piperazine-1-carboxylic acid (4-chloro-pyridin-3-yl)-amide, 

Figure 10). This compound, which inhibits human and rat FAAH with IC50 values of 75 and 

320 nM, respectively, was described to be less prone to inhibit CYP2D6 liver cytochrome and 

to overcome behavioral side-effects in rats described for the corresponding dechlorinated 

analogue.89  

Azetidine ureas were also covered by Janssen Pharmaceutica.90 A recent patent 

application reported several potent FAAH inhibitors possessing a variety of heteroaryl 

substituents (other than the classical pyridin-3-yl one) at the primary nitrogen of the urea 

functionality, including the imidazo[1,2-b]pyridazin-3-yl fragment of compound 50 and the 

pyrrole[2,3-b]pyridin-5yl one of compound 51. They were reported to inhibit human FAAH 

with IC50 of 5 and 3 nM, respectively. In the same patent application, Janssen also describes 

pyrrolidinyl urea derivatives of the kind of compound 52. These pyrrolidinyl ureas were in 

general less potent than azetidinyl ones, inhibiting FAAH with IC50 values ranging from 50 to 

5,000 nM.  
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Figure 10. Urea-type FAAH inhibitors covered by Janssen Pharmaceutica. 

 

Bial-Portela reported tetrasubstituted ureas characterized by a 

carbamoylbenzotriazole structure, exemplified by compound 53 (Figure 11), which fully 

inhibits brain FAAH in mice 1 h after its oral administration at the dose of 30 mg/kg, or by a 

carbamoyl-imidazole core, exemplified by compound 54, which fully inhibits mouse FAAH in 

vitro at 10,000 nM. 91 Also Makriyannis et al. at the Northwestern University reported 

tetrazolyl and imidazolyl-ureas as FAAH inhibitors, exemplified by compounds 55 and 56 

(Figure 11).92  
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Figure 11. Tetrasubstituted ureas reported by Bial Portela and Northwestern University. 

 

 

 5.4 Boronic acids 

Infinity Pharmaceuticals filed the first patent application of boronic acids as FAAH 

inhibitors in 2008.93 In the same year, a series of commercially available arylboronic acids, 

exemplified by 57 (biphenyl-4-ylboronic acid, IC50 = 21 nM vs rat FAAH), was reported by 

Minkkila et al94 to potently inhibit FAAH (Figure 12). In the same article Minkkila and 

collaborators proposed that these compounds form a reversible covalent complex with FAAH. 

In fact, the presence of the boron atom, able to easily change its hybridization from sp2 to sp3 , 

allows these compounds to form a tetrahedral adduct with Ser241, similar to the intermediate 

formed by FAAH and AEA during the mechanism of hydrolysis.  

A follow-up patent application filed by Infinity Pharmaceuticals reported an optimized 

synthetic procedure based on the Suzuki reaction to obtain 58, a difluoro-substituted 

derivative of 1,1'-biphenyl-4-ylboronic acid (Figure 12). Infinity Pharmaceuticals included 

other heteroaryl boronic acids, exemplified by compounds 59 and 60 which were reported to 
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inhibit human FAAH with Ki < 10 nM.95, Boronic acids characterized by a 6,6 or a 6,5 bicyclic 

system (i.e., compounds  61 or 62, having Ki < 10 nM) 96 or by a cycloaliphatic ring (i.e. 

piperidine 63, having  Ki < 100 nM)97 were also covered by Infinity Pharmaceuticals as human 

FAAH inhibitors.  

 

  

Figure 12. Examples of boronic acids described as FAAH inhibitors. 

 

 

 5.5 Azole derivatives  

Merck designed various heterocycle-based FAAH inhibitors with an imidazole,98 

pyrazole,99 oxazole100 or  azaindole101 core, exemplified by compounds 64, 65, 66 and 67 

which inhibit human FAAH with single digit IC50 values (Figure 13). Merck also reported a 

class of 2-(4-(1H-imidazol-4-yl)phenyl)cyclopropanecarboxamide derivatives, potentially 

useful as FAAH imaging agents, exemplified by the tritiated inhibitor 68.102 The non-tritiated 
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analog was reported to have an IC50 of 1.1 nM on human FAAH. Merck also published a 

scientific paper describing the identification of a 2-(4-(1H-imidazol-4-

yl)phenyl)cyclopropanecarboxamide derivative as a promising FAAH PET tracer.103 As a first 

step, a FAAH inhibitor from this new class was identified: compound 69 (Figure 13) exhibits 

good potency vs human and rhesus monkey FAAH (IC50 of 1.0 nM and 5.5 nM, respectively) 

and excellent selectivity, having only 2 moderate off-targets (i.e., AchE, IC50 = 1.63 μM and 

PDE4, IC50 = 9.75 μM) out of a panel of 168. Moreover, it shows rapid and significant brain 

penetration in rats (brain-to-plasma concentration ratio of 7:1 at 2 h following administration 

at 2 mg/kg, po). As a next step, a radiolabeled derivative of compound 69 was synthetized and 

investigated as potential 11C PET tracer. The resulting compound 70 (MK-3168) exhibits good 

brain uptake and FAAH-specific signal in PET studies on rhesus monkey, with accumulation in 

the frontal cortex, striatum, and hippocampus regions all of which are FAAH-enriched areas. 

70 was therefore proposed to be a good PET tracer for imaging FAAH in the brain, suitable for 

clinical application.103 

Very recently, Merck also described in the scientific literature researches focused on 

the discovery and development of a class of oxazole inhibitors as possible clinical candidates 

for inflammatory diseases.104 They reported the identification of a first pyrazole hit (71, 

Figure 13) by high throughput screening (HTS) and the following medicinal chemistry efforts 

aimed at optimizing both in vitro potency on FAAH and pharmacokinetic properties. This led 

to the discovery of the oxazole 72 (MK-4409, Figure 13), a potent and reversible FAAH 

inhibitor (IC50 = 11 nM) devoid of functionalities able to form covalent bonds with the FAAH 

catalytic site. Compound 72 is effective in animal models of inflammatory (i.e., CFA assay at 10 

mg/kg, po) and neuropathic pain (i.e., spinal nerve ligation assay at 3 mg/kg, po) without 

leading to loss of cognition or motor skill impairment.104 
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Figure 13. Examples of azole derivatives reported as FAAH inhibitors. 

 

 

 5.6 Ethylaminopyrimidines 

Janssen Pharmaceutica developed a class of inhibitors characterized by an aryl-

hydroxyethylaminopyrimidine scaffold (Figure 14).105 The most potent compound of the 

series is compound 73 with IC50 values of 1 and 3 nM on human and rat FAAH, respectively.  

The discovery and optimization of arylhydroxyethylaminopyrimidines as FAAH 

inhibitors have also been reported very recently in the scientific literature.106 In brief, an HTS 
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campaign led to the discovery of a racemic hit (74) as a competitive FAAH inhibitor (IC50 

values of 30 and 591 nM on human and rat FAAH, respectively) lacking reactive 

functionalities. The synthesis and testing of the isolated optical antipodes revealed that the 

(R)-isomer (75) is significantly more potent than the (S)-isomer (76) due to a specific, 

stereochemically dependent interaction with FAAH, confirmed by the X-ray crystal structure 

of humanized rat FAAH bound to an inhibitor from the (R) series, compound 77. This 

compound displays a binding mode similar to that of compound 16 (the ketobenzimidazole 

inhibitor Amgen-2): it occupies both the ABP and the MAC of FAAH, while its hydroxyl group 

is well positioned to establish a hydrogen bond with Thr488 (cfr. Figure 3). For the 

corresponding (S) isomer, such an interaction seems not to be readily accessible, accounting 

for the high stereoselectivity of this class.106 Further expansion of the series led to 78 (JNJ-

40413269) with inhibits human FAAH with an IC50 of 5.3 nM and was found to have excellent 

pharmacokinetic properties, as well as to be orally efficacious in the rat spinal nerve ligation 

(Chung) model of neuropathic pain at doses of 10-100 mg/kg.106 

A class of rather similar compounds, in which the hydroxyl group is replaced by an 

amino group, was also disclosed by Janssen Pharmaceutica. The resulting 

pyrimidinylethylenediamines (e.g., compound 79) are in general less potent than 

hydroxyethylaminopyrimidine derivatives. Compound 79, one of the most potent FAAH 

inhibitor from this series has IC50 values of 20 and 60 nM vs human and rat FAAH, 

respectively.107  
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Figure 14. Examples of ethylaminopyrimidines reported as FAAH inhibitors. 

 

 

 5.7 Tetrahydronaphthyridine derivatives 

Renovis claimed a series of substituted 1,2,3,4-tetrahydro-2,6-naphthyridines, 

exemplified by compound 80, which inhibits microsomal human FAAH with an IC50 value 

lower than 100 nM (Figure 15).108 This class of compounds was identified through a HTS 

campaign on human FAAH using a microsomal protein preparation and a fluorescent assay 

readout.109 The first hit (the tetrahydropyridopyrimidine 81) was the subject of an intensive 
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optimization program that led to the tetrahydronaphthyridine 82 (RN-450), able to inhibit 

human and rat FAAH with IC50 values of 13 and 25 nM, respectively. The mechanism of action 

of RN-450 was thoroughly investigated and it was shown that this compound acts as a 

competitive and reversible FAAH inhibitor. Indeed, when increasing concentrations of RN-

450 are incubated in the presence of human FAAH, the enzyme Vmax remains unchanged while 

significant variation in the Km is observed. The inhibitory potency of RN-450 was found to be 

time-independent and a rapid dilution experiment allowed to restore FAAH activity almost 

completely, demonstrating the reversible nature of FAAH inhibition by RN-450. 109 

Renovis also claimed a class of benzoxazole derivatives as FAAH inhibitors exemplified 

by compound 83 which inhibits human FAAH with an IC50 value of 1.3 nM.110  

 

 

Figure 15. Examples of compounds claimed as FAAH inhibitors by Renovis. 

 

 

 5.8 Miscellaneous classes 

A patent application by Bial-Portela reports several compounds characterized by a 5-O-

substituted-3-N-phenyl-1,3,4-oxadiazolone scaffold, exemplified by 3-(4-amino-3-(2-
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methoxyethoxy)phenyl)-5-(2,4-difluorophenoxy)-1,3,4-oxadiazol-2(3H)-one 84 (Figure 

16).111 Compounds of this class inhibit rat FAAH in vitro (IC50 < 100 nM) and mouse FAAH in 

vivo  (ED50 < 30 mg/kg, po), both in the liver and in the brain. Bial-Portela further covered this 

class of FAAH inhibitors reporting two patent applications in 2010.112,113 Compounds having a 

3-aryl-5-methoxy-1,3,4-oxadiazol-2(3H)-one ring had been reported to inhibit hormone-

sensitive lipase (HSL), targeting the catalytic serine by their 2-carbonyl fragment and leading 

to the formation of a carbazate adduct.114 While no details are reported about FAAH-

inhibition mechanism, a similar reaction with nucleophilic serine of FAAH can be 

hypothesized.  

Infinity claimed a class of substituted isoxazolines as FAAH inhibitors (Figure 16), 

characterized by a bromine atom or an aryloxy substituent in position 3 and exemplified by 

compounds 85-88.115 These compounds inhibit FAAH with Ki < 100 nM. It was hypothesized 

that these compounds may undergo a nucleophilic attack by Ser241, resulting in the 

elimination of the bromo or aryloxy substituent at position 3 on the isoxazoline nucleus and 

the subsequent formation of a FAAH-isoxazoline adduct. This irreversible mechanism of 

action was supported by a rapid dilution assay showing that no enzyme activity was 

recovered 2 h after removal of the inhibitor.115 

Ironwood reported a class of benzylpyrrolyloxoacetamide derivatives for use as FAAH 

inhibitors, 116,117 exemplified by 89 (Figure 16). These compounds inhibit FAAH, extracted by 

human brain, with an IC50 value of 4 nM.  The mechanism of action of this class of compound 

was not described in the patent application. However, α-keto amides of this kind have been 

reported to inhibit serine proteases (i.e., HCV NS3 protease) by forming a reversible 

hemiketal structure with the catalytic serine.118 It is conceivable that these oxoacetamides 

may form an hemiketal adduct with FAAH Ser241, similarly to what had been observed for 

the class of α-ketoacetamides.  A compound of the same class (90) was also claimed to be 
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useful for the treatment or prevention of neuronal injury or neurodegeneration,119 as well as 

for the treatment of the restless legs syndrome.120 Recently, the pharmacokinetic profile of 

the benzylpyrrolyloxoacetamide 91 (MM-433593) was reported in the literature, showing 

low bioavailability in male and female monkeys (18%).121 MM-433593 undergoes phase I and 

phase II biotransformations, giving at least 18 metabolites in monkeys, with the major 

biotransformation pathway involving oxidation of the methyl group at 5-position of the indole 

ring, followed by conjugation with glucuronide, sulfate, or glutathione. 

Recently, Allergan claimed a class of N-alkyl-4-oxazolecarboxamide derivatives, 

exemplified by compounds 92 and 93 (Figure 16), which inhibit rat brain FAAH with IC50 

values of 180 and 20 nM, respectively. No information on the mechanism of action is reported 

in the patent application for these inhibitors.122  
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Figure 16. Examples from classes of compounds claimed as FAAH inhibitors. 
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6. Expert Opinion 

 The availability of potent and selective FAAH inhibitors endowed with good in vivo 

activity has allowed significant advancement in the understanding of FAAH functions and in 

the definition of its potential role as a drug target. The levels of FAEs in the CNS are mainly 

controlled by FAAH and their modulation through FAAH inhibition can be exploited to obtain 

beneficial effects, at least in animal models. In fact, while inactivation of FAAH by small-

molecule inhibitors provokes significant elevation in the CNS levels of AEA, PEA and OEA, 

producing analgesic and anti-inflammatory effects, these occur in the absence of cognitive 

alterations typically associated to CB1 receptor stimulation with exogenous agonists. As 

compelling evidence from animal experiments is showing that FAAH inhibitors can be 

effective at ameliorating signs of acute, inflammatory, visceral and neuropathic pain, the 

search for FAAH inhibitors suitable for clinical investigation is a strong focus in current drug 

discovery. In this scenario, even if the failure of PF-04457845 (14) in a phase II study 

evaluating its ability to control osteoarthritis pain has not flatted the interest in FAAH 

inhibitors, particular effort is needed to find new strategies that could allow the exploitation 

of this pharmacological class for effective therapeutic applications. From the point of view of 

medicinal chemistry, this means that new patentable chemical classes of FAAH inhibitors with 

proven in vivo activity are welcome, as this could provide new opportunities to develop drugs 

with different pharmacokinetic or pharmacodynamic profiles. On the other hand, new 

candidates should present some advantages, compared to traditional classes of carbamates 

and ureas. In fact, according to the information reported in the public database 

clinicaltrials.gov, clinical trials on FAAH inhibitors are still based on the use of PF-04457845 

and URB597. Ongoing or completed studies with PF-04457845 evaluate the potential for 

treating cannabinoid dependence, acute and chronic pain, Tourette syndrome and fear 
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conditioning. An ongoing study with URB597 evaluates the potential of this compound for the 

treatment of schizophrenia. 

 The interest in this area is proven by the number of new and attractive FAAH 

inhibitors that have been described both in patent applications and in scientific literature. 

Many of these are carbamate and urea-based inhibitors, developed in academic and industrial 

settings, complementing the work performed in the early 2000. Compounds characterized by 

peripheral in vivo distribution or by the ability to inhibit multiple targets (i.e., FAAH and COX) 

were reported and may perhaps be useful in those pathological conditions where a single 

target inhibitor or a FAAH inhibitor with non-restricted distribution could fail.48 Another 

example of mutitarget inhibitors is represented by 1-indol-1-yl-propan-2-ones which 

simultaneously inhibit FAAH and the cytosolic phospholipase A2 and could exert improved 

analgesic and anti-inflammatory properties in vivo compared  to selective FAAH inhibitors.123 

On the other hand, a significant change in the exploration of the chemical space of FAAH 

inhibitors occurred, with the relevant introduction of compounds devoid of an electrophilic 

function in their structure, as in the cases of ethylaminopyrimidines, azoles and 

tetrahydronaphthyridines. Compounds from these classes potently inhibit FAAH in vitro and 

in vivo and achieve anti-inflammatory effects in animal models similarly to the covalent FAAH 

inhibitors URB597 (7) and-PF-04457845 (14). The interest in developing non-covalent 

inhibitors could be attributed to the reduction of idiosyncratic risk that, in compounds 

bearing reactive groups, might eventually lead to failure in clinical trials. Additional 

advantages linked to their non-covalent mechanism of action should be further investigated 

and described in the scientific literature. Regarding the issue of inhibition kinetics, both in the 

sense of inactivation onset and reversibility, its pharmacological significance still needs to be 

assessed. In particular, it could significantly affect behavioral effects, which represent 

potential applications for FAAH inhibitors. Moreover, covalent mechanisms do not necessarily 



34 
 

result in irreversible inhibition, as shown by different classes of compounds (e.g., α-

ketoheterocycles), and even for carbamoylating agents it has been shown that chemical 

modulation can afford different degrees of enzyme recovery.  

 In conclusion, even if more than ten years have passed since the emergence of FAAH 

inhibitors as new possible therapeutic agents, the deep research activity in this field, as well 

as the huge number of patent applications filed in the last five years characterize this field as 

one of the most promising in medicinal chemistry. 

 

 

Highlights 

1. FAAH is a key component of the endocannabinoid system and it is the main responsible for 

the termination of anandamide signaling in vivo.  FAAH also concurs to the deactivating 

hydrolysis of other neuromodulatory amides, such as palmitoylethanolamide and 

oleoylethanolamide.  

2. Selective inhibition of FAAH enhances the endocannabinoid tone at local levels exerting 

beneficial effects in animal models of pain, anxiety and rewarding effects from substances of 

abuse, while avoiding the classical drawbacks of generalized CB1-receptor stimulation. 

3. Remarkable efforts have been made both by academia and pharmaceutical companies to 

optimize the pharmacodynamic and pharmacokinetic properties of known classes of FAAH 

inhibitors, such as carbamates and arylureas, which have led to the identification of promising 

clinical candidates. 

4. Despite the failure of PF-04457845 phase II study on osteoarthritis pain, the potential 

clinical applications of FAAH inhibitors still continue to be investigated in drug dependence, 

Tourette syndrome, fear conditioning and schizophrenia. 
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5. The ongoing search for novel chemical entities targeting FAAH  has culminated in the 

development of potent competitive and non-covalent inhibitors, the therapeutic potential of 

which still needs to be fully assessed. 
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