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ABSTRACT 

Background: The intratracheal (IT) administration of budesonide using surfactant as a 

vehicle has been shown to reduce the incidence of bronchopulmonary dysplasia (BPD) 

in preterm infants.  

Objective: To characterize the in vitro characteristics and in vivo safety and efficacy of 

the extemporaneous combination of budesonide and poractant alfa. 

Methods: The stability, minimum surface tension, and viscosity of the preparation were 

evaluated by means of HPLC, Wilhelmy balance, and Rheometer, respectively. The 

safety and efficacy of the IT administration of the mixture were tested in two RDS 

animal models: 27th day gestational age premature rabbits and surfactant-depleted adult 

rabbits. 

Results: A pre-formulation trial identified a suitable procedure to ensure the 

homogeneity and stability of the formulation. Wilhelmy Balance tests clarified that 

budesonide supplementation has no detrimental effect on poractant alfa surface tension 

activity. The addition of budesonide to poractant alfa did not affect the physiological 

response to surfactant treatment in both RDS animal models and was associated to a 

significant reduction of lung inflammation in surfactant-depleted rabbits. 

Conclusions: Our in vitro and in vivo analysis suggests that the IT administration of a 

characterized extemporaneous combination of poractant alfa and budesonide is a safe 

and efficacious procedure in the context of RDS.   

©    2017 Macmillan Publishers Limited. All rights reserved.
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INTRODUCTION 

Major advances in the treatment of premature birth over the last decades such as the 

extended use of antenatal steroids and surfactant replacement therapy have significantly 

improved the survival rates of preterm neonates with Respiratory Distress Syndrome 

(RDS)(1,2), lowering the limits of viability to the 22
nd

 week of gestation(3). 

Nevertheless, preterm infants born at such low gestational ages often require intensive 

resuscitation approaches with prolonged periods of mechanical ventilation and 

continuous exposure to supplemental oxygen. Mechanical ventilation and oxygen 

therapy, often in combination with previous fetal exposures to inflammation 

(chorioamnionitis), are well described factors known to trigger pulmonary 

inflammation(4–6). If inflammation persists over time, it can induce the arrest of lung 

development and impair the normal lung physiology, yielding a chronic lung disease 

state termed Bronchopulmonary Dysplasia (BPD)(7). BPD affects about half of preterm 

neonates with a birth weight below 1,000 g(8–10). In this patient population, non-

invasive respiratory support is often inefficient and infants generally require invasive 

mechanical ventilation and surfactant replacement. In this scenario, the occurrence of 

inflammation is hard to avoid, increasing the risk of BPD.  

Because of the important role of inflammation in BPD(10), corticosteroids have been 

used in the perinatal context due to their anti-inflammatory effects(11–17). For instance, 

postnatal systemic dexamethasone therapy has been shown to reduce the incidence of 

BPD(16,17). Nevertheless, in spite of the pulmonary benefits, the routine use of 

systemic corticosteroids in premature infants is now discouraged due to the risk of 

neurodevelopmental impairment(18). As an alternative delivery method, lung-targeted 

approaches for corticosteroid therapy have been explored. Direct intratracheal 

instillation of budesonide has been shown to be ineffective(19), while administration of 

©    2017 Macmillan Publishers Limited. All rights reserved.
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inhaled budesonide by aerosol delivery to neonates poses significant technical 

challenges, and with the current technology the intrapulmonary aerosol deposition rates 

are variable and relatively low(20). As a result, the efficacy of inhaled corticosteroids in 

the context of BPD remains inconclusive(11,13).  

Yeh et al. have developed an elegant and efficient method for the pulmonary delivery of 

budesonide to preterm infants(15). They suspended a dose of budesonide in a dose of 

exogenous surfactant used for the treatment of RDS. They hypothesized that surfactant 

would act as a vehicle for budesonide and therefore the distribution and the efficacy of 

budesonide would be maximized. In a recent trial Yeh et al. have reported a 

significantly lower incidence of BPD with no observed immediate or long-term adverse 

effects(14). The authors also demonstrated that the performance of the bovine-derived 

surfactant preparation (Survanta®, AbbVie, US, phospholipid concentration 25 mg/mL) 

as well as the stability of budesonide were optimal when both substances were 

combined (14).  

Poractant alfa is one of the most effective clinically available exogenous surfactant 

preparations(21). Preliminary in vitro studies suggest a good surfactant performance of 

poractant alfa supplemented with budesonide(22,23). Moreover, the combination of 

poractant alfa with beclomethasone diproprionate, a glucocorticoid with anti-

inflammatory properties, showed an optimal surfactant performance in vivo and a 

reduction of the acute phase inflammation, suggesting a good compatibility with 

corticosteroids(24,25). Nevertheless, the in vivo performance of poractant alfa in 

combination with budesonide has not yet been investigated.  

Therefore, considering the growing interest for extemporaneous combinations of 

surfactant and corticosteroids, the aim of the present study was to perform a preclinical 

characterization of poractant alfa supplemented with budesonide in order to provide to 

©    2017 Macmillan Publishers Limited. All rights reserved.
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the clinicians detailed information on safety and efficacy of a combination of the two 

products. For that purpose, we prepared an extemporaneous formulation of clinical 

relevance combining poractant alfa and budesonide. We hypothesized that this 

formulation would show an equivalent surface tension reduction function in vitro and in 

vivo compared to poractant alfa alone, yet maintaining the anti-inflammatory properties 

of budesonide. Additionally, viscosity and 24-hour stability of the extemporaneous 

formulation were evaluated with a rotational rheometer and by High Performance 

Liquid Chromatography (HPLC), respectively. 
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 6 

MATERIAL AND METHODS 

 

Compounds and reagents 

Poractant alfa (Curosurf
®
, Chiesi Farmaceutici, Parma, Italy) is a sterile aqueous 

suspension for pulmonary endotracheal instillation. It is a natural surfactant prepared 

from porcine lungs, constituted of a complex mixture of phospholipids (80 mg/mL, 

mainly dipalmytoylphosphatidylcholine) and about 1% of specific low molecular 

weight hydrophobic proteins.  

Budesonide (Pulmaxan
®
, AstraZeneca, Sweden) is a glucocorticoid supplied as a sterile 

aqueous suspension in single ampules of 2 mL (0.25 mg/mL) for inhalation via 

nebulizer.  

For analytical purposes, budesonide was purchased from Sigma (St. Louis, MO) and 

NaH2PO4, H3PO4, absolute ethanol (etOH) and CH3CN gradient grade were obtained 

from Sigma-Aldrich (Milwaukee, WI). 

 

Extemporaneous formulation preparation of poractant alfa and budesonide 

Since the dose regimen previewed for in vivo studies consist of a dose of 200 mg/kg of 

poractant alfa (2.5 mL/kg) and 0.25 mg/kg of budesonide (1 mL/kg), the 

extemporaneous formulation of poractant alfa and budesonide was prepared for all 

testing by by simple mixing and gentle shaking (5x)  poractant alfa and budesonide in a 

vial at the following volumetric ratio: 1 to 0,4 (final poractant alfa and budesonide 

concentrations were 57.14 mg/mL and 0.071 mg/mL, respectively).  

 

Budesonide stability after mixing with poractant alfa 

©    2017 Macmillan Publishers Limited. All rights reserved.
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The stability of the extemporaneous mixture of poractant alfa and budesonide was 

assessed at different time-intervals (0-24 hours) at room temperature by means of 

HPLC. HPLC-UV analysis were carried out using a liquid chromatograph (Thermo 

Fisher Scientific, US) equipped with an UV-Vis Detector (UV6000 model, Thermo 

Fisher Scientific, US) operating at 240 nm. The chromatograms were analysed with 

Chromquest 4.0 software (Thermo Fisher Scientific, US).  

Chromatographic separation was performed on a Hypersil BDS C18, 150x4.6 mm, 5µm 

column (Thermo Fisher Scientific, US), at room temperature. The mobile phase was 

aqueous solution 0.02M NaH2PO4 pH3.2 (eluent A) and CH3CN ratio 68:32, with a 

flow rate of 1.5 mL/min. The injection volume was 50µL. The total run time was 22 

min. 

The standard solution of budesonide was prepared by dissolving about 6 mg working 

standard into a 100 mL of solvent H2O/Ethanol (40/60 v/v).  

The test solution containing poractant alfa and budesonide was prepared as follows: 1 

mL of poractant alfa suspension and 400 µL of budesonide suspension, both sampled 

under stirring, were transferred into a 5 mL volumetric flask (sample solution for 

stability, budesonide sample concentration: 0.071 mg/mL). Then 600 µL of water were 

added and the solution was diluted up to volume with ethanol (sample solution for 

injection, budesonide theoretical sample concentration: 0.02mg/mL). 

 

Determination of the viscosity of the expemporaneous formulation by Rheometer  

The viscosity of the extemporaneous formulation was investigated using a ARG2 

Rheometer (TA Instruments Trios version, US) equipped with cone-plate geometry 

(plate diameter 40 mm, angle 0.9939°) and applying a flow ramp in the rheometer 

ranging from 0.001 to 10,001/s shear rates. Poractant alfa alone (80 mg/mL) was used 

©    2017 Macmillan Publishers Limited. All rights reserved.
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as a reference. All test samples were gently turned upside down without shaking before 

analysis. One mL of each test suspension was placed directly onto the rheometer’s steel 

plate and the geometry was lowered up to the defined gap (27 m). All measurements 

were performed at 25° C. The viscosity value was extrapolated from the obtained flow 

ramp curve by applying the Carreau-Yasuda model (TRIOS software, TA Instruments, 

US). Measurements were conducted immediately after the preparation of the 

extemporaneous mixture and again after a 24 hour incubation period at room 

temperature. Results are shown as the mean ± SD of three runs for each sample (four 

samples were prepared). 

 

In vitro surface tension reduction function of poractant alfa after addition of 

budesonide 

To detect potential changes in surface tension attributable to the addition of budesonide 

to poractant alfa, the surface tension of poractant alfa alone (80 mg/mL) was measured 

and compared to the surface tension of the extemporaneous combination of poractant 

alfa/budesonide (57.14 mg/mL and 0.071 mg/mL concentrations, respectively). Surface 

tension measurements were performed with a customized Wilhelmy Surface Balance 

(KSV, Nima, Biolin Scientific Oy, Finland). The device uses a platinum plate connected 

to a strain gauge that is inserted 1 mm into the hypophase, consisting of 50 ml of 0.9% 

NaCl in a Teflon through. The test samples (312 µL) were added into the hyphophase. 

Recordings were then made during 80 cycles for minimum surface tension (γ min) 

measurements. A surface tension value below 3 mN/m was accepted as optimal 

surfactant function. All the measurements were performed at 37° C. The results 

obtained were the mean ± SD of two runs for each sample (two samples were prepared). 

 

©    2017 Macmillan Publishers Limited. All rights reserved.
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In vivo surface tension reduction function of poractant alfa after addition of budesonide 

in preterm rabbits 

Pregnant New Zealand White rabbits were supplied by Charles River (Domaine des 

Oncins, France) and housed until the 27
th

 day of gestation under standard conditions, 

according to the current procedures for animal housing and handling. All experimental 

procedures involving animal research performed in this work were approved by Italian 

Ministry of Health (Prot.n°263/2011) and complied with the European and Italian 

regulations for animal care. The delivery procedure and the postnatal handling of the 

fetuses has been described elsewhere(26). In total 27 fetuses from 3 litters were 

allocated within 4 different groups: 1) control group, untreated animals (n=6); 2) 

budesonide group, animals received 0.25 mg/kg of budesonide (n=6); 3) poractant alfa 

group, animals received 200 mg/kg of poractant alfa (n=7); 4) poractant alfa/budesonide 

group, animals received 0.25 mg/kg and 200 mg/kg of budesonide and poractant alfa 

combined in an extemporaneous mixture that contained 57.14 mg/ml of poractant alfa 

and 0.071 mg/ml of budesonide (n=8). Fetuses, paralyzed with pancuronium bromide 

(0.06 mg, i.p.), were ventilated in parallel using a servo-ventilator (Siemens 900 C, 

Erlangen, Germany) with a standardized sequence of varying peak insufflations 

pressures with 100% oxygen, as previously described(26).  

 

In vivo efficacy of surfactant after addition of budesonide 

The experiments were carried out in 6- to 7-week-old New Zealand white adult rabbits 

with a body weight between 1.5–2.5 kg. Animal sedation and surgical procedures have 

been recently described by Ricci et al(27).  

Rabbits, in supine position, were intubated and stabilized on mechanical ventilation 

(MV; Acutronic Fabian HFO, Acutronic Medical, Hirzel, Switzerland) with the 

©    2017 Macmillan Publishers Limited. All rights reserved.
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following settings: FiO2=100%, Flow=10 L/min, respiratory rate=40 breaths/min, 

PEEP=3 cmH2O, VT targeted to 7 ml/kg (with PIP not higher than 23 cmH2O) and 

inspiratory time of 0.5 sec. A flow sensor was connected to the endotracheal tube to 

continuously monitor lung mechanics. All animals underwent repeated broncho-alveolar 

lavages (BALs) to achieve surfactant depletion as described by Ricci et al(27). 

Following surfactant depletion animals were randomized to one of the four study 

groups: 1) control group, untreated animals (n=6); 2) budesonide group, animals 

received 0.25 mg/kg of budesonide (n=6); 3) poractant alfa group, animals received 200 

mg/kg of poractant alfa (n=6); and 4) poractant alfa/budesonide group, animals received 

0.25 mg/kg and 200 mg/kg of budesonide and poractant alfa mixed in an 

extemporaneous mixture that contained 57.14 mg/ml of poractant alfa and 0.071 mg/ml 

of budesonide (n=6). All animals were maintained in MV for 300 min. 

Arterial pH, blood gases, dynamic compliance (Cdyn), and VT were measured right after 

intubation and stabilization (baseline), after inducing surfactant depletion by repeated 

BALs, and after the stabilization period that followed the insult to confirm the 

respiratory failure (15ST).  These parameters were also measured 5, 15 and 30 min after 

treatment and thereafter every 30 min until the end of the observational period (300 

min). After the observational period animals were sacrificed by exsanguination. The 

lung was fixed for histological analysis. 

 

Histological analysis 

A standard sampling of the cranial right lung was fixed in 10% neutral buffered 

formalin. Lung samples were dehydrated in graded alcohol solutions, xylene clarified, 

paraffin infiltrated by means of an automatic processor (ATP 700 Tissue Processor, 

Histo-line laboratories, Italy), and embedded with the dorsal surface of the slice down 

©    2017 Macmillan Publishers Limited. All rights reserved.
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(EG 1160, Leica Biosystems, Germany). Five µm thick serial sections were obtained 

using a rotary microtome (Slee Cut 6062, Germany). Slides were further deparaffinized, 

rehydrated in descending grades of ethanol and stained with hematoxylin and eosin 

(Sigma). Images of the samples were acquired with a digital slide scanner (NanoZoomer 

S60, Hamamazu Photonics, Japan). Ten random non-overlapping regions of interest 

(ROIs) were acquired at 5x magnification for each slide. Lung injury was estimated by 

using a semi-quantitative scoring system performed by an investigator blinded to the 

study design. Alveolar and interstitial lung inflammation, alveolar and interstitial 

haemorrhage, edema, and atelectasis were each scored on a 0 to 4 point-scale(28,29). 

Each field was scored as 0 if the item was absent or normal, as 1 if the item was present 

in 25% of the field, 2 for 50% of the field, 3 for 75% of the field, and 4 if the item was 

apparent throughout the whole field. The alveolar and interstitial score were put 

together for both lung inflammation and haemorrhage. The total injury score was 

calculated as a sum of these scores. For each group the average score of the ROIs is 

reported.  

 

Statistical analysis 

Unless otherwise stated, all the data are presented as mean ± SEM. The raw data of the 

in vivo studies were analysed and compared by repeated measures of two-way analysis 

of variance (ANOVA) as a function of group and time, followed by Tukey’s t post-hoc 

test. The data of the histological score were analysed by non-parametric Kruskal-Wallis 

test. Statistical analysis was performed using GraphPad software, version 6.0 (Prism, 

CA). 
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RESULTS 

 

Budesonide stability after mixing with poractant alfa 

The stability of the budesonide in the extemporaneous mixture composed of 1 mL of 

poractant alfa suspension (80 mg/mL) and 400 µL of budesonide (0.25 mg/mL) was 

tested immediately after preparation (t0) and thereafter, the budesonide content was 

checked again 3, 6, 9.5, and 24 hours after preparation at room temperature. The 

chemical stability of budesonide dispersed within poractant alfa over 24 hours was 

demonstrated by HPLC-UV analysis (table 1). No significant difference in the content 

of Budesonide was observed during the 24 hour incubation at room temperature 

 

Viscosity of the extemporaneous formulation  

The viscosity of poractant alfa (80 mg/mL) was compared to the viscosity of poractant 

alfa supplemented with budesonide (final poractant alfa and budesonide concentrations 

were 57.14 mg/mL and 0.071 mg/mL, respectively) by means of rheometer. The 

viscosity of the suspensions was determined immediately after preparation, at t0, and 

was determined again after a 24 hour incubation at room temperature. The Carreau-

Yasuda model was fit to the flow-ramp curves in order to achieve the infinite rate 

viscosity values. As it could be expected due to the simple phospholipid dilution effect, 

the addition of budesonide to poractant alfa induced a slight drop of the viscosity from 

5.5 to 3.7 cP (30%; figure 1).  

The 24 hour incubation experiment was designed to investigate whether the viscosity of 

the extemporaneous suspension would remain stable over time. Neither poractant alfa 

alone nor poractant alfa supplemented with budesonide showed significant changes in 

viscosity after incubation.  

   

©    2017 Macmillan Publishers Limited. All rights reserved.
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In vitro surface tension reduction function of poractant alfa after addition of 

budesonide 

The effect of budesonide supplementation on
 
the in vitro surface tension reducing 

properties of poractant alfa was examined with a Wilhelmy balance and further 

compared to poractant alfa alone. In both cases the minimum surface tension remained 

below 3 mN/m, thus confirming the optimal surfactant action of poractant alfa, with or 

without budesonide supplementation. The film 'refinement', defined as the number of 

dynamic cycles required to reduce minimum surface tension to a level below 3 mN/m, 

was 4 ± 0 mN/m for poractant alfa alone and 5.5 ± 0.7 mN/m for the poractant alfa + 

budesonide mixture. 

 

In vivo surface tension reduction function of poractant alfa after addition of budesonide  

The in vivo biological activity of poractant alfa combined with budesonide was 

evaluated in preterm rabbits with primary surfactant deficiency. No significant 

difference was found between groups in terms of bodyweight. The animal groups 

treated with poractant alfa or with the poractant alfa + budesonide mixture showed a 

significantly higher (P<0.0001) VT compared to untreated animals (Control group) and 

to animals treated with intratracheal budesonide alone (no surfactant) at 5, 10, 15 and 30 

min (figure 2). Moreover, the pulmonary improvement achieved after instilling the 

poractant alfa + budesonide mixture was at the same level as the one observed 

following instillation of a clinical dose of poractant alfa. On the other hand, budesonide 

alone could not revert the severe RDS of the preterm rabbits as evidenced by the low 

VT, at the same level of the untreated controls. 

In order to further investigate the in vivo efficacy of poractant alfa in combination with 

budesonide in terms of gas exchange, lung mechanics, and histological outcomes, we 

©    2017 Macmillan Publishers Limited. All rights reserved.
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conducted an additional study in adult surfactant-depleted rabbits. Neither the body 

weight of the animals (control group: 1.72 ± 0.08 kg; poractant alfa group: 1.73 ± 0.01 

kg; poractant alfa + budesonide: 1.7 ± 0.1 kg; budesonide: 1.7 ± 0.04 kg) nor the 

number of BALs required to induce surfactant depletion differed significantly between 

the groups. Moreover, all animals had similar gas exchange and ventilation parameters 

at baseline as well as 15 min after induction of surfactant deficiency (15ST, figure 3). 

The BALs produced an abrupt decrease of PaO2.  

The PaO2 values rapidly increased in all surfactant treated animals (figure 3a). Both 

poractant alfa/budesonide and poractant alfa only groups had equivalent mean PaO2 

values during the whole experimental period, and remained significantly higher in 

comparison with the mean PaO2 values of the budesonide group and the untreated 

control group. The oxygenation values of untreated controls and budesonide-treated 

animals remained below 200 mmHg, even though the FiO2 was set at 100%. 

Surfactant depletion produced hypercapnia and a dramatic drop of the pH in all animals 

(Supplemental figure S1). Nevertheless, mean PaCO2 and pH levels returned to normal 

physiological levels in those animals treated with poractant alfa or poractant alfa + 

budesonide (figure 3b and Supplemental figure S1). On the other hand, acidosis and 

hypercapnia persisted in the control group and in the animals treated with budesonide 

only. It is worth to report here also that no unexpected events, like liquid reflux or 

endotracheal tube obstruction, were observed during treatment administration in all 

groups.  At the end of the experimental period, poractant alfa/budesonide and poractant 

alfa groups had significantly better mean PaCO2 and pH values in comparison to the 

other groups. Although hypercapnia persisted in the budesonide group, the mean PaCO2 

value was significantly lower than in untreated controls. 

©    2017 Macmillan Publishers Limited. All rights reserved.
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Mean Cdyn values rapidly increased after surfactant treatment in poractant alfa + 

budesonide and poractant alfa groups (figure 4). At the end of the experimental period, 

Cdyn was significantly higher in all surfactant-treated animal groups in comparison to 

untreated controls. Significant differences were also seen between the poractant alfa 

group and the budesonide group at the 300 min time-interval. No significant difference 

was detected between the control and the budesonide only groups. 

 

Histological analysis 

The histological examination of the lung parenchyma revealed a mild to marked 

inflammatory neutrophilic infiltration intermingled with alveolar macrophages, alveolar 

haemorrhages, and proteinaceous edema. Variably, alveolar walls were thick and  

atelectatic with multifocal interstitial haemorrhages. These findings, clearly expressing 

an acute inflammation (figure 5), affected all the evaluated groups and were more 

evident in the control group, with varying degrees of severity in treated groups. 

Histological examination showed a significant decrease of the overall lung injury score 

in the poractant alfa + budesonide, poractant alfa, and budesonide groups in comparison 

to the untreated control group (table 2). Moreover, significantly lower inflammation 

and edema scores were found for the poractant alfa + budesonide group in comparison 

to the animals group treated with poractant alfa only.  
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DISCUSSION 

In the present study we prepared and characterized a clinically relevant extemporaneous 

formulaton of poractant alfa supplemented with budesonide. Our results demonstrate 

that this formulation could be safely administered for the treatment of RDS and 

potentially for prevention of BPD in a clinical setting. On the one hand, for the 

treatment of RDS it is essential that the formulation maintains good surface tension 

reducing properties. On the other hand, for the prevention of BPD the budesonide 

contained within the formulation should be stable and remain in its active form in order 

to fully exert its anti-inflammatory properties.  

In view of the relevant role played by inflammation in the development of BPD the use 

of corticosteroids was rationally suggested. Systemic dexamethasone reduces the 

incidence of BPD(17). However, a chronic exposure to systemic corticosteroids 

increases the risk of neurodevelopmental impairment(18,30). Therefore, the local 

administration of corticosteroids, and in particular of budesonide, has been proposed as 

an alternative to maximize the lung dose and reduce the side effects of systemic 

exposure(11,13,14). Yeh et al. developed an elegant approach of pulmonary delivery of 

budesonide coupled to surfactant replacement therapy(15). They prepared 

surfactant/budesonide (beractant/pulmicort) mixtures (100 mg/kg and 0.25 mg/kg, 

respectively) that were delivered to preterm infants with RDS by intratracheal 

instillation. This approach significantly lowered the incidence of BPD or death (42.0%) 

in infants treated with the surfactant/budesonide mixture, compared to infants treated 

with surfactant alone (66%).  

The aforementioned study prompt us to investigate on an extemporaneous formulation 

containing a clinical dose of the porcine-derived surfactant poractant alfa (200 mg/kg or 

2.5 mL/kg) and the same budesonide dose as reported by Yeh et al. (0.25 mg/kg or 1 
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mL/kg) in order to provide useful information for the clinical practice on this new 

treatment approach. We hypothised that poractant alfa could be a suitable clinical 

surfactant for this application because similarly to beractant it has a long history of 

clinical practice and it is an animal-derived cholesterol-free preparation (a critical aspect 

for budesonide carrier activity according to Zhang et al.(31)). The final concentration of 

our extemporaneous mixture resulted in a phospholipid concentration of 57.14 mg/mL 

and a budesonide concentration of 0.071 mg/mL. Interestingly, the final phospholipid 

concentration of the extemporaneous poractant alfa and budesonide mixture is still 

higher than the original phospholipid concentration of beractant (25 mg/ml) or any other 

approved natural surfactant preparation(32). Therefore, we hypothesized that the 

addition of 0.071 mg/mL of budesonide would not significantly influence the surface 

properties of poractant alfa. However, investigators were concerned that the sterol 

budesonide molecule could exert inhibitory effects on surfactant similar to those 

induced by cholesterol(33–35). The minimum surface tension as measured in vitro for 

the extemporaneous formulation remained below 3 mN/m, the benchmark set in our in 

vitro setting for an optimal surface tension reducing function. This observation is in line 

with previous studies conducted with natural surfactant mixed with budesonide in 

which the surfactant action is preserved, provided that the budesonide wt% is below 

10%(15,31,35). The extemporaneous formulation used in the present study had a 

budesonide wt% of 0.001%. The optimal surfactant function shown in vitro by the 

poractant alfa + budesonide formulation could be further confirmed in vivo in a preterm 

rabbit model with severe RDS. Preterm rabbits extracted on the 27
th

 day of gestation 

suffer from a severe RDS due to a primary surfactant deficiency and therefore, this 

model has been shown to be a good platform to test the efficiency of different surfactant 

preparations(26,36). Of note, the response curve observed in terms of lung mechanics 
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for the poractant alfa/budesonide group was indistinguishable to the one obtained for 

the poractant alfa only group. The mere instillation of budesonide (without surfactant) 

did not elicit an improvement of lung mechanics, as expected. We could appreciate a 

slight decrease of the viscosity of the poractant alfa/budesonide extemporaneous 

formulation in comparison to the viscosity of poractant alfa alone. This difference was 

expected and derives from adding a 40% volume of budesonide (0.25 mg/kg) to a 

clinical dose of poractant alfa (200 mg/kg). Lower viscosity may actually improve the 

spreading of the preparation upon instillation, potentially avoiding the risk of transient 

airway obstructions associated to surfactant installation(37,38).  

The chemical stability of budesonide within the extemporaneous poractant alfa + 

budesonide mixture was also investigated to address if alterations or degradation 

phenomena of the active form of budesonide could take place over time. The HPLC-UV 

analysis revealed the stability of budesonide over 24 hours within the extemporaneous 

poractant alfa + budesonide mixture. A full anti-inflammatory action of budesonide can 

therefore be expected.  

Further we analysed the impact on gas exchange and the anti-inflammatory effects of 

the intratracheal instillation of the poractant alfa + budesonide mixture in surfactant-

depleted adult rabbits. Once again, the performance of the extemporaneous mixture was 

at the same level of the treatment with poractant alfa alone, achieving significant 

improvements in arterial oxygenation, carbon dioxide removal, and pH. It is noteworthy 

that no safety issues were identified while dosing the animals with the poractant alfa + 

budesonide mixture. As seen in the preterm rabbit model, the intratracheal instillation of 

budesonide alone could not reverse the pulmonary failure induced by the BALs. The 

histological readouts clearly indicate that the lesions in the control group are indicative 

of an RDS model(39). Interestingly, however, the animals receiving intratracheal 
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budesonide with or without surfactant obtained the lowest inflammation scores and 

were assessed with the lowest overall lung injury scores. It is noteworthy to mention 

that supplementation of poractant alfa with budesonide signidficantly reduced 

inflammation and edema in comparison to surfactant treatment alone, indicating a 

beneficial effect of budesonide supplementation already in the early process of the 

inflammatory response. Nevertheless, these results must be interpreted taking into 

account that the pathophysiology of the pulmonary failure induced by the BALs is 

different from that observed in neonatal RDS. In addition, the observational period of 

the study was rather short in order to properly assess the anti-inflammatory effects of 

budesonide. 

In conclusion, we have characterized, in vitro and in vivo, an extemporaneous 

combination of poractant alfa and budesonide, which shows an optimal surfactant 

function and an optimal budesonide stability. This formulation is aimed at 

simultaneously administering a clinical dose of surfactant (200 mg/kg) and a dose of 

budesonide (0.25 mg/kg) known to reduce the incidence of BPD in preterm infants. In 

the light of our results, this formulation could be potentially appropriate in terms of 

safety and efficacy to be used in human preterm neonates.  
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FIGURE LEGENDS 

 

 

Figure 1. The viscosity of poractant alfa (black bars) was compared to the viscosity of 

the extemporaneous mixture of poractant alfa + budesonide (white bars) right after 

preparation (t=0) and after a 24 hour incubation (t=24h). Mean  SD are shown. 

 

Figure 2. Tidal volumes of preterm rabbits with severe surfactant deficiency treated 

with poractant alfa (200 mg/kg, solid circles), with poractant alfa + budesonide (200 

mg/kg and 0.25 mg/kg, respectively; white circles), and with budesonide only (0.25 

mg/kg, white squares). Untreated animals served as controls (solid squares).  Mean  

SEM are shown. * represents poractant alfa group Vs. control and budesonide groups 

(P<0.01) and § represents poractant alfa + budesonide group Vs. control and 

budesonide groups (P<0.01). 

 

Figure 3. (a) Mean PaO2 and (b) PaCO2 values of lung-lavaged adult rabbits treated 

with poractant alfa (200 mg/kg, solid circles), with poractant alfa + budesonide (200 

mg/kg and 0.25 mg/kg, respectively; white circles), and with budesonide only (0.25 

mg/kg, white squares). Untreated animals served as controls (solid squares). There were 

no differences between the experimental groups before the induction of respiratory 

distress (baseline, B in the X-axis). The time point 0 refers to the 15 min stabilization 

period established to confirm the respiratory distress induced by repeated broncho-

alveolar lavages (BALs). Mean  SEM are shown. * Vs. control group (P<0.01) and § 

Vs. Budesonide group (P<0.01).      

 

Figure 4. Mean Dynamic compliance (Cdyn) values of lung-lavaged adult rabbits treated 

with poractant alfa (200 mg/kg, solid circles), with poractant alfa + budesonide (200 
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mg/kg and 0.25 mg/kg, respectively; white circles), and with budesonide only (0.25 

mg/kg, white squares). Untreated animals served as controls (solid squares). There were 

no differences between the experimental groups before the induction of respiratory 

distress (baseline, B in the X-axis). The time point 0 refers to the 15 min stabilization 

period established to confirm the respiratory distress induced by repeated broncho-

alveolar lavages (BALs). Mean and SEM are shown. * Vs. control group (P<0.01) and § 

Vs. Budesonide group (P<0.01).    

 

Figure 5. Haematoxylin-eosin staining of lung-sections from control (a), poractant alfa 

(b), budesonide (c), and poractant alfa + budesonide-treated (d), surfactant-depleted 

adult rabbits. Neutrophilic infiltrates are indicated with a red arrow. The 

microphotograph of an adult rabbit with normal morphology of the lung parenchyma is 

shown for comparison (e). The scale bars (bottom left) indicate 100 m. 
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TABLES 

 

 

Table 1. Stability over time of budesonide within the poractant alfa + budesonide 

extemporaneous mixture.  

 

Check-point  

(hours) 

Budesonide 

(µg/mL) 

Budesonide 

% Residual vs. Initial 

Initial 18.0 100.0 

3  18.4 101.7 

6  18.2 100.6 

9.5  18.3 101.1 

24  18.6 102.8 
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Table 2. Results of the histological lung injury score. * Vs. control group, P<0.01; † Vs. 

Poractant alfa group, P<0.05; ‡ Vs. Poractant alfa, P<0.01; § Vs. Budesonide group, 

P<0.05. 

 

Group Inflammation Hemorrhage Edema Atelectasis Sum-score 

Control 4.59  0.43 1.65  0.26 1.90  0.16 2.22  0.21 10.36  0.77 

Poractant alfa 2.61  0.19* 0.91  0.18* 1.26  0.15* 1.30  0.26* 6.09  0.58* 

Budesonide 2.15  0.25* 1.14  0.04* 0.74  0.05*‡ 1.05  0.14* 5.08  0.26* 

Poractant alfa 

+ Budesonide 

1.80  0.20*‡§ 1.16  0.12* 0.98  0.13*†§ 1.24  0.16* 5.18  0.38* 
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