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Abstract

The application of the Isogeometric Analysis (IgA) paradigm to Symmetric Galerkin Boundary Element Method
(SGBEM) is investigated. In order to obtain a very flexible approach, the study is here developed by using non
polynomial spline functions to represent both the domain boundary and the approximate solution. The numerical
comparison between IGA-SGBEM and both curvilinear and standard SGBEM approaches shows the general capabil-
ity of the presented method to produce accurate approximate solutions with less degrees of freedom.

Keywords: Generalized B-splines, NURBS, Isogeometric Analysis, Symmetric Galerkin Boundary Element Method

1. Introduction

Boundary element methods (BEMs) [5] are nowadays considered a valid alternative to classical domain methods,
such as finite differences (FDMs) [24] and finite elements (FEMs) [13], above all in physical and engineering appli-
cations involving, for instance, problems defined on unbounded domains with bounded boundary. If the fundamental
solution of the differential operator at hand is known, a wide class of elliptic, parabolic, hyperbolic, interior and exte-
rior problems can be reformulated by integral equations defined on the boundary of the given spatial domain, whose
approximate solution is successively obtained by collocation or Galerkin BEMs. In the last decades, collocation BEM
has been the subject of a very considerable effort, particularly in computational mechanics, and of competition with
FEMs. Despite its undeniable success and remarkable advantages for some kinds of problems, collocation BEM is
known to exhibit certain unpleasant features, among them the lack of symmetry which plays a key role in various the-
oretical developments and analysis procedures. The Symmetric Galerkin BEM (SGBEM ) [4, 29] can be regarded as
a response to the drawbacks of collocation BEM and it is recognized as particularly suitable for solving mixed bound-
ary value problems and for coupling with FEM. Actually, nowadays, FEMs and BEMs are considered complementary
rather that competitive. This feature is used in numerical strategies based on FEM-BEM coupling [6, 32], where
some nonlinear or heterogeneous subregion is modeled by using finite elements, while the linear and homogeneous
complementary domain is treated with boundary elements on the interface. Further, since the ’80s, a great amount
of literature has been produced on efficient evaluation of double boundary integrals with singular kernels involved in
SGBEM (see e.g. [1, 2] and references therein).

On the other side, the new Isogeometric Analysis approach (IgA), introduced by Hughes et al. [14], establishes a
strict relation between the geometry of the problem domain and the representation of the approximate solution, giving
surprising computational advantages. It has also brought a renewed interest for BEMs, since one has to consider
only a discretization of the domain boundary, which can be done in an accurate way by standard geometric modeling
techniques, see e.g. [10, 11].
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Great part of IgA literature has been focused on FEMs and only recently the IgA approach has been introduced in
the framework of BEMs, giving rise to the so-called IGA-BEM. Indeed, the first usage of IGA-BEM can be found in
[22], where it is applied to exterior potential flow problems. Limiting here to a brief excursus in the literature related
to the 2D case which is of interest in this paper, we mention that such approach has been later extended to problems
with circulation [23]. In 2012 Simpson et al. developed an IGA-BEM in the elastostatic setting [28], showing its
superiority with respect to the conventional BEM formulation. An application to structural optimization has been
presented in [16]. However we note that all the mentioned works and most of the IGA-BEM formulations appeared
in the literature rely on a discretization by collocation, thus producing a non symmetric coefficient matrix. In [3]
for the first time a symmetric Galerkin formulation of IGA-BEM has been investigated in the context of interior and
exterior 2D Laplace problems, and its performances have been compared to those of both a standard and a curvilinear
SGBEM. Later the same idea has been explored in [21] for two–dimensional crack problems. The recent hybrid BEM
FEM proposal, introduced in [20] to deal with elasticity problems and relying on the IGA paradigm, is also worth to
mention. Actually, even if the considered approach is restricted to star–shaped domains, it has the attractive property
of not requiring the knowledge of the fundamental solution associated with the differential operator.

In this paper, in order to enlarge the class of boundaries exactly representable in the isogeometric framework, we
extend the analysis of IGA-SGBEM developed in [3] to the case of non polynomial spline spaces, taking into account
either Non Uniform Rational B-Splines (NURBS) or generalized trigonometric and exponential B–spline spaces.
We present numerical simulations for several test problems comparing the presented approach with the curvilinear
SGBEM, where the boundary of the domain is exactly represented by a parametric curve while the approximate
solution is obtained using Lagrangian basis, and with a standard (conventional) SGBEM, where the approximated
boundary and solution are expressed in terms of Lagrangian basis. The comparison clearly shows that also the IGA-
SGBEM approach based on non polynomial spline spaces is capable of producing accurate numerical solutions with
less degrees of freedom.

2. Non Polynomial spline spaces

In this section we briefly recall the definition and basic properties of the two generalizations of B-splines consid-
ered in this paper.

Let p ∈ IN, p ≥ 1 be given and let us consider a sequence of knots in [a, b]

Ξ := {ξ1 ≤ ξ2 ≤ · · · ≤ ξn+p+1}, n ∈ IN, n > p (1)

where we assume that the endpoints have multiplicity p + 1, i.e. a = ξ1 = · · · = ξp+1 < · · · < ξn+1 = · · · = ξn+p+1 = b.
Classical B-splines of degree p can be defined iteratively by the Cox-de Boor algorithm, see for instance [9], with
the characteristic function of the interval [ξi, ξi+1) as starting element. Here we prefer to consider the hat functions
as starting elements and give an integral recurrence relation in order to stress the analogy with the construction of
generalized B-splines (fractions with zero denominators are considered vanishing):

B(1)
i,Ξ(t) :=


t−ξi
ξi+1−ξi

if t ∈ [ξi, ξi+1)
ξi+2−t
ξi+2−ξi+1

if t ∈ [ξi+1, ξi+2)
0 elsewhere

(2)

B(p)
i,Ξ(t) :=

∫ t

−∞

δ
(p−1)
i,Ξ B(p−1)

i,Ξ (s)ds −
∫ t

−∞

δ
(p−1)
i+1,Ξ B(p−1)

i+1,Ξ(s)ds, p ≥ 2, where δ
(p)
i,Ξ :=

1∫ +∞

−∞
B(p)

i,Ξ(s)ds
. (3)

Now it is well known [9] that classical B-splines are piecewise polynomial functions, that is B(p)
i,Ξ(t) ∈ Pp, t ∈ [ξr, ξr+1),

for all r, where
Pp := 〈1, t, . . . , tp−2, tp−1, tp〉, (4)

denotes the space of algebraic polynomials of degree p. B-splines possess several fundamental properties as positivity,
partition of unity, minimum support, (local) linear independence and smoothness easily described by means of the knot
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multiplicity. Moreover, denoting by

Sp
Ξ

:=


n∑

j=1

c jB
(p)
j,Ξ, c j ∈ IR

 , (5)

the linear space spanned by the given B-splines, it is well known that this space has dimension equal to n, that is
{B(p)

j,Ξ, j = 1, . . . , n} are linearly independent and form a basis for such a space.
Unfortunately, B-splines are not able to exactly describe conic sections which are shapes of salient interest in some
engineering applications. This motivated the introduction of NURBS which are defined as follows, see e.g. [10],

R(p)
i,Ξ,W (t) :=

wiB
(p)
i,Ξ(t)∑n

j=1 w jB
(p)
j,Ξ(t)

, i = 1, . . . , n, (6)

where W := {wi ∈ IR+, i = 1, . . . , n} is the set of positive weights. Due to the above construction, NURBS can be
considered a generalization of B–splines inheriting from them important properties and with the additional benefit of
making possible exact representation of conic sections. Thus, they have become the key ingredient in commercial
CAD systems. On the other hand, the NURBS representation suffers from some drawbacks which nowdays are con-
sidered relevant in the CAD community. Indeed the additional parameters (weights) do not have an evident geometric
meaning and their selection is often unclear. Moreover the rational model cannot encompass transcendental curves
while many of them (helix, cycloid, ...) are of interest in applications. In addition, the NURBS parametrization of
conic sections does not correspond to natural arc-length parametrization1, so that unevenly spaced points correspond
to uniform partitions in the parameter space. As a last remark, the behavior of NURBS with respect to differentiation
and integration operations, which are crucial in differential problems applications, is particularly unpleasant because
the derivative of a degree-p rational function is of degree 2p while its exact integration can be hard, possibly involv-
ing non rational forms. These undesirable geometric properties of NURBS have caused an active research in the last
decades within the CAGD community, aimed to propose an alternative to the rational model. It turns out that some of
the possible alternatives presented in the literature on this concern also possess interesting properties with respect to
differentiation and integration operators, thus being also particularly attractive for isogeometric analysis.
To make the paper self contained, we devote the remainder of this section to summarize the definition and basic
properties of generalized B-splines. Further details can be found for example in [17], Section 2. Both classical and
generalized B–splines are piecewise functions whose smoothness at the knots can be prescribed by fixing the knot
multiplicity but they have a different local form. Indeed the sections of B-splines of order p are polynomial, while
those of generalized B-splines belong to the following extended spaces:

Pui,vi
p := 〈1, t, . . . , tp−2, ui(t), vi(t)〉, t ∈ [ξi, ξi+1), i = 1, . . . , n + p, (7)

where ui, vi, are suitable smooth functions, see [8] and references quoted therein. The functions ui and vi can be
selected in order to achieve the exact representation of salient profiles of interest and/or to obtain special features.
Popular choices for spaces (7) are:

Tp,αi := 〈1, t, . . . , tp−2, cos(αit), sin(αit)〉, 0 < αi(ξi+1 − ξi) < π, (8)

Ep,αi := 〈1, t, . . . , tp−2, exp(αit), exp(−αit)〉, 0 < αi ∈ IR, (9)

which lead to trigonometric and exponential splines respectively. We remark also that generalized splines associated
with the local space defined in (9) are often referred to as hyperbolic splines, since Ep,αi coincides with the space
〈1, t, . . . , tp−2, cosh(αit), sinh(αit)〉.
Trigonometric and exponential splines allow an exact representation of conic sections as well as of some transcenden-
tal curves (helix, cycloid, ...) and they are very attractive also from the geometrical point of view. Indeed they are able
to provide parameterizations of conic sections much more related to the arc length than NURBS.

1Only straight lines have a rational representation w.r.t. arc-length, [12].
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It is well known that B-spline–like functions with sections in spaces (8) and (9) can be constructed as in [15],
[17], [30]. Although more general constructions can be obtained with less restrictive hypotheses, a neat theory of
generalized B-splines can be presented assuming that ui, vi ∈ Cp−1[ξi, ξi+1] and

〈Ui(t),Vi(t)〉, t ∈ [ξi, ξi+1], is a Chebyshev space, with Ui :=
dp−1

dtp−1 ui, Vi :=
dp−1

dtp−1 vi, (10)

i.e. any non zero element in the space has at most one zero in [ξi, ξi+1]. Under the assumption in (10), we have that
there exists a unique element in 〈Ui,Vi〉 which takes the values 0 and 1 (1 and 0) at the endpoints of the interval
[ξi, ξi+1]. Moreover, such an element has no other zeros in the interval, so it is positive in (ξi, ξi+1). Thus, without loss
of generality we can assume

Ui(ξi) > 0, Ui(ξi+1) = 0, Vi(ξi) = 0, Vi(ξi+1) > 0.

Then, according to [15] (see also [19], [30] and references therein), generalized B-splines, Ni,p, can be defined by the
following recurrence relations completely similar to the classical polynomial case

N(1)
i,Ξ (t) :=


Vi(t)

Vi(ξi+1) if t ∈ [ξi, ξi+1),
Ui+1(t)

Ui+1(ξi+1) if t ∈ [ξi+1, ξi+2),
0 elsewhere

(11)

N(p)
i,Ξ (t) :=

∫ t

−∞

δi,p−1N(p−1)
i,Ξ (s)ds −

∫ t

−∞

δi+1,p−1N(p−1)
i+1,Ξ (s)ds, p ≥ 2, where δi,p :=

1∫ +∞

−∞
N(p)

i,Ξ (s)ds
. (12)

Generalized B-splines possess all the desirable properties of classical polynomial B-splines, [9, 15]. We collect
them in the following proposition:

Proposition 1. Let N(p)
i,Ξ , i = 1, . . . , n be generalized B-splines of degree p ≥ 2 associated with the knot sequence (1).

Then, the following properties hold:

• piecewise structure: N(p)
i,Ξ (t) ∈ Pu j,v j

p , t ∈ [ξi, ξi+1)
• positivity: N(p)

i,Ξ (t) ≥ 0,

• partition of unity:
∑n

i=1 N(p)
i,Ξ (t) ≡ 1, t ∈ [ξp+1, ξn+1), p > 1,

• compact support: N(p)
i,Ξ (t) = 0, t < [ξi, ξi+p+1],

• smoothness: N(p)
i,Ξ (t) is p − ρ j times continuously differentiable at ξ j, being ρ j the multiplicity of ξ j in the knot

sequence {ξi, . . . , ξi+p+1},
• derivative: (N(p)

i,Ξ )′(t) = δi,p−1N(p−1)
i,Ξ (t) − δi+1,p−1N(p−1)

i+1,Ξ (t),
• local linear independence: N(p)

i−p,Ξ(t), . . . ,N(p)
i−1,Ξ(t),N(p)

i,Ξ (t) are linearly independent on [ξi, ξi+1).

In addition, a knot insertion procedure is also available, [30], and spaces (7) support a degree-raising process. For
a given degree p and a fixed knot sequence Ξ, GB-splines with section spaces as in (8) and (9) will be referred to as
exponential and trigonometric B-splines of degree p, respectively denoted as ESp

Ξ,α TS
p
Ξ,α, while the space generated

by classical (polynomial) B-splines of degree p will be called Sp
Ξ

in the following. Here α = {. . . , αi, . . .} stands for
the sets of real parameters in (8) and (9). Regarding the approximation power of these spaces, we have the following
result:

Theorem 1. For fixed values of αi, i = 1, . . . , n, when h = max
i=1,...,n+p

(ξi+1 − ξi) tends to zero, both the spaces ESp
Ξ,α and

TSp
Ξ,α approach Sp

Ξ
. Consequently the approximation power of the three spline spaces is the same.

Proof. From the Taylor expansion we have that the spaces (9) (8) approach Pp, see [8]:

Tp,αi =< 1, h, . . . , hp−3, cos(αih), sin(αih) >=< 1, h, . . . , hp−3, hp−2, hp−1 > +O((αih)p),

Ep,αi < 1, h, . . . , hp−3, exp(αih), exp(−αih) >=< 1, h, . . . , hp−3, hp−2, hp−1 > +O((αih)p).

Hence, considering the analogy between the two recurrence integral relations in (3) and (12), the thesis is derived.
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3. Isogeometric Symmetric Galerkin Boundary Element Method

Let Ω ⊂ R2 be a bounded, simply connected, open domain with a (piecewise) smooth boundary Γ := ∂Ω = {x =

(x1, x2) ∈ R2| x = C(t), t ∈ [a, b]}, given by parametric representation on the interval [a, b]. Let us further suppose
that Γ = Γ̄1 ∪ Γ̄2, where Γ1 and Γ2 are open disjoint subsets of Γ and meas (Γ1) > 0. We now consider, as a model, the
mixed boundary value problem (BVP) for the Laplace equation:

given u∗ ∈ H1/2(Γ1) and q∗ ∈ H−1/2(Γ2), find u ∈ H1(Ω) such that
∆u = 0 in Ω ,
u = u∗ on Γ1 ,
∂u
∂n = q∗ on Γ2 ,

(13)

where ∂
∂n denotes the derivative with respect to the outer normal n to Γ.

The symmetric boundary integral formulation of problem (13) is based on the use of the following weakly, strongly
and hyper-singular boundary integral operators, whose properties are established in [7, 27, 31]:

Vq(x) :=
∫

Γ
U(x, y) q(y)dγy , Ku(x) :=

∫
Γ

∂U
∂ny

(x, y) u(y)dγy ,

K′q(x) :=
∫

Γ

∂U
∂nx

(x, y) q(y)dγy , Du(x) :=
∫

Γ

∂2U
∂nx∂ny

(x, y) u(y)dγy ,
(14)

where U(x, y) := − 1
2π ln ‖y−x‖2 is the fundamental solution of the 2D Laplace operator and K′ is the adjoint of K with

respect to the natural duality < ·, · > between H1/2(Γ) and its dual H−1/2(Γ), which for sufficiently smooth functions
coincides with the usual scalar product in L2(Γ). Then, following [7, 31], problem (13) can be written as a system of
two Boundary Integral Equations (BIE) of the first kind in the unknowns q on Γ1 and u on Γ2, of the form[

V11 −K12
−K′21 D22

] [
q
u

]
=

[
−V12

1
2 I + K11

− 1
2 I + K′22 −D21

] [
q∗

u∗

]
, (15)

where the boundary integral operators subscripts j k mean evaluation over Γ j and integration over Γk.
System (15) will be solved in a weak sense, searching q ∈ H−1/2(Γ1) and u ∈ H1/2

0 (Γ2). After having recovered the
missing Cauchy data by solving, with obvious meaning of notation, the weak symmetric problem:

<

[
V11 −K12
−K′21 D22

] [
q
u

]
,

[
p
v

]
>=<

[
f1
f2

]
,

[
p
v

]
> , ∀ [p, v] ∈ H−1/2(Γ1) × H1/2

0 (Γ2) , (16)

one can use the representation formula

u(x) =

∫
Γ

U(x, y) q(y)dγy −

∫
Γ

∂U
∂ny

(x, y) u(y)dγy , x ∈ Ω , (17)

to obtain the solution at any point of the domain.
Remark. If we have to deal with a Dirichlet BVP, i.e. Γ ≡ Γ1, the systems (15) obviously reduces to the first equation
alone, where the only unknown is q(x), i.e. Vq = f . A similar boundary integral equation can be written for a Dirichlet
problem exterior to an open arc in the plane (see e.g. [5]): in this case, the unknown is the jump of q(x) across the arc
Γ, i.e. [q(x)]Γ.

For the SGBEM discretization phase, we consider a uniform partition of the parametrization interval [a, b] =
⋃n
`=1 I`,

made up by n subintervals I` and governed by the decomposition parameter h = length(I`). This induces over Γ, using
the parametric representation of the boundary, a mesh Γh =

⋃n
`=1 e`, constituted by curvilinear elements e` = C(I`).

In a similar way, a finite dimensional subspace of piecewise polynomial functions can then be lifted on the boundary,
starting from the introduced partition of [a, b].
In the IGA-SGBEM, the very same NURBS or generalized B-spline basis used to represent the boundary Γ is used also
as a basis for the functional approximation space. This approach will be compared with the curvilinear SGBEM, where
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the boundary of the problem can be given by any explicitly defined parametric representation, but the approximation
space is spanned by a Lagrangian basis defined over the decomposition of [a, b], and with the standard SGBEM,
where Γ is approximated by a polygonal boundary Γ̃h, constituted by linear elements, each interpolating the endpoints
of e`, ` = 1, · · · , n, and a local Lagrangian basis is lifted onto each straight element of Γ̃h from the reference element
[0, 1]. Then, using suitable numerical integration schemes for the approximation of weakly, strongly and hyper-
singular double integrals in (16) (see [2]), one can write down the linear, symmetric, non singular system, where the
vector unknowns qh, uh collect the coefficients with respect to the selected basis, which allow to finally obtain an
approximate solution of the integral problem.
Regarding the pointwise convergence of the presented approach, we recall theoretical results given in [25, 26] for
classical spline spaces. In particular, for a pure Dirichlet problem, we can state the following theorem.

Theorem 2. [25] If Γ is sufficiently smooth and regularly parameterized, and a uniform partition of the parametriza-
tion interval is used, then, denoting with qh the IGA-SGBEM approximation in Sp

Ξ
of the analytical solution of the BIE

Vq = f , there exists a constant c such that

‖q − qh‖L∞ ≤ c hp+1‖q‖W p+1,∞ , (18)

provided that q ∈ W p+1,∞(Γ).

In the next Section, we give numerical evidence of the same rate of convergence for qh ∈ TSp
Ξ,α. This result can

be justified by the power of approximation of the considered generalized spline spaces, which, owing to Theorem 1,
coincides with that of Sp

Ξ
.

4. Numerical results

In this section we show the effectiveness of the proposed generalized GA-SGBEM by some experiments. In all
the examples we compare our results with those obtained with both curvilinear and standard SGBEM, respectively
denoted with C-SGBEM and S-SGBEM.
The first two benchmarks possess smooth solutions. The solution of Example 1 even belongs to the chosen approx-
imation space, hence its accurate recovery does not require any refinement. This is not the case for the solution of
Example 2 but its smoothness allows us to confirm the convergence behavior of the scheme stated in Theorem 2. On
the other hand, the problems considered in Examples 3–4 possess less regular solutions and therefore the convergence
rate of the approximation is slower.

Example 1. Let us consider a Dirichlet BVP for the Laplace equation exterior to the circular arc Γ given by the
following parametric representation on the interval [0, 1]{

x1 = cos(π/2 (2 − t)) + 1
x2 = sin(π/2 (2 − t)) 0 ≤ t ≤ 1 . (19)

This quarter of circumference can be expressed also by a quadratic NURBS related to the extended knot vector T and
weights W

T = [0 0 0 1 1 1] , W = [1
1
√

2
1] (20)

and to control points Qi, i = 0, 1, 2, whose coordinates are collected in the following matrix

Q =
[ 0 0 1

0 1 1

]
. (21)

The Dirichlet datum is given in such a way that the solution of the related boundary integral equation is explicitly
known and reads [q(x)]Γ = x2 =: ϕ(x2).
In Table 1 a comparison is reported for different values of the discretization parameter h, which uniformly decomposes
the parameter interval [0, 1]. We consider the isogeometric approach based on quadratic C1 NURBS, C0 quadratic
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Lagrangian basis for C-SGBEM and L2 quadratic Lagrangian basis on piecewise linear approximation Γ̃h of Γh for
S-SGBEM. Together with degrees of freedom (DoF) and spectral condition numbers of the associated matrices, we
show the relative errors

EM = ‖ϕ − ϕh‖∞/‖ϕ‖∞ . (22)

The symbol ′−′ means that the simulation can be skipped since more than the single precision accuracy is already
obtained without any subdivision of the parameter interval [0, 1].

NURBS IGA-SGBEM C-SGBEM S-SGBEM
h DoF cond. EM DoF cond. EM DoF cond. EM

1 3 3.99 · 10 1.42 · 10−8 3 2.04 · 10 2.73 · 10−2 3 2.18 · 10 1.98 · 10−1

1/2 4 − − 5 2.84 · 10 5.57 · 10−3 6 5.36 · 10 1.26 · 10−1

1/4 6 − − 9 4.83 · 10 8.42 · 10−4 12 1.23 · 102 5.13 · 10−2

1/8 10 − − 17 9.22 · 10 1.11 · 10−4 24 2.58 · 102 3.10 · 10−2

1/16 18 − − 33 1.83 · 102 1.40 · 10−5 48 5.21 · 102 2.08 · 10−2

1/32 36 − − 65 3.64 · 102 1.76 · 10−6 96 1.05 · 103 1.35 · 10−2

Table 1: Example 1: comparison of quadratic NURBS IGA-SGBEM with quadratic C-SGBEM and S-SGBEM for different values of h.

Remark. The same results given by NURBS IGA-SGBEM could be obtained by using an IGA-SGBEM based on
generalized trigonometric B-splines of degree 2 [17], which can represent exactly the curve Γ on the interval [0, 1]
through the same extended knot vector (20), the same control points (21) and fixing the tension parameter α = π/2.
In particular: DoF = 3, cond. = 3.99 101 and EM = 1.75 10−8. Moreover, as we have already pointed out in
the Introduction, the collocation approach remains an interesting alternative to Galerkin schemes and it turns out
that collocation with generalized B-splines works very well in the IGA context [18]. Hence, we give a comparison
between results obtained by trigonometric B-splines based IGA-SGBEM with those coming from collocation IGA-
BEM, where collocation is done at the Greville abscissae as in [28]: DoF = 3, cond. = 6.66 100 and EM = 2.68 10−8.
In conclusion, exactly as in [3] for the comparison between classical B-Splines based IGA-SGBEM and collocation
BEM, the Galerkin technique is slightly more accurate than the collocation one, while the matrix condition number
of the latter is better, even if the symmetry property useful in the coupling with FEM [6, 32] is lost.

Example 2. In the second example we consider a potential problem interior to the ellipsis shown in Figure 1 (left),
that can be described by quadratic trigonometric B-spline curve, C(t), t ∈ [0, 4], related to the extended knot vector

T = [0, 0, 0, 1, 2, 3, 4, 4, 4] , (23)

with tension parameters αi = π
2 for all i and control points Qi, i = 0 . . . , 6, whose coordinates are collected in the

following matrix

Q =
[ 0.2 0.2 −0.2 −0.2 0.2 0.2

0 0.3 0.3 −0.3 −0.3 0

]
. (24)

The quadratic trigonometric B-spline basis employed is shown in Figure 1 (right).
The differential problem is equipped with Dirichlet boundary condition u∗(x) = −(x1 + x2); the solution q(x), x =

C(t) = (C1(t),C2(t)), of the related boundary integral equation is explicitly known and it reads q(x) = q(C(t)) =

(C′1(t) −C′2(t))/‖C′(t)‖2.
The comparison reported in Table 2, for different values of the discretization parameter h, which uniformly decom-
poses the parameter interval [0, 4], involves C1 quadratic trigonometric B-splines for IGA-SGBEM, C0 quadratic
Lagrangian basis for C-SGBEM and L2 quadratic Lagrangian basis on piecewise linear approximation Γ̃h of Γh for
S-SGBEM. Together with degrees of freedom and spectral condition numbers of the associated matrices, we show the
relative errors

E =: ‖q − qh‖L2/‖q‖L2 , (25)
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Figure 1: Example 2: the elliptic boundary, along with the related control polygon. The control points and the nodal (mesh) points of the curve are
respectively marked with the symbol ’∗’ and ’◦’ (left); quadratic trigonometric B-spline basis related to (23) and αi = π

2 ,∀i (right).

in L2 norm, which is the standard for the field q in boundary element analysis. These errors are also displayed in Figure
2 (left). The remarkable shape reproduction capability of the IGA-SGBEM approach based on quadratic trigonometric
B-splines is underlined in Figure 2 (right) which shows the approximate solution obtained using h = 1/16 together
with the analytical one.
Since the boundary of this example can be exactly defined also by using quadratic NURBS related to the extended

TS2 IGA-SGBEM C-SGBEM S-SGBEM
h DoF cond. E DoF cond. E DoF cond. E
1 5 5.37 · 10 9.61 · 10−2 8 4.36 · 10 4.93 · 10−2 12 6.36 · 10 3.37 · 10−1

1/2 9 1.02 · 102 2.33 · 10−2 16 9.07 · 10 8.79 · 10−3 24 1.18 · 102 9.90 · 10−2

1/4 17 2.07 · 102 2.09 · 10−3 32 2.05 · 102 1.16 · 10−3 48 2.56 · 102 2.67 · 10−2

1/8 33 4.12 · 102 1.61 · 10−4 64 4.62 · 102 1.13 · 10−4 96 5.50 · 102 6.74 · 10−3

1/16 65 9.33 · 102 1.76 · 10−5 128 9.89 · 102 8.70 · 10−6 192 1.15 · 103 1.68 · 10−3

Table 2: Example 2: comparison of results obtained by IGA-SGBEM (C1 quadratic trigonometric B-splines) with those obtained by C-SGBEM
(C0 quadratic lagrangian basis) and S-SGBEM (L2 quadratic lagrangian basis on Γ̃h), for different for different values of the parameter h.

NURBS IGA-SGBEM
h DoF cond. E
1 8 2.82 102 2.94 10−2

1/2 12 1.79 102 8.92 10−3

1/4 20 2.93 102 1.60 10−3

1/8 36 6.93 102 1.53 10−4

1/16 68 1.63 103 1.70 10−5

Table 3: Example 2: quadratic NURBS based IGA-SGBEM results, for different values of the parameter h.

knot vector
T = [0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4] , (26)

with the following weights and control points,

W = [1
1
√

2
1

1
√

2
1

1
√

2
1

1
√

2
1] (27)
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Figure 2: Example 2: relative errors of Table 2 vs DoF (′�′ trigonometric B-spline basis, ′◦′ Lagrangian basis, + Lagrangian basis on Γ̃h) (left);
approximate solution obtained with TS2 IGA-SGBEM and h = 1/16, together with the analytical solution (right).

Q =
[ 0.2 0.2 0 −0.2 −0.2 −0.2 0 0.2 0.2

0 0.3 0.3 0.3 0 −0.3 −0.3 −0.3 0

]
, (28)

we give in Table 3 results obtained by the NURBS based IGA-SGBEM.
For this example, we give also in Table 4 the rate of convergence of quadratic trigonometric B-spline and of quadratic
NURBS based IGA-SGBEM, referred to the error EM defined in (22), showing that the experiments are in accordance
with the theoretical expectations. Furthermore, the last row of the table shows the ratio between the elapsed time in
the generation of the final linear system matrix operated by trigonometric B-splines and NURBS. Such ratio clearly
indicates that, when possible, the use of generalized B-splines is preferable, because it gives the same accuracy of
NURBS, but better performance in terms of computational cost, also avoiding the need of weights.

h 1 1/2 1/4 1/8 1/16
TS2 IGA-SGBEM

EM(h) 1.37 · 10−1 3.28 · 10−2 4.39 · 10−3 3.73 · 10−4 4.03 · 10−5

log2

(
EM (2h)
EM (h)

)
− 2.06 2.90 3.56 3.21

NURBS IGA-SGBEM
EM(h) 4.89 · 10−2 2.53 · 10−2 2.87 · 10−3 2.88 · 10−4 3.54 · 10−5

log2

(
EM (2h)
EM (h)

)
− 0.95 3.14 3.32 3.02

TimeTS2/TimeNURBS 2.78 · 10−2 1.65 · 10−2 1.29 · 10−2 1.17 · 10−2 9.99 · 10−3

Table 4: Example 2: Convergence orders of TS2 (up) and NURBS (down) IGA-SGBEM, varying h. In the last row the ratios between the
corresponding computational times

At last, since one of the major strengths of BEM approach (with respect to FEM) is its ability of easily treating domains
with holes, let us now consider the trimmed domain depicted in Figure 3, whose boundary curves are represented by
quadratic trigonometric B-splines, each related to the extended knot vector (23), with tension parameters αi = π

2 , for
all i, and to control points collected in the following matrices

Qest =
[ 0.4 0.4 −0.4 −0.4 0.4 0.4

0 0.6 0.6 −0.6 −0.6 0

]
, Qint =

[ 0.1 0.1 −0.3 −0.3 0.1 0.1
0.2 0.5 0.5 −0.1 −0.1 0.2

]
. (29)

Here a mixed BVP is considered, where a Dirichlet condition u∗(x) = 1 is assigned on the interior boundary, while a
Neumann condition q∗(x) = 0 is prescribed on the exterior boundary. This configuration can model a stationary heat
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Figure 3: Example 2: the trimmed domain with elliptic boundaries. The nodal (mesh) points on the curves are marked with the symbol ’◦’.

conduction problem, where a constant temperature on the inner wall and a zero heat flux on the outer wall are given.
We have tested our IGA-SGBEM approach just using the quadratic trigonometric spline space TS2 used to define
the boundary curves. The resulting linear system is of order 10 and the approach produces an approximate solution
with an absolute error in maximum norm equal to 4.6956 10−4 for what concerns the recovered flux q and equal to
2.4261 10−4 for what concerns the recovered potential u. If we use quadratic Lagrangian basis for C-SGBEM, instead,
we have to solve a liner system of order 16 to reproduce the same error order.
Note that the obtained errors are due only to the approximation, at a fixed accuracy, of hypersingular double bound-
ary integrals. Such integrals, arising in the IGA-SGBEM resolution of this mixed BVP, are approximated by the
quadrature formulas introduced in [2].

Example 3. In the third example we consider a potential problem interior to the free-form domain shown in Figure
4 (left), similar to the one considered in [23]. Such a domain has a smooth boundary that can be described by a
closed rational B-spline curve of degree 3, C(t), t ∈ [0, 1], with uniform breakpoints and mesh step h = 1/8. Indeed,
the curve has been obtained by taking the same control polygon of [3], Example 2, and modifying the weights. The
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Figure 4: Example 3: the cubic closed NURBS curve defining the boundary of the considered interior domain along with its control polygon. The
control points and the nodal (mesh) points of the NURBS curve are respectively marked with the symbol ’∗’ and ’◦’ (left); NURBS basis of degree
3 related to (30)–(31) (right).

corresponding basis is shown in Figure 4 (right), related to the extended knot vector

T = [0, 0, 0, 0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1, 1, 1, 1] , (30)

with weights
W = [1 1 1 3 1 1 0.5 1 1 1 1] (31)
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and to control points Qi, i = 0 . . . , 10, whose coordinates are collected in the following matrix

Q =
[ −16 −22 −1 2 29 1 32 12 4 −10 −16

11.5 6.5 2 −15 −8 −4 17 19 1 16.5 11.5

]
.

The differential problem is equipped with Dirichlet boundary condition u∗(x) = −(x1 + x2); as in the previous example,
the solution q(x), x = C(t), of the related boundary integral equation is explicitly known, it reads q(x) = q(C(t)) =

(C′1(t) −C′2(t))/‖C′(t)‖2 and, as function of t, now it is C1 regular on [0, 1].
At first, in order to put in evidence possible benefits of our approach, we fix the degree of the piecewise polynomial

NURBS IGA-SGBEM C-SGBEM S-SGBEM
h DoF cond. EM DoF cond. EM DoF cond. EM

1/8 10 8.59 · 102 3.27 · 10−1 24 6.03 · 102 5.48 · 10−2 32 4.02 · 102 4.41 · 10−1

1/16 18 1.15 · 103 1.04 · 10−1 48 1.56 · 103 2.21 · 10−2 64 1.02 · 103 4.74 · 10−1

1/32 34 2.73 · 103 1.52 · 10−2 96 4.15 · 103 2.86 · 10−3 128 3.12 · 103 1.04 · 10−1

1/64 66 9.39 · 103 2.52 · 10−3 192 1.02 · 104 1.37 · 10−4 256 7.46 · 103 2.47 · 10−2

Table 5: Example 3: comparison of results obtained by C2 cubic NURBS (left) with those obtained by C0 cubic Lagrangian basis (middle) and by
L2 cubic Lagrangian basis on Γ̃h (right).

spaces equal to 3 and compare the results obtained by using C2 NURBS in IGA-SGBEM and C0 Lagrangian basis
in C-SGBEM. The comparison is done in Table 5: for each considered mesh size h, the corresponding total number
of degrees of freedom, the spectral condition number of the discretization matrix, and relative errors E, defined in
(25), are given. We note that the errors with the IGA-SGBEM approach are worse, but the number of degrees of

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

DoF

R
e
la

ti
v
e
 e

rr
o
rs

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

t

numerical
analytical

Figure 5: Example 3: relative errors of Table 5 vs DoF (′∗′ NURBS basis, ′◦′ Lagrangian basis, + Lagrangian basis on Γ̃h) (left); approximate
solution obtained with NURBS basis of degree 3 and h = 1/64, together with the analytical solution (right).

freedom is remarkably lower. To complete this benchmark, on the right of Table 5, for the same values of h, results
obtained using L2 cubic Lagrangian basis on piecewise linear approximation Γ̃h of the boundary Γ are reported. All
the error behaviors are shown in Figure 5 (left) with respect to degrees of freedom: we can observe that the decay
of the errors coming from IGA-SGBEM approach and C-SGBEM has the same slope, but in IGA-SGBEM results
are obtained using a lower number of degrees of freedom, while S-SGBEM gives poor results due to the error in the
approximation of the boundary. At last, the approximate solution obtained using h = 1/64 and cubic NURBS perfectly
matching the analytical solution is shown in Figure 5 (right). For this example, we further present a comparison of
the results obtained working in nested C2 spaces of increasing degree ≥ 3, spanned by NURBS bases (IGA-SGBEM),
with those obtained working with larger C0 spline spaces of corresponding degree spanned by the Lagrangian basis
(C-SGBEM). Note that the boundary curve is exactly expressed in all the simulations, and its representation can be
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h = 1/8 NURBS IGA-SGBEM C-SGBEM
degree DoF cond. E DoF cond. E

3 10 8.59 · 102 3.27 · 10−1 24 6.03 · 102 5.48 · 10−2

4 18 4.25 · 103 1.03 · 10−1 32 1.24 · 103 5.22 · 10−2

5 26 1.90 · 104 4.32 · 10−2 40 1.92 · 103 2.27 · 10−2

6 34 9.10 · 104 1.90 · 10−2 48 3.98 · 103 1.31 · 10−2

7 42 4.37 · 105 1.34 · 10−2 56 4.73 · 103 1.15 · 10−2

8 50 2.12 · 106 8.84 · 10−3 64 1.57 · 104 9.78 · 10−3

9 58 1.03 · 107 4.68 · 10−3 72 1.23 · 104 4.28 · 10−3

h = 1/16 NURBS IGA-SGBEM C-SGBEM
degree DoF cond. E DoF cond. E

3 18 1.15 · 103 1.04 · 10−1 48 1.56 · 103 2.21 · 10−2

4 34 8.35 · 103 1.91 · 10−2 64 3.14 · 103 8.00 · 10−3

5 50 4.15 · 104 9.07 · 10−3 80 4.56 · 103 5.05 · 10−3

6 66 2.19 · 105 3.59 · 10−3 96 9.38 · 103 1.94 · 10−3

7 82 1.16 · 106 1.97 · 10−3 112 1.04 · 104 1.48 · 10−3

8 98 6.13 · 106 1.13 · 10−3 128 3.71 · 104 7.26 · 10−4

9 114 3.15 · 107 2.92 · 10−4 144 2.55 · 104 3.22 · 10−4

Table 6: Example 3: comparison between results obtained with IGA-SGBEM based on C2 NURBS and C-SGBEM based on C0 Lagrangian basis,
for different degrees of the piecewise polynomial basis and for h = 1/8, 1/16.

obtained combining a degree elevation procedure with a knot insertion procedure (see e.g. [10]). Results are presented
in Table 6, for fixed h = 1/8, 1/16 and for the considered increasing degrees. The relative errors (25) are then plotted
in Figure 6 with respect to degrees of freedom. Let us note that the IGA-SGBEM approach is slightly superior to
C-SGBEM which employs Lagrangian basis, giving the same error order but using less degrees of freedom, even if in
these simulations the conditioning of NURBS systems are worse than the corresponding Lagrangian ones.

Example 4. In this example we consider a potential problem interior to the domain shown in Figure 7 (left), which
has four sharp corners. The boundary of the domain is described by a closed parametric piecewise exponential curve,
C(t), t ∈ [0, 4]. Such curve can be represented by a quadratic exponential B-spline (see Figure 7 (right)) associated to
the following extended knot vector

T = [0, 0, 0,
1
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Figure 6: Example 3: relative errors of Table 6 vs DoF with h = 1/8 (left) and h = 1/16 (right) (′∗′ NURBS basis, ′◦′ Lagrangian basis).
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and to control points Qi, i = 0, . . . , 28, shown by stars in Figure 7 (left). The tension parameters are αi = 2 for all i.
Considering that (32) is an open knot vector and the breakpoints 1, 2, 3 specified in (32) have double multiplicity, it
turns out that C(t) ∈ C0([0, 4]) . In this way, the geometry of the domain boundary can be exactly described and
constitutes a challenging benchmark for BEMs, due to the presence of four sharp corners. The differential problem is
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Figure 7: Example 4: the considered boundary, along with the related control polygon. The control points and the nodal (mesh) points of the curve
are respectively marked with the symbol ’∗’ and ’◦’ (left); quadratic exponential B-spline basis related to (32) and αi = 2,∀i (right).

equipped with Dirichlet boundary condition u∗(x) = −(x1+x2); as in the previous example, the solution q(x), x = C(t),
of the related boundary integral equation is explicitly known, it reads q(x) = q(C(t)) = (C′1(t) − C′2(t))/‖C′(t)‖2, but
now, as function of t, it belongs to L2(0, 4) and presents finite jumps for t = 1, 2, 3.
As a first choice, we do not care about the low regularity of the solution and we work in the space used to describe
the boundary which is spanned by the quadratic exponential B-splines associated to (32) and is a subset of C0[0, 4].
Then we successively extend the space by inserting a new simple knot at the midpoint between any two successive
breakpoints (this corresponds to halving the mesh step h, since uniform distributions of the breakpoints are always
assumed).

h DoF cond. E
1/6 28 9.62 · 102 2.38 · 10−1

1/12 52 2.06 · 103 1.60 · 10−1

1/24 100 4.23 · 103 1.06 · 10−1

Table 7: Example 4: results obtained by C0 quadratic generalized exponential B-splines starting from extended knot vector (32).

In Table 7, the obtained results are shown: for each considered h, the corresponding total number of degrees of
freedom, the spectral condition number of the IGA-SGBEM discretization matrix and the relative error (25) are given.
Figure 8 confirms that the numerical solution obtained with h = 1/24 mainly agrees with the analytical one. As
expected, the jumps are smoothly approximated; small oscillations occur in the neighborhood of these jumps, due to
the steep layers of the continuous approximate solution. In order to adequate the quadratic exponential spline space
to the low regularity of the analytical solution, we have then performed a similar set of experiments starting now from
the extended knot vector (32), where the multiplicity of breakpoints 1, 2, 3 has been augmented by one unit.
In Table 8, we show the comparison between the results obtained successively refining the parameter h for the L2(0, 4)
quadratic generalized exponential B-splines in IGA-SGBEM, the L2(0, 4) quadratic Lagrangian basis in C-SGBEM
and L2 quadratic Lagrangian basis on piecewise linear approximation Γ̃h of Γ for S-SGBEM. In particular, for all the
approaches, we present the total number of degrees of freedom, the spectral condition number of the associated linear
system matrix and the relative error (25).
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Figure 8: Example 4: the analytical solution (solid) and the continuous numerical solution (dash-dotted), obtained after two refinements (h = 1/24).

ES2 IGA-SBEM C-SGBEM S-SGBEM
h DoF cond. E DoF cond. E DoF cond. E

1/6 32 1.11 · 103 5.94 · 10−2 52 1.09 · 103 3.60 · 10−1 72 2.61 · 102 5.05 · 10−1

1/12 56 2.38 · 103 5.46 · 10−2 100 2.25 · 103 2.49 · 10−1 144 5.51 · 102 3.52 · 10−1

1/24 104 4.89 · 103 4.27 · 10−2 196 4.54 · 103 1.78 · 10−1 288 1.13 · 103 2.48 · 10−1

Table 8: Example 4: comparison of ES2 IGA-SGBEM with quadratic C-SGBEM and S-SGBEM, all based on L2(0, 4) basis functions, for different
values of h.

Figure 9 (right) shows the L2(0, 4) IGA-SGBEM numerical solution obtained with h = 1/24 together the analytical
one. At last, errors of Table 8 are reported in Figure 9 (left) which confirms that even in this case the best results are
obtained with the IGA-SGBEM approach. Note that the rate of convergence of all the considered schemes is rather
low due to the lack of regularity of the solution.

5. Conclusions

In this paper, extending the investigation made in [3] for classical B-splines, the behavior of IGA-SGBEM based
on both NURBS and generalized B-splines is analyzed. We recall that the IGA paradigm uses the same representation
to define either the geometry of the boundary domain and the approximate solution of the problem. In the present
work this idea is applied to a symmetric Galerking BEM and the proposed new formulations of the scheme are com-
pared to classical SGBEM, both standard and curvilinear. Results confirm that, in terms of accuracy per degrees of
freedom, isogeometric SGBEM performs better than curvilinear SGBEM and much better than standard SGBEM,
which of course introduces an approximation of the boundary, too. When possible, i.e. when the boundary is exactly
representable by both NURBS and generalized B-splines, a comparison between them has been pointed out too. It
reveals the same performance in terms of accuracy, but the superiority of generalized B-splines on NURBS for what
concerns the computational cost. Anyway, a key point for improving the elapsed time for the IGA-SGBEM tech-
niques is that of abandoning an element-by-element assembly strategy, suitable for Lagrangian basis, by introducing
quadrature formulas tailored on the new basis. The aim is to obtain a still accurate but more efficient treatment of
double boundary integrals with kernel singularities which can also allow a different assembly organization. This is
the topic of our ongoing research.
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Figure 9: Example 4: relative errors of Table 8 vs DoF (′∗′ ES2 basis, ′◦′ Lagrangian basis, + Lagrangian basis on Γ̃h) (left); the analytical solution
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