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Simple Summary: Patients that suffer from advanced head and neck cancer have a low average
survival chance. Improving prognosis could improve this survival rate as it may help in clinical
decision making. Radiomics features calculated from images of the tumour describe tumour size,
shape, and pattern. These characteristics may be linked to patient survival, which is investigated in
this paper. We combined radiomics features with other biomarkers of survival of 809 patients to make
a prognosis before treatment. We then compared the predicted prognosis with the actual outcome to
see how well our model performs. Our model was able to make three distinct risk groups of low-,
medium-, and high-survival patients. With these findings, doctors may make a better judgement of
treatment and follow-up per patient, which might improve clinical outcomes.

Abstract: Background: Locoregionally advanced head and neck squamous cell carcinoma (HNSCC)
patients have high relapse and mortality rates. Imaging-based decision support may improve
outcomes by optimising personalised treatment, and support patient risk stratification. We propose
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a multifactorial prognostic model including radiomics features to improve risk stratification for
advanced HNSCC, compared to TNM eighth edition, the gold standard. Patient and methods:
Data of 666 retrospective- and 143 prospective-stage III-IVA/B HNSCC patients were collected. A
multivariable Cox proportional-hazards model was trained to predict overall survival (OS) using
diagnostic CT-based radiomics features extracted from the primary tumour. Separate analyses were
performed using TNM8, tumour volume, clinical and biological variables, and combinations thereof
with radiomics features. Patient risk stratification in three groups was assessed through Kaplan–
Meier (KM) curves. A log-rank test was performed for significance (p-value < 0.05). The prognostic
accuracy was reported through the concordance index (CI). Results: A model combining an 11-
feature radiomics signature, clinical and biological variables, TNM8, and volume could significantly
stratify the validation cohort into three risk groups (p < 0·01, CI of 0.79 as validation). Conclusion: A
combination of radiomics features with other predictors can predict OS very accurately for advanced
HNSCC patients and improves on the current gold standard of TNM8.

Keywords: radiomics; machine learning; precision medicine; head and neck cancer; survival study

1. Introduction

Head and neck squamous cell carcinomas (HNSCC) are cancerous tumours that typ-
ically grow in the oral cavity (OC), larynx, and pharynx. In Europe, 140,000 new cases
are diagnosed yearly leading to approximately 70,000 deaths [1]. Despite advances in
treatment, 3-years overall survival (OS) for locoregionally advanced HNSCC remained
40–50% [2–4]. Management of HNSCC patients starts with a diagnostic workup of the
tumour, lymph node metastases, and distant metastases (TNM) to stage the tumour. Fur-
thermore, immunostaining determined p16 protein expression, acting as a surrogate marker
of HPV infection, has been included as an important factor in the American Joint Commit-
tee on Cancer (AJCC) 8th edition for staging of oropharyngeal cancer, which introduced
separate staging systems for p16-positive and p16-negative oropharyngeal carcinomas [5].
Besides the TNM stage, prognosis depends on clinical (e.g., patients’ comorbidities, per-
formance status) and biological (e.g., invasive growth or gene expression) factors, and for
patients treated with surgery, on microscopic examination of the resection specimen [4].
RNA and DNA profiling have identified molecular subtypes of HNSCC with different
prognoses [6]. Some of these subtypes may include primary tumours with high hetero-
geneity which may react differently to treatment [7]. Defining a robust and clinically viable
method to determine these subtypes is therefore essential for the effective treatment of
HNSCC patients.

Routine pre-treatment radiological imaging provides a source of non-invasively ac-
quired information of the primary tumor that could be investigated for the ability to
determine clinically relevant subtypes. Advanced image analysis methods such as ra-
diomics allow for the analysis of radiographic medical images by extracting large amounts
of so-called features using mathematical algorithms and finding correlations with biologi-
cal and/or clinical outcomes using machine learning techniques. Previous studies have
shown that radiomics in computed tomography (CT) imaging can improve the predic-
tion of prognosis of HNSCC [8–31]. Radiomics on CT HNSCC imaging has been used
to predict HPV status [8,9], overall survival [10–14], progression-free survival [10,12–14],
local tumour control [8,12,15–21], tumour grade [9,22], lymph node response [23,24], tu-
mour invasiveness [9,25], xerostomia [26–28], tumour resectability [29], and classifying
molecular subtypes [30,31]. While the survival studies show that radiomics on CT data can
significantly stratify patients in multiple survival groups, performance expressed through
Harrell’s C index ranged widely, from 0.58 to 0.9. An explanation of these discrepancies is
that radiomics studies are commonly limited in data, with patient numbers for HNSCC reg-
ularly using around 100–200 patients combined for training and validation. Furthermore,
the data are usually collected from two centres—one for training and one for validation. To
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create radiomics models which have sufficient predictive power and that are generalisable
across different patient populations, large datasets from multiple institutes are needed.

We hypothesise that the multicentric ‘Big Data and Models for Personalised Head
and Neck Cancer Decision Support’ project (BD2Decide) [32,33] dataset provides the
necessary breadth to create statistically significant, high-quality models that can add
complementary information to other well-known but under-utilised clinical and biological
factors [34–36]. In addition, we hypothesise that the international multicentric nature of
the data will, compared to many contemporary HNSCC radiomics-based studies, give
us the necessary variation in the dataset to generalise the model across different patient
populations. Similar to the inclusion of HPV status to TNM8, we believe that combining
these factors may improve the prediction of patient prognosis instead of using them
independently. We also hypothesise that a multifactorial machine learning model, including
radiomics features derived from the primary tumour, can outperform the current gold
standard (TNM8) in stratifying locally advanced HNSCC patients into OS risk groups.
This new signature of radiomics features was compared against an existing signature.
Furthermore, mixed models containing TNM, tumour volume, radiomics features, clinical
variables, and biological variables were developed and validated.

2. Materials and Methods
2.1. Patient Characteristics

Protocol details were registered on Open Science Framework (DOI number: 10.17605/
OSF.IO/H4DFB). The study population was composed of locoregionally advanced HNSCC
patients (TNM7 stage III-IVA/B (M0)) receiving curative treatment between 2008 and 2017,
collected within the framework of the BD2Decide project (http://www.bd2decide.eu/,
accessed on 13 May 2021, H2020-PHC30-689715, IRB P-number P0125, ClinicalTrials.gov
Identifier: NCT02832102) [32,33]. The collected patient population was originally staged at
diagnosis of the TNM7 staging system. During the BD2Decide project, these patients were
re-staged to I-IVA/B (M0) using the newly developed TNM8 staging system. The ethical
approval statement and an overview of the inclusion criteria can be found in Supplementary
Materials. Patients’ data were collected both retrospectively (diagnosis between 2008 and
2014) and prospectively (diagnosis between 2015 and 2017). The retrospective and the
prospective datasets were assigned as the training and validation datasets, respectively.
OS was established as the period between the primary diagnosis and the date of death or
last follow-up, with at least three years of follow-up performed. Patients alive with less
than 2-year follow-up were excluded and defined as ‘lost to follow-up’. Median follow-up
times were determined separately for training and validation datasets through the reverse
Kaplan–Meier (KM) estimate [37]. The similarity in patient characteristics between cohorts
was assessed through two-proportion z-tests to test whether there is a difference in a
categorical variable, or unpaired two-sample t-tests to test whether there is a difference in a
numerical variable. For the latter, the assumptions of the data having a normal distribution
and possessing the same variance in both cohorts were tested through Shapiro–Wilk’s test
and f-test, respectively. The significance level was set to 5%.

2.2. CT Acquisition Parameters

CT images were acquired at each centre with scanners, acquisition protocols, and re-
construction protocols according to standard operating procedures (SOPs) at the respective
centres for diagnostic imaging. All CT images were either diagnostic or radiotherapy treat-
ment planning images of comparable diagnostic quality, all with an intravenous contrast
injection protocol. All CT scans within the framework of the BD2Decide project had a 3 mm
slice thickness or less. Any CT scan that had imaging artifacts in more than 50% of the slices
with primary tumour mass present was excluded. For patients who received radiotherapy,
the primary gross tumour volume (GTV) was delineated at each centre according to local
delineation guidelines by experienced radiation oncologists. The GTV was defined as the
visual extent of gross tumour volume, as described in the radiology report and, if needed,

http://www.bd2decide.eu/
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adapted based on the report of the physical examination. Figure 1 gives an example of
a CT with the primary tumour delineated. For patients who did not receive radiation
treatment, the primary tumour volume was delineated locally by or supervised by expert
radiologists according to local delineation protocols. This delineation was conducted by
a single person per centre, directly on the contrast-enhanced (CE)-CT. CE-CT has shown
to have lower interobserver variability for HNSCC delineation, compared to just CT, or
PET-CT [38]. Additionally, for all patients treated with radiotherapy from Maastro, VUmc,
and the University of Brescia, all contours were delineated on CT in conjunction with
PET/MRI, which has also been proven to greatly decrease interobserver variation [39,40].
All contours were additionally peer-reviewed by radiation oncologists based on diagnos-
tic information. Lastly, all delineations were visually judged by a single observer in the
BD2Decide consortium for deficiencies. Supplementary Materials Table S1 provides an
overview of the treatment received per participating centre.
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Figure 1. Computed tomography image of patient with stage IVA oropharyngeal cancer in transverse
plane. The primary tumour is shown outlined in red.

2.3. Feature Extraction

Radiomics features were obtained from the delineated primary tumour volume of
the preprocessed images. A full list of software packages used in the present study is
shown in Table S2 of the Supplementary Materials. Feature extraction was performed in
python 3.6.10, with the package PyRadiomics version 2.2.0 [41]. To lessen the impact of
heterogeneity in the imaging data caused by differences in scanners and imaging protocols,
preprocessing of the images and postprocessing of the extracted features were performed.
An overview of pre- and postprocessing techniques applied to the data has been described
in Supplementary Materials. Both International Biomarker Standardisation Initiative (IBSI)-
compliant [42,43] and a non-IBSI compliant feature were extracted. Features extracted
through PyRadiomics contain a single first-order feature, first-order kurtosis, which differs
from the IBSI definition. A description of the features is provided in Supplementary
Materials. The PyRadiomics documentation [44] provides a complete overview of all
radiomics features.
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2.4. Feature Selection

Unsupervised and supervised feature selection was performed on the training dataset
to reduce data dimensionality and the chance of overfitting on the training data. Highly cor-
related features were assumed to contain overlapping information about the outcome and
are therefore considered redundant; thus, for each correlating feature pair, one was selected,
and the other was removed. Through absolute pairwise Spearman rank correlation, highly
correlating features (>0.85) were determined. The feature with the highest mean absolute
correlation with the rest of the dataset was then excluded. Univariate feature selection
was performed by fitting a univariate cox model for each individual feature. Afterwards,
we selected features based on the individual feature’s association with survival. This was
performed by choosing features with a testing association p-value (Wald test) lower than
the threshold of 0.05 [45]. A false discovery rate (FDR) adjustment was performed on
the p-values to correct for multiple testing [46]. A 100-repeat 10-fold cross-validation was
performed to determine the most prognostic features on average.

2.5. Radiomics Model

A multivariable Cox model was trained on the training dataset using the selected
features. Afterwards, the model’s prognostic performance was assessed through external
validation on the validation dataset. This was performed according to the principles and
methods described by Royston and Altman (2013) [47], described in Supplementary Mate-
rials. Model discrimination performance was determined through CI. A CI of 0.5 means the
predictions are achieved completely randomly, while values near 1 indicate almost perfect
discriminative performance. Risk-stratified KM curves were generated for each model,
which allowed for visual comparison between models and provided the opportunity to
determine how well the cohort could be stratified into risk groups. Three risk groups
were determined using threshold values at the 33rd and 66th percentile of the calculated
prognostic index (PI). Two log-rank tests were performed to determine the significance of
the split of the low- vs. the medium-risk groups, and the medium- vs. the high-risk groups.
Predicted survival curves for each risk group were determined. The individual survival
curves were estimated using the PI of each patient, which were then averaged over the
entire risk group. The observed survival curves and predicted survival curves aligning
indicates that the model fits correctly to the data.

2.6. Staging, Volume, and Clinical Models

Risk stratification based on TNM8, primary tumour volume, and a model developed
from clinical and biological features were compared to the radiomics model’s results.
The radiomics feature ‘original_shape_VoxelVolume’ was used as a surrogate for tumour
volume. This feature was added to the list of selected features and used to create a separate
model [48]. The clinical and biological model was built from a list of known predictors
of survival in HNSCC, which can be found in Supplementary Materials. All features
had less than 10% of values missing. For any missing values imputation was performed
using the ‘missForest’ package in R [49]. This imputation method trains a random forest
(RF) model on the existing data to predict the missing values. Imputation was performed
separately for the training and validation datasets. Feature selection on the clinical and
biological covariates was performed through univariate Cox modelling, selecting univariate
significant covariates through chi-square test p-values after correcting for multiple testing
(FDR) [46]. The significant features were added to the list of radiomics features and used to
create separate models. In addition, a combined model using radiomics, tumour volume,
and clinical/biological variables was created and validated.

2.7. Validation of Existing Radiomics Signatures

Aerts et al. reported on a radiomics signature to predict survival in lung cancer
patients which they validated on HNSCC cohorts [50]. This signature was evaluated both
on our validation and the full cohort (training and validation), and its performance was
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compared to the newly proposed signature created. After the necessary preprocessing steps,
the four features used by Aerts to establish the signature were extracted from the primary
tumour volume. The feature values were multiplied with the β coefficients reported in
the article to calculate the linear predictor. To stratify the patients into low- and high-risk
groups, the authors used a single cut-off value based on the linear predictor’s median. We
applied these cut-offs in order to determine two risk groups and compared these to risk
stratification using the median of the linear predictor estimated by our novel models.

2.8. Radiomics Quality Score and TRIPOD

For quality assurance, the radiomics quality score (RQS) [51,52] was calculated and
transparent reporting of a multivariable prediction model for individual prognosis or diag-
nosis (TRIPOD) [53] recommendations were followed. A description of these statements
and the results can be found in Supplementary Materials Tables S5 and S6.

3. Results
3.1. Clinical, Biological, and Imaging Characteristics

In total, 666 retrospective and 143 prospective patients were collected and analysed in
this study. Table 1 provides an overview of the patient characteristics for both cohorts.

The median follow-up of patients in the training and validation cohort was 63 (49–79
95% CI) and 32 (26–37 95% CI) months, respectively. Two-year survival in the training and
validation cohort was 78% and 75%, respectively. A log-rank test between survival curves
shows that the difference between cohorts is not significant (p = 0.29). KM plots of the
cohorts are shown in Supplementary Materials Figure S1. As oropharyngeal carcinoma
constituted a significant portion of the dataset (43%/n = 294 for training, 36% n = 51 for
validation), we decided to build separate models for this group of patients (including
both p16+ and p16−). A description of this model, along with the results, can be found
in Supplementary Materials. Supplementary Materials Figure S2 shows an overview of
the different parameters used for image acquisition and reconstruction in the training and
validation datasets.

3.2. Model Results

We extracted 1198 radiomics features from the primary tumour volume on all CT
images. After unsupervised feature selection, 204 features remained. In total, 11 features
were selected by supervised selection as being the most predictive of OS in the training
cohort. The first two features were kurtosis, a first-order statistics feature, and sphericity,
a shape feature. The next four features are all LoG-filtered texture features consisting of
GLSZM gray level non-uniformity, GLDM entropy, GLRLM run entropy, and GLDM low
gray-level emphasis. Finally, five wavelet-filtered texture features were included: four
differently wavelet-filtered GLSZM zone entropy features and GLRLM low gray-level-run
emphasis. All selected features were IBSI compliant, except for the first-order statistics
feature. Supplementary Materials Table S3 shows an overview of the feature names. The
slope of the PI in validation was 1.35, and a log-rank test indicated this slope was not
significantly different from a slope of 1 (p-value of 0.38). This indicates the model calibrates
well, meaning the predicted and the expected outcome proportions for a certain testing
population match. The joint test of all predictors with the offset of the PI gives a p-value of
0.86, indicating there is no evidence of a lack of fit on the validation cohort.

Supplementary Materials Figure S3 depicts KM survival curves for the combined
training and validation cohort after stratification in two risk groups (p < 0.01) using the
Aerts et al. (2014) signature [50], with a CI of 0.66. For some patients, one or more of the
required features failed to extract due to the small size of the volume. Therefore, the calcu-
lation of the signature was not possible in all available patients, resulting in 633 patients
in the training cohort and 139 patients in the validation cohort. The performance of the
signature in this study is similar to the reported validation performance on the lung dataset
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(CI of 0.65) but slightly lower than the performance on the two H&N datasets (both CI
of 0.69).

Figure 2 shows KM survival graphs of the validation cohort split using the previously
created signature [50] and the radiomics-only signature from this study. While the CI values
of the model performances are similar (0.66 and 0.67, respectively), the split and hazard
ratios are significantly better using the newly created signature (p = 0.22 vs. p < 0.01).

Table 1. Patient characteristics overview for retrospective and prospective patient cohorts. HN = head and neck, RT = radio-
therapy, CH = chemotherapy, CRT = chemoradiotherapy, ECOG PS = eastern cooperative oncology group performance status.

Study Retrospective
(n = 666)

Prospective
(n = 143) p-Value

Sex (% male/n) 72/482 65/93 p = 0.10

Age (Median/range) 63/ 64/ p = 0.17
29–89 38–93

HN tumour site (%/n)

-Hypopharynx 15/96 15/21 p = 0.93
-Oropharynx 43/289 36/51 p = 0.11
-Oral cavity 15/100 29/42 p < 0.01
-Larynx 27/181 20/29 p = 0.11

p16+ Oropharynx (%/n) 22/146 26/37 p = 0.36

Stage TNM7th edition (%/n)
-III 31/206 28/40 p = 0.55
-IVa 59/390 67/96 p = 0.07
-IVb 10/70 5/7 p = 0.06

Stage TNM8th
edition(%/n)

p16+ oropharynx
-I 11/74 12/17 p = 0.90
-II 6/42 9/13 p = 0.31
-III 5/30 5/7 p = 1

Non-
oropharynx/p16-

oropharynx

-III 25/169 28/40 p = 0.59
-IVa 37/248 38/54 p = 0.98
-IVb 16/103 8/12 p = 0.04

Treatment (% of patients received type of
treatment/n)

-RT only 29/191 15/22 p < 0.01
-Surgery only 5/34 4/5 p < 0.01
-CRT 37/245 36/51 p = 0.55
-Surgery + RT 15/102 24/34 p = 0.16
-Surgery + CH + RT 14/93 12/17 p = 0.60

Order of CH (% of CH patients/n)
-Adjuvant 15/51 12/8 p = 0.61
-Concomitant 81/273 84/57 p = 0.64
-Induction 4/15 4/3 p = 1

ACE-27 Comorbidity (%/n)

=0 30/204 38/52 p = 0.20
=1 41/272 38/52 p = 0.37
=2 20/133 16/21 p = 0.18
=3 9/57 8/11 p = 0.86

Smoking (%/n)
-Current 52/350 40/55 p = 0.01
-Former 36/237 33/45 p = 0.44
-Never 12/79 27/37 p < 0.01

Pack years (Median/range) 35/0–174 30/0–220 p = 1

Alcohol consumption (%/n)
-Current 66/445 48/67 p < 0.01
-Former 13/84 12/17 p = 1
-Never 21/137 40/55 p < 0.01

ECOG PS (%/n)

=0 39/262 49/68 p < 0.01
=1 16/106 43/59 p < 0.01
=2 3/21 8/11 p = 0.22
=3 1/4 - p = -

=NA 41/273 4/5 p < 0.01

Hb level (Median/range) 8.8/5.0–15.1 8.7/4.8-14.0 p = 0.27
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Figure 3 shows the KM survival graphs of the training and validation cohorts with a
CI of 0.65 and 0.67 in training and validation, respectively. The p-values of the log-rank test
of the low and medium, and medium and high split were <0.01 for both in training, and
0.163 and 0.01 in validation, respectively. This CI is similar to stratification based on tumour
volume alone (CDI of 0.68), shown in Supplementary Materials Figure S4. However, the
shape of the KM curve shows tumour volume is very poor in discerning three distinct risk
groups. It is significantly lower than stratification based on TNM8 (CI of 0.74), shown in
Supplementary Materials Figure S5.
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An overview of the clinical and biological features selected is shown in Table 2.
The clinical features selected through univariate feature selection were TNM8 (higher stage
has worse prognosis), age at diagnosis (higher age has worse prognosis), ACE-27 comor-
bidity score (higher score has worse prognosis), smoking pack-years (higher pack-years
has worse prognosis), and alcohol consumption at the time of diagnosis (current has worst
prognosis), and the biological features were p16-status (p16-negative has worse prognosis)
and clinical Hb level at baseline (lower Hb level has worse prognosis). Supplementary
Materials Figure S6 shows the KM curve stratified based on these clinical and biological
features, with a CI of 0.73. Figure 4 shows KM survival curves of the validation cohort
after stratification based on tumour volume, the selected clinical and biological parameters,
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and the selected radiomics features, with a CI of 0.71 and 0.79 in training and validation,
respectively. The p-value of the log-rank test of the low and medium, and medium and
high split were both <0.01 in both training and validation.

Table 2. Selected clinical and biological features in the clinical, biological, and combined models,
with univariate model coefficient, hazard ratio, and significance to outcome shown.

Feature Name Model Coefficient Hazard Ratio p-Value

TNM8 0.76 2.14 <0.01
Age 0.034 1.035 <0.01

ACE-27 comorbidity score 0.28 1.33 <0.01
Pack years 0.005 1.005 0.02

Alcohol at diagnosis 0.47 1.61 <0.01
P16-status −1.3 0.27 <0.01

Haemoglobin level −0.3 0.74 <0.01
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For the oropharynx patient cohort, eight features were selected as being the most
predictive of OS, consisting of one first-order statistics feature, two shape features, three
wavelet-filtered texture features, and two LoG-filtered texture features. All selected features
were IBSI compliant. Supplementary Materials Table S4 shows an overview of the features.
The slope of the PI in the validation was 3.01. A log-rank test indicates with certainty the
slope in the validation is larger than unity (p-value of 0.04). The p-value for the joint test
of all predictors with the PI offset is 0.12. This indicates that there is no proof of a lack of
fit on the validation cohort. Kaplan–Meier survival curves of the prospective oropharynx
cohort split based on radiomics features are shown in Supplementary Materials Figure S7.

A full overview of the different combinations of models, with discrimination per-
formance and hazard ratios for each model, is provided in Table 3. In addition, Figure 5
provides an overview of the CI indices of the validation results.
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Table 3. Performance overview of all trained and/or validated models, showing Harrell’s CI and HR values for each model. The left side shows the models for the full patient cohort, both
training (n = 666) and validation (n = 143), the right the oropharynx patient cohort, both training (n = 294) and validation (n = 51). * indicates no HR could be calculated, as the low-risk
group did not have any events recorded.

Full Patient Cohort Oropharynx Patient Cohort

Training Validation Training Validation

Model CI (95% CI) HR 1 vs. 2
(95% CI)

HR 1 vs. 3
(95% CI) CI (95% CI) HR 1 vs. 2

(95% CI)
HR 1 vs. 3
(95% CI) CI (95% CI) HR 1 vs. 2

(95% CI)
HR 1 vs. 3
(95% CI) CI (95% CI) HR 1 vs. 2

(95% CI)
HR 1 vs. 3
(95% CI)

Staging TNM8 0.65 (0.64–0.65) 1.82 (1.40–2.35) 3.12 (2.32–4.21) 0.74 (0.73–0.75) 5.01
(2.11–11.85)

14.03
(5.16–38.17) 0.71 (0.69–0.72) 2.50 (1.62–3.87) 5.16 (3.24–8.23) 0.86 (0.81–0.87) 9.12

(1.28–64.90)
30.15

(4.97–182.90)

Radiomics 0.65 (0.64–0.65) 2.22 (1.64–3.03) 3.37 (2.41–4.72) 0.67 (0.66–0.69) 1.87 (0.78–4.52) 3.39 (1.33–8.64) 0.68 (0.67–0.69) 2.36 (1.45–3.86) 3.80 (2.21–6.52) 0.82 (0.78–0.85) -* -*

Radiomics +
Staging 0.68 (0.68–0.69) 2.49 (1.77–3.44) 4.60 (3.24–6.53) 0.77 (0.75–0.78) 8.54

(1.97–37.98)
29.35

(6.73–127.94) 0.73 (0.73–0.74) 3.97 (2.20–7.18) 7.87 (4.39.27) 0.90 (0.88–0.92) -* -*

Radiomics
(Volume) 0.62 (0.62–0.62) 1.48 (1.08–2.03) 3.17 (2.16–4.66) 0.68 (0.66–0.69) 1.23 (0.54–2.78) 7.98

(2.85–22.31) 0.64 (0.63–0.64) 1.81 (1.10–2.99) 3.29 (1.82–5.92) 0.87 (0.84–0.90) -* -*

Clinical 0.66 (0.66–0.67) 2.37 (1.76–3.19) 3.25 (2.40–4.40) 0.70 (0.69–0.72) 3.66 (1.40–9.54) 5.37
(2.10–13.72) 0.73 (0.72–0.74) 3.80 (2.18–6.63) 8.27

(4.82–14.18) 0.84 (0.81–0.87)

Biological 0.63 (0.63–0.63) 2.83 (1.95–4.09) 3.94 (2.71–5.74) 0.70 (0.68–0.71) 13.03
(1.74–97.73)

23.19
(3.08–174.46) 0.68 (0.68–0.69) 4.28 (2.79–6.56) 6.74

(0.91–49.82) 0.84 (0.80–0.89) * *

Clinical +
Biological 0.67 (0.66–0.67) 2.71 (1.95–3.75) 4.17 (3.00–5.78) 0.73 (0.72–0.74) 8.21

(2.37–28.39)
10.10(2.97–

34.36) 0.74 (0.74–0.75) 3.82 (2.16–6.76) 8.66
(5.08–14.76) 0.88 (0.85–0.90) -* -*

Radiomics
(includes
volume)

0.65 (0.65–0.66) 1.78 (1.32–2.42) 3.64 (2.61–5.08) 0.68 (0.67–0.69) 2.19 (0.92–5.26) 3.84 (1.48–9.95) 0.68 (0.67–0.69) 2.47 (1.50–4.06) 3.94 (2.28–6.82) 0.82 (0.78–0.86) -* -*

Radiomics +
Clinical 0.69 (0.69–0.70) 2.94 (2.15–4.03) 4.79 (3.45–6.67) 0.74 (0.74–0.76) 4.65

(1.86–17.16)
11.38

(3.84–33.74) 0.73 (0.72–0.74) 3.80 (2.18–6.64) 8.27
(4.82–14.18) 0.84 (0.81–0.87) * *

Radiomics +
Biological 0.68 (0.68–0.68) 2.89 (2.04–4.08) 5.03 (3.52–7.17) 0.76 (0.74–0.77) 6.49

(1.91–22.06)
13.74

(3.96–47.66) 0.74 (0.74–0.75) 3.61 (2.13–6.12) 6.85
(4.12–11.39) 0.91 (0.90–0.93) * *

Radiomics +
Clinical +
Biological

0.70 (0.70–0.70) 3.04 (2.17–4.27) 5.82 (4.10–8.28) 0.77 (0.77–0.78) 8.17
(2.36–28.24)

13.17
(3.86–44.85) 0.77 (0.77–0.78) 4.77 (2.65–8.60) 12.53

(7.03–22.31) 0.88 (0.85–0.90) -* -*

Radiomics
(includes
volume) +
Clinical +
Biological

0.71 (0.71–0.71) 2.91 (2.11–4.01) 6.21 (4.44–8.68) 0.79 (0.78–0.80) 5.21
(1.70–15.98)

15.26
(5.14–45.32) 0.77 (0.76–0.77) 6.11

(3.23–11.53)
15.40

(8.17–29.03) 0.87 (0.84–0.89) -* -*

p16-status - - - - - - 0.67 (0.67–0.68) 4.3 (2.81–6.59) - 0.82 (0.78–0.85) 19.8 (2.38–165) -

Aerts. 2014 [50] 0.61 (0.61–0.61) 1.65 (1.30–2.09) - 0.66 1.54 (0.77–3.06) - 0.65 (0.64–0.66) 1.90 (1.3–2.77) - 0.68 (0.63–0.73) -* -
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From Table 3 and Figure 5, it can be observed that in the prospective cohort radiomics
alone did not perform better than TNM8 (CI of 0.67 and 0.74, respectively, p < 0.01).
Combining TNM8 and radiomics resulted in higher performance than both separately, with
a CI of 0.77. In combination with both clinical parameters and tumour volume, the highest
discrimination performance was found (CI of 0.79). Similarly, oropharynx radiomics did
not perform better than TNM8 (CI of 0.82 vs. 0.86, p < 0.01), but when combining both
radiomics and TNM8, the highest performance in the validation cohort was achieved
(CI of 0.90).

4. Discussion

For advanced tumours such as those investigated in this study, being able to dis-
cern groups of poor versus good performing patients is key for personalised decision
making. In this international, multicentre study, we created a multifactorial prediction
model, including radiomics features derived from the primary tumour volume that can
significantly stratify advanced HNSCC patients in good, average, and poor prognostic
groups, with a CI of 0.79 as validation on a prospective cohort. These groups could be
used in clinical decision making and for selecting patients for (de-)escalation trials and/or
adjuvant treatment. While radiomics alone was not able to improve on TNM8, adding
radiomics features to a model including TNM8, clinical, and biological variables improved
the prognostic performance, significantly increasing CI from 0.73 to 0.79. We can therefore
recommend adding these variables to the current clinical implementation of TNM8.

These results coincide with other works reporting on the complementary value of
radiomics in predictive modelling for HNSCC [10,54]. The performance of the model based
solely on radiomics, with a CI of 0.67, matches those of similar studies which investigate
OS [10–14]. However, compared to these studies, this study investigates over 800 patients
from multiple centres, whose data were partially collected prospectively. The largest
discrepancy is with the study by Cozzi et al. (2019), which found a high CI of 0.90 in
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validation [12]. While their methodology is sound, as the writers explain themselves the
number of patients (n = 110) from a single centre does make these results less significant.
Haider et al. (2020) had the largest cohort of 306 patients with a CI of 0.58 in validation [14].
This result was found on an external cohort, and while lower, it is more in line with the
result we found in external validation.

In total, 11 radiomics features were selected as being univariately most predictive
of OS. The first two selected features were kurtosis, a first-order statistics feature that
measures the ‘peakness’ of the distribution of pixel intensity values, and sphericity, a
shape feature that measures the likeness of the ROI to a sphere. Sphericity being selected
implies fewer spherical tumours may have a worse prognosis. The next four features are
all LoG-filtered texture features consisting of GLSZM gray level non-uniformity, a feature
which measures the variability of gray-level intensity values, GLDM entropy, and GLRLM
run entropy, which both measure the heterogeneity in texture patterns, and GLDM low
gray-level emphasis, which measures the concentration of low-intensity values. Finally, five
wavelet-filtered texture features were included: four differently wavelet-filtered GLSZM
zone entropy features, which measure the heterogeneity in texture patterns, and GLRLM
low gray-level-run emphasis, which measures the concentration of low-intensity values.
Most of these features are linked to heterogeneity, reinforcing the theory that tumour
heterogeneity correlates with a worse prognosis [55,56].

For most tested models, we found a higher validation accuracy than training accuracy.
This may be caused by the relatively smaller size of the validation dataset, which means
the result is more prone to variance, which is reflected in the larger confidence intervals,
especially for the smaller oropharyngeal analysis. Another contributing factor could be
that the training dataset contains relatively more ‘hard’ cases than the validation dataset.
In this paper, we chose to validate on a prospectively collected dataset, which is for data
splitting purposes an arbitrary reason. In a more balanced dataset with more similar patient
datasets, the discrepancy between training and validation may be lower.

Instead of using radiotherapy planning images only, which is conventional for ra-
diomics studies, this study used diagnostic CT images as well, which are made routinely
for any patient showing a locally advanced HNSCC. From these images radiomics features
can be extracted in a semi-automatic fashion, making clinical application easy. In addition,
the combined model was made using simple variables that are routinely determined in
a clinical setting for every patient (TNM8 stage, ACE-27 comorbidity status, smoking,
and alcohol habits). As a result, it would be relatively easy to implement the presented
models in a clinical environment. For the next step, the created model could be tested in a
clinical trial. However, as differences in scanners, scan settings, and acquisition settings
have proven to significantly affect feature reproducibility, a prospective study where these
variables are controlled may be required to further validate model performance.

Radiomics performs an estimation of the tumour volume using a 3D segmentation, as
opposed to conventional methods of measuring tumour volume to predict survival. This
single feature was found to be significantly predictive of OS, albeit with lower performance,
compared to TNM8 or the model based on radiomics features but was not chosen in the
multivariable model. The main reason for this is the interaction with other features in
the correlation dimensionality reduction step. Volume has a high correlation with other
features, mostly shape features, and is therefore removed from the feature dataset before
univariate selection is performed, revealing a shortcoming of this feature reduction step.
However, the information provided by this feature should be retained in the remaining
uncorrelated features.

The radiomics model in this study shows better performance in stratifying patients in
risk groups in the validation dataset when compared to the previously created and vali-
dated signature [50]. One large discrepancy between these models is the risk stratification:
the previously developed signature was created with two risk groups instead of three.
Most importantly, it was built on lung cancer. The difference in performance on different
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tumour sites demonstrates that prognostic models should be developed on specific tumour
sites and stages, and with relevant clinical risk groups in mind.

While the amount of data used in this study was higher than most published radiomics
studies, this was partially achieved by pooling data from different HNSCC sites. Separating
these regions resulted in very small datasets in either or both training and validation sets.
While we had sufficient data to train an oropharynx model and found a relatively high
performance of the model using radiomics features of 0.82 CI in validation, the number
of patients, and particularly the number of events, of the validation dataset was relatively
limited. Collecting more data from an individual tumour site would most likely result
in more representative models. In addition, the patients in this study received different
treatments. This significantly affects survival chance and is therefore a major limitation.
Similar to tumour region, separate models according to treatment would be preferred.
However, treatment is heavily linked to the region of the tumour, as, for example, the
majority of surgeries were performed for oral cavity patients.

Compared to extracting radiomics features from just the primary tumour volume,
TNM8 staging takes information from the primary tumour (T-stage), involvement in lymph
nodes (N-stage), and the extent of metastisation (M-stage) into consideration. In addition,
depending on the tumour region, additional information such as p16-status as a surrogate
for HPV involvement, depth of invasion in surrounding tissues, and presence of extranodal
extension are important. The addition of radiomics features derived from lymph node
metastases can potentially improve the results. This would require a multifactorial model
with a binary condition for the lymph node stage and would only incorporate features of
those patients who have lymph node metastases.

Imaging artefacts caused by dental implants may have affected the performance of the
radiomics model. The artefacts make segmentation difficult but also affect the radiomics
features extracted from these images. While there was a limit on the number of artefacts
allowed on images during patient selection, methods to reduce the artefacts may be
considered for future studies. In addition, variability caused by the manual segmentation
of tumours by different experts at each institute may have also affected model performance.
Previous research has shown that inter- and intraobserver variability can possibly cause
large differences in delineated volumes [57]. For shape and size radiomics features, this
can cause a large decrease in their use and may affect other features to a lesser degree.
The repeatability of deep-learning-based automatic segmentation methods will be able to
negate interobserver variabilities in the future [58].

To compensate for interobserver variability in the current project, each centre per-
formed delineations either directly by, or under the supervision of, expert radiologists or
radiation oncologists. Additionally, although delineations were performed according to
local protocols, European guidelines are largely aligned, limiting the interobserver effects
on the delineated structures. Conversely, in a clinical application of the proposed model
at different institutes, interobserver variabilities will be an inevitability. The discrimina-
tive performance the model has shown despite these issues strengthens the potential of
application in a clinical setting.

5. Conclusions

A multifactorial prognostic model for stage III-IVB HNSCC (TNM7th edition) based
on simple variables available for every patient and including CT radiomics features is
able to very accurately predict OS and to significantly discern different risk groups. The
multifactorial model was found to have higher predictive performance than the current
gold standard of TNM8. This could be useful in treatment (de-)escalation trials and clinical
decision support.
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