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ABSTRACT To determine whether functionally relevant questions associated with the
urinary or gut microbiome and urinary stone disease (USD) can be answered from
metagenome-wide association studies (MWAS), we performed the most comprehensive
meta-analysis of published clinical MWAS in USD to date, using publicly available data
published prior to April 2021. Six relevant studies met inclusion criteria. For alpha-diver-
sity, significant differences were noted between USD status, stone composition, sample
type, study location, age, diet, and sex. For beta-diversity, significant differences were
noted by USD status, stone composition, sample type, study location, antibiotic use
(30days and 12months before sampling), sex, hypertension, water intake, body habitus,
and age. Prevotella and Lactobacillus in the gut and urinary tract, respectively, were
associated with healthy individuals, while Enterobacteriaceae was associated with USD
in the urine and stones. Paradoxically, other Prevotella strains were also strongly associ-
ated with USD in the gut microbiome. When data were analyzed together, USD status,
stone composition, age group, and study location were the predominant factors associ-
ated with microbiome composition. Meta-analysis showed significant microbiome dif-
ferences based on USD status, stone composition, age group or study location.
However, analyses were limited by a lack of public data from published studies, meta-
data collected, and differing study protocols. Results highlight the need for field-specific
standardization of experimental protocols in terms of sample collection procedures and
the anatomical niches to assess, as well as in defining clinically relevant metadata and
subphenotypes such as stone composition.

IMPORTANCE Studies focused on the microbiome broadly support the hypothesis that
the microbiome influences the onset of chronic diseases such as urinary stone disease.
However, it is unclear what environmental factors shape the microbiome in ways that
increase the risk for chronic disease. In addition, it is unclear how differences in study
methodology can impact the results of clinical metagenome-wide association studies.
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In the current meta-analysis, we show that age, stone composition, and study location
are the predominant factors that associate with the microbiome and USD status.
Furthermore, we reveal differences in results based on specific analytical protocols,
which impacts the interpretation of any microbiome study.

KEYWORDS urolithiasis, metagenomics, microbiome, meta-analysis, kidney stone,
clinical, metagenome

Urinary stone disease (USD) has increased in prevalence 4-fold in the last 50 years and
has seen an epidemiological shift to earlier disease onset (1), with a recurrence rate

of 30% within 10 years after an initial stone episode (2). Understanding the causal relation-
ships driving these changes are crucial to identifying potentially modifiable risk factors
and therapeutic strategies. USD, like many chronic inflammatory conditions, is considered
a multifactorial disease with numerous stone phenotypes, environmental and metabolic
risk factors, such as age, host genetics, diet, sex, and medication use (3). The microbiota is
strongly associated with these risk factors, a finding that implicates environmentally
driven changes within the microbiota as an important mediator in pathogenesis of USD.
Prior work in the field has predominantly focused on standard culture or PCR-based meth-
ods (4), which are known to have significant limitations (5). Advancements in high-
throughput and culture-independent techniques have allowed for a more in-depth explo-
ration of the microbiota. Numerous culture-independent microbiota studies have been
published since 2016 (5–16) attempting to address the question of whether the micro-
biota contributes to the onset of USD. While published studies comparing the microbiota
of USD patients with that of healthy controls share some similarities in results, clear differ-
ences are apparent in terms of the metadata associations, along with the specific bacteria
driving those associations. Clinical metagenome-wide association studies (MWAS) are rela-
tively new. As such, the costs, access to sequencing technologies and bioinformatic exper-
tise are often significant barriers for clinicians. Furthermore, questions remain about the
reproducibility, applicability, and physiological relevance of these MWAS, particularly if
variation in results are due to differences in the experimental design (i.e., sample collec-
tion, storage, DNA extraction, sequencing, or data analysis) or population characteristics
(i.e., geography, ethnicity, disease subphenotypes, or some other regional factors).

An important consideration to address the above issues is the choice of taxonomic
assignment for the sequencing data. Taxonomic assignment to operational taxonomic
units (OTUs) or amplicon sequence variants (ASVs) are two different means to classify
sequence reads and produce count tables prior to subsequent analyses. Traditionally,
OTUs are assigned based either on sequence homology to a reference database
(closed reference) or as a function of pairwise sequence homology (de novo). One ca-
veat to OTU assignment is that sequencing errors can lead to misclassifications, chi-
meric sequences, and an inflation of the number of taxa defined (17). The more recent
ASV classification strategy is a de novo process designed to overcome the issues with
OTU assignment. This strategy assumes that biological variants are more repeatable
than sequencing errors and thus limits the impact of sequencing errors on assignment.
Classification by ASV is thought both to be more accurate than strategies that define
OTUs and are consistently defined across independent data sets (18), thereby poten-
tially making collaborative studies easier to conduct. However, few studies have com-
pared the OTU and ASV classification strategies with real-world data (18).

To translate the results of MWAS studies into actionable interventions, there are
several considerations regarding the interaction between the microbiome and chronic
inflammatory diseases, such as USD. First, one must identify the optimal source of mi-
crobial activity that is most relevant to the pathogenesis of the disease. USD micro-
biome studies have predominantly focused on the gut microbiome, with few reports
on the urinary tract or stone microbiome. Second, identification of specific taxa that
drive dysbiosis and hence may influence the disease is necessary. Finally, we must
understand how metadata (patient and environmental characteristics) affect the
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relationship between the disease in question and the microbiome. Of particular impor-
tance are specific disease subphenotypes that may arise from unique physiological ori-
gins. In USD, for instance, numerous types of stones can manifest that may result from
metabolic disorders, dietary choices, infections, or genetic conditions (3). The data
from MWAS, given the above considerations, can provide the foundation for rationally
designed mechanistic studies to confirm or refute disease causality and thus lead to
targeted interventions for primary and secondary prevention of diseases such as USD.
Thus, the aim of this study was to perform the most comprehensive meta-analysis of
all currently published clinical MWAS in USD to determine whether clinically relevant
questions can be answered from the existing literature and whether the experimental
design impacts the results of individual studies.

RESULTS
Microbiome meta-analysis. In our microbiome meta-analysis, six relevant studies

were eligible for inclusion with representative samples from the stool, urine, and stones, and
locations that included USA (7, 16), Canada (8), India (10), China (9) and Italy (12) spanning 201
patient samples and 136 control samples (Table 1). There was no significant heterogeneity in
alpha- and beta-diversity results between studies (P. 0.05).

When stratifying by USD status, there were significant differences in both alpha-
and beta-diversity between studies that classified taxa using OTU. Further stratification
by stone composition, age, and study location found significant differences when taxa
were classified by either OTU or ASV (Fig. 1 and 2 and Table 2) (Table 2; see also Fig. S1
and S2 in the supplemental material). Associations between USD status and all other
metadata were nonsignificant. For physiologically distinct phenotypes, such as sample
type (stool, stone, and urine), urinary tract delineated by sex, and study location, OTU
classification provided greater discriminatory power than ASV classification (Fig. 3).

Differential abundance analysis based on OTU classification revealed that different
OTUs within the genus Prevotella were the most frequently associated in the gut of
both healthy and USD individuals (Fig. 4A). In the urinary tract, the genus Lactobacillus
was most associated with healthy individuals, while the family Enterobacteriaceae and
genus Veillonella were the most associated with USD (Fig. 4B). In stone samples, across
two studies, specific OTUs from the Staphylococcus and Aerococcus genera dominated the
microbiome, with several Enterobacteriaceae present at high abundance (Fig. 4C). With
ASV assignment, differential abundance analysis showed that in the stool, Lachnospiraceae
were the most associated with the healthy group and Bacteroidaceae were most associated
with the USD group. In the urinary microbiome, Veillonellaceae were associated with the most
healthy subjects, and the Actinomycetaceae and Enterobacteriaceae were most associated with
USD. Finally, analysis of the stone microbiome revealed the stone microbiota to be dominated
by the Enterococcus (see Fig. S3). Interestingly, Oxalobacter, which is the most researched bac-
terial genus relating to USD (4), was not significantly enriched in the gut of control subjects
from any study.

DISCUSSION

Microbiome-wide association studies are in their infancy for urolithiasis, with a
dozen studies published since 2016 (5–16). In the current meta-analysis of MWAS

TABLE 1 Clinical microbiome studies included in meta-analysis

Study (reference) Location

Study cohort

Sample Dataset PlatformUSD Controls
Dornbier et al. (16) Chicago, USA 71 0 Urine stone 16S rRNA Illumina MiSeq
Zampini et al. (7) Cleveland, USA 24 43 Urine stool stone 16S rRNA Illumina MiSeq
Miller et al. (8) Vancouver, Canada 17 17 Stool 16S rRNA Illumina MiSeq
Tang et al. (9) Nanning, China 13 13 Stool 16S rRNA Illumina HiSeq
Suryavanshi et al. (10) Sutarwadi, India 24 15 Stool 16S rRNA Ion Torrent
Ticinesi et al. (12) Parma, Italy 52 48 Stool 16S rRNA Illumina MiSeq

Urolithiasis Microbiome Meta-analysis ®

July/August 2021 Volume 12 Issue 4 e02007-21 mbio.asm.org 3

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

bi
o 

on
 1

1 
A

ug
us

t 2
02

1 
by

 1
60

.7
8.

18
6.

45
.

https://mbio.asm.org


FIG 1 Significant alpha diversities from microbiome study meta-analysis with OTUs. (A) USD status for stool across all studies. (B) USD status in stool
samples from different study locations: Cleveland (USA), Nanning (China), Vancouver (Canada) and Sutarwadi (India). (C) USD status and age-group for
stool. Age groups include ,30 years old, 30 to 50 years old, 51 to 70 years old, and .70 years old.
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FIG 2 Significant beta diversities from microbiome study meta-analysis with OTUs. (A) Sample type comparison across
all studies. (B) USD status in stool samples from different study locations: Cleveland (USA), Nanning (China), Vancouver

(Continued on next page)
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studies, we found strong associations between the gut microbiome and incidence of
USD (Fig. 1 and 2 and Table 2). Furthermore, we found that the microbiome exhibited
significant associations with stone composition, age group, and study location, in one-
way (all three variables) and two-way (age group and study location) analyses with
incidence of USD (Fig. 1 and 2; Fig S1 and S2; Table 2). However, these results were de-
pendent on the bioinformatic classification scheme used and were limited by sampling
sites, number of data sets made available from published studies, along with the level
of detail and accuracy of the clinical metadata collected. Therefore, the significance of
the results must be understood within the context of the study limitations.

A primary limitation of the current meta-analysis was that many published MWAS
did not make their raw data available. We note that NIH guidelines state that all raw
genome or metagenome data and metadata should be submitted to the sequence
read archive no later than 45 days after quality control, which is also a requirement by
most scientific journals prior to publication. In addition to making data available, to
push MWAS toward greater clinical relevance, field-specific standardization of methods
and analyses must be achieved. The American Urological Association, for instance, has
a published set of guidelines for the medical management of kidney stones that
include a number of standardized practices such as a screening evaluation of blood
and urine chemistries, stone composition analysis, quantification of stone burden,
among other considerations (19). Clinical MWAS should be held to the same level of
consistency.

While there were significant associations between the microbiome composition
and study location, both independent and dependent of USD status (Fig. 1 and 2;
Fig. S1 and S2; Table 2), data from each study location were generated by different lab-
oratories with variable protocols for sample collection/storage, DNA extraction, and
sequencing. It is well accepted that the experimental approach in metagenomic stud-
ies can have a big effect on the downstream data and interpretation (20). Thus, our
meta-analysis is inconclusive when it comes to an association between the microbiome
and study location and again bolsters the rationale for field-specific standardization of
experimental approaches to the greatest extent possible. Despite the differences by
study location, we also found a significant association between the microbiome com-
position and age group, both independent and dependent of USD status (Fig. 1 and 2;
Fig. S1 and S2; Table 2). Age is a well-known risk factor for USD (21) and an independ-
ent modifier of the gut microbiota (22). Finally, stone composition exhibited a signifi-
cant association with the urinary tract microbiome, but not the microbiome from the
gut or the stones themselves (Fig. 1 and 2; Fig. S1 and S2; Table 2). These data may
have important implications for the pathogenesis of stones. Specifically, the results
suggest that the urinary tract microbiome, but not the gut microbiome, influences the
host environment to indirectly promote or inhibit stone formation. The lack of associa-
tion between stone type and the stone microbiome suggests that the bacteria do not
play a direct role in lithogenesis. Other clinical metadata such as sex, body habitus,
medications, diet, comorbidities, water intake, family history of USD, and other known
risk factors for USD were only available for a single study. Thus, we cannot make any
conclusions for these environmental factors in the current meta-analysis.

Finally, the meta-analysis results derived from either an OTU or ASV classification
scheme were similar, differing only by whether USD status by itself had a significant
association with microbiome composition. In our meta-analysis, we found that OTU
classification produced greater within and between group discriminatory power, par-
ticularly for metadata where we expect to find clear differences such as sample type
(stool, urine, and stone) and the urinary tract of males and females (Fig. 3). Thus, while
some studies have found that ASV’s discriminate between ecological patterns more

FIG 2 Legend (Continued)
(Canada), and Sutarwadi (India). (C) USD status and age group for stool. Age groups include ,30 years old, 30 to
50 years old, 51 to 70 years old, and .70 years old. (D) Study locations for urine: Cleveland (USA) and Chicago (USA). (E)
Age group for urine. (F) Sex for urine.
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effectively than OTUs (23), we found the opposite trend here. The differences between
OTU and ASV classification strategies can lead to differences in microbial profiles (18).
However, with stringent postclassification quality control measures, the microbial pro-
files based on OTUs and ASVs are similar, as was the case for our meta-analysis. Given
the results of our meta-analysis, it remains to be seen which classification strategy
more accurately represents the diversity and taxonomy seen in microbiome samples as
few studies have conducted direct comparisons of the two strategies using real world
data. Another aspect that must be considered, which applies to both ASV and OTU
strategies, is that both living and dead cells are sequenced to generate microbial

FIG 3 Discriminatory power of OTUs versus ASVs for physiologically distinct metrics. The discriminatory
power of OTUs and ASVs was quantified using the within group and between group variance in beta-
diversity as assessed through weighted UniFrac distances for three physiologically relevant metrics. (A)
Sample type (stool, urine, and kidney stone). Only one study (7) included raw data and metadata for
more than one sample type and is the only study included here. (B) Sex for the urinary microbiome.
Only one study (7) included raw data and metadata for the urinary microbiome and is the only study
included here. (C) Study location. All studies were included and the analysis was based on the stool
microbiome only. *, False discovery rate corrected P values, 0.05.
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FIG 4 Heatmaps showing the most common dysbiotic taxa based on OTUs by sample grouping and
sample type. The taxa were identified as pathogenic to beneficial (A and B) and from less abundant

(Continued on next page)
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profiles. However, sequencing data and enhanced culture data are generally concord-
ant indicating that sequenced microbes provide an accurate representation of the liv-
ing microbiome (16, 24).

Differences between patients and controls, based on OTU classification, were primarily
driven by the genera Prevotella and Lactobacillus in the gut and urinary tract, respectively,
to be strongly associated with healthy individuals, while bacteria from the family
Enterobacteriaceae were strongly associated with USD in the urinary tract (Fig. 4). While
the Enterobacteriaceae were also the most abundant taxa in the stone microbiota, specific
OTUs belonging to the Staphylococcus and Aerococcus genera were more abundant than
any one Enterobacteriaceae OTU. Interestingly, other strains of Prevotella were also
strongly associated with the gut microbiota of USD patients. These data indicate that
some strains of Prevotellamay have anti-lithogenic activities whereas others produce pro-
lithogenic activities. Since the Prevotella are among the most abundant genera in the gut,
it will be important to delineate the roles of specific strains as it pertains to USD.
Importantly, our data suggest that the urinary tract microbiome plays a greater role in
pathogenesis than either the gut or stone microbiota, as indicated by the stone composi-
tion results, which can help to focus future mechanistic studies.

We performed the most comprehensive meta-analysis of publicly available data
from clinical MWAS microbiome studies of USD to date. The results show that despite
the limitations of the meta-analysis, there was a significant association between micro-
biome composition and USD status, which provides strong evidence for a role of the
human microbiota in the pathogenesis of USD. In addition, there is evidence for stone
composition, age, and study location as factors that influence the gut and urinary
microbiome in ways that impact USD pathogenesis. However, additional data sets that
consistently define these metrics would improve confidence in those results. Overall,
our results provide a strong rationale for the field-specific standardization of experi-
mental protocols, inclusion of all potentially pertinent anatomical niches, and greater
collection and reporting of clinical metadata to ensure meaningful questions can be
appropriately addressed.

MATERIALS ANDMETHODS
Study selection. A comprehensive literature search of Google scholar, Scopus, and PubMed using the

keywords “microbiome” AND “urolithiasis” OR “urinary stone disease” OR “nephrolithiasis” was performed
to identify relevant clinical microbiome studies associated with USD published prior to April 2021 for inclu-
sion. We included studies that focused either on the gut microbiota, the urinary microbiota, or both. These
distinct microbiomes both potentially contribute to USD, and it is important to delineate which influences
the onset of USD most, which can only be done through comparative analyses. Eligible studies were
required to meet the following inclusion criteria: all studies had to (i) be solely focused on assessing the
relationships between the microbiome and USD; (ii) use human clinical samples; (iii) include a comparative
“control” non-USD cohort, unless the study was solely focused on the microbiota of stones; (iv) perform 16S
ribosomal RNA (rRNA) gene sequencing; (v) have publicly available raw data and applicable metadata freely
available for download or made available upon request; and (vi) be written in English.

Studies were excluded if they were review articles, editorials, or conference abstracts without full
data available. Corresponding authors of studies that met all other eligibility but without publicly avail-
able raw data were also contacted directly via email to provide the required data in order to be included
in the analysis. Since this study utilized publicly available anonymous data from known publications,
institutional review board approval or patient consent were not required.

Data analytical process. Raw data for the meta-analysis was downloaded from the respective
sequence read archive (SRA) accession numbers SRP140641, SRP140933, SRP066940, SRP103884,
SRP125171, and SRP125191 for data analysis. Data from each study were downloaded, quality con-
trolled, and trimmed in DADA2 (23). Using the Silva 138 SSURef and NCBI databases (25) as reference
databases for mapping, sequences were assigned to either OTUs or ASVs in Qiime (26) or DADA2
(23), respectively. Chimeras, as well as taxa classified as eukaryotes, mitochondria, or chloroplasts,

FIG 4 Legend (Continued)
to most abundant (C). (A) Comparison by USD status in stool. Differential abundance analysis showed
different Prevotella OTUs as the most healthy- and USD-associated taxa. (B) Comparison by USD status in
urine. Lactobacillus was the most healthy-associated in urine, with the Veillonella and Enterobacteriaceae
most associated with USD. (C) Bacterial stone analysis. Across two studies, OTUs from the Staphylococcus
and Aerococcus genera dominated the microbiome, with several Enterobacteriaceae present at high
abundance.
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were removed from further analysis. Data sets were normalized with a DESeq2 normalization proto-
col which corrected for sequencing depth and composition bias across samples (27).

Alpha- and beta-diversities were calculated with the phylogenetic metrics, PD_whole_tree, and
weighted UniFrac distance matrices, both within and between studies (28, 29). For analysis, several clinical
metadata categories were examined based on clinical records unless otherwise noted. These included USD
status (an active episode of USD or no history of the disease), age group (,30years old, 30 to 50years old,
51 to 70 years old, and .70years old), city of study location, sex, weight group (,70 kg, 70 to 90 kg, 91 to
110 kg, 111 to 130 kg, and.130 kg), stone composition (defined for stones with.65% of a single mineral),
antibiotic use in the 30days or 12months prior to sampling (all classes), gout, diabetes, hypertension, diet
(self-reported as omnivore, pescatarian, vegetarian, Mediterranean, or low carbohydrate, in addition to
number of servings/week of meat, desserts, fruits, veggies, and bread), and water intake (based on self-
reported 8-oz. glasses of water/day). For alpha- and beta-diversity analyses, all two-way comparisons were
made between USD status and other metadata categories both within and between studies.

Differential abundance of taxa between individuals with USD and controls with no history of USD was
assessed using the DESeq2 algorithm (27). To determine the most dysregulated taxa in the gut and urinary
tract between USD patients and controls, significantly different ASVs/OTUs were reduced to the lowest
assigned taxonomy. The number of significantly different ASVs/OTUs assigned to those taxa were normal-
ized to the total number of ASVs/OTUs in those taxa for the whole data set. The values normalized to taxon
diversity were ranked as more healthy-associated for those taxa with higher values in the controls or more
USD-associated for those taxa higher values in USD patients. For the stone microbiome, which is less diverse
and does not have a control population, taxa were determined by ranking each ASV/OTU by the mean rela-
tive abundance across all samples in the data set. Within each study, P values were the false discovery rate
corrected for multiple comparisons when applicable. Study-based heterogeneity in the results was assessed
by calculating the I2 value of the alpha- and beta-diversity metrics in the metamicrobiomeR package for R
statistical software (30). The analytical code is found at https://github.com/amill017/USD_metaanalysis
_2020. Metadata are provided as Text S1 in the supplemental material.

Data availability. Raw data for the meta-analysis was downloaded from the respective sequence
read archive (SRA) accession numbers SRP140641, SRP140933, SRP066940, SRP103884, SRP125171,
and SRP125191 for data analysis. Scripts used for analysis can be found at https://github.com/
amill017/USD_metaanalysis_2020. The metadata used for analyses is provided as in Text S1 in the sup-
plemental material.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
TEXT S1, TXT file, 0.3 MB.
FIG S1, PDF file, 0.1 MB.
FIG S2, PDF file, 0.2 MB.
FIG S3, PDF file, 0.1 MB.
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