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ABSTRACT The use of bioinformatic tools for read-based taxonomic and functional
analyses of metagenomic data sets, including their assembly and management, is
rather fragmentary due to the absence of an accepted gold standard. Moreover,
most currently available software tools need input of millions of reads and rely on
approximations in data analysis in order to reduce computing times. These issues
result in suboptimal results in terms of accuracy, sensitivity, and specificity when
used either for the reconstruction of taxonomic or functional profiles through read
analysis or analysis of genomes reconstructed by metagenomic assembly. Moreover,
the recent introduction of novel DNA sequencing technologies that generate long
reads, such as Nanopore and PacBio, represent a valuable data resource that still suf-
fers from a lack of dedicated tools to perform integrated hybrid analysis alongside
short read data. In order to overcome these limitations, here we describe a compre-
hensive bioinformatic platform, METAnnotatorX2, aimed at providing an optimized
user-friendly resource which maximizes output quality, while also allowing user-spe-
cific adaptation of the pipeline and straightforward integrated analysis of both short
and long read data. To further improve performance quality and accuracy of taxo-
nomic assignment of reads and contigs, custom preprocessed and taxonomically re-
vised genomic databases for viruses, prokaryotes, and various eukaryotes were devel-
oped. The performance of METAnnotatorX2 was tested by analysis of artificial data
sets encompassing viral, archaeal, bacterial, and eukaryotic (fungal) sequence reads
that simulate different biological matrices. Moreover, real biological samples were
employed to validate in silico results.

IMPORTANCE We developed a novel tool, i.e., METAnnotatorX2, that includes a num-
ber of new advanced features for analysis of deep and shallow metagenomic data
sets and is accompanied by (regularly updated) customized databases for archaea,
bacteria, fungi, protists, and viruses. Both software and databases were developed so
as to maximize sensitivity and specificity while including support for shallow meta-
genomic data sets. Through extensive tests performed on Illumina and Nanopore ar-
tificial data sets, we demonstrated the high performance of the software to not only
extract taxonomic and functional information from sequence reads but also to
assemble and process genomes from metagenomic data. The robustness of these
functionalities was validated using “real-life” data sets obtained from Illumina and
Nanopore sequencing of biological samples. Furthermore, the performance of
METAnnotatorX2 was compared to other available software tools for analysis of shot-
gun metagenomics data.
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Microbial communities exert key biological functions in a wide range of host-asso-
ciated and environmental ecological niches spanning from soil and water to spe-

cific tissues and body sites in plants and animals (1–6). The ubiquitous presence of bac-
teria in natural and artificial environments explains why microbial populations are now
extensively studied for their relevance pertaining to many aspects of human life,
including not only health and disease conditions but also industrial, agricultural, and
environmental settings (7).

Due to the increasing interest in microbial ecology, approaches based on next-gen-
eration sequencing (NGS) have been developed to obtain taxonomic, functional, and
genomic information. These techniques can be divided into two main branches, being
either amplicon based or shotgun sequencing based. The methodologies that rely on
PCR-based amplicons rapidly became the most popular due to their lower cost, avail-
ability of comprehensive bioinformatic tools such as mothur and Qiime (8, 9) for data
analysis, and the fact that they did not require extensive computing resources. Though
the latter approach is widely used to reconstruct accurate taxonomic profiles, it is lim-
ited in that it generally makes taxonomic assignments as far as the genus level (10, 11).
Recent methodological implementations (such as Dada2 to call amplicon sequence
variants [ASVs] and uSearch to call zero-radius operational taxonomic units [zOTUs])
can lead to unique amplicon sequences that allow assignment to species level, but this
is highly dependent on the amplified variable region of the 16S rRNA gene and on its
taxon-specific variability in closely related species. While long read sequencing of the
full-length 16S gene is still in its early stages of development, approaches based on
shotgun metagenomics sequencing are now becoming increasingly popular. In fact,
shotgun metagenomic data provide reliable information for reconstruction of taxo-
nomic profiles that are accurate down to the species level (10–12). In addition, since
shotgun metagenomic sequencing of complex bacterial populations covers the overall
genetic content of constituent microorganisms, this approach can be used to generate
functional information by screening for specific genes of interest and/or evaluate pres-
ence/absence of metabolic pathways. Moreover, assembly of metagenomic data sets
allows the reconstruction of draft genomes of the most abundant species (12–14). In
this context, introduction of long read sequencing, such as that generated by PacBio
and Nanopore sequencing platforms, now offers the opportunity to drastically improve
quality and completeness of metagenomic assemblies (13) and may allow the recon-
struction of high-quality draft genomes from metagenomic data sets, being suitable
for genomic and comparative genomic analyses.

While the vast majority of metagenomic data sets provided by next-generation
sequencers has the potential to provide comprehensive biological information, it
comes with the limitation of requiring extensive computing resources and associated
specialist software. For this reason, currently available bioinformatic tools tend to rely
on approximations for read-based taxonomic or functional classifications, such as iden-
tification of genus/species-specific marker genes or mapping of reads on reference
genomes (15–18). The downside of such approaches is that accuracy of the results is
directly correlated with the availability of reference genomes with sufficient sequence
identity to those constituting the analyzed microbial populations (19). While this has
only a minor impact on profiling of eukaryotes, due to limited sequence variability
among strains, it may cause a drastic drop in taxonomic assignment accuracy and/or
failure in detection when such approaches are used for profiling complex bacterial or
viral communities. Furthermore, reference genomic databases suffer from taxonomic
inconsistencies, as revealed by NCBI genome-based average nucleotide identity (ANI)
analyses (20), thereby contributing to the loss of accuracy of taxonomic assignments.

To address these issues, we developed METAnnotatorX2, a tool for read- and assem-
bly-based analysis of metagenomic data sets, including processing of hybrid data sets
composed of a combination of short and long reads. The METAnnotatorX2 platform
required a complete overhaul of its predecessor METAnnotatorX (12) so as to provide a
user-friendly tool for taxonomic and functional profiling of metagenomic short read data
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sets through a novel approach that maximizes sensitivity and specificity by relying on
improved databases and custom scripts. Moreover, METAnnotatorX2 represents a com-
prehensive easy-to-use pipeline for assembly of short, long, or hybrid read-based meta-
genomic data sets and species-specific genome reconstruction in GenBank format with
gene prediction and associated functional annotation based on the MEGAnnotator pipe-
line (21).

RESULTS AND DISCUSSION
The METAnnotatorX2 pipeline. The current range of available bioinformatic tools

for analysis of shotgun metagenomic data sets relies on approximations for taxonomic
or functional classifications based on reads, such as identification of genus/species-spe-
cific marker genes or mapping of the reads on reference genomes (22, 23). The drawback
of these approaches is that quality and reliability of the results are dependent on the
availability of reference genomes with high sequence identity to those constituting the
analyzed microbial populations, i.e., phylogenetically closely related strains with limited
unique genomic regions (22, 23). Taxonomic classification based on homology searches
through local alignments of reads in publicly available databases represents a superior
solution in terms of sensitivity and overall accuracy, yet this approach has been avoided
in the past due to longer computing times. However, recent advances in computer hard-
ware, e.g., introduction of central processing units (CPUs) with an increased number of
computing cores, and development of local alignment software, e.g., MegaBLAST (24),
now makes this approach feasible for day-to-day applications. Moreover, shallow meta-
genomics, i.e., analysis of a limited number of reads (500,000 or lower), generated by
shotgun metagenomic sequencing, has become popular as a cost-effective alternative
to 16S rRNA gene-based microbial profiling as it allows species-level accuracy with simi-
lar requirements in terms of sequencing data (11). For this reason, we developed a novel
application, METAnnotatorX2, based on the previously released METAnnotatorX tool
(12). METAnnotatorX2 encompasses a complete pipeline for taxonomic and functional
analyses of short reads and a pipeline for metagenomic assembly followed by taxonomic
classification of contigs as well as gene prediction and functional annotation (Fig. 1). The
technological improvements of METAnnotatorX2 compared to METAnnotatorX are out-
lined in Table S1 in the supplemental material.

In detail, input metagenomic data in .fastq format undergoes an initial quality filter-
ing step. Subsequently, the user is given the possibility to perform removal of host
DNA in case the analyzed data set refers to host-associated microbial populations. The
latter filtering step is a novel implementation of the METAnnotatorX2 with respect to
its predecessor, allowing the user to directly process raw sequencing data with
METAnnotatorX2 instead of processing the data with additional external software
aimed at data management. Retained sequences can then be used for read-based and
assembly-based analyses. Regarding read-based analyses, METAnnotatorX2 can per-
form a MegaBLAST local alignment of reads to preprocessed databases designed to
provide high accuracy taxonomic reconstruction. Although the accuracy of homology-
based searches is higher than search applications based on marker genes and/or read
mapping, the use of publicly available, unprocessed databases may negatively impact
the obtained results, especially for prokaryote profiling, as revealed by average nucleo-
tide identity analysis of the NCBI genome database (20). Thus, we developed specific
databases for eukaryotes (fungi, encompassing yeasts, and protists), bacteria, archaea,
and viruses that are available for download separately or together as a comprehensive
database for microbial profiling (see below for details). Release of updated databases is
planned at 6-month intervals. Reads with a nucleotide identity of .94% to reference
genomes are classified at the species level, while reads with a lower percentage iden-
tity are classified at the genus level as undefined species. These cutoffs are those gen-
erally employed for the ANI taxonomic assignment of genomes (20, 25). Notably, reads
showing equal best hits of nucleotide identity to multiple species are automatically
submitted to least common ancestor (LCA) prediction using the JGI BBTools Taxonomy
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Server (https://taxonomy.jgi-psf.org/) in order to provide the most updated LCA assign-
ment. This LCA step is disabled for reads that match against sequences in the viral
database due to high sequence identity in publicly available viral genomes. The previ-
ous release of METAnnotatorX performed read-based taxonomic classification using
the best hits provided by the RAPSearch2 tool against unprocessed gene-based RefSeq
databases. Here, the METAnnotatorX2 read-based algorithm takes advantage of a hun-
dred hits against filtered and taxonomically validated NCBI RefSeq genomes to gener-
ate an exhaustive taxonomic classification of each read. In addition to standard taxo-
nomic profiles for viruses, prokaryotes, and eukaryotes, METAnnotatorX2 provides
profiles corrected for species’ genome size based on a size table inferred by genomes
included in the preprocessed databases. The normalization of the read-based classifica-
tion is also a new METAnnotatorX2 feature developed to obtain an accurate view of
the actual abundance between the identified microorganisms disregarding their ge-
nome size. In fact, the latter proportionally impacts on the abundance of DNA frag-
ments undergoing sequencing, thus introducing a bias in the proportion of reads
obtained for each microbial species. In addition, this newly included approach has the
advantage of being suited to analysis of shallow metagenomic data sets (or a subset of
larger data sets), thus allowing high taxonomic accuracy with substantially reduced
sequencing costs.

An option is provided to align reads against two databases for functional classifica-
tion, i.e., the CAZy database (26, 27) and the MetaCyc database (28–30). Through these
databases, METAnnotatorX2 generates an annotation profile of enzymes belonging to

FIG 1 Schematic representation of read-based and assembly-based pipelines offered by METAnnotatorX2 for analysis of shotgun metagenomics data.

Milani et al.

May/June 2021 Volume 6 Issue 3 e00583-21 msystems.asm.org 4

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sy
st

em
s 

on
 3

0 
Ju

ne
 2

02
1 

by
 1

60
.7

8.
10

.1
63

.

https://taxonomy.jgi-psf.org/
https://msystems.asm.org


the glycobiome, classified in families as defined by the CAZy database (26, 27), and a
profile of metabolic pathways based on similarities to enzymes present in the MetaCyc
database (28–30).

Regarding assembly-based analyses, METAnnotatorX2 offers the possibility to per-
form metagenomic assemblies of short or long reads, as well as a hybrid mode option.
The software (meta)SPAdes (14) is exploited to perform metagenomic assemblies of
Illumina and/or Nanopore raw sequencing data (see Materials and Methods for details).
Assembled contigs of .5 kbp are taxonomically classified through the preprocessed
databases that are also used for read classification. In detail, megaBLAST is used to
align assembled contigs to the preprocessed databases in order to taxonomically
assign a given sequence in the same manner as performed for reads, and each pool of
contigs sharing the same taxonomy is used to generate a GenBank file with genes pre-
dicted and functionally annotated. These GenBank files can be visually examined with
genome browsers such as Artemis (31), thereby allowing straightforward genomic
analysis of metagenomic contigs belonging to the same species. The implementation
of this novel methodology for the classification of assembled contigs allows replace-
ment of the previous gene-based system of METAnnotatorX, which relies on unpro-
cessed RefSeq databases of genes. Thus, METAnnotatorX2 takes advantage of the full
length of each assembled contig instead of shorter sequences represented by the
genes encoded across contigs.

While METAnnotatorX2 has been developed to provide easy access to advanced
metagenomic analyses to nonspecialized users, a wide range of settings can be edited
in the “parameters” file, as described in the user manual, to obtain fine tuning of the
analysis pipelines. All information needed to install and run METAnnotatorX2 is
described in the user manual. METAnnotatorX2, its user manual, a test package encom-
passing Illumina and Nanopore data of three biological matrices, along with precom-
puted results and the set of preprocessed databases used by METAnnotatoX2 are avail-
able at http://probiogenomics.unipr.it/cmu/.

The METAnnotatorX2 databases. Decades of unsupervised submission of com-
plete and draft microbial genomes to public repositories have led to iterative misclassi-
fications that preclude accurate taxonomic profiling (20). For this reason, we released a
set of databases of reference genomes whose taxonomy was checked and corrected to
maximize the accuracy of homology-based taxonomic classification of reads and con-
tigs. These databases are meant to be used in conjunction with METAnnotatorX2 and
will be regularly updated on http://probiogenomics.unipr.it/cmu/. The previous release
of the METAnnotatorX tool was used in conjunction with several gene-based databases
directly downloaded from the NCBI server, including numerous entries afflicted by tax-
onomic classification errors. Therefore, in this new release of the tool, in addition to
the novel strategy used for taxonomic classification of DNA sequences, we provide the
user error-free databases that will improve the accuracy of taxonomic profiling.

Specifically, the prokaryotic database is generated by processing NCBI RefSeq
genomes, whose taxonomic classification was corrected based on the ANI matrix pre-
computed by NCBI (20). For each species, each genome is classified as the closest refer-
ence genome if the ANI value is .94% with a subject and query coverage of .70%.
This approach represents the gold standard for genome-based, species-level classifica-
tion of genomes, as proposed by recent publications (25, 32, 33). The minimum query
coverage is generally set at 70% because genomes undergoing classification through
the use of reference genomes may represent draft sequences and/or encompass
unique genomic regions, such as those originating from horizontal gene transfer (HGT)
events, which are not considered in an ANI evaluation for genome-based species-level
taxonomic classification (25, 32, 33). In this context, Richter and Rosselló-Móra (25) and
others (32, 33) demonstrated that 20% of the genome is sufficient for accurate taxo-
nomic classification through ANI evaluation. If the closest reference genome exhibits
an ANI value of ,94% yet shares the same genus as the original taxonomy attributed
to the processed genome entry, its taxonomy is retained since a reference for that
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species is probably not defined (this regularly happens for newly discovered species). It
is worth mentioning that in the current release of the METAnnotatorX2 databases
(October 2020), out of 730,679 genomes checked by ANI, the number of genomes with
a species match with the closest reference genome is 605,056. Thus, 125,623 genomes
appear to have discrepancies in their assigned taxonomy and were reclassified based
on the best ANI hit (.94%) using the NCBI reference genomes following the approach
described in the guidelines provided by NCBI (20).

In order to reduce database redundancy, and consequently reduce computing
times of METAnnotatorX2, we excluded from the prokaryotic database all microbial
genomes with ANI of .99% with their respective species reference genome.
Furthermore, the viral database has been generated using all genomes available in the
NCBI RefSeq database with the inclusion of host information, while the fungal/protist
eukaryotic database was designed to include all relevant genomes identified as “refer-
ence genomes” in the NCBI genome database. Notably, genomic contigs shorter than
1 kbp as well as 5 kbp and 12 kbp were removed from the viral, prokaryotic, and eu-
karyotic databases, respectively. Moreover, since we noticed that a number of micro-
bial genome assemblies contained portions of “alien” DNA, we removed contigs with
high sequence identity to common hosts of microbial populations, i.e., Homo sapiens,
Bos taurus, Canis lupus, Equus caballus, Felis catus, Gallus, Mus musculus, Rattus norvegi-
cus, and Sus scrofa. After these filtering steps, the resulting databases (release October
2020) are composed of 2,746 eukaryotic genomes, 27,463 prokaryotic genomes, and
10,419 viral genomes. In addition, ready-to-use databases for functional profiling based
on CAZy (26, 27) and MetaCyc (28–30) classifications are available for download at
http://probiogenomics.unipr.it/cmu/.

In order to include newly released microbial genomes, we intend to update all men-
tioned databases every 6 months.

Performance assessment of taxonomic and functional profiling through read-
based analysis of artificial data sets. The performance of METAnnotatorX2 in read-
based analyses was evaluated through artificial metagenomic data sets mimicking dif-
ferent biological matrices (see Data Set S1 in the supplemental material). These data
sets were generated from the inclusion of viral, archaeal, bacterial, and eukaryotic
(fungi) genomes typically found in a wide range of different environments such as
cheese, human feces, soil, infant gut, lung, sputum, milk, skin, and vaginal swabs (Data
Set S1). These genomes were processed using WGSIM software, included in the
SAMtools suite (34), in order to obtain artificial 150-bp Illumina paired-end reads with a
base error rate of 0.02 (https://github.com/lh3/wgsim/blob/master/wgsim.c#L248). A
variable number of reads for each genome were shuffled in the same .fastq file in order
to obtain artificial paired-end data sets with a known taxonomic composition (Data Set
S1). For each matrix, we generated a data set consisting of eukaryotic (fungi), bacterial,
archaeal, and viral genomes, representing a total of 20 million (20M), 10M, 1M, and
0.5M base pairs, respectively (Data Set S1).

The nine data sets were subjected to read-based taxonomic analysis with
METAnnotatorX2, allowing reconstruction of taxonomic profiles at the genus and spe-
cies level through processing of 100,000 reads, the suggested default number of reads
(editable by the user, see manual for details) needed to obtain a reliable taxonomic
profile of species present at .0.5% relative abundance and compatible with shallow
metagenomic applications (11) (Data Set S1). Notably, METAnnotatorX2 was able to
detect each expected species present in these artificial data sets (Fig. 2) (Data Set S1).
Moreover, in order to provide an overall evaluation of discrepancies in the retrieved
profiles, we implemented a specific index, called Deviation from Expected Abundance
index (DExA index), that represents the sum of absolute deviation in relative abun-
dance of each observed species compared to expected profiles as listed in Data Set S1
(Fig. 3). Thus, a DExA index of 100% means completely different profiles, while a value
of 0% indicates the obtained relative abundancies fully match the taxonomic composi-
tion of the artificial data sets listed in Data Set S1. This index allows the user to easily
compare the performance of various taxonomic tools in reconstructing expected
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FIG 2 Evaluation of species-level classification accuracy based on analysis of the nine artificial data sets. The four different
heatmaps show the performance of METannotatorX2, MetaPhlAn 3, Kraken 2, and METAnnotatorX tools in profiling the species

(Continued on next page)
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microbial profiles for artificial data sets (Fig. 3 and Data Set S1). Specifically,
METAnnotatorX2 can detect species-level profiles of archaea, bacteria, and fungi with
an average DExA of 0.76%, 3.21%, and 3.41%, respectively, along with viruses with an
average DExA of 8.51% (Fig. 3 and Data Set S1).

Results obtained with METAnnotatorX2 were compared with those retrieved using
available software for read-based taxonomic classification. In detail, we tested two of
the most widely used software tools for taxonomic profiling of shotgun metagenomics
data such as the recently updated MetaPhlAn 3.0 (16) and Kraken 2 (35), which rely on
mapping of reads on a database of species-specific marker genes or a customized re-
pository of whole genomes, respectively (Data Set S1). In addition, the previous version
of the software METAnnotatorX was used to compare its efficiency with that of the
novel pipeline. Notably, by using 100,000 reads, these software approaches generated
outputs with mixed efficiency in reconstructing the expected taxonomic profiles, both
in terms of misclassification and relative abundance accuracy (Fig. 2; see also Data
Set S1), an issue that has previously been reported (19). As shown in Fig. 2,
METAnnotatorX2 allowed the detection of all 123 microbial species present in the arti-
ficial data set, of which 91.9% had an observed relative abundance that deviated ,5%
from the expected relative abundance. In contrast, MetaPhlAn 3.0, Kraken 2, and
METAnnotatorX were able to identify 72.4%, 73.2%, and 87.8%, respectively, of the spe-
cies present in the artificial data set. Moreover, just 43.9%, 55.3%, and 61.0% of the spe-
cies were profiled by MetaPhlAn 3.0, Kraken 2, and METAnnotatorX, respectively, with
a relative abundance that showed a deviation of ,5% from the expected profiles
(Fig. 2; see also Data Set S1). Furthermore, the average DExA index values observed for
species-level classification of viruses, archaea, bacteria, and fungi were higher than
those obtained when employing METAnnotatorX2 (Fig. 3). In detail, the average DExA
values observed for METAnnotatorX2, MetaPhlAn 3.0, Kraken 2, and METAnnotatorX
were, respectively, 8.5%, 49%, 25.7%, and 55.1% for viruses, 0.8%, 9.4%, 51.7%, and
33.7% for archaea, 3.2%, 20.3%, 9.6%, and 24.9% for bacteria, and 3.4%, 70.6%, 100%,
and 29.2% for fungi (Fig. 3). These values illustrate the marked improvement in taxo-
nomic profiling accuracy offered by METAnnotatorX2 and associated preprocessed
databases as based on a sample set of just 100,000 reads. Statistics regarding
METAnnotatorX2 computing times tested using 5M reads from a paired-end Illumina
cheese sample data set processed with a workstation equipped with AMD Ryzen
Threadripper 3,970� 32 physical cores (64 threads) and 128Gb RAM (random access
memory) are reported in Table S2.

In summary, these results underscore that, although other read mapping-based
approaches allow the user to obtain acceptable results with fast computing times, they
elicited subpar performances in taxonomic profile reconstruction compared to
METAnnotatorX2. It may be expected that the shallow metagenomics approach repre-
sents the future successor to 16S rRNA gene microbial profiling as the gold standard
for cost-effective taxonomic profiling of microbial communities with species-level ac-
curacy. The artificial data sets corresponding to nine biological matrices were also
processed for functional profile reconstruction through METAnnotatorX2 in order to
reconstruct the glycobiome, i.e., the profile of enzymes involved in the metabolism of
carbohydrates, and the profile of metabolic pathways encoded by the microbiome as
classified by the CAZy and MetaCyc databases (Data Set S1). To validate these results,
reads corresponding to each genome used for artificial data set generation were ana-
lyzed alone with METAnnotatorX2, and the resulting functional profiles were compared
to preprocessed ones available through CAZy (http://www.cazy.org/Genomes.html)
and MetaCyc databases (https://metacyc.org/), generating fully compatible results.

FIG 2 Legend (Continued)
used to generate the nine artificial data sets. The black color indicates that the species was undetected or misclassified, the green
color means that the species was profiled with a deviation of ,5% compared to its expected relative abundance. The red color
means that the species was profiled with a deviation of .5% compared to its expected abundance.
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Performance assessment of the metagenomic assembly and genomic analysis
pipeline through artificial data sets. Reconstruction of genomes from shotgun meta-
genomics data, i.e., metagenomic assembly, has the potential to provide genomic infor-
mation of specific species constituting complex microbial populations (13, 14, 36–38).

FIG 3 Evaluation of METannotatorX2, MetaPhlAn 3, Kraken 2, and METAnnotatorX software tool performance
in retrieving the taxonomic profiles expected for the nine artificial data sets. The performance of the software
tools was evaluated using the DExA index, represented by the ratio between the sum of absolute variances
observed compared to the expected profiles. This means that a 0% DExA index score indicates that the tool
had retrieved all species with the expected abundance, whereas an DExA index score of 100% means that the
profiling software unclassified or misclassified all species in the artificial data set. Panels a, b, c, and d show
the performances of METAnnotatorX2, MetaPhlAn 3, Kraken 2, and METAnnotatorX, respectively.
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Nevertheless, while available assemblers have now been optimized to provide reliable
results when coassembling multiple genomes in metagenomic settings, the subsequent
processing of metagenomic contigs, including taxonomic assignment and gene analysis,
very much relies on user expertise due to the absence of an optimized comprehensive
bioinformatic processing platform.

For this reason, we included in METAnnotatorX2 a specific pipeline for the assembly
of metagenomic data through employment of SPAdes software (13, 14), taxonomic
assignment of assembled contigs and genomic analysis on a per-species basis. This
pipeline was tested using the same Illumina paired-end artificial data sets employed
for validation of read-based analysis (Data Set S1), as well as synthetic data sets repre-
sented by simulated Nanopore long reads of 8 kbp with an error rate of 0.3% (Data Set
S1). Moreover, due to the higher error rate that characterizes long read sequencing, a
hybrid approach is suggested in order to increase assembly coverage and sequence in-
tegrity through addition of short read data and thus increasing assembly base calling
accuracy. For this reason, METAnnotatorX2 is equipped with a specific pipeline for
hybrid assembly of short and long reads that was used for processing of the artificial
short and long read data sets. In this context, to perform assembly of long reads,
METAnnotatorX2 includes the additional assembler software Canu, which was absent
in the previous version of METAnnotatorX.

Contigs of .5 kbp obtained from short read-only, long read-only or hybrid assem-
bly of viral, archaeal, bacterial, or fungal data sets were subjected to taxonomic classifi-
cation with METAnnotatorX2. This exercise showed that METAnnotatorX2 is able to
assign the correct taxonomy with species-level accuracy to 98.5% of the contigs
(intended as the sum of total sequence length classified relative to the total sequence
length assembled) based on Illumina assembly, 99.2% of the contigs based on
Nanopore assembly and 94.2% of the contigs based on hybrid assembly (Data Set S1).
Moreover, each pool of contigs sharing the same taxonomy are processed and
grouped by METAnnotatorX2 in a single GenBank file with genes predicted and func-
tionally annotated based on the NCBI RefSeq genome, ready for downstream genomic
analyses. As expected, the percentage of genomes reconstructed and the number of
contigs retrieved for each species are proportional to genome size and the number of
reads constituting the artificial data sets as reported in Data Set S1. In this regard, the
hybrid assembly approach provided the best performance in terms of number of spe-
cies assembled and in terms of total contig length (Data Set S1).

Validation of METAnnotatorX2 through real biological samples. A set of five bi-
ological matrices covering human, animal, food and environmental microbiota, i.e.,
human sputum, human vaginal swab, dog feces, parmesan cheese, and cow litters,
were subjected to Illumina NextSeq 500 and Nanopore MinION sequencing in order to
validate METAnnotatorX2 with “real-life” data sets (Data Set S2). Intriguingly, by using
100,000 reads, analysis of short reads revealed that MetaPhlAn 3, Kraken 2, and
METAnnotatorX software are less effective compared to METAnnotatorX2 in recon-
structing species-level taxonomic profiles from complex metagenomic data (Fig. S1
and Data Set S2). In fact, for each of the five tested matrices, METAnnotatorX2 was able
to detect a higher number of microbial species with relative abundance of.0.5% com-
pared to MetaPhlAn 3 and Kraken 2 (Fig. S1 and Data Set S2). This is explained by the
fact that biological samples contain strains that are not present in public genomic
databases, as previously highlighted (19). Thus, local alignments followed by assess-
ment of sequence homology performed by METAnnotatorX2 were shown to provide
increased sensitivity compared to read mapping since the latter requires higher read
sequence identity compared to genomes or marker genes constituting the database
used for taxonomic classification. In addition, taxonomic classification employing the
previous version of the software METAnnotatorX, based on local alignment of the best hit
against unprocessed gene-based databases, showed inconsistent hits with respect to the
METAnnotatorX2 profiles. The absence in the previous pipeline of dedicated steps aimed at
removing host DNA resulted in the identification of Homo sapiens-related contamination.
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Furthermore, the absence of error-free taxonomic databases in METAnnotatorX pro-
duced many false positive hits caused by misclassification in the microorganism taxon-
omy, e.g., Escherichia coli, Salmonella enterica, Streptococcus pneumoniae, and Halolamina
sediminis.

Furthermore, it should be mentioned that METAnnotatorX2 performs normalization
of taxonomic profiles by genome size through a table of average total length of
genomes present in the databases used for taxonomic classification. A comparison of
raw and normalized taxonomic profiles is reported in Data Set S2.

The short and long reads obtained for these data sets were also subjected to short
read-only, long read-only, and hybrid assembly, followed by contig classification (Data
Set S2). The results confirmed what already had been observed for the analysis of artifi-
cial data sets, highlighting the higher performance of hybrid assembly versus Illumina-
only or Nanopore-only assemblies (Data Set S2).

Impact of the number of reads on the accuracy of taxonomic profiling and
computing times. In order to evaluate the correlation between the number of reads
employed for taxonomic profiling and the accuracy of the results as well as computing
times, we performed analysis of 200, 400, 600, 800, 1,000 (1K), 5K, 10K, 50K, 100K, 200K,
500K, 1M, 2M, 10M, and 20M reads of three data sets corresponding to a real biological
sample of cheese, an artificial data set Milk generated from publicly available genomes,
and an additional artificial data set. This data set was generated using sequencing data
obtained from bacterial strains of known species isolated and sequenced in the frame-
work of this study with Illumina 250-bp technology, named UG (Unpublished Genomes
data set) (Data Set S3). Notably, since the genomes used to construct the latter data set
are not deposited in NCBI and consequently are not present in current METAnnotatorX2
databases, the UG data set represents a simulation of a real sample suitable for further
validation of species-level profiling accuracy. Benchmark analysis was conducted exploit-
ing the DExA index calculated by comparison of retrieved profiles with respect to: (i)
expected profiles of the two artificial samples; (ii) the profile obtained at 10M reads, i.e.,
the highest sequencing depth, for the cheese real sample.

The obtained results showed that MetannotatorX2 is able to predict reliable profiles
already at 10K reads, as evidenced by a low average DExA index of 2.46% (Fig. S2 and
Data Set S3). Moreover, the DExA curve tends to reach a plateau after 100K reads, corre-
sponding to an average of 2.39% (Fig. S2 and Data Set S3). Remarkably, these findings
indicate that profiling accuracy provided by MetannotatorX2 reaches its optimal value at
100K reads, thus making it unnecessary to set greater sequencing depth levels which
would only affect the overall sequencing cost without any appreciable gain in taxonomic
profiling performances (Fig. S2 and Data Set S3). Oddly, the METAnnotatorX2 approach
should not be used for profiling of complete deep shotgun metagenomics data sets, as
it is unfeasible to analyze the overall sequencing output of next-generation sequencers,
such as the 400M reads produced by a NextSeq Run, within a reasonable time.

METAnnotatorX2 running times and memory requirements were also evaluated
and compared to those of Kraken 2, MetaPhlAn 3, and METAnnotatorX (Data Set S3).
As expected, the drawback of the higher accuracy of METAnnotatorX2 is the increased
computing time that makes it unsuitable for taxonomic profiling of data sets consti-
tuted by millions of reads. Nevertheless, METAnnotatorX2 was designed to specifically
analyze shallow metagenomics data sets of 100K reads or lower, which we demon-
strated to be sufficient for accurate taxonomic profiling (Fig. S2), which was validated
using previously published data (10–12). Furthermore, comparison against its prede-
cessor METAnnotatorX highlighted that METAnnotatorX2 is faster when used for classi-
fication of reads, taking just a tenth of the computing time at 10K reads and less than
half the time at 100K reads (Data Set S3).

In this context, it is worth mentioning that METAnnotatorX2 is also able to perform
functional analyses of deep metagenomic data sets (Data Set S1) with low computing
times, i.e., ,5 min per sample for 20M read data sets (Table S2), while also allowing
metagenomic assembly with an average of 29 min per sample, taxonomic classification
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of predicted contigs with an average of 4 min per sample and species-specific
GenBank file generation in approximately 10 min (Table S2).

Impact of the number of microbial species on the accuracy of taxonomic
profiling. Five artificial data sets composed of random bacterial species ranging from
10 to 1,000, each represented by 100K 150-bp-long random artificial Illumina reads,
were used to test for phylogenetic biases in the detection of microbial taxa (Data Set
S4). Remarkably, results of the taxonomic classification with METAnnotatorX2 showed
that all bacterial species were successfully detected by METAnnotatorX2 in each sam-
ple, with average numbers of reads of 9,934, 1,983, 982, 196, and 98 for each taxon
being very close to the theoretical values of 10,000, 2,000, 1,000, 200, and 100 reads
(Data Set S4). Thus, increasing the number of putative taxa from 10 to 1,000 in a data
set of 100K reads does not appear to affect the accuracy of taxonomic profiling.

Additionally, five artificial data sets composed of 10 random bacterial species, each
represented by 100K 150-bp-long random artificial Illumina reads, were used for model
performance measures to track the number of false positive (FP), false negative (FN),
true positive (TP), and true negative (TN) results in the microbial classification (Data Set
S4). The classification was performed by using a custom NCBI RefSeq genome database
in which strains belonging to five random bacterial species of each data set were
removed (Data Set S4). This benchmark allowed us to query the database with 50K
reads of predicted TP and 50K reads of predicted TN, resulting in an average TP rate of
98.1%, and an average TN rate of 97.9%. The TN rate showed that most of the reads
belonging to species removed in the custom database resulted in the classification of
an unknown species, highlighting an average FN rate of 2.1% between data sets
(Table S3).

Altogether, the results achieved from the above in silico benchmarks confirmed the
absence of significant biases in the taxonomic classification of reads and the high accu-
racy and validity of the proposed pipeline.

Benchmarking of the main variables involved in taxonomic assignment. The
METAnnotatorX2 pipeline can be customized by editing of the “parameters” file, which
allows the user to personalize a range of variables described in the user’s manual. The
“parameters” file provided along with METAnnotatorX2 is preconfigured with optimal
balanced settings for taxonomic profiling, which were derived from extensive testing.
In detail, the cutoffs corresponding to minimum alignment E value and minimum
alignment coverage as well as the minimum identity for genus-level and species-level
classification of reads were evaluated exploiting shallow metagenomic data corre-
sponding to the two artificial Illumina data sets Milk and UG (Fig. S3 and Data Set S3).
The impact of the tested variables on the predicted taxonomic profiles was assayed by
evaluation of the DExA index compared to the expected profiles of Milk and UG artifi-
cial data sets.

Regarding the minimum E value for alignment hits, data collected revealed that the
average DExA index is stable for values ranging from e21 to e240, indicating that the
alignments’ best hit generally have higher E values (Fig. S3 and Data Set S3). In con-
trast, E values lower than e240 induce an increase in the average DExA index due to
excessive stringency that causes exclusion of false negative results (Fig. S3 and Data
Set S3). Based on these results, the default minimum E value was set to e25.

Furthermore, analysis of the minimum alignment coverage indicated limited impact
of this setting on quality of the results, with 100% coverage providing limited accuracy
gain in terms of average DExA index (Fig. S3 and Data Set S3). Ninety-five percent of
coverage was chosen as the default setting in order to compensate for expected inac-
curacy in the alignment of individual read ends.

Moreover, we also evaluated the impact of the minimum identity for taxonomic
assignment at the genus and species level (Fig. S3 and Data Set S3). These analyses
showed that the minimum identity for genus-level classification has limited impact on
the predicted profiles. Nevertheless, since real biological samples may include novel
species without representative genomes in public databases, we suggest the use of a
minimum identity of 20% to allow for their classification at the genus level. In contrast,
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the minimum identity for species-level classification negatively affects the average
DExA index for identity values higher than 94% due to excessive stringency, thus con-
firming previously reported data regarding genomic average nucleotide identity
between strains of the same species (20, 32, 39). Thus, 94% identity is provided as the
default setting as minimum identity for species-level classification.

Conclusions. Despite the increasing scientific interest in performing shallow meta-
genomics, functional profiling of metagenomes and hybrid assembly approaches, a
comprehensive and ready-to-use bioinformatic platform for guided data analysis is still
missing.

For these reasons, we established METAnnotatorX2, a user-friendly and highly cus-
tomizable application designed to include all relevant tools for analysis of shotgun
metagenomic data. These tools encompass read-based analyses for taxonomic profile
reconstruction and functional assessment of metagenomes. Furthermore, short and
long reads can be used as input for unmixed or hybrid assemblies, and the retrieved
metagenomic contigs can be taxonomically classified and processed to obtain species-
specific GenBank files with predicted and functionally annotated genes, ready for
downstream genomic analyses. In the context of this study, we developed a set of pre-
processed databases specific for viruses, prokaryotes, as well as fungi and protists that
were designed to allow accurate taxonomic assignments of reads and contigs corre-
sponding to complex microbial communities. In order to provide default settings for
the most common usage scenarios, we performed testing of multiple settings of the
main variables that can be defined by the user in order to customize METAnnotatorX2
pipeline.

Performances of METAnnotatorX2 were assessed and compared to two other avail-
able and commonly used software tools, as well as to the previous version
METAnnotatorX, using artificial short and long read data sets mimicking microbial pop-
ulations typically harbored by nine different matrices as well as by analysis of five “real-
life” biological samples. Our results indicate that METAnnotatorX2 represents the pre-
ferred choice for taxonomic analysis of shallow metagenomics data sets as well as for
functional analysis of microbiomes. In addition, METAnnotatorX2 provides a complete
pipeline for unmixed and hybrid assemblies of short and long reads, providing species-
specific reconstruction and gene annotation of microbial genomes from metagenomic
data.

MATERIALS ANDMETHODS
Ethical approval and consent to participate. All experimental procedures and protocols involving

animals were approved by the Veterinarian Animal Care and Use Committee of Parma University and
conducted in accordance with the European Community Council Directives dated 22 September 2010
(2010/63/UE). Human participants gave their informed written consent before enrollment. All investiga-
tions were carried out following the principles of the Declaration of Helsinki.

Sample collection. For the purpose of this study, a total of five samples were collected, encompass-
ing five biological samples of each of the following matrices: animal feces, human vaginal swabs, human
oral samples, litters from dairy cattle, and a cheese sample. Animal feces were collected immediately af-
ter defecation. Humans and animals included in this study had not taken antibiotics during the previous
6 months. The cheese sample was retrieved by trimming a fresh cheese shape. In all cases, immediately
after collection, samples were kept on ice and shipped to the laboratory under frozen conditions where
they were preserved at 280°C until further processing.

Human and animal fecal samples together with oral and litter samples were subjected to DNA
extraction using the QIAmp DNA stool minikit (Qiagen, Germany). A ZymoBIOMICS DNA Miniprep kit
(Zymo Research Corporation USA) was used for DNA extraction from vaginal swabs, while DNA extrac-
tion from cheese samples was performed using the DNeasy mastitis minikit (Qiagen, Germany). DNeasy
PowerSoil kit (Qiagen, Germany) was employed for DNA extraction from soil samples. In all cases, DNA
extractions were performed following the manufacturers’ instructions.

Illumina shotgun metagenomics sequencing. The extracted DNA was prepared following the
Illumina Nextera XT DNA Library Preparation kit. Briefly, the DNA samples were enzymatically frag-
mented, barcoded, and purified involving magnetic beads. Samples were then quantified using a fluoro-
metric Qubit quantification system (Life Technologies, USA), loaded on a 2200 Tape Station instrument
(Agilent Technologies, USA) and normalized to 4 nM. Sequencing was performed using an Illumina
NextSeq 500 sequencer with NextSeq High Output v2 kit Chemicals 150 cycles for metagenomics data
sets and using an Illumina MiSeq sequencer with MiSeq reagent kit V3 600 cycles for bacterial genomes.
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Nanopore shotgun metagenomics sequencing. DNA was extracted from matrices using different
commercially available kits; the DNA from a vaginal swab sample was extracted with ZymoBIOMICS min-
iprep kit (Zymo Research, USA), from an oral sample with QIAmp DNA minikit (Qiagen, Germany), from a
dog fecal sample and soil sample with the QIAamp Fast DNA Stool minikit (Qiagen, Germany). A quantity
and quality check was performed using a fluorometric Qubit system (Life Technologies) and Agilent
Tape Station. DNA was then processed following the Native barcoding genomic DNA (with EXP-NBD104,
EXP-NBD114, and SQK-LSK109) protocol which consists of a few steps: DNA repair and end prep, native
barcode ligation, adapter ligation and cleanup. At the end of the protocol, the fragment length and the
amount of the pooled samples were verified by means of Agilent Tape Station and Qubit fluorometer.
The sequencing was performed on a MinION (Oxford Nanopore Technologies) loading the final library
on a 9.4.1 flow cell following the section “Priming and Loading the SpotON flow cell” of the previously
mentioned protocol.

Analysis of metagenomic data sets. The obtained fastq files were filtered to remove reads with a
quality of,25, and to retain reads with a length of .149 bp. Quality-filtered data were then used for
further analysis employing METAnnotatorX2, Kraken 2, MetaPhlAn 3, or METAnnotaorX for taxonomic
profile reconstruction. Software packages used for comparisons were used with default settings. Further
assembly analyses were performed with METAnnotatorX2 by means of the metagenomic assembler
(meta)SPAdes with the running mode “spades.py –meta”.

Availability of data and materials. Artificial data sets used in this study can be downloaded at
http://probiogenomics.unipr.it/cmu/. Real biological samples used in this study can be downloaded by
NCBI trough BioProject code or accession no. PRJNA672826. Source code is available at https://doi.org/
10.5281/zenodo.4954284.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
DATA SET S1, XLSX file, 5 MB.
DATA SET S2, XLSX file, 0.1 MB.
DATA SET S3, XLSX file, 0.1 MB.
DATA SET S4, XLSX file, 0.1 MB.
FIG S1, PDF file, 0.1 MB.
FIG S2, PDF file, 0.1 MB.
FIG S3, PDF file, 0.1 MB.
TABLE S1, XLSX file, 0.01 MB.
TABLE S2, XLSX file, 0.01 MB.
TABLE S3, XLSX file, 0.01 MB.
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