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Abstract

We present two meaningful and effective non-ideal constitutive characterizations for a
multiple impulsive constraints S comprising a finite number of non-ideal frictionless
constraints of codimension 1, described in the geometric setup given by the space—time
bundle M of a mechanical system in contact/impact with S. Thanks to the geometric
structures associated to the elements of S, we introduce a symmetric characteriza-
tion, that does not distinguish the elements forming S as regards mechanical behavior,
and an asymmetric one that makes this distinction. Both the characterizations pro-
vide a generalization of the characterization of ideal multiple constraints presented in
Pasquero (Q Appl Math 76(3):547-576, 2018). The iterative nature of these charac-
terizations allows the introduction of two algorithms determining the right velocity of
the system in case of single or multiple contact/impact with symmetric or asymmet-
ric constraints S, once the elements forming S and the left velocity of the system are
known. We show the effectiveness of the two possible choices with explicit implemen-
tations of these algorithms in two significant examples: a simplified Newton’s cradle
system for the symmetric characterization and a disk in multiple contact/impact with
two walls of a corner for the asymmetric one.
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1 Introduction

Jet bundle theory found fruitful application in the study of Classical Mechanics of
systems with a finite number n of degrees of freedom since the late 1900 (see e.g.,

B Stefano Pasquero
stefano.pasquero @unipr.it

Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area
delle Scienze 53/a (Campus), 43124 Parma, Italy

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00332-021-09718-0&domain=pdf
http://orcid.org/0000-0001-9261-8542

61 Page2of18 Journal of Nonlinear Science (2021) 31:61

Pommaret 1988; Massa and Pagani 1991) and more specifically in classical impulsive
mechanics since the early 2000 (see e.g., Pasquero 2005).

One of the best assets of jet bundle theory applied to classical mechanics consists in
its natural framing of time-dependent description and frame independent description
of the Lagrangian representation of mechanical phenomena. Frame independence is
particularly important in impulsive mechanics, where the concept of velocity, intrinsi-
cally dependent on the choice of a frame of reference, plays a crucial role in the laws
that govern the motion both for free and constrained systems.

The jet bundle geometric context are especially suitable to frame the so-called
event-driven algebraic approach to impulsive systems, where every impact happening
in the time evolution of the system is considered as an isolated event with the system
in a fixed configuration in contact with the constraints and where the kinematic state of
the system after the impact can be expressed as function of the kinematic state before
the impact. In particular, the jet bundle context allows a very simple definition of con-
stitutive characterization of impulsive and/or unilateral constraints, that is, roughly
speaking, the rule to which the reactive impulse is subject in order to restore determin-
ism. On the understanding that the only compulsory condition for a characterization
is to restore determinism of classical mechanics, the choice of a characterization can
be based on several different requirements: for instance geometric properties of the
constraint itself, frame independence, ideality, extremality, generalization of known
cases, physical meaningfulness, agreement with experimental data and so on. The
following different cases of impulsive constraints and characterizations have found a
satisfactory description in the geometric context of jet bundle theory:

e Ideal single positional constraints of codimension 1 and of codimension greater
than 1 (see Pasquero 2005);

e Ideal constraints of mixed nature (positional with additional permanent and/or
instantaneous kinetic constraints; see Pasquero 2006);

e Non-ideal single constraints of mixed nature (this case can be divided into non-
ideal constraints without or with friction; see Pasquero 2008);

e Ideal multiple positional constraints formed by 2 < r < n constraints of codi-
mension 1 (see Pasquero 2018).

The relationships between the cases listed above are illustrated by the following
diagram that shows, starting from the “progenitor” case of ideal single positional con-
straint of codimension 1, the increasing refinement of the modeling and the essential
distinction between single and multiple constraints.

ideal, single, positional, of cod. 1

ideal, single, positional, of cod. > 1

/\

ideal, multiple, positional (of cod. > 1) ideal, single, of mixed nature
O non-ideal, single, of mixed nature
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Multiple contact/impact, that is the situation when a mechanical system is simulta-
neously in contact with two o more constraints and impacts with one or more of them,
occurs for many mechanical systems, from scholarly cases such as billiard balls to
more up to date and applicable cases such as granular matter and kinematic chains.

The aim of this paper is to present one step further in the left column of the diagram
above by defining and analyzing two possible constitutive characterizations of non-
ideal frictionless multiple positional constraints in symmetric and asymmetric cases.
In the symmetric case, the characterization consists in a direct generalization of the
ideal one by introducing a suitable global coefficient of restitution (COR) applicable
to each element of the multiple constraint. In the asymmetric case, the characterization
differentiates the single constraints by considering a (possibly) different COR for each
element of the multiple constraint. Of course, the asymmetric characterization comes
down to the symmetric one when the CORs of the single constraints are all the same.

The geometric context to which we refer in this paper is the same of Pasquero
(2018), fit to manage multiple positional constraints formed by 2 < r < n constraints
of codimension 1. In order to avoid the technicalities of multiple indexes, and without
significant loss of generality, we will consider r = 2, then modeling simultaneous
contact/impact of the mechanical system with two positional constraints of codimen-
sion 1. Moreover, we restrict our attention to systems subject only to positional (and
not Kinetic) constraints.

With the intention of getting the paper closer to self-consistency, and also in order
to fix notation, a very concise description of the geometry of the Lagrangian setup of
constrained impulsive mechanical systems subject to multiple positional constraints
is presented in Sect. 2. It is a short version of that presented in Pasquero (2018). The
reader interested in a wider survey on the argument can also refer to Pasquero (2018).

The main known ideas about the concept of impulsive constitutive characterization
and the application to single constraints and ideal multiple constraints are presented in
Sects. 3.1 and 3.2, respectively. The characterizations of symmetric and asymmetric
non-ideal frictionless multiple constraints, that constitute the innovative part of the
paper, are presented in Sects. 3.3 and 3.4. The general procedure applicable when
r > 2 is sketched in Sect. 3.5.

The iterative nature of the procedure giving the characterizations allows the imple-
mentation of algorithms effectively applicable to study impacting mechanical systems:
Sect. 4 presents two examples of these applications. In Sect. 4.1, we illustrate the behav-
ior of the symmetric characterization applied to a simplified version of the Newton’s
cradle, formed by three equal balls. This is a case of “multiple contact with repeated
single impacts in a symmetric constraint” (different to the case “multiple impact in
a symmetric constraint,” an example of which is analyzed in Fassino and Pasquero
(2019)). In Sect. 4.2, we illustrate the behavior of the asymmetric characterization
applied to a “multiple impact in an asymmetric constraint,” analyzing the multiple
impact of a disk in a corner formed by two walls having different CORs.

The list of references is based on the minimality criterion of making the paper
self-consistent and then is focussed on the specific approach given by the jet bundle
framework. Different choices, even if restricted to the works pertaining only multiple
impacts, could draw away the attention of the reader from the peculiar approach of
this paper and moreover could give rise to reasonable criticisms and concern (Saracco
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2020). However, the reader interested in classical approach to contact/impact mechan-
ics can find foundations, main results and a huge bibliography in Johnson (1985),
Stronge (2000), Brogliato (1996). A different approach to frictionless multiple impacts
can be found in Liu et al. (2008, 2009). Different but still heavily based on geometric
techniques approaches to unilateral and impulsive constraints can be found in Ibort
and De Leon (1998), Cortés and Vinogradov (2006).

2 Geometry of the Lagrangian Setup

In this part, we concisely describe the Lagrangian geometric setup suited to study
impulsive mechanics of systems subject to positional constraints, and we recall the
main definitions and results about the characterization of impulsive constraints in this
context. With few exceptions, the material is not new (for a more detailed discussion
we refer to Pasquero (2018) and the references within).

2.1 Free Systems

The configuration space—time of amechanical system with a finite number n of degrees
of freedom is a fiber bundle 7; : M — [E where M is a (n + 1)-dimensional
differentiable manifold, E is the 1-dimensional euclidean space representing the time
axis, and ; is the projection implementing the absolute time axiom. We usually refer
M to fibred coordinates (¢, xt x™), where t is a global euclidean coordinate on
E. A motion of the system is a section y : E — M, locally represented by a map
y = y(t) such that t ~ (¢, x' (1), ..., x"(1)).

The (2n + 1)-dimensional vector bundle = : V(M) — M of the vertical (with
respect to 77;) vectors that are tangent to the fiber of M is the subbundle of the tangent
bundle 7 : T(M) — M given by the space-like vectors. The elements of V(M)
have local representation V = V! ﬁ 4.4V ai"'

The (2n + 1)-dimensional affine bundle = : J; (M) — M of the vectors that are
tangent to any possible motion of the system in any point is the subbundle of the tangent
bundle 7 : T(M) — M given by the time-like vectors, also called absolute velocities.
The elements of J; (M) have local representation p = % + p! 037 +---+p" Bgn .

The vertical vector bundle V (M) is endowed with a positive definite metric that
is a space-like scalar product ® : V(M) x g V(M) — R locally expressed by
®(Vy1, Vo) = gij Vli VZJ , where the (mass) matrix g;; takes into account of the massive
properties of the system.

The (fibred) action of V(M) on J; (M) given by + : J{(M) x V(M) — J1 (M)
such that, locally

d d ad
V = 1 Vl n i
P+ St P VDo OV

shows that J; (M) is an affine subbundle of T(M) modeled on the vector bundle
V(M).
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A frame of reference for M is a time-like vector fieldh = % +H(t, x") 037 +-- -+
H" (1, x)-2. Every frame h determines a diffeomorphism Ay, : J{(M) — V(M)

of Jy (M)a\);/ith V(M) such that Ap(p) = p — h(zr(p)). For every absolute velocity
p of the system, the space-like vector A(p) = p — h(z(p)) is the relative velocity
Vh(p) of p with respect to the frame h. The function Ky, : J;(M) — R such that
Kn(p) = % @ (Vh(p), Vh(p)) is the kinetic energy of the system with respect to the
frame h.

An impulse acting on the system is an element I € V (M). The mechanical law
governing the impulsive phenomenon is simply the action + : J;(M) x V(M) —
J1(M): given a left velocity py, of the system and an impulse I such that 7(p;) =
7w (I) € M, we can determine the right velocity pg = pr+1. Givenaframeh € H, the
action Ay such that (pg —h) = (pr —h)+1Ior, thatis the same, (Vh)g — (Vh)L = 1,
shows the independence by the frame of reference of the jump of velocities given by
L

2.2 Positional Constraints

A positional constraint S is a (s+1)-dimensional fibred subbundle i : S — M without
boundary. The bundle S determines the following additional geometric objects and
structures relative to the system:

e The contact condition of the system with the constraint. The system is in contact
with the constraint if its configuration x € i(S) C M. Since we adopt the event-
driven approach; later on the system will be always considered in contact with the
constraint;

e The affine subbundle iy, : J1(S) — J;(M) of the absolute velocities that are
tangent to S and the vector subbundle i, : V(S) — V(M) of the vertical vectors
that are tangent to the fibers of S;

e The pull-back bundles 7 : (i,)*(J1(M)) — S and 7w : (i,)"(V(M)) - S,
representing the bundles of time-like and space-like vectors of the system when
the system is in contact with the constraint S;

e The splitting (i,)*(V(M)) = i,(V(S)) @& V(S) with its associated projec-
tion operators Py (s), P‘J;( S) induced by the vertical metric ® and the splitting
() (J1M)) = ix(J1(S)) ® V(S) with its associated projection operators
Pr» Pls)

o The set H s of the rest frames of S, that is those frames hs of M such that (hs) ¢
is tangent to S.

Some comments are in order to apply these structures in the context of impulsive
mechanics.

Heuristically, the pull-back bundle (i,)*(J;(M)) is formed by the absolute veloc-
ities of the system p € Ji(M) applied in points of S but not necessarily tangent to
S: then (i,)*(J1(M)) is the natural geometric framework fit to analyze the behavior
of § viewed as a unilateral positional constraint. Since the system is always supposed
in contact with the constraint, focussing mainly on the fibers of the bundles, later on
we make the identifications iy (J1(S)) =~ Ji(S), ix(V(S)) >~ V(S), and the identi-
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fications (iy)*(J1(M)) =~ J1(M), (ix)*(V(M)) =~ V(M) (even though these last
identify bundles that are structurally different since they have different base mani-
folds).

Given an absolute velocity p € J;(M) of the system in contact with S, the vertical
vector Vfg' P = Pj; S (p) assumes the “frame invariant” meaning of orthogonal
component of the absolute velocity p with respect to S. We recall, however, that the
concept of tangent component of p with respect to S has not a frame invariant meaning
(see Pasquero 2005).

A positional constraint S is called unilateral if two sets A(S) C J; (M) and p(S) C
J1 (M) are assigned so that J; (M) can be written as the disjoint union

JIM) = 1S U J1(S) U p(S). D

The set Ls(J1(M)) = A(S) U Ji(S) is the set of the admissible left velocities
(or incoming or entrance velocities) for the system (in contact with S). The set
Rs(J1(M)) = Ji(S) U p(S) is the set of the admissible right velocities (or out-
going or exit velocities. See Pasquero 2018). The system with absolute velocity p has
an impact with the constraint S if and only if p € A(S).

If codim(S) = 1, then S has a natural structure of unilateral constraint. Since
JIM) = J1(8)®V(S) with V(S) of dimension 1, let Uz be such that V-(S) =
Lin{Ufg-}. Then, for instance, we can define

MS) = {p e M) & (Vi) US) < 0} |

p(S) = {p € Ji(M)| D (Vé(p),U§> > o} ,

and of course we have J;1(S) = {p € Ji(M)|®(Vs(p).Us) = 0} If
Fs(t,x',...,x") = 01is a local Cartesian representation of S, then (for a suitable
choice of Ué) we have (see Pasquero 2018)

PEAS) & pFs) <0 pepS) & pFs) > 0. @)

2.3 Multiple Positional Constraints

A multiple positional constraint S is the assignment of two (or possibly more) posi-
tional constraints S, S satisfying

(i) Both Sy, S» are of codimension 1;
(i) S = §1 NSy # @, and it is a regular subbundle of M,
(iii) if VE(S)) = Lin{Ué_}JH,z, then Ung_l’UkJS‘_Z are independent vectors.

The system has a (multiple) contact with S if its space-time configuration x € S.
Due to condition (iii) above, a multiple positional constraint can also be considered
as unilateral. For instance, labeling for simplicity with the indexes 1, 2, 12 the objects

@ Springer



Journal of Nonlinear Science (2021) 31:61 Page70f18 61

relative to S1, Sa, S, respectively, we can set:
perS & O(Vi(,UH <0 or ®(Vy(p),Us) <0

<I>(V1L(p), Ull) >0 <I>(V1l(P),U1L) >0 3)
pe oS & or
q’(VzL(P),Uzl) >0 ®(V2l(P),U2L) >0

For every p € Ji(M), we have then three different orthogonal velocities:
Vll2 P, Vf P, V2L (p)- The following result clarifies the relation between these veloc-
ities.

Proposition 1 For every p € J1 (M), we have that

i) Viz(p) = Vi (p) ifand only if V1 (p) = 0 fori # j;
ii) Vi (p) = Vi()+Va(p) ifandonlyif ®(Vi(p), V¥ (p)) = (U, Uy) = 0.

Proof Since Ji(S) C Ji(Sy), @ = 1,2, we have V-(Sy) € VE(S), o = 1,2.
Then, due to the independence condition (iii) and the dimensions of the spaces, we
have V1(S) = V1(S1) @ V1(Sy). In particular, for every p € J;(M) we have
sz(p) = )»Vll p) + MV%‘(p). Moreover, we have that

p=Pi(p)+ Vi = PuPi(p)+ Vi(Pi(p) + Vi (p)
p="P2(p) + Vi (p) = P12(P2(p)) + Viz(P2(p)) + V5 (p)

with
@ (VAP Vi ®) = & (VEP20). V@) = 0.
Since P12(p) = P12(P1(p)) = P12(P2(p)), we have that

Via®) = AVi () +1V2 (@) = Via(P1®) + Vi (p)
Vi (@) = AVi (@) +1V3 () = Via(P2(p) + V2 ().

Therefore, by orthogonality, we have A = u = 1 and so the first statement. About the
second statement, we have that:

“=7if V() = Vi + Vy(p), then VL(Pi(p)) = Vy(p) and so
(Vi (p), V3 (p) = 0.

“=" if @(Vi(p), V3 (p) = 0, then Vi(P1(p)) = wV; (p) and Vi3 (P2(p)) =
AVi(p), sothat A = = 1 and Vi,(p) = Vi (p) + V5 (p).

O

The absolute velocity p determines a multiple impact if p € A(Sy) and p € A(S»)
(and of course it determines a single impact with multiple contact if the space—time
configuration 7 (p) € S and p € A(Sy) “exor” p € A(S2)).
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3 Constitutive Characterizations of Impulsive Constraints

In the frame independent context of Lagrangian systems, a characterization for an
impulsive constraint (not necessarily positional and/or of codimension 1) is a map
I: /(M) — V(M) assigning to every absolute (left) velocity py € J1 (M) of the
system in contact with the constraint a uniquely determined reactive impulse, that is a
space-like vector I(pz) € V(M). Once I(pz) is known, an absolute (right) velocity
Pr € J1(M) is determined by the rule pg = pr + I(pL) (see e.g., Pasquero 2018).
Later on the constraints will be always considered as unilateral.

3.1 Single Constraints

The simplest case of positional constraint S with codim(S) = 1 is emblematic: The
only requirements of frame independence and ideality, in the form of conservation of
kinetic energy for all the rest frames of S, univocally determine the characterization as
the “reflection rule” I(py) = —2 VJS- (pr) (see Pasquero 2005). An analogous char-
acterization turns out to be significant also in more complex cases, such as ideal
constraints of codim(S) > 1 or in presence of ideal kinetic constraints of both
permanent or instantaneous kind (see Pasquero 2005, 2006). The introduction of a
(Newtonian) COR ¢ € [0, 1] allows to generalize the “reflection rule” also in case of
non-ideal frictionless constraints, in the form I(py) = —(1 4 ¢) Vfg- (pL) (see Pas-
quero 2008). Of course, the condition ¢ = 1 returns the case of ideal constraint, while
the condition ¢ = 0 gives in this case the totally inelastic impact, with the annihilation
of the normal (with respect to §) component of the impact velocity and the maximum
possible loss of kinetic energy of the system (with respect to every frame hs € Hg).
Note, however, that this does not imply the rest of the system after the impact, since
this concept has a clear meaning only if a frame of reference is fixed.

To give a physical meaning to the unilaterality of the constraint S, the characteri-
zations above must be detailed in the form (with ¢ € [0, 1])

—(14+¢e)V5(pr) if pL € A(S)
I(pL) = Q)
0 if p € Rs(J1(M).

This assignment naturally gives an outgoing right velocity pg starting from an incom-
ing left velocity pr.

3.2 Multiple Ideal Constraints

Due to the presence of three different orthogonal velocities, the same ideas are not
analogously appropriate to model a multiple constraint S = &1 N S3. Once again
labeling for simplicity with the indexes 1,2, 12 the objects relative to Sy, S2, S,
respectively, the simplest rule I(p,) = —2Vi,(pr) does not take into account the
multiple nature of the constraint, while a rule combining Vll (pL) and VzL(pL) must
take into account several details, for instance:
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e The “incoming” nature of py, that could be incoming for S alone, or for S» alone
(in case of single impact), or for both (in case of multiple impact);

e The symmetric or asymmetric behavior of the constraints S; and S» (that is if the
two constraints have or not the same COR);

e The verification of the outgoing nature of pg.

An ideal characterization for multiple constraints p € A(S1) and p € A(S2). See
Pasquero 2018) can be assigned on the basis of the rule

28 (Vi(pr) + Vi (pr)) ifper(SHVi=1,2
I(pr) = { —2Vi(pr) ifpeiS), pgrS), i#j ©)
0 ifpéASHVi=1,2.
where the coefficient § is

5= L Vi), Vi(er) + V5 (1))
IV (L) + V3 (o)1

Note that, since by Prop. (1) we have g = 1 if Vll(pL) = 0 “exor” Vj‘(pL) =0,
the rule restores the usual reflection law in case of single constraint. Moreover, the
rule restores also the usual characterization I(p;) = — 2Vf‘2(pL) of single con-
straints of codimension greater than 1 (see Pasquero 2005) in case of orthogonality
) (VlL PpL), V2L (pL)) = 0. Thirdly, note that the coefficient f has a “kinematic”
dependence on pyz, and not only a “geometric” dependence on Ui, Uzl.

However, even in case of single impact with multiple contact, the absolute velocity
pr + I(pr) could be not an exit velocity, so that, in order to have an outgoing pg, the
evaluation of the reactive impulse could (possibly) be iterated starting from the new
entrance velocity pz + I(pr) (see Pasquero 2018).

3.3 Symmetric Multiple Non-ideal Frictionless Constraints

The ideal characterization (5) allows, once a COR ¢ is assigned, a natural generalization
in the form

—(1+&) B (Vi) + V3 (pr) ifperSHVi=1.2
I(pr) = { —(1+&) Vi (pr) ifp e M(S), pEMS), i #j  (6)
0 ifp ¢ AMS)HVi=1,2.

Such a rule models the symmetric non-ideal behavior of the constraint S: In fact
the rule, handling symmetrically the two constraints, restores the usual non-ideal
frictionless characterization in case of single impact for both the single impacts with
Siand Ss.
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Once again the absolute velocity pr + I(pz) could be not an exit velocity, so that
the evaluation of the reactive impulse could (possibly) be iterated.

In the next section, we will analyze the well-known system given by a simplified
Newton’s cradle formed by three equal balls. This is an example of system subject to
multiple contact and (iterated) single symmetric impact. The application of this rule
in the case of a disk impacting with two equal walls forming a corner, that is a case
of a system subject to multiple contact and multiple symmetric impact, is analyzed in
details in Fassino and Pasquero (2019).

3.4 Asymmetric Multiple Non-ideal Frictionless Constraints

Both the characterizations (5, 6) can be generalized, once two possibly different CORs
1, &3 for Sy, S, respectively, are assigned in the form

=B (A +e)Vipo) + (1 +e2)Vy(pr)) ifpei(SHVi=1,2
I(pr) = § —(1+&) Vi (pr) ifp e M(S), pEAS)). i #j(T)

0 ifp ¢ AM(SHVi=1,2.

Such a rule models the asymmetric non-ideal behavior of the constraint S. The rule
restores the usual non-ideal frictionless characterization in case of single impact with
CORs ¢; for the single impacts with S;. Moreover, it restores the previous character-
ization (6) in the case &1 = & and the ideal one (5) for ey = &» = 1. Once more,
however, the absolute velocity p; + I(pz) thus obtained could be not an exit velocity
and the evaluation of the reactive impulse could (possibly) be iterated.

The application of this rule to the case of a disk impacting with two walls (having
different CORs) forming a corner is analyzed in details in the next section.

3.5 Remarks on the Characterizations

The (iterative) line of reasoning traced above to assign the right velocity pg starting
from a left velocity p;. can be formalized also for a multiple constraint S = ();_; S;
formed by 2 < r < n single constraints with the following step by step procedure.
Given a left velocity p(z € Ji(M) and the CORs ¢1, ..., &, € [0, 1]:

a) Select the set of “contact” indexes {iy, ..., it} C {1, ..., r} such that the config-
uration n(pg) € M is such thatn(p%) €S, Ym=1,... k. If{i;,....,ix} =0
then let pg := pg (the system is not in contact with the constraint). Otherwise

b) Select the set of “impact” indexes {ji, ..., jn} C {i1, ..., ix} such that the orthog-
onal velocities Vjt (pg) are such that (pg EMS;OVYg=1,...,h);
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c) If h > 2, calculate the “global” orthogonal velocity Vﬁ
coefficient

Jn and the corresponding

1 1 1
@ (lei..jhv Vit ot th>

B = ;
IV, + -+ VI
d) Calculate
h
1L /.0 .
—BY (1+¢;) Vi (p}) if h=2
g=1
I(p}) = e _ ®)
—(L+¢€;) V5 (p) if h=1
0 if {ji,....Jn} =0
e) Calculate plL = p(z + I(pg). If plL = p% then let pg := p%, otherwise iterate the
procedure restarting from b) to obtain a sequence p} := pz)_l + I(pz)_l);

f) If and when p}’ = pZ]H, then let pg := py.

4 Examples
4.1 Example 1. The Simplified Newton Cradle

Three equal disks of radius R and unitary mass can move in a plane. Labeling the disks
with the numbers 1, 2, 3, the space—time configuration is described by 10 coordinates
(t,x', y',0),i =1,...,3 where (x, y') are the coordinates of the center of the ith
disk and @ is its orientation. The set of constraints is given (with obvious notation)
by the functions

Sij) (xj_xi)2+(yj_y")2—4R2:0 i, j=1,...,3, i <j.

We consider the particular case when disks 2 and 3 are at rest and in contact, while disk
1 moves in the straight line direction given by the centers of 2 and 3 and collides with
disk 2 (see the upper part of Fig. 1), so that at the impact instant we have x> — x! =
x3 —x2 = 2R and yj — yi =0, Vi,j = 1,...,3. Then the positional constraints
involved in the impact are S(j,2) and S 3), and the system is subject to multiple
contact.

Starting with left velocity p% = % + Uo% with vy > 0, it is easy to show that,
due to the nature of the constraints involved in the impact, all the velocities evaluated

by the theoretical algorithm do not have components in the % directions. Moreover,

i

due to the absence of friction between the disks, a possible initial spin wg % of disk 1
(or even disks 2 and 3) does not have significant effect on the impact. (It will be found
unchanged in the final result of the algorithm.) Then the system has only (¢, x!, x2, x3)
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as significant coordinates, the terms %' of the velocity (p = % + x %) represents the
horizontal component of the velocity of the ith disk, and the impact conditions could
be easily checked in the form " *! — %" < 0 for some » = 1, 2. Anyway, recalling
(2), we have

pY(S(1.2)) = —4Rvy <0
p) (Se3) =0

so that the velocity p% is an incoming velocity only for the constraints S(j 2, and the
system is subject to a single impact. The standard calculation of Vé 2 (PL) gives

ol 1 a
(1 2)(PL) 2”0@— EUOW-
Applying the (first step of the iterative) method described in the previous section, the
“new” left velocity is

Lo N 9 1-e 3 l+e 9
PL-=PL—(1+€)V(1,2)(PL)=E‘F > UO@"' 5 Waa

and we have to determine the nature of the new left velocity pi with respect to the set
of constraints. We have:

PL(Sa2) =4Revy >0
pi(S(z,j,)) =—-2R(1+¢e)vyy <0

so that the new left velocity is an outgoing velocity for S(; 2y and an incoming velocity
for S(2,3y. Once again, the system is subject to a single impact. The standard calculation

of V(lm) (plL) gives

14+¢ 0 1+e¢ 0

Vey®L) =+~ wgs - g

from which we obtain the “new” left velocity

p : p _(1+8)V(23)(PL)
1—e 9 +1—82 9
Vo —— Vo —=
2 0ot 4 V%x2
(1+8)2 d
T W3

0
ot

and we have to restart. We have:

p; (Sa2) =—(1—¢&)*Ruy <0
P2 (S2.3) = 2¢ (1 +¢) Rvg > 0.
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Then, p% in an exit velocity for the system if and only if ¢ = 1. Otherwise, p% is an
outgoing velocity for S 3), but it is once again an incoming velocity for S 2. This
“second impact” between disks 1 and 2 is a significant difference with respect to the
behavior of the ideal Newton’s cradle (see Pasquero 2018).

Further iterations of the algorithm then present different possibilities depending on
the value of ¢: the next step gives

9 (1—=28)3+¢2) 3 (1—-eH(3—¢) d
3 _ AR S s o NI S o
PL=5, T 8 vt T 8 0 532

thatis an exit velocity for the systemif and only if ¢ > 3 — 2\/5 ~ 0, 17157; otherwise,
we have a “second impact” between disks 2 and 3 and the procedure must be further
iterated.

With the intent to exit from a completely theoretical presentation (similar to that of
Pasquero (2018)) of the characterization (6) applied to the Newton’s cradle with three
equal balls with initial velocity p% = % + vo a%, the algorithm for the determination
of the exit velocity of the system has been implemented using the software PariGP (The
PARI Group (2019). The PariGP implementation of the algorithm for the simplified
Newton’s cradle is available as Electronic Supplementary Material). In order to avoid
to delve into the technicalities of the robustness of the algorithm (such as in Fassino and
Pasquero 2019), the termination was ensured by fixing a maximum number N = 10* of
iterations and a minimum threshold o = 10~° llvg || for the differences of the velocities
of the three disks. Moreover, a test checking the possible presence of multiple impacts
was included, always giving negative result for these initial data.

Since the term vg can be factored in the output velocity, Table 1 lists the output of
the algorithm (the last rows rounded to the tenth significant digit) for the fixed value
vo = 100 and for different CORs ¢. The data show a meaningful physical behavior
of the system. For instance, the number of iterations increases for decreasing CORs,
and the exit velocities of the three disks are increasingly similar for decreasing CORs.
In particular, the acronym AEEV in the last three rows stands for “Almost Equal Exit
Velocities” followed by the number of iterations before checking the almost equalities
of the velocities of the disks (note in fact that the impact conditions &1 — %" < 0
for some r = 1, 2 is still verified).

The lower part of Fig. 1 illustrates the behavior of the system after the impact for
the three cases ¢ = 0.9, ¢ = 0.5, ¢ =0.1.

4.2 Example 2. The Disk in the Corner

A rigid disk of radius R and unitary mass moves in the part of a horizontal plane
delimited by two walls S, S> forming an angle 2o € (0, 7). The system can be
described using local coordinates (¢, x, y, ) where x, y are the coordinates of the
center of the disk and ¥ is the orientation of the disk. If Xk = tan« > 0, the walls can
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Table 1 Output velocities of the Newton’s cradle with three balls, vg = 100

COR Exit velocities V ¢ # Iterations
Up1 vp2 Up3

1 0 0 100 2

0.99 0.4975125 0.4999875 99.0025 3

0.9 4.7625 4.9875 90.25 3

0.8 9.1 9.9 81 3

0.7 13.0875 14.6625 72.25 3

0.6 16.8 19.2 64 3

0.5 20.3125 23.4375 56.25 3

0.4 23.7 27.3 49 3

0.3 27.0375 30.7125 42.25 3

0.2 304 33.6 36 3

0.1716 31.36991913 34.31391687 34.316164 3

0.1715 31.37335061 34.31280703 34.31384236 4

0.1 33.27090625 33.36315469 33.36593906 6

0.0744 33.33333333 33.33333334 33.33333334 17

0.0743 33.33333333 33.33333334 33.33333333 AEEV /17
0.01 33.33333336 33.33333332 33.33333332 AEEV /30
0 33.33333335 33.33333335 33.33333330 AEEV /32

be described by the Cartesian relations S1 : kx —y =0, Sy 1 kx +y = 0. We assume

that the disk is in contact with both the walls, so that (x, y) = (—
Given an absolute velocity p = % + x % + ¥y Biy + 0 %, we have

with corresponding coefficient § =

k d
VL — k'_' -
(P —1+k2(x )l
L. 0
V%’(P)ZH_—kz(kvay)—'l'
: .0
Vi@ =i 5o+ ¥

1+ k2 k252 + 52

R
sina ’

2 kA2 492

0) (see Fig. 2).

In analogy with Fassino and Pasquero (2019), we divide the space of absolute
velocities of the system into four different zones 2y, Z1, Z,, Z12 with p € Z; if it
determines an impact with S;. Taking into account (3), we have
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Fig.1 Comparison of different CORs for the simplified Newton’s cradle

p(S1) <0
p(&) <0

ki—y <0
PEZo © ki+y <0
p(S1) >0 kx—y=>0
PEZI 1S <0 @ (ki+y<0
p(S1) <0 ki —y <0
peZ © p(S2) >0 kx +y >0
p(S1) >0
p(S) >0

kx —y>0

pein < < kx+y>0"

Once the CORs ¢, &, of 81, Sz, respectively, and an initial velocity

Y 3+_08+,03 a—|—vcos a—i—vsin 9
= — X — _— = — B — J—
PL =75 ox Y 9y T gr T 0COSPoGL T vosiigo ol

tgh (e= 0.9)

tgh (e= 0.5)

tgh (e= 0.1)

(C))
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Fig.2 Disk in contact with both sides of the corner

are assigned (once again the component of the velocity in the direction % isirrelevant),
the asymmetric constitutive characterization (3.4) is synthesized by the iterative rule

P; € Z0 = Pr =P},

pY e 2 =pithi=pY — (1 +&) Vi),
(10)
Pl e 2y = pithi=pY — (1 +)VipY),

preZn=pythi=pY — B ((L+e) V@Y + (1 +2) Vi (pY)) .

Once again with the intent to exit from a completely theoretical presentation, the
algorithm for the determination of the exit velocity of the disk from the angle has
been implemented using the software PariGP. (The PariGP implementation of the
algorithm for the disk in the corner is available as Electronic Supplementary Material).
Once again, the termination was ensured by fixing a maximum number N = 10* of
iterations and a minimum threshold o = 10~°|jvg|| (with vgp = 100) for the norm of
exit velocity of the disk. Moreover, since the coefficient 8 changes with the iterations
of the algorithm, a test checking the possible excessive downsizing of the denominator
of B was included.

The analysis of the output given by the implemented algorithm for different angles
o, different impact angles ¢ and for different CORs ¢; shows that

e The results in case of &1 = &, coincide with those presented in Fassino and
Pasquero (2019) (up to the different rounding of the implementations of the algo-
rithm);

e The results present the correct symmetry with respect to the horizontal axis;

@ Springer



Journal of Nonlinear Science (2021) 31:61 Page170f 18 61

e The results show natural behaviors of the system, such as decreasing norm of
the final velocity for decreasing values of the CORs or an increasing number of
iterations (i.e., “rebounds”) as the angle « between the walls becomes narrower.

A very significant difference of the asymmetric case with respect to the behavior
of the symmetric corner is about the possibility of repeated multiple impacts. In fact
in the (symmetric) ideal case, the fact that the system can have a multiple impact no
more than once is theoretically proved, and in the symmetric non-ideal case, although
a theoretical result is not proved, the extensive numerical analysis performed supports
the same result (see Fassino and Pasquero 2019). Differently, in the asymmetric non-
ideal case the numerical analysis shows the presence of repeated multiple impacts
when the CORs are very different. For example, this happens even in the simple case
o= %,(p = % = f—z for e = 0.999, ¢, = 0.001.

Appendix (available as Electronic Supplementary Material) presents some (but very
few) of the output data of the implementation of the algorithm (once again with the
fixed value vgp = 100), together with some visualizations of the exit velocity of the
disk from the corner compared with the entrance velocity.

Supplementary Information  The online version contains supplementary material available at https://doi.
org/10.1007/500332-021-09718-0.

Acknowledgements The author is very grateful to Prof. Alessandro Languasco of the University of Padova
(Italy) for his valuable help in the use of the software PariGP to implement the algorithms for the analysis
of the examples. Moreover, the author would like to thank Dr. Claudia Fassino of the University of Genova
(Italy) for her help in the preparation of the figures about Example 2 presented in the Appendix.

Funding Open access funding provided by Universita degli Studi di Parma within the CRUI-CARE Agree-
ment.

OpenAccess Thisarticleis licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Brogliato, B.: Nonsmooth Impact Mechanics, Models, Dynamics and Control. Lecture Notes in Control
and Inform, vol. 220. Springer, New York (1996)

Cortés, J., Vinogradov, A.M.: Hamiltonian theory of constrained impulsive motion. J. Math. Phys. 47(4),
042905 (2006)

Fassino, C., Pasquero, S.: An algorithmic approach to the multiple impact of a disk in a corner. Multidiscip.
Model. Mater. Struct. 16(3), 476-500 (2019)

Ibort, A., De Leon, M., et al.: Geometric formulation of mechanical systems subjected to time-dependent
one-sided constraints. J. Phys. A: Math. Gen. 31, 2655-2674 (1998)

Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

@ Springer


https://doi.org/10.1007/s00332-021-09718-0
https://doi.org/10.1007/s00332-021-09718-0
http://creativecommons.org/licenses/by/4.0/

61 Page180f18 Journal of Nonlinear Science (2021) 31:61

Liu, Caishan, Zhao, Zhen, Brogliato, Bernard: Frictionless multiple impacts in multibody systems. i. the-
oretical framework. In: Proceedings of the Royal Society of London A: Mathematical, Physical and
Engineering Sciences, vol. 464, pp. 3193-3211. The Royal Society (2008)

Liu, C., Zhao, Z., Brogliato, B.: Frictionless multiple impacts in multibody systems. ii. numerical algorithm
and simulation results. In: Proceedings of the Royal Society of London A: Mathematical, Physical
and Engineering Sciences, vol. 465, pp. 1-23. The Royal Society (2009)

Massa, E., Pagani, E.: Classical dynamics of non-holonomic systems: a geometric approach. Ann. Inst. H.
Poincare 55, 511-544 (1991)

Pasquero, S.: Ideal characterizations of multiple impacts: A frame-independent approach by means of
jet-bundle geometry. Q. Appl. Math. 76(3), 547-576 (2018)

Pasquero, S.: Ideality criterion for unilateral constraints in time-dependent impulsive mechanics. J. Math.
Phys. 46(11), 112904-112920 (2005)

Pasquero, S.: On the simultaneous presence of unilateral and kinetic constraints in time-dependent impulsive
mechanics. J. Math. Phys. 47(8), 082903 (2006). 19 pp

Pasquero, S.: Nonideal unilateral constraints in time-dependent impulsive mechanics: a geometric approach.
J. Math. Phys. 49(4), 042902 (2008). 17 pp

Pasquero, S.: Framing the bases of impulsive mechanics of constrained systems into a jet-bundle geometric
context. Riv. Mat. Univ. Parma 9, 227-254 (2018)

Pommaret, J.F.: Lie Pseudogroups and Mechanics, vol. 16. CRC Press, Florida (1988)

Saracco, A.: Dr. Strangelove or: how i learned to stop worrying and love the citations (2020). arXiv e-print
arXiv:2002.09371

Stronge, W.J.: Impact Mechanics. Cambridge University Press, Cambridge (2000)

The PARI Group, PARI/GP version 2 .11 . 2, Univ. Bordeaux (2019). http://pari.math.u-bordeaux.fr/

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer


http://arxiv.org/abs/2002.09371
http://pari.math.u-bordeaux.fr/

	Symmetric and Asymmetric Multiple Impulsive Constraints Without Friction and Their Characterization
	Abstract
	1 Introduction
	2 Geometry of the Lagrangian Setup
	2.1 Free Systems
	2.2 Positional Constraints
	2.3 Multiple Positional Constraints

	3 Constitutive Characterizations of Impulsive Constraints
	3.1 Single Constraints
	3.2 Multiple Ideal Constraints
	3.3 Symmetric Multiple Non-ideal Frictionless Constraints
	3.4 Asymmetric Multiple Non-ideal Frictionless Constraints
	3.5 Remarks on the Characterizations

	4 Examples
	4.1 Example 1. The Simplified Newton Cradle
	4.2 Example 2. The Disk in the Corner

	Acknowledgements
	References




