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A B S T R A C T

The paper proposes a new planning primitive, named 𝜂3𝐷-splines, based on 7th order polynomials, which is
suited to generate three-dimensional paths characterized by third-order geometric continuity. The third order
continuity represents an important property, since it allows continuous-jerk reference signals for the joints
actuators of robotic systems. Differently from other approaches in the literature, 𝜂3𝐷-splines are efficiently
evaluated by means of closed form expressions as function of the assigned interpolation conditions. This allows
an intuitive real-time generation of composite paths: from the knowledge of the geometric characteristics
of the curve which is currently executed, and by choosing a novel end-point together with the desired
interpolating conditions, a new path can be efficiently generated by simultaneously maintaining the overall
third order geometric continuity. Additionally, the 𝜂3𝐷-splines can be shaped by acting on a set of six free
parameters, so as to emulate other planning primitives, like, for example, linear segments, circular arcs,
clothoids, helical curves, and conic spirals. Furthermore, by means of the same parameters, all possible 7th
order polynomials, which fulfill the given interpolating conditions, can be generated. The accompanying
video shows an anthropomorphic manipulator executing a composite trajectory generated by means of the
𝜂3𝐷-splines.
1. Introduction

Cartesian paths for robotic systems must be planned by accounting
for their continuity properties. Indeed, non-smooth primitives worsen
the controllers performances and simultaneously stress the system me-
chanics. The path geometric continuity problem is widely discussed in
the literature and it is managed through apposite planners. Early works
were focused on the generation of planar curves mainly conceived
for autonomous mobile robots. The emphasis was initially posed on
the generation of minimum length paths between assigned points [1–
4]. The problem has been continuously revised along the years by
also considering alternative cost indexes [5]. The resulting composite
routes, obtained by joining linear segments and circular arcs, were
generated so as to guarantee the continuity of the path tangent. In
the same years, other authors [6–11] introduced the concept of second
order geometric continuity, thus including the path smoothness among
the criteria to be considered: not only the path tangent, but also
its curvature must be continuous. The second order continuity was
achieved by means of apposite primitives like clothoids, polar curves or
cubic spirals. Later, to the same purpose, other flexible path primitives
appeared in the literature. For example, the Bezier curves adopted
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in [12–14], the B-splines proposed in [15], and, finally, the 𝜂2-splines
devised in [16].

The common denominator of the papers just cited is that smooth-
ness reasons motivate the adoption of continuous curvature paths.
However, in [17] it was shown that the smooth control of unicycle ve-
hicles actually requires an additional continuity level: the generation of
continuous control signals necessarily imposes paths whose curvature-
derivative is continuous, so that a novel path planning primitive, named
𝜂3-splines [18,19], was developed, later followed by 𝜂4-splines [20].

In more recent years, the smooth path planning problem has been
extended to three-dimensional (3D) Cartesian curves. The fields of
application of 3D trajectories are substantially two: the generation of
collision-free routes in cluttered environments [21,22] and the gen-
eration of paths with specific geometric characteristics, like the ones
required, for example, by Computer Numerical Control (CNC) ma-
chines [23–25] or for arc welding and laser cutting applications.

In the first case, the commonly adopted solution is based on the
generation of collision-free, discrete, Cartesian paths, whose points are
chosen by means of algorithms – like, for example, Rapidly-exploring
Random Trees (RRT or RRT*) – which optimize a proper cost index.
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The desired degree of smoothness is typically achieved by means of
spline trajectories, which interpolate the given points directly in the
Cartesian space or, alternatively, in the configuration space. For such
class of problems, the actual shape of the Cartesian path is not rigidly
imposed in advance [26–29].

A similar solution can also be adopted for the management of the
second class of problems. In case of applications which allow relatively
high computational times, a path with the prescribed geometry can be
generated by means of a dense sequence of pass-through points [30–
32]. In all the other cases, an actual Cartesian path, with the required
geometric continuity, must be planned. For a long time, linear segments
and circular arcs were the sole path primitives considered in robotic
contexts. As earlier pointed out, they only allow continuous-tangent
paths. In advanced applications, like the ones involving CNC machines,
such limit cannot be admitted, so that, recently, many works concern-
ing the generation of smooth curves have appeared in the literature:
Bezier curves are used in [33,34] for the synthesis of continuous-
curvature paths, while B-splines are adopted in [35] for a jerk bounded
application requiring continuous curvature derivatives.

The path planning primitive proposed in this work, named
𝜂3𝐷-splines and based on 7th order polynomials, is conceived for
applications belonging to the second class of problems. They guarantee
the same smoothness level of [35], but are conceived for more gen-
eral application contexts. In particular, while in CNC applications the
emphasis is primarily posed on the creation of junction curves which
smoothly join a sequence of linear segments, for a general purpose
robotic application the target is the generation of flexible curves able
to connect generic primitives by guaranteeing the required continuity
level. Indeed, if junction curves are not properly designed, reference
signals for joint velocities, accelerations, and jerks may be discontin-
uous, thus worsening the systems performances. Continuity problems
can be handled by stopping the manipulator at the end of each segment
of the trajectory, but such solution is clearly inefficient. Conversely,
𝜂3𝐷-splines, by guaranteeing the required geometric continuity of the
path, allow 3 joint reference signals, so that composite trajectories can
be executed with no stops.

The strengths of 𝜂3𝐷-splines, if compared with other planning prim-
tives, are essentially two: the planning method, which allows an
fficient online evaluation of the curve coefficients directly from the
nterpolating conditions, and their straightforward emulation capabili-
ies.

Concerning the first point, the third-order geometric continuity can
e obtained by assigning, at the start and at the end points of the
urve, the desired Frenet-frames, curvatures, curvature-derivatives and
orsions. Such interpolating conditions directly appear in the closed
orm expressions devised for the efficient computation of the spline
oefficients: the same continuity level achieved in [35] can be reached
t a negligible computational cost. This allows one to easily manage
ituations in which the Cartesian path must be re-planned on-the-fly
uring the movement – see for example [36,37] – by simultaneously
aintaining the overall geometric continuity. The planning method is
ore immediate and intuitive than the ones adopted for the synthesis of
-spline or Bezier curves, which require a proper choice of the control
oints in order to satisfy the assigned continuity properties and to
odel the curves shape.

As anticipated, 𝜂3𝐷-splines can also emulate other common prim-
tives. More precisely, they exactly generate linear segments, while
hey can emulate, with good approximation, curves like circular arcs,
lothoids, helical curves, and conic spirals. Additionally, any 7th order
olynomial curve, for example a Bezier curve, satisfying the given inter-
olating conditions, can be replaced by an analogous 𝜂3𝐷-spline with
he same coefficients and viceversa [38]. Such emulation capabilities
re carried out through a set of six independent parameters which can
e used to finely shape the curve.

The emulation capabilities of 𝜂3𝐷-splines have been exploited for the
2

mplementation of a Cartesian planner entirely based on such primitive, P
nd suited for applications in which the path must be generated on-
he-fly. Such planner is able to generate, in a simple and intuitive way,
omplex composite paths with third-order geometric continuity.

The paper is organized as follows. Section 2 shows that jerk con-
inuous reference signals for robotic manipulators can be obtained
y planning paths with third order geometric continuity. The same
ection further introduces some preliminary considerations concerning
D curves and recalls the definitions of geometric continuity. Section 3
roposes the closed-form equations which are used for the evaluation
f the 𝜂3𝐷-splines coefficients. In the same section, two important
roperties of the novel primitive are enunciated. In Section 4, a simple
ethod is proposed for the selection of the shaping parameters, and

he emulation capabilities of the novel path primitive are discussed.
n Section 5, the 𝜂3𝐷-splines are experimentally tested by generating a
omposite 3D path for an industrial manipulator. Final conclusions are
rawn in Section 6, while Appendix A demonstrates two propositions
iven in Section 3. The paper is accompanied by a video attachment
oncerning the experimental test.

. Preliminary considerations on the geometric continuity of 3D
urves

In robotic applications, paths are typically planned so as to guar-
ntee the smoothness of the actuators reference signals. In particular,
f 𝐪 ∶= [𝑞1 𝑞2,… , 𝑞𝑛]𝑇 is the vector of the joint variables and 𝑛 is
he number of joints, 𝐪, 𝐪̇, and 𝐪̈ should be continuous, but advanced
pplications also impose the jerk continuity. Such additional continuity
evel is introduced to reduce the mechanical solicitations acting on
he manipulator structure and to improve the controller performances.
or Cartesian trajectories, such continuity requests naturally lead to
quivalent requirements involving the motion of the origin of the tool
rame, i.e., 𝐩 ∶= [𝑝𝑥 𝑝𝑦 𝑝𝑧]𝑇 . The conditions which must be satisfied
y a Cartesian curve in order to guarantee the continuity of the joints
erks are derived in the reminder of this section. Furthermore, some
eometric expressions used in next Section 3 are briefly recalled.

Cartesian trajectories are typically planned by avoiding kinematic
ingularities, so that the Jacobian matrix of the system, i.e., 𝐉(𝐪), will
e supposed non singular in this paper and the inverse kinematic
unction, i.e., 𝐪 = 𝐪(𝐩), will be assumed continuous. By virtue of
he last hypothesis, the Cartesian path continuity guarantees, in turn,
he continuity of 𝐪. Furthermore, for industrial manipulators, 𝐉(𝐪) is a
ontinuously differentiable function of class ∞.

Linear velocities can always be evaluated through a Jacobian ma-
rix, 𝐉(𝐪), according to the following equation

̇ = 𝐉(𝐪)𝐪̇ . (1)

uch equation can be reorganized as follows

̇ = 𝐉−1(𝐪) 𝐩̇ . (2)

ccording to the premises, the Jacobian matrix is not singular, so
hat its inverse exists. Moreover, since 𝐉(𝐪) ∈ ∞ and bearing in
ind the inverse function theorem, 𝐉−1(𝐪) is certainly a continuous

unction. Since 𝐪 is continuous, (2) makes it possible to conclude that
he continuity of 𝐪̇ is achieved by assuming a continuous 𝐩̇.

The same reasoning can be used with the higher order derivatives.
he differentiation of (1) leads to the following equations

̈ = 𝐉̇(𝐪)𝐪̇ + 𝐉(𝐪)𝐪̈ ,

⃛ = 𝐉̈(𝐪)𝐪̇ + 2𝐉̇(𝐪)𝐪̈ + 𝐉(𝐪)𝐪⃛ ,

hich can be rewritten as follows

̈ = 𝐉−1(𝐪) [𝐩̈ − 𝐉̇(𝐪)𝐪̇] , (3)

⃛ = 𝐉−1(𝐪) [𝐩⃛ − 𝐉̈(𝐪)𝐪̇ − 2𝐉̇(𝐪)𝐪̈] . (4)

ince 𝐉(𝐪) ∈ ∞, (3) and (4) allow one asserting that the continuity
f 𝐪̈ and 𝐪⃛ is obtained by assuming that also 𝐩̈ and 𝐩⃛ are continuous.

3 3
ractically, if 𝐩 is  then 𝐪 is  as well.
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Cartesian trajectories are very commonly planned by adopting the
path-velocity decomposition approach [39], so that they are obtained
by combining a path, 𝐩(𝑠), with a timing law, 𝑠(𝑡). 𝑠 is the so-called
curvilinear coordinate and it coincides with the distance from the
beginning of the curve, measured along the curve itself. Consequently,
𝑠 ∈ [0, 𝑠𝑓 ] for a curve whose length is 𝑠𝑓 . Bearing in mind such
considerations, the time derivatives of 𝐩 can be written as follows

𝐩̇ = 𝑑
𝑑𝑡

𝐩[𝑠(𝑡)] = 𝑑𝐩
𝑑𝑠

𝑑𝑠
𝑑𝑡

=
𝑑𝐩
𝑑𝑠

𝑠̇ , (5)

𝐩̈ = 𝑑2

𝑑𝑡2
𝐩[𝑠(𝑡)] = 𝑑2𝐩

𝑑𝑠2
𝑠̇2 +

𝑑𝐩
𝑑𝑠

𝑠̈ , (6)

⃛ = 𝑑3

𝑑𝑡3
𝐩[𝑠(𝑡)] = 𝑑3𝐩

𝑑𝑠3
𝑠̇3 + 3

𝑑2𝐩
𝑑𝑠2

𝑠̈𝑠̇ +
𝑑𝐩
𝑑𝑠

𝑠 . (7)

Clearly, (5)–(7) imply that the continuity of 𝐩̇, 𝐩̈, and 𝐩⃛ requires the
continuity of (𝑑𝐩)∕(𝑑𝑠), (𝑑2𝐩)∕(𝑑𝑠)2, and (𝑑3𝐩)∕(𝑑𝑠)3, as well as of 𝑠̇, 𝑠̈,
and 𝑠. Hence, the continuity problem can be split into two separate
sub-problems, the first one involving the timing law, the second one
concerning the geometric characteristics of the path. In particular, for
paths which are parametrized as function of the curvilinear coordinate,
i.e., 𝑠, the two concepts of analytic and geometric continuity coincide,
so that if 𝐩(𝑠) is a continuous function, i.e., if 𝐩(𝑠) ∈ 0, then it also
admits 0 order geometric continuity – or, equivalently, 𝐩(𝑠) ∈ 0.
The same concept also applies to higher order derivatives, so that if
𝐩(𝑠) ∈ 1, then [𝑑𝐩(𝑠)]∕(𝑑𝑠) admits a geometric continuity of the first
order, i.e., 𝐩(𝑠) ∈ 1, and so on. This implies that, for the problem at
hand, the focus is posed on paths belonging to 3 in order to achieve
the continuity of (5)–(7).

For the reader convenience, the reminder of this section will recall
some geometric implications of the 3 continuity concepts. For practical
reasons, curves are often defined through a function 𝐩(𝑢) ∈ R3, where
𝑢 ∈ [𝑢0, 𝑢𝑓 ] is a generic scalar parameter which is used instead of 𝑠. By
construction [40], 𝐩′(𝑢) ∶= [𝑑𝐩(𝑢)]∕(𝑑𝑢) is a vector which is tangent in 𝑢
to the curve. For regular curves, i.e., curves for which ‖

‖

𝐩′(𝑢)‖
‖

> 0,∀𝑢 ∈
[𝑢0, 𝑢𝑓 ], there always exists a direct, bijective relationship between 𝑢
and 𝑠, which can be expressed as follows

𝑠 = ∫

𝑢𝑓

𝑢0

‖

‖

𝐩′(𝜏)‖
‖

𝑑𝜏 . (8)

Consequently, if 𝐩(𝑢) is continuous in 𝑢, then 𝐩[𝑢(𝑠)] is continuous in
𝑠 – 𝑢(𝑠) is the inverse function of (8) – and the curve is 0. Eq. (8)
immediately allows one writing
𝑑𝑠
𝑑𝑢

= ‖

‖

𝐩′(𝑢)‖
‖

,

o that the path derivative w.r.t. 𝑠 can be written as follows
𝑑𝐩(𝑢)
𝑑𝑠

=
𝑑𝐩(𝑢)
𝑑𝑢

𝑑𝑢
𝑑𝑠

= 𝐩′(𝑢) 1
𝑑𝑠
𝑑𝑢

=
𝐩′(𝑢)

‖𝐩′(𝑢)‖
= 𝐭(𝑢), (9)

Practically, the 1 continuity implies that unit vector 𝐭(𝑢), which is
by construction tangent to the curve (see also Fig. 1), is a continuous
function of 𝑢.

For which concerns the second order geometric continuity, i.e., the
continuity of (𝑑2𝐩)∕(𝑑𝑠2), the following equation is obtained by differ-
entiating (9):

𝑑2𝐩(𝑢)
𝑑𝑠2

= 𝑑
𝑑𝑠

[

𝑑𝐩(𝑢)
𝑑𝑠

]

= 𝑑
𝑑𝑠

[𝐭(𝑢)] = 𝜅(𝑢)𝐧(𝑢). (10)

The last equality in (10) is due to the first Frenet–Serret equation [40].
𝐧(𝑢) is the normal unit vector which points toward the center of the os-
culating circle (see also Fig. 1), i.e., the circle which best approximates
the curve in 𝑢. 𝜅(𝑢) is the curvature in 𝑢, i.e., it is the reciprocal of the
radius of the osculating circle. They are defined as follows [40]

𝐧(𝑢) = [𝐩′(𝑢) × 𝐩′′(𝑢)] × 𝐩′(𝑢)
‖𝐩′(𝑢) × 𝐩′′(𝑢)‖ ‖𝐩′(𝑢)‖

, (11)

𝜅(𝑢) =
‖

‖

𝐩′(𝑢) × 𝐩′′(𝑢)‖
‖ . (12)
3

‖𝐩′(𝑢)‖3
Fig. 1. A generic curve 𝐩(𝑢) (solid line), together with its Frenet frame and its
osculating circle (dashed line) shown for a generic 𝑢.

Evidently, 𝐧(𝑢) is well defined if the curve is biregular, i.e., if it satisfies
condition ‖

‖

𝐩′(𝑢) × 𝐩′′(𝑢)‖
‖

> 0,∀𝑢 ∈ [𝑢0, 𝑢𝑓 ]. By virtue of (10), a curve is
2 if 𝐧(𝑢) and 𝜅(𝑢) are continuous functions.

By further differentiating (10), the following equation is obtained

𝑑3𝐩(𝑢)
𝑑𝑠3

= 𝑑
𝑑𝑠

[𝜅(𝑢)𝐧(𝑢)] = 𝑑𝜅(𝑢)
𝑑𝑠

𝐧(𝑢) + 𝜅(𝑢)
𝑑𝐧(𝑢)
𝑑𝑠

=
𝜅′(𝑢)

‖𝐩′(𝑢)‖
𝐧(𝑢) + 𝜅(𝑢)

𝑑𝐧(𝑢)
𝑑𝑠

. (13)

The second Frenet–Serret equation [40] asserts that
𝑑𝐧(𝑢)
𝑑𝑠

= −𝜅(𝑢)𝐭(𝑢) + 𝜏(𝑢)𝐛(𝑢), (14)

where

𝐛(𝑢) ∶= 𝐭(𝑢) × 𝐧(𝑢) = 𝐩′(𝑢) × 𝐩′′(𝑢)
‖𝐩′(𝑢) × 𝐩′′(𝑢)‖

(15)

is the so called binormal unit vector and

𝜏(𝑢) =
[𝐩′(𝑢) × 𝐩′′(𝑢)] ⋅ 𝐩′′′(𝑢)

‖𝐩′(𝑢) × 𝐩′′(𝑢)‖2
(16)

is the torsion of the curve in 𝑢. Unit vectors 𝐭(𝑢), 𝐧(𝑢), and 𝐛(𝑢) are each
other orthogonal and form the so-called Frenet frame associated to point
𝑢 along the curve. From (13) and (14) it immediately descends that
the 3 continuity is achieved if a curve is 2, i.e., 𝐭(𝑢), 𝐧(𝑢), 𝜅(𝑢) are
ontinuous, and, furthermore, if the continuity is also guaranteed for

𝑑𝜅(𝑢)
𝑑𝑠

=
𝜅′(𝑢)

‖𝐩′(𝑢)‖
=

[𝐩′(𝑢) × 𝐩′′(𝑢)] ⋅ [𝐩′(𝑢) × 𝐩′′′(𝑢)]
‖𝐩′(𝑢) × 𝐩′′(𝑢)‖ ‖𝐩′(𝑢)‖4

− 3[𝐩′(𝑢) ⋅ 𝐩′′(𝑢)]
‖

‖

𝐩′(𝑢) × 𝐩′′(𝑢)‖
‖

‖𝐩′(𝑢)‖6

=𝐛(𝑢) ⋅ 𝐩
′(𝑢) × 𝐩′′′(𝑢)
‖𝐩′(𝑢)‖4

− 3𝜅(𝑢)
𝐩′(𝑢) ⋅ 𝐩′′(𝑢)
‖𝐩′(𝑢)‖3

(17)

and for 𝜏(𝑢). By virtue of (9), (11), (12), and (16), the 3 continuity
imposes that 𝐩(𝑢) and its derivatives w.r.t. 𝑢, up to the third order, must
be continuous, i.e., 𝐩(𝑢) ∈ 3.

Summarizing, (2)–(7) allow one asserting that the continuity of 𝐪,
𝐪̇, 𝐪̈, and 𝐪⃛ can be obtained by planning 3 curves, i.e., by imposing
that 𝐭(𝑢), 𝐧(𝑢), 𝐛(𝑢), 𝜅(𝑢), 𝜅′(𝑢), and 𝜏(𝑢) are continuous functions, and,
moreover, by generating a timing law such that the continuity is also
guaranteed for 𝑠, 𝑠̇, 𝑠̈, and 𝑠. The timing law generation problem is not
addressed in this work, but possible approaches can be found in the
literature (see for example [41]).

3. The 𝜼𝟑𝑫 -splines

The proposed primitive is based on a 7th order vector polynomial
defined as follows

𝐩(𝑢) ∶= 𝝌0 + 𝝌1𝑢 + 𝝌2𝑢
2 + 𝝌3𝑢

3 + 𝝌4𝑢
4 + 𝝌5𝑢

5 + 𝝌6𝑢
6 + 𝝌7𝑢

7, (18)

where 𝑢 ∈ [0, 1], while 𝝌 𝑖 ∶= [𝛼𝑖 𝛽𝑖 𝛾𝑖]𝑇 ∈ R3 are properly defined
vector coefficients. The 3 continuity is certainly achieved ∀𝑢 ∈ (0, 1)
since, for constant values of 𝝌 𝑖, the derivatives of 𝐩(𝑢) of any order are
continuous in such interval. However, this work aims at generating 3

composite paths obtained by joining several curves, so that coefficients
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Table 1
Interpolating conditions for the 𝜂3𝐷-spline curve. (32).
𝐴 𝐵

𝐩(0) = 𝐩𝐴 𝐩(1) = 𝐩𝐵
[𝐭(0) 𝐧(0) 𝐛(0)] = [𝐭𝐴 𝐧𝐴 𝐛𝐴] [𝐭(1) 𝐧(1) 𝐛(1)] = [𝐭𝐵 𝐧𝐵 𝐛𝐵 ]
𝜅(0) = 𝜅𝐴 𝜅(1) = 𝜅𝐵
𝜏(0) = 𝜏𝐴 𝜏(1) = 𝜏𝐵
𝑑𝜅
𝑑𝑠
(0) = 𝜅̄𝐴

𝑑𝜅
𝑑𝑠
(1) = 𝜅̄𝐵

𝝌 𝑖 must be assigned so as to also impose the 3 continuity in the
unction points between adjacent curves. According to the discussion
n Section 2, such result can be achieved by imposing that, at the end
f each curve, 𝐭, 𝐧, 𝐛, 𝜅, 𝜅′, and 𝜏 coincide with the homologous terms

of the subsequent one. Practically, the 3 continuity is obtained if the
interpolating conditions shown in Table 1 can be arbitrarily imposed to
(18) (subscripts 𝐴 and 𝐵 indicate the assigned interpolating conditions
at the beginning and at the end of the curve, respectively). Evidently,
such boundary conditions can be imposed by solving an appropriate
system of equations but, more conveniently, this work proposes closed
form expressions for the immediate and efficient evaluation of the 𝝌 𝑖
parameters. In particular, the coefficients of the seventh order polyno-
mial curve, satisfying the boundary conditions specified in Table 1, can
be immediately obtained by means of the following expressions

𝝌0 =𝐩𝐴, (19)

𝝌1 =𝜂1𝐭𝐴, (20)

𝝌2 =(1∕2)[𝜅𝐴𝜂21𝐧𝐴 + 𝜂3𝐭𝐴], (21)

3 =
1
6
[𝜅𝐴𝜏𝐴𝐛𝐴𝜂31 +

(

𝜅̄𝐴𝜂
2
1 + 3 𝜅𝐴𝜂1𝜂3

)

𝐧𝐴] + 𝜂5𝐭𝐴, (22)

𝝌4 = − (2∕3) 𝜅𝐴𝜏𝐴𝐛𝐴𝜂31 − (1∕6) 𝜅𝐵𝜏𝐵𝐛𝐵𝜂32
− (1∕3)

[

𝜂21
(

2 𝜅̄𝐴 + 15 𝜅𝐴
)

+ 6 𝜅𝐴𝜂1𝜂3
]

𝐧𝐴
− (1∕6)

[

𝜂22
(

𝜅̄𝐵 − 15 𝜅𝐵
)

+ 3 𝜅𝐵𝜂2𝜂4
]

𝐧𝐵
−

(

20 𝜂1 + 5 𝜂3 + 4 𝜂5
)

𝐭𝐴 − 35 𝐩𝐴 + 35 𝐩𝐵
− (1∕2)

(

30 𝜂2 − 5 𝜂4 + 2 𝜂6
)

𝐭𝐵 , (23)

𝝌5 =𝜅𝐴𝜏𝐴𝐛𝐴𝜂31 +
1
2
𝜅𝐵𝜏𝐵𝐛𝐵𝜂32

+
[

𝜂21
(

𝜅̄𝐴 + 10 𝜅𝐴
)

+ 3 𝜅𝐴𝜂1𝜂3
]

𝐧𝐴
+ (1∕2)

[

𝜂22
(

𝜅𝐵 − 14 𝜅𝐵
)

+ 3 𝜅𝐵𝜂2𝜂4
]

𝐧𝐵
+

(

45 𝜂1 + 10 𝜂3 + 6 𝜂5
)

𝐭𝐴
+

(

39 𝜂2 − 7 𝜂4 + 3 𝜂6
)

𝐭𝐵 + 84 𝐩𝐴 − 84 𝐩𝐵 , (24)
𝝌6 = − (2∕3) 𝜅𝐴𝜏𝐴𝐛𝐴𝜂31 − (1∕2) 𝜅𝐵𝜏𝐵𝐛𝐵𝜂32

− (1∕6)
[

𝜂21
(

4 𝜅̄𝐴 + 45 𝜅𝐴
)

+ 12 𝜅𝐴𝜂1𝜂3
]

𝐧𝐴
− (1∕2)

[

𝜂22
(

𝜅̄𝐵 − 13 𝜅𝐵
)

+ 3 𝜅𝐵𝜂2𝜂4
]

𝐧𝐵
− (1∕2)

(

72 𝜂1 + 15 𝜂3 + 8 𝜂5
)

𝐭𝐴 − 70 𝐩𝐴 + 70 𝐩𝐵
− (1∕2)

(

68 𝜂2 − 13 𝜂4 + 6 𝜂6
)

𝐭𝐵 , (25)
𝝌7 =(1∕6)( 𝜅𝐴𝜏𝐴𝐛𝐴𝜂31 + 𝜅𝐵𝜏𝐵𝐛𝐵𝜂32 )

+ (1∕6)
[

𝜂21
(

𝜅̄𝐴 + 12 𝜅𝐴
)

+ 3 𝜅𝐴𝜂1𝜂3
]

𝐧𝐴
+ (1∕6)

[

𝜂22
(

𝜅̄𝐵 − 12 𝜅𝐵
)

+ 3 𝜅𝐵𝜂2𝜂4
]

𝐧𝐵
+

(

10 𝜂1 + 2 𝜂3 + 𝜂5
)

𝐭𝐴
+

(

10 𝜂2 − 2 𝜂4 + 𝜂6
)

𝐭𝐵 + 20 𝐩𝐴 − 20 𝐩𝐵 . (26)

By analyzing (19)–(26), it can be noticed that the 𝝌 𝑖 coefficients
only depend on the interpolating conditions and on a set of six in-
dependent parameters which can be conveniently packed into vector
𝜼 ∶= [𝜂1 𝜂2 𝜂3 𝜂4 𝜂5 𝜂6]𝑇 , where 𝜂1, 𝜂2 ∈ R+ and 𝜂3, 𝜂4, 𝜂5, 𝜂6 ∈ R.
Consequently, given the interpolating conditions and vector 𝜼, the 𝜂3𝐷-
splines coefficients can be obtained at a negligible computational cost.
The selection of 𝜼 influences the curve shape and will be discussed in
4

Section 4.
Fig. 2. An 𝜂3𝐷-spline (dotted red line) is used to smoothly join a linear segment (dash-
dotted black line) with a circular arch (solid green line). The composite path is 3. (For
nterpretation of the references to color in this figure legend, the reader is referred to
he web version of this article.)

For space reasons the procedure for the synthesis of (19)–(26) is not
roposed but, more conveniently, the curve properties and its strengths
re pointed out in the following by means of two propositions. In
articular, Proposition 1 asserts that 𝜂3𝐷-splines can generate, through
proper choice of 𝜼, all possible 7th order polynomial curves which

atisfy the assigned interpolating conditions. The proof of Proposition 1,
eported in Appendix A, points out another important characteristic
hich is stated in Proposition 2: the interpolating conditions, which
re normally assigned so as to guarantee the 3 continuity, are always
atisfied independently from the choice of 𝜼. This implies that the curve
an be modeled by means of 𝜼, but the choice of 𝜼 does not affect the
ontinuity properties of the combined path.

roposition 1. Given a generic 7th order polynomial 𝐩(𝑢), expressed
by means of (18), which satisfies the interpolating conditions of Table 1,
through a proper choice of vector 𝜼 it is always possible to find an 𝜂3𝐷-spline,
namely 𝐩𝜼(𝑢), such that 𝐩𝜼(𝑢) = 𝐩(𝑢).

Proof. See Appendix A.

Proposition 2. Any path primitive 𝐩𝜼(𝑢), obtained by selecting the
coefficients of (18) through (19)–(26), always satisfies the interpolating
onditions of Table 1, independently from the choice of 𝜼.

roof. It is an immediate consequence of the demonstration in Ap-
endix A.

Propositions 1 and 2 suggest two possible applications for the 𝜂3𝐷-
plines. For example, the novel planning primitive can be used to
enerate composite 3-paths or, alternatively, through an appropriate
hoice of vector 𝜼 (see Section 4), for the emulation of 3D curves.

In industrial contexts, the first application is probably the most
ommon one. An example case is proposed in Fig. 2: a composite
3-path is easily obtained by joining a linear segment (dash-dotted
lack line) and a circular arc (solid green line), generically located
n a 3D environment, through the 𝜂3𝐷-splines (dotted red line). The

interpolating conditions for the 𝜂3𝐷-splines are directly obtained from
the path primitives which need to be joined. In particular, for point
𝐴, the interpolating conditions are the same of the-end point of the
linear segment, while in 𝐵 they coincide with the initial ones of the
circular arc. More in details, 𝐩𝐴 is the end-point of the linear segment,
while 𝐭𝐴 coincides with its characteristic unit vector. In any point of a
inear segment, including its extremes, curvature, curvature derivative,
nd torsion are zero, so that 𝜅𝐴 = 𝜅𝐴 = 𝜏𝐴 = 0. Since 𝜅𝐴 = 0 and

𝜏𝐴 = 0, then 𝐧𝐴 and 𝐛𝐴 can be freely selected: they must only satisfy
conditions 𝐧𝐴 ⋅ 𝐛𝐴 = 0 and 𝐧𝐴 × 𝐛𝐴 = 𝐭𝐴. Concerning point 𝐵, 𝐩𝐵
coincides with the starting point of the circular arc and 𝐭𝐵 is the unit
tangent in the same point. For a circular arc the curvature is constant
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and equal to 𝑟−1, where 𝑟 is the radius of the primitive. Consequently,
𝐵 = 𝑟−1. Normal vector 𝐧𝐵 points towards the center of the circular
rc, while the binormal vector is evaluated as 𝐛𝐵 = 𝐭𝐵 × 𝐧𝐵 . Curvature

derivative and torsion are equal to zero, i.e., 𝜅𝐵 = 𝜏𝐵 = 0. According to
roposition 2, the imposition of such boundary conditions guarantees
he 3 continuity of the composite path. However, the curve shape can
till be modeled through the choice of vector 𝜼. Details on the selection
f 𝜼 are given in next Section 4. More precisely, possible strategies will
e proposed for the generation of generic junction profiles or in order
o let 𝜂3𝐷-splines emulate other planning primitives.

. Considerations on the selection of 𝜼

The curve shape can be imposed by means of 𝜼. To this purpose,
everal alternative strategies can be proposed. For example, it may
e chosen by means of nonlinear programming algorithms [42], in
rder to satisfy some given optimal criteria. However, in many practical
ases, simple heuristic strategies are sufficient for the generation of
urves with interesting geometric characteristics. The advantage of
uch heuristic rules is represented by their efficiency, which allows the
nline generation of complex 3 paths. In particular, curves with nice
eometric properties can be obtained by assigning 𝜼 as follows

1 = 𝜂2 = 𝑠𝑓 , (27)

3 = 𝜂4 = 𝜂5 = 𝜂6 = 0, (28)

here 𝑠𝑓 is the curve length.
Such rule of thumb emerged during the studies on the emulation

apabilities of the 𝜂3𝐷-splines. As stated in the Introduction, 𝜼-splines
an emulate, with very good approximation, many path primitives like,
or example, circular arcs and clothoids.

Let us consider a set of circular arcs with different length 𝑠𝑓 =
𝑟𝜋)∕(2𝑖), where 𝑟 is the radius and 𝑖 = 1, 2,… , 6. For each arc, the
nner angle is clearly given by 𝜃 ∶= 𝑠𝑓∕𝑟 (see also Fig. 3). The emu-
ation capability of 𝜂3𝐷-splines can be measured through the following
pproximation error

(𝑠) ∶= min
𝑢∈[0,1]

‖

‖

‖

𝐩𝜼(𝑢) − 𝐩(𝑠)‖‖
‖

, (29)

here 𝐩𝜼(𝑢) is the spline curve used to emulate the actual arc, i.e., 𝐩(𝑠),
∈ [0, 𝑠𝑓 ]. Practically, 𝑒(𝑠) is the minimum Euclidean distance between
𝜼(𝑢) and 𝐩(𝑠) measured for a given 𝑠 ∈ [0, 𝑠𝑓 ].

Very good emulation results have been verified even when the
vailable degrees of freedom are only partially exploited. In particular,
y assigning interpolating conditions compatible with an arc, 𝜼 can be
hosen as follows

1 = 𝜂2 = 𝜂∗(𝜃), (30)

3 = 𝜂4 = 𝜂5 = 𝜂6 = 0,

here 𝜂∗(𝜃) is found by solving the following minimax problem

min
∗∈

max
𝑠∈[0,𝑠𝑓 ]

{|𝑒(𝑠)|},

here  is a proper search interval. The problem was solved for
ifferent values of 𝑟 and for 𝑖 = 1, 2,… , 6. The nonlinear programming
lgorithm always converged to optimal values of 𝜂∗ which were very
lose to 𝑠𝑓 (they are not reported for conciseness).

The optimization results revealed that amplitudes of the emulation
rrors depend on 𝑟 and on 𝜃. In particular, the dependence on 𝑟 is
erfectly linear, so that the normalized error, defined as 𝑒𝑛(𝑠) ∶= 𝑒(𝑠)∕𝑟,
∈ [0, 𝑠𝑓 ], is only function of 𝜃. Average and maximum normalized

rrors for the 6 values of 𝜃 are listed in the first two rows of Table 2:
hey are generally small and become negligible as 𝜃 decreases.

The optimal values of 𝜂∗ have been subsequently used to obtain,
hrough a least square nonlinear regression, the following analytic
xpression for 𝜂1 and 𝜂2

= 𝜂 = 𝑠 (𝛼𝜃2 + 𝛽𝜃 + 𝛾), (31)
5

1 2 𝑓 d
able 2
verage and maximum normalized errors 𝑒𝑛(𝑠) for several values of 𝜃 and 𝜂1 = 𝜂2.
𝜃 𝜋∕2 𝜋∕4 𝜋∕6 𝜋∕8 𝜋∕10 𝜋∕12

𝜂1 = 𝜂2 = 𝑠∗

avg 5.5 ⋅ 10−6 7.7 ⋅ 10−8 4.6 ⋅ 10−9 3.2 ⋅ 10−9 3.1 ⋅ 10−10 5.5 ⋅ 10−11

max 9.6 ⋅ 10−6 1.3 ⋅ 10−7 9.2 ⋅ 10−9 6.4 ⋅ 10−9 1.1 ⋅ 10−9 1.6 ⋅ 10−10

𝜂1 = 𝜂2 = 𝑠𝑓 (𝛼𝜃2 + 𝛽𝜃 + 𝛾)

avg 5.2 ⋅ 10−6 2.7 ⋅ 10−6 1.7 ⋅ 10−6 8.6 ⋅ 10−7 2.7 ⋅ 10−7 2.1 ⋅ 10−8

max 9.2 ⋅ 10−6 6.7 ⋅ 10−6 4.2 ⋅ 10−6 2.2 ⋅ 10−6 6.9 ⋅ 10−7 5.3 ⋅ 10−8

𝜂1 = 𝜂2 = 𝑠𝑓
avg 3.2 ⋅ 10−3 2.1 ⋅ 10−4 4 ⋅ 10−5 1.4 ⋅ 10−5 6.0 ⋅ 10−6 4.0 ⋅ 10−6

max 7.8 ⋅ 10−3 5.0 ⋅ 10−4 1 ⋅ 10−4 3.3 ⋅ 10−5 1.4 ⋅ 10−5 7.0 ⋅ 10−6

Fig. 3. A circular arc obtained by means of the 𝜂3𝐷-splines.

here 𝛼 = −0.0099417176196074, 𝛽 = −0.0055734866225982, and 𝛾 =
1.00101667238653. The resulting approximation errors for the 6 test
cases, obtained by still assuming (28) and (30), are shown in the third
and in the fourth rows of Table 2. For 𝜃 = 𝜋∕2, the maximum error
is close 10−5 m for an arc whose radius is equal to 𝑟 = 1 m. Such
error is acceptable for many robotic applications and it further reduces
for smaller values of 𝑟 since, according to the definition of normalized
error, 𝑒(𝑠) = 𝑟 𝑒𝑛(𝑠).

Since 𝛼 and 𝛽 are very small, while 𝛾 ≃ 1, 𝜂∗ is generally close to
𝑠𝑓 . Such consideration suggested to test solutions obtained by directly
assigning 𝜼 according to (27) and (28). As shown by the fifth and the
sixth rows of Table 2, emulation errors are still acceptable, especially
for small values of 𝜃.

As early anticipated, 𝜂3𝐷-splines can also emulate clothoids. Such
capability has been tested by considering the same set of curves used
in [43,44] to check the emulation capabilities of Bézier curves. The set
is composed by 30 clothoids, joined together so as to obtain a composite
curve 6.0 m long. The composite path curvature is proportional to the
path length, i.e., 𝜅(𝑠) = 𝑠, and each segment is 0.2 m long.

Very good results have been achieved by first imposing condition
(28), and then by calculating the remaining 2 parameters through the
following optimal problem

min
𝜂∗1 ,𝜂

∗
2∈

max
𝑠∈[0,𝑠𝑓 ]

{|𝑒(𝑠)|}.

he worst case error of the optimal solutions was equal to 4.655⋅10−6 m.
rrors were only marginally influenced by perturbations of the optimal
olutions. Consequently, the worst case error only slightly increases
5.630 ⋅ 10−6 m), if the 30 optimal values of 𝜂∗1 and 𝜂∗2 are replaced by
he following 2 functions obtained through a nonlinear regression

𝑖(𝜅𝑎𝑣) ∶= 𝜆0𝑖 + 𝜆1𝑖𝜅𝑎𝑣 + 𝜆2𝑖𝜅
2
𝑎𝑣, 𝑖 = 1, 2, (32)

here 𝜅𝑎𝑣 ∶= (𝜅𝐴+𝜅𝐵)∕2 is the average curvature of each segment. The
oefficients of (32) are listed in Table 3. The first row of Table 3 points
ut that also for clothoids, the optimal values of 𝜂1 and 𝜂2 are close to
𝑓 . In facts, if 𝜼 is chosen according to (27) and (28), the maximum
rror is equal to 5.060 ⋅ 10−6 m for clothoids admitting 𝜅𝑎𝑣 < 1 m−1,

i.e., it is very close to the value obtained by solving the optimization
problem.

A proper selection of 𝜼 is also relevant when 𝜂3𝐷-splines are used to
reate junction curves between other primitives. According to previous

iscussion (27) and (28) lead to a good emulation of circular arcs and
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Table 3
Coefficients of function (32).

𝜂1 𝜂2
𝜆1 0.19920352009325834053 0.20097340855985815211
𝜆2 0.00067959647624348148 −0.00091915134872076114
𝜆3 −0.00018934505601462691 −0.00000857636957731629

Fig. 4. Convergence of the algorithm if 𝑠𝑓 (𝜂1) is monotonically increasing. The
ransients are indicated through red lines. (For interpretation of the references to
olor in this figure legend, the reader is referred to the web version of this article.)

lothoids, i.e., of curves with zero or constant curvature variability
𝜅(𝑢) = (𝜅𝐵 − 𝜅𝐴)∕𝑠𝑓 ]: apparently, such choice seems to prevent the in-
urgence of possible oscillatory behaviors in the curve shape. Therefore,
27) and (28) were also tested for the generation of generic profiles.
he resulting curves shown, as desired, moderate and slowly variable
urvatures and torsions, while oscillatory behaviors were totally absent.

The proposed selection strategy has inevitably a drawback: in case
f generic interpolating conditions 𝑠𝑓 is not known in advance, so that
he imposition of (27) is not straightforward. In order to overcome the
roblem, the following iterative procedure has been used. An initial
urve is generated by imposing 𝜂1 = 𝜂2 = ‖

‖

𝐩𝐴 − 𝐩𝐵‖‖ and its length 𝑠̃𝑓
s evaluated. Then, a second curve is planned by imposing 𝜂1 = 𝜂2 = 𝑠̃𝑓
nd its length is used for the next iteration. After few iterations – 2 or
are normally sufficient – the procedure converges to a value which is

ery close to 𝑠𝑓 .
Evidently, such algorithm can only be used if it convergences to-

ard 𝜂∗1 = 𝑠𝑓 (𝜂∗1 ), where 𝜂∗1 indicates the convergence point. To
his purpose, function 𝑠𝑓 (𝜂1) must assume a shape similar to the one
hown in Fig. 4: after some iterations, the algorithm would necessarily
onverge toward 𝜂∗1 independently from the starting point.

roposition 3. For sufficiently small values of ‖
‖

𝐩𝐵 − 𝐩𝐴‖‖, the proposed
lgorithm converges toward 𝜂∗1 = 𝑠𝑓 (𝜂∗1 ).

roof. The iterative algorithm looks for the intersection point between
unctions 𝑓1 = 𝑠𝑓 (𝜂1) and 𝑓2 = 𝜂1. As a consequence, it is first necessary
o demonstrate the two functions actually intersect each other. Owing
o the continuity of function 𝑠𝑓 (𝜂1), this hypothesis is verified if there

exist 𝜂1 < 𝜂1 such that 𝑠𝑓 (𝜂1) > 𝜂1 > 𝑠𝑓 (𝜂1). Furthermore, in order
to prove the convergence, it is necessary to verify that the slope of
𝑠𝑓 (𝜂1) is higher than −1 over the search interval and, in particular, in
𝜂∗1 . The reason of this second requirement can be understood with the
aid of Figs. 4 and 5. The first one shows two typical convergence se-
quences occurring when 𝑠𝑓 (𝜂1) is a monotonically increasing function.
Conversely, Fig. 5 shows two possible situations which may occur if
(𝑑𝑠𝑓 )∕(𝑑𝜂1) is negative in 𝜂∗1 : in case (a) the derivative is greater than
−1 and the convergence is achieved, while in case (b) the algorithm
does not converge.

- There exists 𝜂1 such that 𝑠𝑓 (𝜂1) > 𝜂1 – Closed form expressions for
𝐩′(𝑢) can be found by evaluating its coefficients through (19)-(26) and
6

Fig. 5. Convergence properties: (a) the algorithm converges since (𝑑𝑠𝑓 )∕(𝑑𝜂1) > −1 for
1 = 𝜂∗1 , (b) the algorithm diverges since (𝑑𝑠𝑓 )∕(𝑑𝜂1) < −1. The transients are indicated
hrough red lines. (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)

y assuming that (27) and (28) apply. A few algebraic manipulations
ake it possible to write 𝐩′(𝑢) as follows

′(𝑢; 𝜂1) =𝑓1(𝑢)𝜂31𝐛𝐴 + 𝑓2(𝑢)𝜂31𝐛𝐵 + 𝑓3(𝑢)𝜂21𝐧𝐴 + 𝑓4(𝑢)𝜂21𝐧𝐵
+ 𝑓5(𝑢)𝜂1𝐭𝐴 + 𝑓6(𝑢)𝜂1𝐭𝐵 + 𝑓7(𝑢)(𝐩𝐵 − 𝐩𝐴), (33)

here 𝑓𝑖(𝑢), 𝑖 = 1, 2,… , 7 are proper scalar polynomial functions which
lso depend on 𝜅𝐴, 𝜅𝐵 , 𝜅𝐴, 𝜅𝐵 , 𝜏𝐴, and 𝜏𝐵 .

By assuming 𝜂1 → 0, from (33) it immediately descends that

lim
𝜂1→0

‖

‖

𝐩′(𝑢; 𝜂1)‖‖ = |

|

𝑓7(𝑢)|| ‖‖𝐩𝐵 − 𝐩𝐴‖‖ . (34)

𝑓 (𝜂1) can be obtained by applying (34) to (8). The following result is
obtained

lim
𝜂1→0

𝑠𝑓 (𝜂1) = ‖

‖

𝐩𝐵 − 𝐩𝐴‖‖∫
1

0
|

|

𝑓7(𝑢)|| 𝑑𝑢 = ‖

‖

𝐩𝐵 − 𝐩𝐴‖‖ ≥ 0,

here |

|

𝑓7(𝑢)|| = 140(1−𝑢)3𝑢3 is a function whose integral, evaluated over
[0, 1], is equal to 1. Practically, by assuming 𝜂1 = 0 condition 𝑠𝑓 (𝜂1) > 𝜂1
is banally satisfied.

- There exists 𝜂1 such that 𝑠𝑓 (𝜂1) < 𝜂1 – By virtue of the triangular
nequality, (33) allows one writing the following expression

𝐩′(𝑢)‖
‖

≤ |

|

𝑓1(𝑢)|| 𝜂
3
1
‖

‖

𝐛𝐴‖‖ + |

|

𝑓2(𝑢)|| 𝜂
3
1
‖

‖

𝐛𝐵‖‖ + |

|

𝑓3(𝑢)|| 𝜂
2
1
‖

‖

𝐧𝐴‖‖ + |

|

𝑓4(𝑢)|| 𝜂
2
1
‖

‖

𝐧𝐵‖‖
+ |

|

𝑓5(𝑢)|| 𝜂1 ‖‖𝐭𝐴‖‖ + |

|

𝑓6(𝑢)|| 𝜂1 ‖‖𝐭𝐵‖‖ + |

|

𝑓7(𝑢)|| ‖‖𝐩𝐵 − 𝐩𝐴‖‖ ,

= |

|

𝑓1(𝑢)|| 𝜂
3
1 + |

|

𝑓2(𝑢)|| 𝜂
3
1 + |

|

𝑓3(𝑢)|| 𝜂
2
1 + |

|

𝑓4(𝑢)|| 𝜂
2
1

+ |

|

𝑓5(𝑢)|| 𝜂1 + |

|

𝑓6(𝑢)|| 𝜂1 + |

|

𝑓7(𝑢)|| ‖‖𝐩𝐵 − 𝐩𝐴‖‖ , (35)

ccording to (8), 𝑠𝑓 can be obtained by integrating ‖

‖

𝐩′(𝑢)‖
‖

. Conse-
uently, the integrals of both sides of (35) lead, after some algebraic
anipulations, to the following inequality

𝑓 (𝜂1) ≤ 𝐾1𝜂
3
1 +𝐾2𝜂

2
1 + 0.9074𝜂1 + ‖

‖

(𝐩𝐵 − 𝐩𝐴)‖‖ , (36)

here

1 ∶=0.2798 ⋅ 10−2(|𝜅𝐴𝜏𝐴| + |𝜅𝐵𝜏𝐵|) ≥ 0,

2 ∶=0.8988 ⋅ 10−2(|𝜅𝐴| + |𝜅𝐵|) + 0.4663 ⋅ 10−3(|𝜅̄𝐴| + |𝜅̄𝐵|) ≥ 0.

earing in mind (36), condition 𝑠𝑓 (𝜂1) < 𝜂1 is satisfied if, in turn, the
ollowing inequality holds

𝐾1𝜂
2
1 +𝐾2𝜂1 + 0.9074)𝜂1 ≤ 𝜂1 − ‖

‖

(𝐩𝐵 − 𝐩𝐴)‖‖ (37)

r, equivalently, if

0, 0926 −𝐾 𝜂2 −𝐾 𝜂 )𝜂 ≥ ‖(𝐩 − 𝐩 )‖ (38)
1 1 2 1 1 ‖ 𝐵 𝐴 ‖



Robotics and Computer-Integrated Manufacturing 72 (2021) 102203A. Tagliavini and C. Guarino Lo Bianco

w
s
∈
t
c
n
t

i
m
r
r
c
m
t
i
s
p
v

R
c
t
f
s

𝐑

w
𝑘

s
t
a

i
t
s
i

By recalling that 𝐾1, 𝐾2, 𝜂1 ≥ 0, two conclusion can be drawn. Firstly,
the following inequality must apply in order to satisfy (37)

𝜂1 ≥ ‖

‖

(𝐩𝐵 − 𝐩𝐴)‖‖ . (39)

Secondly, depending on the interpolating conditions (38) may not
admit feasible solutions. In that case, the original planning problem
can be split into sub-problems, so as to reduce ‖

‖

𝐩𝐵 − 𝐩𝐴‖‖. Owing to
the structure of (38), it will always be possible to find reasonably small
values for ‖

‖

𝐩𝐵 − 𝐩𝐴‖‖ and 𝜂1 such that (38) and (39) are simultaneously
satisfied.

It is important to remark that conditions (38) is actually very restric-
tive, being obtained from a triangular inequality. Normally, condition
𝑠𝑓 (𝜂1) < 𝜂1 is satisfied by simply selecting a sufficiently large value of
𝜂1 fulfilling (39).

- Condition (𝑑𝑠𝑓 )∕(𝑑𝜂1) > −1 is satisfied ∀𝜂1 ∈ R+ – Eq. (33) can also
be written as follows

𝐩′(𝑢; 𝜂1) = [𝐭𝐴 𝐧𝐴 𝐛𝐴]
⏟⏞⏞⏞⏟⏞⏞⏞⏟

0
𝐴𝐑

⎡

⎢

⎢

⎣

𝑓5(𝑢)𝜂1
𝑓3(𝑢)𝜂21
𝑓1(𝑢)𝜂31

⎤

⎥

⎥

⎦

[𝐭𝐵 𝐧𝐵 𝐛𝐵]
⏟⏞⏞⏞⏟⏞⏞⏞⏟

0
𝐵𝐑

⎡

⎢

⎢

⎣

𝑓6(𝑢)𝜂1
𝑓4(𝑢)𝜂21
𝑓2(𝑢)𝜂31

⎤

⎥

⎥

⎦

+𝑓7(𝑢)(𝐩𝐵−𝐩𝐴),

(40)

where 0
𝐴𝐑 and 0

𝐵𝐑 are rotation matrices which describe the orientation
of the Frenet frame at the beginning and at the end of the curve. Bearing
in mind (8) and (40), the derivative of 𝑠𝑓 w.r.t. 𝜂1 can be written as
follows
𝜕𝑠𝑓
𝜕𝜂1

= ∫

1

0

𝜕𝐩′(𝑢; 𝜂1)
𝜕𝜂1

𝐭(𝑢; 𝜂1)𝑑𝑢 (41)

where

𝜕𝐩′(𝑢; 𝜂1)
𝜕𝜂1

= 0
𝐴𝐑

⎡

⎢

⎢

⎣

𝑓5(𝑢)
2𝑓3(𝑢)𝜂1
3𝑓1(𝑢)𝜂21

⎤

⎥

⎥

⎦

+ 0
𝐵𝐑

⎡

⎢

⎢

⎣

𝑓6(𝑢)
2𝑓4(𝑢)𝜂1
3𝑓2(𝑢)𝜂21

⎤

⎥

⎥

⎦

.

Eq. (41) does not admit a closed form representation, so that its
minimum value can be found by solving the following optimization
problem

min
𝛾∈𝛤

{ 𝜕𝑠𝑓 (𝜂1)
𝜕𝜂1

}

here 𝛾 =
{0
𝐴𝐑, 𝜅𝐴, 𝜅𝐴, 𝜏𝐴, 0𝐵𝐑, 𝜅𝐵 , 𝜅𝐵 , 𝜏𝐵 , 𝜂1

}

and 𝛤 is a proper search
pace. In particular, 0

𝐴𝐑,
0
𝐵𝐑 ∈ 𝑆𝑂(3), 𝜅𝐴, 𝜅𝐵 , 𝜂1 ∈ R+, and 𝜅𝐴, 𝜅𝐵 , 𝜏𝐴, 𝜏𝐵

R. If the optimization problem returns a value greater than -1,
hen the algorithm converges independently from the interpolating
onditions. The result does not depend on the direction and on the
orm of 𝐩𝐵 − 𝐩𝐴, so that such vector was assumed constant and equal
o 𝐩𝐵 − 𝐩𝐴 = [1 0 0]𝑇 .

The optimization and the subsequent analysis of the results ev-
denced some interesting properties. The problem is nonlinear and
ultimodal, so that it has been repeatedly solved by starting from

andomly chosen points. The minimum cost index obtained over all the
uns was equal to −1.666 ⋅10−2, i.e., it was much higher than -1. Similar
ost indexes were found in other runs of the algorithm for alternative
inimizers. A deeper analysis of the solutions revealed that the deriva-

ive of 𝑠𝑓 (𝜂1) can be negative for very particular configurations of the
nterpolating conditions and for values of 𝜂1 close to ‖

‖

𝐩𝐵 − 𝐩𝐴‖‖ (for the
pecific case, for 𝜂1 close to 1). Furthermore, the derivative is generally
ositive over R+: when negative solutions are detected, they span over
ery narrow intervals of 𝜂1. ■

emark 1. The most common application for 𝜂3𝐷-splines concerns the
reation of smooth junctions between linear segments. For example,
his is typical planning case occurring for CNC machines. In such a
ramework, terms 𝐾1 and 𝐾2 are identically zero, so that (38) is banally
atisfied if the following condition holds

𝜂 ≥
‖

‖

𝐩𝐵 − 𝐩𝐴‖‖ ,
7

1 0, 0926 a
Table 4
Statistics concerning the computation of 𝜂1 after 𝑖 iterations. 𝑒 and 𝑚 are expressed in
%, t is expressed in seconds.
𝑖 avg dev min max

1
𝑒 0.095 0.058 4.90 ⋅ 10−5 0.288
𝑡 4.07 ⋅ 10−6 2.68 ⋅ 10−7 4.00 ⋅ 10−6 5.00 ⋅ 10−6

𝑚 0.473 0.171 0.099 0.940

2
𝑒 0.032 0.028 3.60 ⋅ 10−8 0.152
𝑡 8.54 ⋅ 10−6 5.08 ⋅ 10−7 8.00 ⋅ 10−6 1.00 ⋅ 10−5

𝑚 0.507 0.188 0.099 0.940

3
𝑒 0.012 0.014 2.60 ⋅ 10−11 0.084
𝑡 1.30 ⋅ 10−5 2.54 ⋅ 10−7 1.20 ⋅ 10−5 1.50 ⋅ 10−5

𝑚 0.516 0.193 0.099 0.940

4
𝑒 0.005 0.007 1.80 ⋅ 10−14 0.047
𝑡 1.72 ⋅ 10−5 4.58 ⋅ 10−7 1.70 ⋅ 10−5 2.00 ⋅ 10−5

𝑚 0.519 0.195 0.099 0.940

5
𝑒 0.002 0.003 0 0.027
𝑡 2.14 ⋅ 10−5 5.79 ⋅ 10−7 2.10 ⋅ 10−5 2.40 ⋅ 10−5

𝑚 0.521 0.196 0.099 0.940

so that the iterative algorithm certainly converges.

As previously asserted, the iterative procedure proposed for the se-
lection of 𝜼 typically converges in 2–3 iterations, so that computational
times are compatible with the real-time requirement. In order to prove
such assertion, the iterative procedure has been tested by considering
the generation of junction curves between circular arcs. A set of 2250
test cases has been generated. The following constant interpolating
conditions for the starting point of the 𝜼3𝐷-splines have been assumed:

𝐩𝐴 =
⎡

⎢

⎢

⎣

0
0
0

⎤

⎥

⎥

⎦

, 𝐑𝐴 =
⎡

⎢

⎢

⎣

0 1 0
1 0 0
0 0 −1

⎤

⎥

⎥

⎦

, 𝜅𝐴 = 1, 𝜅̄𝐴 = 𝜏𝐴 = 0, (42)

which are relative to a circular arc whose radius is equal to 1 m.
Conversely, variable interpolating conditions have be assumed for the
end-point. They have been generated as follows

𝐩𝐵 =
⎡

⎢

⎢

⎣

𝑥𝐵
𝑦𝐵
𝑧𝐵

⎤

⎥

⎥

⎦

;

⎧

⎪

⎨

⎪

⎩

𝑥𝐵 ∈ {−0.3, 0, 0.3}
𝑦𝐵 ∈ {0.3, 0.6, 0.9}
𝑧𝐵 ∈ {0, 0.3}

(43)

𝐵 = 𝑅𝑥(𝜃2)𝑅𝑧(𝜃1)𝐑𝐴; 𝜃1, 𝜃2 ∈
{

0, 𝜋
4
, 𝜋
2
, 3𝜋

4
, 𝜋

}

(44)

𝜅𝐵 ∈ {0.1, 0.5, 1, 2, 10}, (45)

𝜅̄𝐵 = 𝜏𝐵 = 0, (46)

here 𝑅𝑘(𝜃) ∈ 𝑆𝑂(3) indicates a rotation around the 𝑘 axis [in (44)
∈ {𝑥, 𝑧}]. As usual 𝜂3 = 𝜂4 = 𝜂5 = 𝜂6 = 0.

The algorithm converged in all the test cases. Table 4 shows some
tatistics concerning the obtained results. They are expressed as func-
ion on 𝑖, where 𝑖 is the number of iterations considered. The statistics
re relative the following benchmarks:

• Percentage difference 𝑒 between 𝜂 and 𝑠𝑓 at the 𝑖th iteration
(

𝑒 =
|

|

|

𝜂1−𝑠𝑓
|

|

|

𝑠𝑓

)

;

• Computational time 𝑡 at the 𝑖th iteration expressed in seconds;
• Percentage difference 𝑚 between the initial and the final value of
𝜂1 at the 𝑖th iteration

(

𝑚 = 𝜂1−‖𝐩𝐴−𝐩𝐵‖
𝜂1

)

.

Table 4 makes it possible to draw some conclusions. The algorithm can
be reasonably stopped at the 3rd iteration, since the average values of 𝑒
s close to 1% and the 𝑚 terms are very similar to the ones achieved at
he 4th iteration, i.e., the last cycle only marginally modifies the path
hape. The same table further shows that, in many practical cases, two
terations are actually sufficient. The planning algorithm – executed on

single core of an Intel i7-1165G7 processor running at @2.80 GHz
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Fig. 6. Curve shapes obtained for: dashed blue line 𝜂1 = 𝜂2 = 𝑠𝑓 ∕2; solid red line
𝜂1 = 𝜂2 = 𝑠𝑓 ; dash-dotted black line 𝜂1 = 𝜂2 = 1.5 𝑠𝑓 ; dotted green line 𝜂1 = 𝜂2 = 4 𝑠𝑓 .
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 7. Curvature profiles corresponding to the 4 curves shown in Fig. 6: dashed blue
line 𝜂1 = 𝜂2 = 𝑠𝑓 ∕2; solid red line 𝜂1 = 𝜂2 = 𝑠𝑓 ; dash-dotted black line 𝜂1 = 𝜂2 = 1.5 𝑠𝑓 ;
dotted green line 𝜂1 = 𝜂2 = 4 𝑠𝑓 . (For interpretation of the references to color in this
igure legend, the reader is referred to the web version of this article.)

converges, on average, in [8 12] ⋅ 10−6 s, i.e., the execution time is
compatible with a wide range of real-time applications. Computational
times associated to any 𝑖 are predictable, since they are characterized by
a very low standard deviation: this is another important characteristic
in real-time contexts.

An application of the proposed iterative procedure is shown in
Fig. 6, in which the 𝜂3𝐷-splines have been used for the generation of
smooth junctions between two linear segments. The following interpo-
lating conditions have been used, directly derived from the endpoints of
the linear segments: 𝐩𝐴 = [0 0 0]𝑇 , 𝐩𝐵 = [0.15 0.15 0]𝑇 , 𝐭𝐴 = [0 1 0]𝑇 , 𝐧𝐴 =
[1 0 0]𝑇 , 𝐛𝐴 = [0 0−1]𝑇 , 𝐭𝐵 = [0 0−1]𝑇 , 𝐧𝐵 = [0−1 0]𝑇 , 𝐛𝐵 = [0 0−1]𝑇 ,
𝜅𝐴 = 𝜅𝐵 = 𝜅𝐴 = 𝜅𝐵 = 𝜏𝐴 = 𝜏𝐵 = 0.

The 4 curves shown in Fig. 6 have been obtained by assuming that
28) applies. Furthermore, named 𝑠𝑓 the path length obtained through
he iterative procedure, 𝜂1 and 𝜂2 have been chosen as follows: (a)
1 = 𝜂2 = 𝑠𝑓∕2; (b) 𝜂1 = 𝜂2 = 𝑠𝑓 ; (c) 𝜂1 = 𝜂2 = 1.5 𝑠𝑓 ; (d) 𝜂1 = 𝜂2 = 4 𝑠𝑓 .
ig. 7 shows the corresponding curvatures and highlights that solution
b) returns the smallest values: 𝜅(𝑢) smoothly increases from 0 up to an
lmost constant value – the central part of the curve is, approximately,
circular arc – and, then, it newly decreases to 0.

Another example is proposed in Fig. 8. It concerns 2 straight seg-
ents which are not coplanar. Apart from 𝐩𝐵 ∶= [0.15 0.15 0.15]𝑇 , the

emaining interpolating conditions are the same used for the previous
xample and, similarly, the same 4 selection rules have been assumed
or 𝜂1 and 𝜂2. As shown in Fig. 9, solution (b) is still the one with the
mallest curvatures.

No further examples are presented for space reasons, but additional
ests have shown that the proposed selection strategy generally returns
urves with limited lengths and curvatures, and which avoid oscillatory
ehaviors. In general, for sufficiently high values of 𝜂1 = 𝜂2 – higher
hen the ones considered in the examples – maximum curvatures start
ecreasing, but curve lengths become excessive. The above mentioned
haracteristics allow one concluding that the strategy proposed for
he selection of 𝜼, while not yielding to optimal solutions, returns
mooth 3 curves – curvatures and curvature derivatives are limited
of reasonable length – 𝑠 is generally comparable with ‖𝐩 − 𝐩 ‖.
8

𝑓 ‖ 𝐵 𝐴‖
Fig. 8. Curve shapes obtained for: dashed blue line 𝜂1 = 𝜂2 = 𝑠𝑓 ∕2; solid red line
𝜂1 = 𝜂2 = 𝑠𝑓 ; dash-dotted black line 𝜂1 = 𝜂2 = 1.5 𝑠𝑓 ; dotted green line 𝜂1 = 𝜂2 = 4 𝑠𝑓 .
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 9. Curvature profiles corresponding to the 4 curves shown in Fig. 8: dashed blue
line 𝜂1 = 𝜂2 = 𝑠𝑓 ∕2; solid red line 𝜂1 = 𝜂2 = 𝑠𝑓 ; dash-dotted black line 𝜂1 = 𝜂2 = 1.5 𝑠𝑓 ;
dotted green line 𝜂1 = 𝜂2 = 4 𝑠𝑓 . (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

This result is achieved at a negligible computational cost, since the
𝜂3𝐷-splines coefficients are immediately obtained from (19)–(26). As
already mentioned, if specific optimal conditions were to be satisfied,
𝜼 should be selected through nonlinear programming algorithms.

In next Section 5 the 𝜂3𝐷-splines are experimentally tested with the
aid of an industrial manipulator.

5. Experimental validation

𝜂3𝐷-splines have been embedded in the path planner of an indus-
rial manipulator and, subsequently, they have been experimentally
ested by generating some 3 composite paths. To this purpose, a
omau Smart SiX 6-1.4 manipulator was used. The manipulator can
e remotely controlled by means of an external Linux PC whose ker-
el was patched with the Real Time Application Interface (RTAI)
oftware [45]. The communication between PC and robot controller
xploits a real-time Ethernet connection.

As early mentioned, 𝜂3𝐷-splines can also emulate, exactly or with a
ood approximation, many path primitives commonly used by conven-
ional planners. For this reason, a Cartesian planner, entirely based on
he 𝜂3𝐷-splines, was implemented and exploited for the generation of a
omposite 3 path.

The trajectory shown in Fig. 10 has been specifically synthesized
to this purpose. It is made of a set of curves whose interpolating
conditions are assigned so as to generate some common path primitives.
In particular, the 3 path contains 3 straight lines (see red segments 1,
3 and 130), 3 adjacent circular arcs (see the green segments from 5 to
7), a helical curve (see the black segments from 9 to 67), and a conic
spiral (see the orange segments from 69 to 127). Such curves are joined
by means of generic 𝜂3𝐷-spline profiles so as to guarantee the overall
3 continuity of the composite path (see cyan segments 2, 4, 8, 68,
28, 129, 131). Black dots highlight the segments end-points. For all
he curves, vector 𝜼 was always selected according to (27) and (28).

The maximum emulation error (2.7 ⋅ 10−5 m) was detected for
curves from 5 to 7: for many actual robotic applications such value



Robotics and Computer-Integrated Manufacturing 72 (2021) 102203A. Tagliavini and C. Guarino Lo Bianco

c

i
f
d
c

l
s

6

s

g
o

t
e
p
𝜂
a
o

C

a
-
M
&

D

c
i

A

i
0
s
P
c

Fig. 10. The composite 3 path used for Experiment 2.

Fig. 11. The 3 components of (𝑑3𝐩)∕(𝑑𝑠3) are continuous functions.

Fig. 12. For the composite 3 path, the resulting jerk profiles of the first 3 joints are
ontinuous.

s acceptable and, according to the discussion in Section 4, it can be
urther reduced by shortening the arcs lengths. Fig. 11 shows that, as
esired, (𝑑3𝐩)∕(𝑑𝑠3) is continuous over the entire composite path and,
onsequently, the joint jerks shown in Fig. 12 are continuous as well.

The accompanying video shows the execution of the path for a
ongitudinal speed equal to 0.1 ms−1: the 3 continuity allows a very
mooth motion.

. Conclusions

𝜂3𝐷-splines are an extremely flexible path planning primitive. As
hown in the paper, it can easily emulate other planning primitives
9

and its parameters can be obtained, at a negligible computational cost,
directly from the assigned interpolating conditions. These properties,
combined with the 3 geometric continuity that the 𝜂3𝐷-splines can
uarantee, make it possible to smartly create in real time smooth paths
f considerable complexity, by only using a single planning primitive.

The research activity is currently focused on two open problems. On
he one hand, the effort is posed on the investigation of solutions which
xploit the available degrees of freedom for the generation of smoother
ath, so as to further reduce the errors in the joint space; on the other,
3𝐷-splines are going to be integrated with an additional primitive, so
s to allow the generation of motions which also account for the tool
rientations.
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ppendix A

The coefficients of a generic 7th order spline 𝐩(𝑢) satisfying the
nterpolating conditions specified in Table 1 will be indicated as 𝝌 𝑖, 𝑖 =
, 1,… , 7, while the coefficients of an 𝜂3𝐷-spline 𝐩𝜼(𝑢) satisfying the
ame interpolating conditions will be indicated as 𝝌 𝑖. In order to prove
roposition 1, it is necessary to demonstrate that, through a proper
hoice of vector 𝜼, it is always possible to obtain 𝐩𝜼(𝑢) = 𝐩(𝑢) or,

equivalently, 𝝌 𝑖 = 𝝌 𝑖, 𝑖 = 0, 1,… , 7.
Interpolating condition 𝐩(0) = 𝐩𝐴 is evidently satisfied for a curve

like (18) if 𝝌0 = 𝐩𝐴. According to (19), the first coefficient of 𝐩𝜼(𝑢) is
given by 𝝌0 = 𝐩𝐴, so that, evidently, 𝝌0 = 𝝌0.

By virtue of (9), the following condition applies for any generic
curve

𝐩′(𝑢) = 𝐭(𝑢) ‖
‖

𝐩′(𝑢)‖
‖

. (A.1)

If the same curve satisfies initial condition 𝐭(0) = 𝐭𝐴 then, for 𝑢 = 0,
(A.1) can be written as follows

𝐩′(0) = 𝐭𝐴 ‖

‖

𝐩′(0)‖
‖

. (A.2)

By differentiating (18), it is possible to evince that the first derivative
of 𝐩(𝑢), computed for 𝑢 = 0, is given by 𝐩′(0) = 𝝌1, so that from (A.2)
it descends that

𝐩′(0) = 𝝌1 = 𝐭𝐴 ‖

‖

𝐩′(0)‖
‖

. (A.3)

Evidently, coefficient 𝝌1 of 𝐩𝜼(𝑢) is given by (20). By assuming

𝜂1 = ‖

‖

𝐩′(0)‖
‖

(A.4)

condition 𝝌1 = 𝝌1 is satisfied.
Any orthogonal Frenet frame is a base for the 3D Cartesian space,

so that the following expression is certainly true

𝐩′′(0) = 𝛼𝐭𝐴 + 𝛽𝐧𝐴 + 𝛾𝐛𝐴, (A.5)

where 𝛼, 𝛽, and 𝛾 are proper scalar.
Bearing in mind (A.2) and (A.5), if a generic curve satisfies condi-

tion 𝐧(0) = 𝐧𝐴, then (11), after a few algebraic manipulations, can be
written as follows

𝐧𝐴 =
[𝐩′(0) × 𝐩′′(0)] × 𝐩′(0)

′ ′′ ′ =
𝛽𝐧𝐴 + 𝛾𝐛𝐴 .
‖𝐩 (0) × 𝐩 (0)‖ ‖𝐩 (0)‖ ‖

‖

𝛽𝐛𝐴 − 𝛾𝐧𝐴‖‖
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(

𝜅

𝛾

Evidently, such expression is true only if

𝛾 = 0. (A.6)

If the curve also fulfills 𝜅(0) = 𝜅𝐴, then (12) – together with (A.2),
A.5), and (A.6) – allows one writing the following expression

𝐴 =
‖

‖

𝐩′(0) × 𝐩′′(0)‖
‖

‖𝐩′(0)‖3
=

‖

‖

𝐩′(0)‖
‖

‖

‖

𝐭𝐴 × (𝛼𝐭𝐴 + 𝛽𝐧𝐴)‖‖
‖𝐩′(0)‖3

=
𝛽

‖𝐩′(0)‖2

and, consequently,

𝛽 = 𝜅𝐴 ‖

‖

𝐩′(0)‖
‖

2 . (A.7)

By virtue of (A.6) and (A.7), for any curve which satisfies the conditions
in Table 1, (A.5) assumes the following form

𝐩′′(0) = 𝛼𝐭𝐴 + 𝜅𝐴 ‖

‖

𝐩′(0)‖
‖

2 𝐧𝐴. (A.8)

On the other side, for a generic polynomial curve 𝐩(𝑢) like (18), the
following expression holds

𝐩′′(0) = 2𝝌2, (A.9)

so that the interpolating conditions are satisfied by imposing

𝝌2 =
1
2
(𝛼𝐭𝐴 + 𝜅𝐴 ‖

‖

𝐩′(0)‖
‖

2 𝐧𝐴). (A.10)

From (21), it descends that the same result can be achieved for 𝐩𝜼(𝑢)
by acting on 𝜼. In particular, condition 𝝌2 = 𝝌2 is satisfied by imposing
(A.4) and by further assigning

𝜂3 = 𝛼. (A.11)

A similar reasoning can be used for 𝝌3. Vector 𝐩′′′(0) can be ex-
pressed through its components in the Frenet frame

𝐩′′′(0) = 𝛼̂𝐭𝐴 + 𝛽𝐧𝐴 + 𝛾̂𝐛𝐴 (A.12)

where 𝛼̂, 𝛽, and 𝛾̂ are proper scalars. If a curve fulfills 𝜏(0) = 𝜏𝐴, by
virtue of (16) the following condition holds

𝜏𝐴 =
[𝐩′(0) × 𝐩′′(0)] ⋅ 𝐩′′′(0)

‖𝐩′(0) × 𝐩′′(0)‖2
. (A.13)

By further considering (A.2), (A.8), and (A.12), and after a few alge-
braic manipulations, (A.13) can be rearranged as follows

𝜏𝐴 =
𝛾̂

‖𝐩′(0)‖3 𝜅𝐴
,

which implies that the interpolating conditions are fulfilled if the
following expression is satisfied

̂ = 𝜏𝐴 ‖

‖

𝐩′(0)‖
‖

3 𝜅𝐴. (A.14)

By imposing 𝑑𝜅
𝑑𝑠 (0) = 𝜅̄𝐴 to (17), evaluated for 𝑢 = 0, one can write

𝜅̄𝐴 = 𝐛𝐴 ⋅
𝐩′(0) × 𝐩′′′(0)

‖𝐩′(0)‖4
− 3𝜅𝐴

𝐩′(0) ⋅ 𝐩′′(0)
‖𝐩′(0)‖3

. (A.15)

By considering (A.2), (A.8), and (A.12), (A.15) simplifies as follows

𝜅̄𝐴 =
𝛽

‖𝐩′(0)‖3
− 3𝜅𝐴

𝛼
‖𝐩′(0)‖2

,

so that, necessarily, 𝛽 must assume the following structure

𝛽 = 𝜅̄𝐴 ‖

‖

𝐩′(0)‖
‖

3 + 3𝜅𝐴𝛼 ‖‖𝐩
′(0)‖

‖

. (A.16)

Expressions (A.14) and (A.16) are valid for generic curves, but can
be specialized for polynomial functions. In particular, from (18) it
descends that

′′′
10

𝐩 (0) = 6𝝌3, (A.17)
so that, bearing in mind (A.12), (A.14), and (A.16), the following
expression for 𝝌3 is obtained

𝝌3 =
1
6
𝛼̂𝐭𝐴 +

( 1
6
𝜅̄𝐴 ‖

‖

𝐩′(0)‖
‖

3 + 1
2
𝜅𝐴𝛼 ‖‖𝐩

′(0)‖
‖

)

𝐧𝐴 + 1
6
𝜏𝐴 ‖

‖

𝐩′(0)‖
‖

3 𝜅𝐴𝐛𝐴.

(A.18)

The same value can be assumed by an 𝜂3𝐷-spline by assigning 𝜂5 = 𝛼̂∕6,
and by recalling that (A.4) and (A.11) simultaneously hold: condition
𝝌3 = 𝝌3 is certainly satisfied.

An analogous procedure can be used to demonstrate that 𝝌 𝑖 =
𝝌 𝑖, for 𝑖 = 4, 5, 6, 7. To this purpose, it is necessary to consider the
interpolating conditions at the curve endpoint (𝑢 = 1). The process
requires much more algebraic manipulations, so that, for space reasons,
it is omitted.

It is worth highlighting that the demonstration also allows one
asserting that the choice of parameters 𝜼 never affect interpolating
conditions, which are always satisfied independently from the values
it assumes: this property is exploited in the paper in order to obtain
curves with the desired shape.

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.rcim.2021.102203.
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