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ABSTRACT

Exposure to natural occurrences of asbestos (NOA) and other potentially hazardous elongated mineral particles
(EMPs) may pose a risk to human health and the environment. Weathering forces and anthropic activities may
alter the cohesion of NOA-bearing outcrops and disperse EMPs in air, water, and soil. The current paradigm for
fibre toxicity indicates that morphology and crystal chemistry are key parameters in determining the toxicolog-
ical properties of a mineral. This work aims to assess and discuss the impact of sub-tropical supergene alteration
and weathering on the morphology and the chemical composition of antigorite, a non-regulated serpentine that
shares chemical composition with asbestos chrysotile. Antigorite naturally occurring in lateritic Ni ores of New
Caledonia exhibits a unique asbestos-like habit at the microscopic scale. Standardized mechanical stress was per-
formed on antigorites, selected to represent different cohesion states. The specimens produced a relevant amount
of respirable fibres, between 32 and 42% (WHO counting criteria). PCA on chemical data and ternary diagrams
show that all antigorites exhibit a similar Si content (from 2.05 to 2.09 a.f.u.) but were mainly differentiated by
Mg and Ni content, ranging from 2.66 to 2.80 and 0.00 to 0.09 a.f.u., respectively. Si content in Caledonian
antigorite is higher than Si in non-lateritic samples. This suggests that a main alteration process occurred after
the obduction of the ultramafic protolith. The supergene alteration determined the Ni enrichment of lateritic de-
posits and is likely the main cause of the mineral alteration of antigorite under sub-tropical environments. Fur-
ther, weathering processes prompt the disaggregation of altered antigorite causing the generation and

dispersion of respirable, potentially hazardous, antigorite fibres in the environment.
© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Inhalation is the most critical route of exposure to mineral fibres that
becomes a matter of concern also in the case of exposure to Natural Oc-
currences of Asbestos (NOA) (Case et al., 2011; IARC, 2012). From a reg-
ulatory point of view, the term “asbestos” indicates six fibrous members
of the amphibole and serpentine group of minerals. Following the pan-
demic exposure to asbestos during the last century, the six minerals are
now classified as carcinogenic to human by International Agency for Re-
search on Cancer (IARC)/World Health Organization (WHO) and
banned or strictly regulated by safety and health protection organiza-
tions (e.g., NIOSH, OSHA, and EU). However, ban and regulations may
not be applied to natural geological settings, where weathering events
(e.g., erosion, landslide) and/or anthropic activities (e.g., agriculture,
road grading, construction, mining; Gunter, 2018; Lee et al., 2008;
Turci et al.,, 2016) may mobilize fibres from NOA-rich outcrops. The
physical and biological alteration of exposed NOA-bearing outcrops
prompts rock fragments to disaggregate, and this process may in turn
generate inhalable elongated mineral particles (EMPs; NIOSH, 2011 def-
inition). EMPs that share with asbestos many physico-chemical and tox-
icological properties may as well pose a risk to human health (Boffetta
et al., 2018; Garabrant and Pastula, 2018; Harper, 2008; NIOSH, 2011).
Few decades ago, an epidemic of malignant mesothelioma in three vil-
lages (Sarihidir, Tuzkdy, and Karain) in the Cappadocia region in
Turkey, was linked to the occurrence and use of deposits of fibrous
erionite (Artvinli and Baris, 1979). The carcinogenic potency of this nat-
urally occurring fibrous zeolite is higher than crocidolite asbestos
(Carbone et al,, 2011; IARC, 2012). Asbestos-related mesotheliomas
were also linked to the exposure to non-asbestos amphiboles winchite,
richterite (EPA, 2014; Sullivan, 2007; Rogers, 2018), and fluoro-edenite
(Gianfagna et al., 2003; IARC, 2017). To take into account this emerging
group of potentially hazardous minerals, the U.S. EPA extended the term
“asbestos” to the mixture of fibrous amphiboles (tremolite, winchite,
richterite, etc.) identified in NOA-rich rocks found in vermiculite mine
in Libby, Montana, U.S., where a cluster of asbestos-induced mesotheli-
oma was observed (EPA, 2014; Meeker et al., 2003). In this context, sev-
eral studies are trying to correlate bulk and surface properties of non-
regulated EMPs with their potential toxicity. These studies included in-
vestigation on fibrous glaucophane, a sodic amphibole similar to crocid-
olite (Di Giuseppe et al., 2019; Erskine and Bailey, 2018), ferrierite, a
sub-group of zeolite minerals (Gualtieri et al., 2018a), and antigorite, a
member of serpentine family, chemically similar to chrysotile
(Campopiano et al., 2018).

The risk associated to natural occurrences of asbestos and potentially
hazardous EMPs should be adequately managed during activities
that may release fibres in workplaces and in the environment.
Quarrying and ore exploitation in EMP-bearing geological settings
(e.g., serpentinites, albitites; Cavallo and Petriglieri, 2020; Gualtieri et al.,
2014, 2018b; Vignaroli et al., 2013) need specific measures to protect
worker health and the environment. Human activities and natural
weathering, may, often synergistically, generate a large amount of air-
borne and waterborne EMPs and contaminate soils (Koumantakis et al.,
2009; Turci et al., 2016; Fig. 1). A higher risk may result from the proxim-
ity to the mining site. An increase in the amount of lung-retained fibres, in
humans or sentinel animals, has been directly linked to the time lived in
the area, inversely linked to distance from mines, and correlated to a
higher incidence of asbestos-related diseases among inhabitants
(Campopiano et al., 2020; Case et al., 2002, 2011; Fornero et al., 2009;
Ingravalle et al.,, 2020).

In the assessment of risk due to exposure to EMPs in mining context,
nickel-ore exploitation from lateritic deposits is an outstanding site of
investigation. Nickel laterite ores account for nearly 60% of the world's
nickel production, and they remain the major source of Ni in the fore-
seeable future (Berger et al., 2011; Butt and Cluzel, 2013; Marsh et al.,
2013). Nickel laterite ores are the product of supergene alteration of ul-
tramafic rocks under humid sub-tropical conditions, providing to be a
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good case study for the investigation of the impact of EMP-disturbing
agents, including both weathering and anthropic activities, on the for-
mation and suspension of EMPs into the environment (air, water, soil,
and waste; Fig. 1).

New Caledonia is one of the largest world producers of nickel from
lateritic ores (McRae, 2020). The Caledonian ophiolite complex extends
for more than a third of the land and consists of partially to totally
serpentinized peridotites (Cluzel et al., 2001; Collot et al., 1987). Super-
gene alteration of the large ultramafic peridotites, associated with
minor tectonic events, started the development of regolith that led to
the present geomorphology and to the development of supergene
nickel ores (Chevillotte et al., 2006; Cluzel et al., 2012; Cluzel and
Vigier, 2008). Ore exploitation includes, besides nickel, the natural oc-
currence of fibrous serpentines, chrysotile and fibrous antigorite, and
minor tremolite-actinolite asbestos (DIMENC-SGNC, 2010; Lahondeére,
2007, 2012). When exposed to tropical climate conditions, EMP-
deposits may be subjected to an additional process of alteration
(e.g., erosion, leaching). As a result, mineral fibres occur in many differ-
ent structures and morphologies ranging from blocky-prismatic crystals
to flexible fibre bundles and individual fibres (Lahondeére, 2007, 2012;
Petriglieri et al., 2020b).

An increased incidence of asbestos-related diseases was highlighted
in some areas of the island (Baumann et al.,, 2011; Goldberg et al., 1991).
Baumann et al., 2011 evidenced an epidemiological correlation between
mesothelioma incidence in residents and environmental exposure to fi-
brous serpentines, mainly fibrous antigorite and chrysotile. The great
distribution over a large part of the island makes fibrous antigorite a po-
tential public health issue. For these reasons, the government of New
Caledonia included antigorite in the list of the regulated asbestos, apply-
ing the precautionary principle (Déliberation N°82 du 25 Adut 2010).
Nevertheless, the decree No 82/2010 does not discriminate between la-
mellar antigorite and fibrous antigorite and does not suggest a dedi-
cated protocol for the risk evaluation and management of NOA-content.

Although correlation between the fibrous habit of chrysotile and its
carcinogenic potency is universally accepted (IARC, 2012), a clear con-
sensus on the definition of fibrous habit for antigorite has not been
reached yet, and its potential toxicity is still under debate (ANSES,
2014). Additionally, the closely intergrowth of antigorite with other as-
bestos minerals also at the sub-millimetre scale often hinders the dis-
crimination between antigorite and chrysotile (Dogan and Emri, 2000;
Groppo and Compagnoni, 2007; Rooney et al., 2018). In the past, fibrous
antigorite from a small asbestos mine near Rowland Flat, at northeast of
Adelaide, in the South of Australia, was commercially exploited as as-
bestos (i.e., chrysotile). Only in recent years, during the remediation of
the abandoned mine site, mineralogical studies identified the exploited
asbestos as fibrous antigorite (Fitz Gerald et al., 2010; Keeling et al.,
2008). To the best of our knowledge, this is the only case in which
antigorite exhibiting an asbestos-like morphology was exploited and er-
roneously commercialized as chrysotile asbestos. Currently, there is a
limited number of in vitro and in vivo toxicological investigations per-
formed on lamellar and fibrous antigorite and the results of the studies
are not conclusive (ANSES, 2014, and therein).

To foster the comprehension of the potential health hazard associ-
ated with the natural occurrence of antigorite in workplaces and in
the environment, the physico-chemical properties related to the poten-
tial toxicity of antigorite must be investigated. The evaluation of fibre
morphology and chemical composition are considered universally to
be pivotal parameters in the comprehension of bulk structure relevant
to toxicology. This work aims to define univocally the fibrous habit of
Caledonian antigorite from macro- to microscale, and to provide the
first description of its mineral chemistry. The work discusses the impact
of supergene alteration and weathering on the morphology and chem-
ical composition of antigorite from Ni-rich lateritic deposits.

A complete set of differently altered natural occurring antigorite
samples coming from the Ni-open pits of New Caledonia has been se-
lected. The fibrous habit of antigorite was firstly evaluated by optical
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Fig. 1. Scheme illustrating the EMP pathways from NOA sources during Ni-ore exploitation activity.

and electron microscopy investigations. A petrographic optical observa-
tion associated with micro-Raman spectroscopy was carried out to dis-
criminate the serpentine mineral phases and to characterize the
mineralogical associations. X-Ray Powder Diffraction analysis was
used to evaluate the presence of secondary mineral phases. The chemi-
cal composition of antigorite samples was comparatively investigated
with Energy Dispersive X-Ray Spectroscopy (SEM-EDS). A statistical ap-
proach, consisting of Principal Component Analysis (PCA) and cluster
analysis (k-means clustering), was adopted in supporting data
interpretation.

2. Methods
2.1. Geological background

The Ni-laterite deposits of New Caledonia formed during the Neo-
gene by lateritic alteration of obducted peridotite allochthonous unit,
in which both residual and absolute economic nickel concentration
has resulted from supergene enrichment (Troly et al.,, 1979). As shown
in Fig. 2a, the peridotite allochthonous unit is composed of a main mas-
sif (Massif du Sud) located in the southernmost part of the island, and
several tectonic klippes along the west coast (e.g., Koniambo Massif),
covering more than one third of the island surface. The allochthonous
unit, a portion of a supra-subduction oceanic mantle lithosphere, is
formed of partially to totally hydrated harzburgite (>80%), dunite and
minor lherzolite (in northern massifs only; Marchesi et al., 2009;

Pirard et al., 2013). The degree of serpentinization may range from 20
to 60 vol%, and a more extensive serpentinization occurs at the basal
layer of the regolith (Lagabrielle et al., 2013; Orloff and Gonord, 1968),
where amphibole lenses may locally occur (Cluzel et al., 2012).
Ni-laterites formation started with the emplacement and
serpentinization of the ultramafic protolith (Collot et al., 1987),
followed by exposure to a humid sub-tropical climate and the develop-
ment of a deep intensely weathered regolith (Chardon and Chevillotte,
2006; Fritsch et al., 2017). Lateritic Ni-ores formed by eluviation of
nickel from the uppermost lateritic residuum and concentration in un-
derlying saprolitic illuvium, by substituting Ni for Mg in secondary hy-
drous silicates (which can contain up to 5 wt% Ni) and in neoformed
silicate, the garnierite minerals, which can grade over 20 wt% Ni (Butt
and Cluzel, 2013; Pelletier, 1996). Subsequently, these deposits were
subjected to further tectonic events (Chardon and Chevillotte, 2006;
Chevillotte et al., 2006), which resulted in the current morphology
(Fig. 2a). Owing to the high relief and the high erosion rate, the thick-
ness of regolith in New Caledonia rarely reaches 40 m; silicate ores are
10-15 m thick. Where preserved, the upper part of the profile consists
mainly of iron crust (Fig. 2b; Fritsch et al., 2017; Wells et al., 2009).
Fibrous varieties of serpentine minerals, mainly antigorite and
chrysotile, combined with minor amount of tremolite-actinolite am-
phibole, are widespread in the saprolith horizon, currently mined in
New Caledonia (Fig. 2b; Lahondére, 2007, 2012; Trotet, 2012). They
generally outcrop along tectonic structural discontinuities as frac-
tures, faults and shear zones (Lahondére, 2012). Lamellar to fibrous
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SGNC, 2010). Sampling sites of Tontouta (south-western coast) and Kouaoua (south-eastern

coast) mines are indicated with star. b) Descriptive profile of a typical regolith of Ni-ore

deposits with a zoom of the exploitation front site (modified after Robb, 2010). From the bottom to the top of the regolith the various horizons are bedrock (serpentinized

peridotites), saprolith (rocky ore and earthy ore), soft yellow limonite (a clay soil rich in Fe-

oxide), red limonite (a clay soil containing small grains of Fe-oxide) and finally the iron

crust. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

antigorite in serpentinized peridotites occur mainly as fracture-fill
veins, closely related to the main faulting pattern. At the base of lat-
eritic profile, antigorite exhibits a blocky-lamellar structure, from
centimetres to decimetre. Moving up in the regolith profile, close to
pedolith horizons, these planes become more fragmented and

associated with fibres that seem to be originated from the extreme
cleavage (fraying) of these same lath-shaped crystals. Veins and
veinlets from centimetre to millimetre of chrysotile may also occur
(Lahondeére, 2007, 2012; Quesnel, 2015; Quesnel et al., 2016; Ulrich
et al., 2010).
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2.2. Sampling strategy

This work is part of a health risk assessment program, devoted to
evaluate the professional exposure to asbestos and asbestos-like min-
eral fibres in NOA-rich mining sites of New Caledonia (for further details
CNRT - Laporte-Magoni et al., 2018).

Field sampling was realized by professional geologist of mining com-
panies. Sampling aims to collect a full set of antigorite specimens, repre-
sentative of all types of antigorite occurrences encountered during the
exploitation activity. A set of ten rock fragments collected from out-
crops, tracks, and pits of mining sites of Tontouta (T, south-western
coast) and Kouaoua (K, south-eastern coast) was selected for this
work. A chrysotile specimen, fully described in previous work (sample
S33, Petriglieri et al., 2020a), was added for comparison. Specific infor-
mation on the provenance of rock fragments cannot be disclosed be-
cause they are subjected to confidential clauses. The summary of the
characteristics of antigorite samples, including provenance, macro-
scopic structure, textural microstructure, and morphology is reported
in Supporting Materials S1.

2.3. Methods

2.3.1. Scanning electron microscopy

Morphological investigation was carried out on natural samples
with a Scanning Electron Microscope (SEM) JEOL JSM-IT 300 LV/LA
with Low Vacuum Mode equipped with an Oxford-X-Max EDS. Second-
ary Electron Images (SEI) were acquired at various magnifications and
accelerating voltages, commonly 3-10 kV.

2.3.2. Flow particle image analysis

Particle shape and particle size distribution of powdered antigorite
in a range of 0.8-300 um were obtained by Flow Particle Image Analysis
(FPIA) using the Sysmex FPIA-3000 apparatus (Malvern Instruments).

Three antigorite samples (T1, T3, and T7) were ground in a ball
mixer mill (Retsch MM200, Haan, Germany) for 2 min (27 Hz). Agate
jars were used to avoid metal contamination. After grinding, antigorite
powders were dispersed in ultrapure water (0.5 mg/ml) and sonicated
for 30 s at 10 W. Each suspension was passed through a cell where im-
ages of particles were captured using stroboscopic illumination and a
CCD camera (20x magnification lens).

2.3.3. X-ray powdered diffraction

XRPD patterns were collected using an X-Ray wide angle diffractom-
eter INEL CPS 120. Operating conditions were 30 kV and 30 mA. The
transmitted X-ray beam is produced from a filtered Co source Ka1
(N = 0.178897 nm). The intensity of the diffracted beam is recorded
with a curved position-sensitive detector between 0° and 120° (26) at
a step size of 0.03°. Resolution width varies slightly from 0.10° to 0.15°
in 20 (from small angles to large angles). X-Ray diffraction patterns
were acquired at all angles simultaneously.

Powder samples were prepared by gentle hand grinding in an agate
mortar. All data interpretations were performed with the Match!
Software.

2.3.4. Micro-Raman

Raman spectra were obtained with a Horiba JobinYvon HR800
Raman spectrometer equipped with an Olympus BX41 confocal micro-
scope, a 600-grooves/mm holographic grating monochromator and a
high-gain Peltier-cooled CCD. A Nd solid state laser at 532-nm has
been used as excitation and neutral density filters were used to avoid
sample heating. Spectra were obtained on petrographic thin sections
with a 100x objective. Under these working conditions, the minimum
lateral resolution is around 2 pm and the resolution along z-axis is ca.
1 um. The spectrometer was calibrated using the 520.7 cm~! Raman
peak of silicon before each experimental session. Spectra were collected
as follows: 15 acquisitions for 10 s in the low and high wavenumber
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spectral range were averaged and background subtracted with
LabSpec® software.

2.3.5. Chemical analysis

Chemical analysis was performed on petrographic thin sections with
a Scanning Electron Microscope associated to Energy dispersive X-ray
spectroscopy (SEM-EDS) JEOL JSM IT 300 LV equipped with an Oxford
INCA Energy 200 ED. An automated approach descripted in Supporting
Materials (Supporting Materials 5a and b) was adopted to collect a rep-
resentative, statistically significant number of EDS point analyses on
elongated (fibrous) crystals of antigorite occurring with several tex-
tures. Microanalysis operating conditions were 15kV and 5nA, 10°
CPS and 30 s counting time; relative wt% errors are <1% for major ele-
ments and <5% for minor components. Standards comprise pure ele-
ments, oxides and/or silicate. Before the analysis, samples were coated
with a carbon layer.

The EDS chemical data were analysed by means of a statistical ap-
proach, consisting of multivariate analysis (cluster analysis and Princi-
pal Component Analysis). Statistical data treatment was performed
with OriginPro® software.

3. Results

At the hand scale, antigorite fragments exhibited an appearance
from massive (T1, T2) to powder-disintegrated (T7, T8), and are
coloured from pale-green (T1, T2, K2) to white (T3, T6, T8), as shown
in Fig. 3. Samples T1 and T2 were cohesive, dominated by platy-
shaped fabric of welded and parallel blades. Samples K1, K2, and T3
showed a weak cohesion and a more friable aspect, dominated by frag-
ments cracking with poor cleavage into thin curvilinear laminas. Sam-
ples T4, T5, T6, T7, and T8 showed an extremely weak cohesion,
consisting of a powder-disintegrated material, where fibro-lamellar
blades occur randomly orientated to form aggregates and bundles. The
three descriptive categories were exemplified in Fig. 4 using three rep-
resentative antigorite samples to highlight the different degree of
cohesion.

The morphological investigation of antigorite samples under optical
and electron microscopies was firstly conducted on fragments non-
subjected to any preparation and/or mechanical stress (e.g., crushing,
grinding). At the microscopic scale, all specimens were fibrous in na-
ture. As displayed in Fig. 3, SEM images revealed the fibrous nature of
antigorite samples, which consist of poly-filamentous bundles of tightly
packed fibres and fibro-lamellae. Antigorite elongated particles appear
flexible and longitudinally separated into thinner fibres. Bundles of par-
allel elongated lath-shaped crystals present regular (e.g., T8) or irregu-
lar endings (e.g., T6), with splayed or frayed ends. Aggregates of
randomly oriented non-elongated blades may also occur (T4). However,
most of crystals maintain their elongated shape displaying a gradual fi-
brous ending, which appear bent, slinky to curvilinear (Supporting
Materials S2).

To estimate the potential risk associated with antigorite types from
New Caledonia outcrops, the fibrous habit and size distribution of
antigorite particles and fibres after a standardized mechanical stress
were estimated by means of light microscopy coupled with automated
image analysis (FPIA) (Fig. 5). Samples were gently crushed in a ball
mixer mill for 2 min at 27 Hz in agate jars. After milling, all antigorite
samples preserved their fibrous morphology indicating that antigorite
fractures easily along z-axis. Standardized milling generated around
50% of elongated, fibrous particles, most of which have the dimensional
characteristics of respirable fibres (L > 5 pm, D < 3 um, L/D > 3), accord-
ing to the dimensional criteria proposed by WHO for toxic mineral fibres
(IARC, 2012; WHO, 1997). The number of respirable fibres represents
up to 42% of the total particles and does not appear to be correlated
with the cohesive state of the samples at the field scale (Fig. 2).

The bulk rock mineralogical composition of samples (XRPD analysis,
Supporting Materials S3) mainly consists of serpentine, with a limited
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Fig. 3. Morphological characterisation. Hand specimens (on the left) and representative SEI images (on the right) of antigorite samples arranged in decreasing order of macroscopic
cohesion, from massive to powder-disintegrated appearance. Despite the macroscopic structure, all samples show a fibrous habit at microscopic scale.

amount of Fe-oxide magnetite (samples T1, T4, T5) or quartz (samples the mineral phases of each sample (Fig. 6 and Supporting materials
K1, T8). S4). Generally, the petrographic description of the main textures of ser-

Light microscopy petrographic observation of thin sections en- pentine structures relies on the classification of Wicks and Whittaker,
hanced by in situ Raman analysis allowed describing the association of 1977 (e.g., Andreani et al., 2007; Mothersole et al., 2017; Ribeiro Da

T1 T3 T7

Fig. 4. Macroscopic description of the three cohesive state of antigorite specimen from nickel ores. The representative images describe the different cohesion of natural occurring antigorite
samples, from massive to moderately to weakly cohesive (T1, T3, and T7, respectively).
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Costa et al., 2008). Antigorite is typically recognized for its interpen-
etrating or interlocking texture. These textures should be observed in
any direction non-parallel to the preferential orientation of the lath-
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occurred as fragments from medium to large grain size (T4, T5, T6, and
T7). Opaque minerals, mainly magnetite, occurred as very fine elon-
gated crystals, locally arranged in isooriented alignments between adja-
cent fibres or at the vein salvages. Rarely, they exhibited a dendritic
structure and/or a larger grain size. The samples generally showed a
complex microstructure matrix, consisting of the coexistence of several
textures. Antigorite showing a preferential elongation direction is
formed by parallel streaks of elongate and fibrous crystals (T1, T2, K2,
and T8). The fibrous shape was especially evident under crossed
polarizers due to the small differences in the extinction positions,
which tend to be straight, and colours of interference of adjacent and
parallel fibres. Antigorite consisting of randomly orientated aggregates
showed more types of shapes and intergrowths. Antigorite occurred
mainly with the typical interpenetrating and/or interlocking micro-
structure (T3, T4, T5, and T6). Small elongate crystals may display a
sub-parallel arrangement (K1). Later cross- and slip-type veins of
antigorite, and minor chrysotile, may develop on the interpenetrating
matrix (T4), displaying sometimes a banded microstructure (T5). Very
fine antigorite may grow with a fibrous-radiated structure, elongate
crystals are arranged to form a star- and fan-like texture of divergent,
often branching fibres (T3, T7).

A minor contamination by chrysotile was often observed, due to the
typical closely intergrowth of these serpentine minerals in metamor-
phic context (Dogan and Emri, 2000; Groppo and Compagnoni, 2007;
Tarling et al., 2018). Even though optical polarizing microscope might
lead to misassign fibrous antigorite and chrysotile veins, the use of
micro-Raman spectroscopy to discriminate among serpentine minerals
confirmed that antigorite is the dominant serpentine phase of all sam-
ples investigated. The presence of the typical doublet in the OH-
stretching region, with the main peaks located at about 3665 and
3695 cm !, allowed to confidently assign antigorite (Auzende et al.,
2004; Groppo et al., 2006; Petriglieri et al., 2015; Rinaudo et al., 2003).
Chrysotile, in the form of sub-micrometric isotropic veinlets and/or
brownish cemented veins, was occasionally observed (samples K1, T3,
T5, T6, T7) mainly in the grain boundaries and cleavage between
antigorite crystals (Fig. 6) and discriminated from antigorite due to
the main OH-stretching vibration at 3698 cm™! (Petriglieri et al.,
2015; Tarling et al., 2018).

Table 1
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To explore the chemical variability of the antigorite samples under
investigation, a study of variability in elemental chemical composition
of the antigorite phases in each sample was carried out with a two-
step approach: i) an explorative statistical tool, consisting of Principal
Component Analysis (PCA) associated with k-means clustering analysis,
was used to group samples into homogeneous classes of similar chem-
ical composition; ii) a main elemental compositional clustering was
therefore applied to these sub-group to obtain ternary diagrams. For
each sample, about 300 EDS point analyses on elongated fibrous crystals
were collected on petrographic thin section (Supporting materials S5a).
Representative microanalyses for each sample are reported in Table 1.

PCA analysis reduced the variance of the eleven major elements (Si,
Al, Cr, Fe, Ni, Co, Mg, Mn, K, Na, and Ca) to a minimum number of prin-
cipal components, which describe more than 90% of the variance of the
analyses. In our dataset, the three principal components described the
97.46% of the total variance of the system, the two-dimensional graph
obtained plotting principal component PC1 vs. PC2, and PC2 vs. PC3
are reported in Fig. 7. The eigenvectors (blue lines) localise the contribu-
tion given by single elements, whereas the eigenvalues (the vector mag-
nitude) are related to covariance of the dataset in that variable. In the
plot PC1 vs. PC2 (Fig. 7a) samples showed a greater variability along
three principal eigenvectors, the Mg, Ni, and Fe—Si directions, arrang-
ing the dataset of the EDS analyses in three main populations. The plot
PC2 vs. PC3 (Fig. 7b) evidenced a difference in elemental composition
for samples K1 and K2, showing a Fe-rich and Si-rich content, respec-
tively. K-means clustering analysis confirmed that the number of clus-
ters present in the dataset is three (for further details see Supporting
Materials S6).

On the basis of PCA results, EDS data were plotted on ternary dia-
grams, considering Si, Mg, Ni and Fe elements, as shown in Fig. 8.

Triangular diagrams considering Si-(Mg + Fe)-Ni (Fig. 8a) and Si-
(Mg + Ni)-Fe (Fig. 8b) are commonly used to describe the chemical
weathering of Mg/Ni phyllosilicates (garnierite) from lateritic Ni-ore
deposits (e.g., Fritsch et al., 2014; Villanova-de-Benavent et al., 2014).
All samples investigated are positioned in a more Si-rich area with re-
spect to the stoichiometric serpentine considered as reference (black
line in the diagrams). A significant depletion in Mg and an enrichment
in Si content was observed. When plotted on a Si-(Mg + Fe)-Ni system

Representative SEM-EDS analysis (in weight percent) and structural formulae (in atoms per formula unit) of antigorite samples. Chemical analyses were normalized on the basis of seven

oxygen. The full set of EDS analyses is reported in Supporting Material S5b.

Ctl T1 T2 T3 T4 T5 T6 T7 T8 K1 K2

Analysis 12 287 103 487 910 66 559 108 914 2 3
Sio, 44.24 43.87 44.16 44.19 42.60 42.71 43.31 44.13 44.40 44.67 43.87
Al,03 0.24 0.59 0.17 0.19 0.27 0.24 0.35 0.23 0.17 0.00 0.27
Cry03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07
FeO 1.49 1.98 235 1.95 1.99 2.57 3.20 2.72 1.70 273 3.85
NiO 0.16 247 229 0.53 0.00 0.00 0.48 0.33 0.21 0.37 0.34
Co304 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.09 0.00 0.00 0.08
MgO 40.57 38.02 38.03 39.30 38.21 3745 37.62 38.64 39.57 38.21 37.96
MnO 0.00 0.00 0.00 0.11 0.12 0.15 0.11 0.07 0.00 0.00 0.04
K;0 0.05 0.00 0.00 0.00 0.00 0.00 0.02 0.04 0.00 0.00 0.01
NaO 0.17 0.13 0.11 0.15 0.12 0.16 0.15 0.16 0.16 0.12 0.13
Ca0 0.14 0.07 0.00 0.00 0.00 0.00 0.01 0.06 0.06 0.00 0.04
Tot 87.06 87.13 87.11 86.42 83.31 83.28 85.27 86.47 86.27 86.10 86.66
Si 2.050 2.057 2.071 2.068 2.063 2.075 2.068 2.072 2.073 2.099 2.066
Al 0.013 0.033 0.010 0.011 0.016 0.014 0.019 0.013 0.010 0.000 0.016
Cr 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002
Fe 0.057 0.078 0.092 0.076 0.081 0.105 0.128 0.107 0.067 0.107 0.152
Ni 0.006 0.093 0.086 0.020 0.000 0.000 0.019 0.012 0.008 0.014 0.013
Co 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.004 0.000 0.000 0.004
Mg 2.802 2.658 2.659 2.741 2.759 2.712 2.678 2.703 2.754 2.676 2.665
Mn 0.000 0.000 0.000 0.005 0.005 0.006 0.005 0.002 0.000 0.000 0.001
K 0.002 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.000 0.000 0.000
Na 0.014 0.012 0.011 0.013 0.011 0.014 0.014 0.014 0.014 0.011 0.012
Ca 0.007 0.004 0.000 0.000 0.000 0.000 0.000 0.004 0.002 0.000 0.002
Tot 4.95 493 493 493 493 493 493 4.93 493 491 4.93
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variance matrix. K-means clustering relies on the stoichiometric ratios Ni—Mg. A sample of Caledonian chrysotile (Ctl) (Robb, 2010) is included for comparison.

(Fig. 8a), most samples displayed a consistent composition in Mg + Fe
and Si, and only sample K1 exhibited a higher amount in Si. Samples
T1 and T2 showed a low Mg + Fe content and a relative high Ni content.
The plot Si-(Mg + Ni)-Fe (Fig. 8b) confirmed the higher amount in Si for
sample K1 and showed a higher content in Fe for samples K1 and K2.
Plotting Mg, Fe, and Ni elements (Fig. 8c) major differences in composi-
tion were observed. Samples spread along two main axes, the Mg—Fe
and the Mg—Ni axes, clustering in the following populations: i) Mg-
rich and Ni-poor (from T3 to T8), ii) Ni-rich and Mg-intermediate (T1,
T2), and Fe-rich and Mg-poor (K1, K2).

4. Discussion

Morphology and crystal chemistry represent some of the most rele-
vant parameters involved in the evaluation of the hazard of mineral fi-
bres. Fibre morphology determines deposition, translocation, and
clearance in the lung, ultimately driving the fibre fate following inhala-
tion (Turci et al., 2017). If the six commercial asbestos fibres are well de-
fined for their hazardous morphological parameters (IARC, 2012),
natural non-asbestos mineral fibres may occur in a large number of
complex and intermediate shapes (Belluso et al., 2017). Despite several
studies refers to the common presence of fibrous antigorite in NOA con-
text (e.g., Belluso et al., 2020), only a few examples of fibrous asbestos-
like antigorite have been reported (Campopiano et al., 2018; Groppo
and Compagnoni, 2007; Keeling et al., 2008). In fact, even when
antigorite was claimed to be “asbestiform” or “asbestos-like”, the min-
eral showed an intermediate stage from a platy to a fibrous habit
(e.g., Vortisch and Baur, 2018). More frequently authors, including
some of us, tried to highlight the quasi asbestos-like habit of antigorite
assessing its “pseudo-fibrous” form (Cavallo and Petriglieri, 2020;
Cavallo and Rimoldi, 2013; Favero-Longo et al., 2013; Groppo and
Compagnoni, 2007; Viti, 2010). This work suggests that antigorite sam-
ples from lateritic units of New Caledonia distinguish from the rest of
the samples investigated so far, for their unique fibrous asbestos-like
morphology. All samples collected and analysed in this work display
an intermediate morphology between chrysotile and amphiboles asbes-
tos. Antigorite from New Caledonia shares with chrysotile the poly-
filamentous behaviour, consisting of the packing of very long and thin
elongated particles, and shares with amphibole asbestos the quite
rigid acicular and lath-shaped habit, commonly described for tremolite
asbestos. Interestingly, the fibrous asbestos-like habit is strongly pre-
served (up to 42% of respirable fibres on total particles) when samples
are subjected to mechanical stress (e.g., ball milling). This behaviour of
Caledonian antigorite poses concern because mechanical operations in-
volving rock disturbance might easily release airborne and waterborne
elongated respirable particles that may pose a risk for human health

and the environment. Conversely, the occurrences of pseudo-fibrous
antigorite (e.g., Cavallo and Rimoldi, 2013) consists mainly of the pack-
ing of flexible elongated platy blades. In this latter case, the lamellar
shape is predominant over the fibrous shape. So far, the Rowland Flat fi-
brous antigorite represents the occurrence with the closest morphology
to the Caledonian antigorite (Rowland Flat area, Barossa Valley, South
Australia; Fitz Gerald et al., 2010; Keeling et al., 2008) and the compar-
ative evaluation of the chemical, morphological, and toxicological as-
pects is under investigation.

It is worth noting, that the macroscopic cohesion state of
antigorite rock fragments often misguides professional geologists
and researchers in the identification of fibrous antigorite. Indeed,
the fibrous nature of Caledonian antigorite seems not to be whatso-
ever related to the macroscopic aspect of the hand sample that
ranged from compact-massive to powder-disintegrated. Due to the
lack of correspondence between macroscopic and microscopic mor-
phology, the discrimination of the potentially hazardous asbestos-
like EMPs from the non-hazardous particles during excavation activ-
ities in mining site or in not exploited natural outcrops is quite chal-
lenging. Hand samples characterized by a massive, lamellar, and
cohesive aspect can be made by the closed overlapping of bundles
and/or aggregates of fibres and fibro-lamellae. The fibrous nature of
these samples is evident only increasing the scale of magnification.

The complexity recorded in rock fabrics (meso-scale), macroscopic
structures (hand-scale), and textures (arrangement of crystals at the
microscale) depends on the type of geological processes responsible
for the mineral crystallization and on the type of weathering processes
responsible for the mineral alteration. Differences in chemical composi-
tion keeping memory of the serpentinization processes (Frost et al.,
2013 and references therein), and of the supergene alteration of rocks
by evaluating the chemical depletion (or the enrichment) in peculiar
major or trace elements.

The origin of fibrous antigorite occurrences was mainly related to
synkinematic fibrous seals associated with the opening of tension
cracks, or motion along micro-faults during obduction episode
(Cluzel et al., 2020; Cluzel and Vigier, 2008). Cluzel et al., 2020
dated the crystallization of fibrous antigorite bearing-veins to a sec-
ondary serpentinization episode, related to the upward decreasing
serpentinization of intra-oceanic serpentine fractures formed during
cooling and hydration of mantle lithosphere. Post-obduction, super-
gene alteration, that is responsible for the formation of Ni-ore later-
ite, promoted the chemical alteration of antigorite fibres. Leaching
processes, and consequently redistribution of the elements in the
profile, led to a chemical variation especially in Mg and Ni. Fe-
enrichment (e.g., Kouaoua samples K1 and K2) may be ascribed to
intrinsic chemical variability of serpentine phases in lateritic
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context, which confirmed to be generally not significant (Cavallo and
Rimoldi, 2013) compared to natural variability within saprolitic ho-
rizon (Villanova-de-Benavent et al., 2014, 2016). The chemical evi-
dence of a comparable amount of Si in all of the investigated
samples (Fig. 8a and b) suggests that Caledonian antigorites are the
results of a sequence of similar geological events, that starts with
the ocean-floor metamorphism of the parent-rock, and concludes
with the exposure of formed Ni-bearing serpentine veins to
weathering. During these events, the partial or total transformation
of the primary olivine and orthopyroxene minerals produces Ni-
rich serpentine, talc, and smectite, without altering the mineral Si
content. During the laterization process, indeed, any silica possibly
released during the transformation of orthopyroxene is reabsorbed
by the newly formed minerals.

Comparing Caledonian with non-lateritic antigorites (e.g., Groppo
and Compagnoni, 2007), lateritic antigorites show a significant higher
Si and a lower Mg content. This evidence the lower alteration of the
non-lateritic antigorites and the strong chemical modification induced
by supergene alteration. The main chemical differentiation is
highlighted indeed by the antigorite distribution along the Mg—Ni
axis (Fig. 8c), where the Ni—Mg cation exchange is observed. These
minerals have a composition that varies from magnesian to nickelifer-
ous endmembers. T1 and T2 antigorites show a higher Ni amount
(about 2.4% wt. NiO) compared to the other antigorites, which exhibit
a NiO content of ca. 0.3%wt. (Table 1). T1 and T2 are both characterized
by a similar macroscopic structure that consists of a cohesive appear-
ance, dominated by the close packing of welded and parallel fibrous
elongated particles. Matching the NiO content of samples with the dis-
tribution of Ni ore in lateritic regolith profile of New Caledonia deposits
(Fritsch et al., 2017), the occurrence of the most compact fragments in
the upper part of the saprolitic horizon is consistent with the high Ni
concentration produced by illuviation. The exploitation activity of this
horizon provokes the exposition of antigorite-bearing to weather.
Once exposed, these veins are subjected to heavy physical and biological
weathering processes, which are probably the main agents causing me-
chanical disruption and disaggregation of altered antigorite. Such pro-
cesses can release fibrous elongated particles into soil, air, and water.
The circulation and percolation of meteoric water, flowing preferen-
tially into cracks, fissures, and faults, often associated with the occur-
rence EMP veins, promote the disaggregation and dispersion of
potentially hazardous antigorite fibres. The powdery appearance of
some field samples can be ascribed to the weathering processes that im-
pact rock disaggregation in subtropical area.

Moreover, following this multi-step process of alteration, a modifi-
cation of surface chemical composition of these fibres is assumed. The
characterisation of surface physico-chemical parameters that might
modulate the hazard antigorite fibres from New Caledonia is outside
the scope of this work and it will be the subject of a future paper.

5. Conclusion

The study of morphology and crystal chemistry is a pivotal first step
in the investigation of the potential hazard of non-regulated elongated
mineral particles (EMPs) in NOA-rich deposits. This work describes for
the first time the fibrous, asbestos-like habit of Caledonian antigorite,
providing a comprehensive illustration of the relationships among
structure (hand-scale), textures (arrangement of crystals at the micro-
scale), and morphologies of altered samples from Ni-rich lateritic de-
posits. Our data indicate that structural properties at the macroscopic
scale are not extended at the microscopic scale, highlighting the pecu-
liar asbestos-like habit for both massive and powdered-disintegrated
antigorites. Comparison with antigorites from non-lateritic environ-
ment evidences the relevant chemical effect of supergene alteration
on the antigorite chemistry. Furthermore, the mechanical disruption in-
duced by weathering processes prompts the disaggregation of altered
antigorites causing the generation and dispersion of respirable
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antigorite fibres in the environment (air, water, and soil). The identifica-
tion of these EMPs at any scale of magnification is therefore strongly en-
couraged for a proper NOA risk assessment.
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