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Featured Application: The communications scenario analyzed in this paper is typical of environ-
ments affected by strong electromagnetic interference (EMI), such as, e.g., power line communi-
cations or power substations. The transmission of random correlated samples with continuous
values, which we analyze, can be seen both as a rough model for multicarrier digital transmission
systems (such as OFDM) or, more realistically, as an accurate model for a network of distributed
sensors, as typical of an Internet of Things (IoT) scenario. The receivers that we propose in this
paper are a convenient choice whenever the sensors communicate (with each other or with a base
station) in an environment affected by strong EM interference.

Abstract: Impulsive noise is the main limiting factor for transmission over channels affected by elec-
tromagnetic interference. We study the estimation of (correlated) Gaussian signals in an impulsive
noise scenario. In this work, we analyze some of the existing, as well as some novel estimation
algorithms. Their performance is compared, for the first time, for different channel conditions,
including the Markov–Middleton scenario, where the impulsive noise switches between different
noise states. Following a modern approach in digital communications, the receiver design is based
on a factor graph model and implements a message passing algorithm. The correlation among signal
samples, as well as among noise states brings about a loopy factor graph, where an iterative message
passing scheme should be employed. As is well known, approximate variational inference techniques
are necessary in these cases. We propose and analyze different algorithms and provide a complete
performance comparison among them, showing that the expectation propagation, transparent propa-
gation, and parallel iterative schedule approaches reach a performance close to optimal, at different
channel conditions.

Keywords: communications engineering; impulsive noise; variational Bayesian inference

1. Introduction

The design of a robust communication system for a transmission medium with strong
electromagnetic interference (EMI), such as a power line communication (PLC) channels
or a wireless network of distributed sensors subject to EMI, is a challenging task. In such
scenarios, the dominant source of impairment is the impulsive noise, affecting both single-
carrier and multicarrier modulation schemes [1,2]. Impulsive noise is a non-Gaussian
additive noise that arises from neighboring devices (e.g., in power substations; when
(dis)connecting from mains; or due to other electronic switching events) and whose power
fluctuates in time [3–7].

Different impulsive noise models have been proposed in the past years, the simplest
being a Bernoulli-Gaussian model [3], where a background Gaussian noise with given
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power switches to another (usually much larger) power level, during an impulsive event.
These events induce a larger noise variance and model the onset of an external source
of EMI. Clearly, the sources of EMI that can independently switch are usually more than
one, so that the Middleton class A model [4] was proposed later to account for a variable
number k of Gaussian interferers, with k following a Poisson distribution, whereas the
Bernoulli distribution accounted for one or no interferes (only background noise). Impul-
sive noise events, however, usually occur in bursts, whose average duration is related to
the timing characteristics of the interfering EMI events, while the models cited above are
instead memoryless. In order to introduce Markovianity between successive noise samples,
a Markov-Gaussian model [5] and a Markov–Middleton model [6] were later proposed,
extending the accuracy of the Bernoulli-Gaussian and the Middleton class A models, so as
to capture the bursty nature of the impulsive noise.

On PLC systems, while the Middleton class A is regarded as a suitable model [8],
the Markov–Middleton model is still a more general and accurate representation for
impulsive noise [9]. Regarding the information signal, an adequate model to represent
multicarrier transmission over PLC channels is a sequence of Gaussian samples [7]; the
same author analyzed Gaussian samples’ estimation in Middleton class A noise, in [10].
In a similar impulsive noise scenario, modeled as Markov-Gaussian [5], Alam, Kaddoum,
and Agba tackled the problem of estimating a sequence of independent Gaussian samples
in impulsive noise with memory [11,12]. Both in the transmission of discrete symbols [13]
and in distributed sensing applications with continuous samples [10], there is a correlation
among successive signal samples, so that a first-order autoregressive (AR(1)) model can be
used to establish a short-term memory in the transmitted signal [14].

The presence of memory in both signal and noise significantly complicates the detec-
tion/estimation problem. This is a typical situation where, as commonly done in recent
years, approximate inference techniques and graphical model-based algorithms are ef-
fectively borrowed or adapted from the machine learning literature (see, e.g., [15]) to
solve complicated estimation problems with many random variables. In particular, novel
receivers, designed based on a factor graph (FG) approach, are an efficient solution to
jointly estimate the correlated Gaussian samples and detect the correlated states of chan-
nel impulsive noise, as done for the first time in [16], in the case of Markov-Gaussian
impulsive noise, later extended to Markov–Middleton impulsive noise [17]. Receivers
based on message passing algorithms [18] work iteratively, to guarantee convergence on
a loopy FG. Moreover, the message passing between discrete channel states and continu-
ous (Gaussian) observations produces (Gaussian) mixture messages with exponentially
increasing complexity [19]. In [16,17], hard decisions were made on the states of impulsive
noise (i.e., the number of interfering devices); as a consequence, the mixture messages
were approximated as one of their terms (the one with the largest likelihood). This is a
suboptimal approach that neglects part of the information carried by messages [12].

A more sophisticated approach—that promises close to optimal performance—is
based on mixture reduction. Approximate variational inference algorithms adopt the
Kullback–Leibler (KL) divergence, or other divergence measures, to minimize the approx-
imation error in mixture reduction [20] and achieve good performance at a reasonable
computational cost. This is the case of the celebrated expectation propagation (EP) algo-
rithm proposed by Minka [21], which is based on KL divergence. The EP algorithm and
a similar algorithm called transparent propagation (TP) were recently applied to signal
estimation in impulsive noise channels, showing good performance [22,23].

In this paper, we provide, for the first time, a comprehensive study of signal esti-
mation over bursty impulsive noise channels, modeled either as Markov-Gaussian or
as Markov–Middleton noise with memory, where the signal is modeled as a correlated
(AR(1)) sequence of Gaussian samples, as representatives of multicarrier signals or of a
Gaussian sensing source with memory. We analyze different estimation algorithms and
provide a performance comparison between several suboptimal and close-to-optimal tech-
niques, in various channel conditions. In particular, this paper is an extension of our recent
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work [23], where EP and TP were applied for the first time to a channel with Markov–
Middleton impulsive noise. Besides describing these algorithms in more detail, here, we
critically review the channel model and compare it with the simpler Markov-Gaussian
model. In addition, for both impulsive noise channel models, we compare EP and TP to a
simpler suboptimal algorithm (PIS), which was introduced previously, and motivate the
differences in their performances.

The paper is organized as follows. In Section 2, we introduce the system model along
with the Markov-Gaussian and Markov–Middleton noise models. Its related FG and the
basics of message passing algorithms are introduced in Section 3. A brief introduction to KL
divergence is given in Section 3.1, while Section 4 describes different estimation strategies,
whose performance is compared in Section 5. Conclusions are drawn in Section 6.

2. System Model

A sequence of Gaussian samples {sk}K−1
k=0 is transmitted over a channel impaired by

impulsive noise. The received samples are thus expressed by:

yk = sk + nk (k = 0, 1, · · · , K− 1) (1)

where {nk}K−1
k=0 is a sequence of (zero-mean) additive Gaussian noise samples whose

variance depends on the time index k, as detailed in the following.
The transmitted samples are assumed to be correlated according to an autoregressive

model of order one. The AR(1) sequence is thus obtained as the output of a single-pole
infinite impulse response (IIR) digital filter, fed by independent and identically distributed
(i.i.d.) Gaussian samples {ωk}K−1

k=0 , where ωk ∼ N (0, σ2
ω):

sk = a1sk−1 + ωk , (2)

where a1 is the pole of the filter. The variance σ2
s of sk is taken as a reference; hence, we set

σ2
ω = (1− a2

1)σ
2
s in (2).

The noise samples nk in (1) follow the statistical description of either the Markov-
Gaussian model or of the Markov–Middleton class A noise model. Both models, as detailed
in the following subsections, account for a correlation among noise samples, which in turn
reflects the physical property of burstiness. As is, in fact, well known, impulsive noise
events occur in bursts, i.e., through a sequence of noise samples whose average power
(variance) becomes suddenly larger.

2.1. Markov-Gaussian Noise

The Bernoulli-Gaussian noise [3] is a simple two state model consisting of a back-
ground Gaussian noise sequence {nG

k }, with variance σ2
G, on the top of which another

independent Gaussian noise sequence {nI
k}, with variance σ2

I , may appear, due to a source
of extra noise, like an interferer. The occurrence of such an impulsive event clearly follows
the Bernoulli distribution, where the probability of observing a sequence {nB

k } = {n
G
k + nI

k},
i.e., to be in a bad channel condition (the superscripts G, I , and B stand for good, interferer,
and bad, respectively) is usually much smaller than that of being in a good condition,
with only background noise present. At the same time, the variance σ2

B of the bad noise
samples is usually much larger than that of the good ones, σ2

G, so that the power ratio

R =
σ2

B
σ2

G
is typically much larger than one. According to the Bernoulli-Gaussian model,

the probability density function (pdf) of each noise sample nk is thus expressed as:

p(nk) =
PG√
2πσ2

G

exp

{
−

n2
k

2σ2
G

}
+

PB√
2πσ2

B

exp

{
−

n2
k

2σ2
B

}
(3)

where PG and PG = 1− PB are the probabilities of the good or bad channel states, i.e., with-
out or with an active source of interference. We call ik the underlying Bernoulli variable,
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which acts as a switch to turn on/off the interferer’s noise, so that the overall noise sample
at time k is:

nk = nG
k + iknI

k . (4)

In order to model the bursty nature of impulsive noise, a Markov-Gaussian model
was proposed in [5]. The following transition probability matrix,

P =

[
PGG PGB
PBG PBB

]
, (5)

accounts for the correlation between successive noise states. As in any transition matrix,
the elements are such that PGG + PGB = 1 and PBG + PBB = 1, so that in the state diagram
representation of the Markov-Gaussian noise, in Figure 1, the outgoing transition proba-
bilities sum to one. Moreover, by introducing a correlation parameter γ = (PGB + PBG)

−1,
the steady-state probabilities of the two noise states are PG = γPGB and PB = γPBG. The pa-
rameter γ determines the amount of correlation between successive noise states, so that a
larger γ implies an increased burstiness of impulsive noise. More explicitly, the average
duration of permanence in a given noise state is:

TB =
γ

PB
TG =

γ

PG
(6)

whereas TB = P−1
B and TG = P−1

G would occur in the case of a memoryless Bernoulli-
Gaussian process, to which the Markov-Gaussian model reduces in the case γ = 0.

Figure 1. State diagram of the Markov-Gaussian noise.

2.2. Markov Middleton Class A Noise

In this model, the number i of interferers, at time k, can exceed one and can be
virtually any integer number, despite that a maximum number M of interferers is usually
considered for practical reasons. The Gaussian interferers are all independent of each
other and are assumed to have the same power, σ2

I . As in the Bernoulli-Gaussian and
in the Markov-Gaussian models of Section 2.1, the interferers are superimposed on an
independent background noise sequence {nG

k } with variance σ2
G, so that the overall noise

power is σ2
i = σ2

G + iσ2
I , whenever the channel is in state i, i.e., i interferers are active.

The pdf of noise samples is thus:

p(nk) =
∞

∑
i=0

Pi√
2πσ2

i

exp

{
−

n2
k

2σ2
i

}
. (7)

In the Middleton class A model, the channel state is assumed to follow a Poisson
distribution [4], so that in (7), Pi = e−A Ai(i!)−1, where A is called the impulsive index and
can be interpreted as the average number of active interferers per time unit. When the
channel state accounts for i interferers, we can thus express the total noise power as:

σ2
i =

(
1 +

i
AΓ

)
σ2

G (8)

in which a new parameter Γ = σ2
G(Aσ2

I )
−1 represents the ratio between the power of

background noise and the average power of interferers. The average power of Markov
Middleton class A noise is thus:
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σ2 = E
[
σ2

i

]
=

∞

∑
i=0

σ2
i Pi =

(
1 +

1
Γ

)
σ2

G (9)

In order to avoid the practical complications of an extremely large (and unlikely) num-
ber of interferers, by exploiting the rapidly decreasing values of the Poisson distribution,
an approximation of the Middleton class A noise is usually introduced by truncating its
pdf to a maximum value for the channel state i ≤ M, as follows:

p(nk) =
M−1

∑
i=0

P′i√
2πσ2

i

exp

{
−

n2
k

2σ2
i

}
, P′i =

Pi
∑M−1

j=0 Pj
. (10)

In order to account for memory in the Middleton class A model, a hidden Markov
model (HMM) is assumed to govern the underlying transitions among channel states, so
that successive noise states are correlated [6]. The corresponding transition probability
matrix is thus:

P =


x + (1− x)P′0 (1− x)P′1 · · · (1− x)P′M−1
(1− x)P′0 x + (1− x)P′1 · · · (1− x)P′M−1

...
...

...
...

(1− x)P′0 (1− x)P′1 · · · x + (1− x)P′M−1

 , (11)

in which each row sums to one and x is the correlation parameter. Referring to the state
diagram in Figure 2, the channel can remain in the present state ik ∈ {0, 1, · · · , M− 1}with
probability x or otherwise switch to one of the states (including ik), with a (pruned, due
to (11)) Poisson distribution. The average duration of an impulsive event with m interferers,
i.e., the average permanence time within a state m, can be computed as:

Tm =
1

(1− x)(1− P′m)
. (12)

The Markov–Middleton class A model reduces to the simpler memoryless Middleton
class A model in the case x = 0. At the same time, the Markov-Gaussian model is an
instance of the Markov–Middleton class A model, for M = 2. Despite the latter being a
more general model that includes the earlier, we illustrate and analyze both, in line with
the existing literature that has developed along the two tracks.

In any case, the expression of noise samples to be considered in the observation
model (1) is the one in (4).

Figure 2. State diagram of the Markov–Middleton class A noise.

3. Factor Graph and Sum-Product Algorithm

As a common technique to perform maximum a posteriori (MAP) symbol estimation,
we use a factor graph representation for the variables of interest and for the relationships
among them that stem from the system model at hand. These variables and relationships
are in turn the variable nodes and the factor nodes appearing in the FG [18]. The aim is to
compute the marginal distributions (pdf) of the random variables to be estimated, i.e., the
transmitted signal samples sk, conditioned on the observation of the received noisy samples
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yk in (1), whereas the overall FG represents the joint distribution of all the variable nodes,
i.e., of transmitted samples, as well as of channel states ik. Despite that this marginalization
task is nontrivial, in the case of many (e.g., thousands of) variable nodes, it is brilliantly
accomplished by the sum-product algorithm (SPA), which is a message passing algorithm
able to reach the exact solution in the case of FGs without loops [18].

Thanks to Bayes’ rule, the joint posterior distribution of signal samples s = {sk}
and channel states i = {ik} given the observation samples y = {yk} can be factorized as
follows.

p(s, i | y) ∝ p(y | s, i)p(s)P(i)

=

[
K−1

∏
k=1

p(yk | sk, ik)p(sk | sk−1)P(ik | ik−1)

]
p(y0 | s0, i0)p(s0)P(i0) . (13)

The Markovianity of both the signal sequence and of the noise sequence is a key factor in
the application of the chain rule in (13), where simplified expressions result for its factors.
Such a short-term memory (The Markov property of signal and noise sequences could
be easily extended to a memory larger than one. This would however complicate the
resulting notation without introducing an extra conceptual contribution.) implies that,
besides the two types of variable nodes, i.e., sk and ik, the FG consists of three types of
factor nodes, i.e., p(yk | sk, ik), p(sk | sk−1), and P(ik | ik−1), the latter involving only pairs
of time-adjacent variable nodes. This feature is further evidenced by the FG depicted in
Figure 3, which graphically represents the joint pdf in (13). The pdfs p(sk | sk−1) and
p(yk | sk, ik) and the conditional probability mass function (PMF) P(ik | ik−1) simply arise
from the system model, i.e., from Equations (1), (2), and (5) or (11), and from the statistical
description of the random variables therein. By denoting g(x; η, γ2) the standard Gaussian
pdf with mean η and variance γ2, we have:

p(sk | sk−1) = g(sk; a1sk−1, (1− a2
1)σ

2
s ) (14)

P(ik | ik−1) = P(ik−1 + 1, ik + 1) (15)

p(yk | sk, ik) = g(yk; sk, σ2
i,k) (16)

where σ2
i,k = σ2

G + ikσ2
I is the variance of the observed sample at time k, which depends

on the corresponding impulsive noise state ik, represented by the variable node under
the factor node (16), in Figure 3. In (15), the transition probability between successive
impulsive noise states is found from the entries P(i, j) of the matrix (5) or (11), depending
on which of the noise models is adopted.

A straightforward application of the SPA [18] yields the forward and backward
messages exchanged along the top line of the graph,

p f (sk) =
∫

p f (sk−1)pu(sk−1)p(sk | sk−1)dsk−1 (k = 1, · · · , K− 1) (17)

pb(sk) =
∫

pb(sk+1)pu(sk+1)p(sk+1 | sk)dsk+1 (k = K− 2, · · · , 0) (18)

where the initial condition for (17) is p(s0) = g(s0; 0, σ2
s ), while a constant value, as

p(sK−1) = 1, is assumed to bootstrap the backward messages, which models the absence
of a posteriori information on the last signal sample. In a similar way, the forward and
backward messages exchanged along the bottom line of the FG are:

Pf (ik) = ∑
ik−1

P(ik | ik−1)Pf (ik−1)Pd(ik−1) (k = 1, · · · , K− 1) (19)

Pb(ik) = ∑
ik+1

P(ik+1 | ik)Pb(ik+1)Pd(ik+1) (k = K− 2, · · · , 0) . (20)
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where the initial conditions clearly depend on the adopted noise model. In the Markov-
Gaussian case, the pdf of the initial impulsive noise state is p(i0) = PGδ(i0) + PBδ(i0 − 1),
while it is expressed as p(i0) = ∑M−1

n=0 P′nδ(i0 − n), in the case of Markov–Middleton noise,
according to the descriptions in Sections 2.1 and 2.2. In both cases, a uniform PMF (obtained
by setting a possibly unnormalized equal value, as P(iK−1) = 1, for any of its realizations)
models the absence of prior assumptions on the last impulsive noise state.

The upward and downward messages, on the vertical branches of the FG, are directed,
respectively, towards the variable nodes sk and ik of our interest, and their expressions are:

pu(sk) = ∑
ik

Pf (ik)Pb(ik)p(yk | sk, ik) (k = 0, 1, · · · , K− 1) (21)

Pd(ik) =
∫

p f (sk)pb(sk)p(yk | sk, ik)dsk (k = 0, 1, · · · , K− 1) , (22)

where, given the Gaussian expression (16), the integral in (22) takes the form of a convolution.
The described FG, as is evident from Figure 3, includes loops; hence, the SPA does not

terminate spontaneously. As is well known, approximate variational inference techniques
are required, in these cases [18]. We shall describe some of them in Section 4—including
both traditional approaches and novel ones—and the performance of the resulting algo-
rithms will be compared in Section 5. Nevertheless, all of them share a few fundamental
features: (i) first, the resulting algorithms are all iterative, passing messages more than
once along the same FG edge and direction; (ii) as a consequence, scheduling is a main
issue, since it defines the message passing procedure; (iii) during iterations, the complexity
of messages spontaneously tends to “explode”, so that clever message approximation
strategies must be devised [18,19].

Figure 3. Factor graph representation of (13).

More specifically, regarding message approximations (Point iii) above), the usual
approach is the following. Cast in qualitative parlance, one should: (1) select an approxi-
mating family , i.e., a family of pdfs/PMFs that is flexible and tractable enough, possibly
exhibiting closure properties under multiplication, convolution, or other mathematical
operations; (2) select an appropriate divergence measure to quantify the accuracy of the
approximation, hence to identify the best approximating pdf within the chosen family [20].
While there is no standard method to select the approximating family, the most common
choice for the divergence measure is the Kullback–Leibler (KL) divergence, for which we
give a few details hereafter.
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3.1. Kullback–Leibler Divergence

The KL divergence is an information theoretic tool (see, e.g., [20]) that can be used to
measure the similarity between two probability distributions. We can search a pre-selected
approximating family F of (possibly “simple”) distributions, to find the distribution q(x)
closest to a given distribution p(x), which is possibly much more “complicated” than q(x)
(such as, e.g., a mixture). Such an operation is called projection and is accomplished by
minimizing the KL divergence, as:

proj[p(x)] = arg min
q∈F

KL(p(x)||q(x)) . (23)

A common choice is to let q(x) belong to an exponential family, q(x) = exp
(

∑j Gj(x)vj

)
,

where Gj(x) are the so-called features of the family and vj are the so-called natural parame-
ters of the distribution. Gaussian pdfs of Tikhonov pdfs, just to name a couple, are common
distributions that naturally belong to exponential families, each with its own set of features
(Gj(x) = xj (j = 0, 1, 2) for the Gaussian; G1(x) = cos(x) and G2(x) = sin(x) (j = 1, 2)
for the Tikhonov) and each with its own set of constraints on the natural parameters (e.g.,
v2 < 0, for the Gaussians), which force the family to include proper distributions only.
Exponential families have the pleasant property of being closed under the multiplication
operation. Furthermore, it can be shown [20] that the projection operation in (23) simply
reduces to equating the expectation of each feature with respect to the true distribution
p(x), Ep[Gi(x)], with that computed with respect to the approximating distribution q(x),
Eq[Gi(x)]. Such a procedure of matching the expectations (of the features) is at the heart of
(and gives the name to) the celebrated EP (expectation propagation) algorithm [21], further
applied in Section 4 to our problem.

To get a better understanding of this procedure, let us apply it to project a Gaussian
mixture onto a single Gaussian pdf. Suppose p(x) is the following Gaussian mixture:

p(x) = ∑
i

αig(x; µi, σ2
i ) , (24)

where ∑i αi = 1 for normalization. We shall approximate it by the nearest Gaussian q(x)
in the sense of the KL divergence, i.e., by applying (23). For that purpose, given that the
expectations of the features of a Gaussian distributions are simply the mass, the mean,
and the mean-squared value of that Gaussian (i.e., the expectations of one, x and x2),
the matching of these moments computed under p(x) with those computed under q(x)
simply amounts to equating the mean and variance of the two distributions (assuming that
both p(x) and q(x) are normalized).

Eq[x] = Ep[x] = ∑
i

αiµi (25)

Eq[x2] = Ep[x2] = ∑
i

αi

(
σ2

i + µ2
i

)
(26)

are the resulting algebraic equations from which the parameters (both the natural parame-
ters and the moments) of the best approximating Gaussian q(x) are derived.

4. Signal Estimation

Referring to the FG in Figure 3, which models the problem described in Section 2,
we shall first show that the message passing procedure that is established by the SPA,
as detailed in Section 3, along the horizontal edges of the FG coincides with two classical
estimation problems and is solved by two equally classical signal processing algorithms.
Namely, along the top line of edges in the FG, the forward-backward message passing of
Gaussian estimates for the (continuous) samples sk coincides with the celebrated Kalman
smoother [24]. Along the bottom line of edges in the FG, a similar forward-backward
message passing of (discrete) PMFs exactly follows the famous BCJR algorithm [25] (named
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after the initials of the authors), which is known to provide an MAP estimate of the channel
states ik at each time epoch, i.e., for the variable nodes along the bottom line of the FG. It is
significant that the same BCJR algorithm was recently implemented in [11], in the context
of a problem similar to ours, where memoryless Gaussian signal samples were estimated
in the presence of Markov-Gaussian impulsive noise (to which our system model reduces
in the special case a1 = 0 and M = 2).

It is indeed the memory in both the signal and the noise sequences that makes the
loopy FG in Figure 3 “unsolvable” (in the sense of marginalizing the joint pdf) with the
SPA. The problem arises in fact from the messages passed along the vertical edges of the
FG, i.e., those that connect the top half (that of signal samples) to the bottom one (that
of impulsive noise channel states). As discussed in the following in more detail, while
the downward messages (22) result from products and convolutions of Gaussian pdfs,
hence themselves Gaussian, this is not the case for the upward messages in (21), which are
Gaussian mixtures, basically due to the presence of the discrete variables ik. That of mixed
discrete and continuous variable nodes is a well-known scenario that makes the number of
mixture elements, hence the complexity of messages, increase exponentially at every time
step, so that mixture reduction techniques should be employed [19]. Mixture reduction can
either be accomplished by making hard decisions on the impulsive noise channel states
or otherwise by exploiting the soft information contained in the mixture messages pu(sk),
through more sophisticated approximation schemes [26].

4.1. Upper FG Half: Kalman Smoother

Suppose that the lower part of the FG sends messages pu(sk) consisting of a single
Gaussian distribution, with mean ŝu,k and variance σ̂2

u,k,

pu(sk) = g(sk; ŝu,k, σ̂2
u,k) . (27)

Under this assumption and based on the SPA, the forward and backward Equations (17)
and (18) along the upper line of the FG coincide with those of a Kalman smoother [18].
To compute the forward and backward messages, we assume that η f and ηb are respectively
the means of the Gaussian messages p f (sk) and pb(sk) and σ2

f and σ2
b are their variances.

Equations (14), (17), and (27) yield:

p f (sk) =
∫

g(sk−1; η f ,k−1, σ2
f ,k−1)g(sk−1; ŝu,k−1, σ̂2

u,k−1)

· g(sk; a1sk−1, (1− a2
1)σ

2
s )dsk−1

= g(sk; η f ,k, σ2
f ,k) (28)

in which η f ,k and σ2
f ,k can recursively be updated as:

η f ,k = a1η f ,k−1 + a1
σ2

f ,k−1

σ2
f ,k−1 + σ̂2

u,k−1
(ŝu,k−1 − η f ,k−1) (29)

σ2
f ,k = (1− a2

1)σ
2
s + a2

1

σ2
f ,k−1

σ2
f ,k−1 + σ̂2

u,k−1
σ̂2

u,k−1 (30)

In the same way, the backward recursion can be obtained from (14), (18), and (27):

pb(sk) =
∫

g(sk+1; ηb,k+1, σ2
b,k+1)g(sk+1; ŝu,k+1, σ̂2

u,k+1)

· g(sk+1; a1sk, (1− a2
1)σ

2
s )dsk+1

= g(sk; ηb,k, σ2
b,k) (31)
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where:

ηb,k =
1
a1

ηb,k+1 +
1
a1

σ2
b,k+1

σ2
b,k+1 + σ̂2

u,k+1
(ŝu,k+1 − ηb,k+1) (32)

σ2
b,k =

1
a2

1
(1− a2

1)σ
2
s +

1
a2

1

σ2
b,k+1

σ2
b,k+1 + σ̂2

u,k+1
σ̂2

u,k+1 (33)

Thus, the message sent from the variable node sk to the factor node p(yk | sk, ik), here
named pd(sk), is Gaussian as well,

pd(sk) = p f (sk)pb(sk) = g(yk; η̂k, γ̂2
k) (34)

where, as in all Gaussian product operations, the variance and mean,

γ̂−2
k = σ−2

f ,k + σ−2
b,k (35)

γ̂−2
k η̂k = σ−2

f ,k η f ,k + σ−2
b,k ηb,k , (36)

are found by summing the precision (i.e., the inverse of the variance) and the precision
weighted mean.

4.2. Lower FG Half: BCJR

As mentioned earlier, the message Pd(iK) in (22) is the result of a convolution between
two Gaussian pdfs, one provided by the channel observation, p(yk | sk, ik), and the other,
pd(sk), by the upper FG half:

Pd(ik) =
∫

pd(sk)p(yk | sk, ik)dsk

=
∫

g(sk; η̂k, γ̂2
k)g(yk; sk, σ2

i,k)dsk

= g(yk; η̂k, γ̂2
k + σ2

i,k) . (37)

As discussed in Section 2.2, σ2
i,k takes M different values, each in a one-to-one correspon-

dence with an impulsive noise channel state. According to (15) and (37), the forward and
backward recursions (19) and (20), along the bottom line of the FG edges, are:

Pf (ik) = ∑
ik−1

P(ik | ik−1)Pf (ik−1)g(yk−1; η̂k−1, γ̂2
k−1 + σ2

i,k−1) (38)

Pb(ik) = ∑
ik+1

P(ik+1 | ik)Pb(ik+1)g(yk+1; η̂k+1, γ̂2
k+1 + σ2

i,k+1) . (39)

The above equations form the well-known MAP symbol detection algorithm known as
BCJR [25] and more generally referred to as the forward-backward algorithm [18].

For each variable node ik, the product of (38) and (39) is the message, here named
Pu(ik), that is sent upward to the factor node p(yk | sk, ik),

Pu(ik) = Pf (ik)Pb(ik) , (40)

and can be regarded as a provisional estimated PMF for the M possible different values of
the impulsive noise channel state.

4.3. Hard Decisions and the Parallel Iterative Schedule Algorithm

Substituting (16) and (40) in (21), it is clear that the resulting message:

pu(sk) = ∑
ik

Pu(ik)g(yk; sk, σ2
i,k) (41)
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is a Gaussian mixture and not a single Gaussian distribution, as assumed in (27).
The generation of a Gaussian mixture, at every vertical edge of the FG, exponentially

increases the computational complexity. Thus, the use of mixture reduction techniques
is unavoidable. For that purpose, one radical approach is to make a hard decision on
every îk = argmax{P̂(ik)}, selected as the modal value of the estimated PMF, P̂(ik) =
Pu(ik)Pd(ik). The mixture (41) is thus approximated by its most likely Gaussian term, so
that the assumption of having Gaussian priors for each sk (i.e., the information on the
individual sample that does not depend on the correlated sequence), as carried by the
upward messages pu(sk), is respected and the algorithm in Section 4.1 can be applied.

With this approximation, we can then establish a “parallel iterative schedule” (PIS)
in the loopy FG. The upper and lower parts of the FG work in parallel, at every iteration,
according to their forward-backward procedure (corresponding, as seen, to the Kalman
smoother and the BCJR, respectively). At the end of a forward-backward pass, the two
halves of the FG exchange information through messages sent along the vertical edges of
the graph. Namely, pd(sk) is convolved with the corresponding Gaussian observation (16),
so as to get Pd(ik) in (22), while Pu(ik) is used to update the impulsive noise state PMF,
P̂(ik) = Pu(ik)Pd(ik), hence the estimated îk, at every iteration. Such a scheduling and the
approximate hard decision strategy, which is an essential part of it, shall guarantee the
convergence of the overall iterative algorithm, as shown in Section 5.

4.4. Soft Decisions: EP and TP Algorithms

Hard decisions on every ik imply that only one part of the information, provided
by the lower FG half (Section 4.2), is being used by the signal estimation, in the upper
FG half (Section 4.1), and the rest of the information is being discarded. This is clearly a
suboptimal approach.

A better performing soft information strategy can instead be pursued, based on
approximating the mixture (41) by minimizing the KL divergence. This can be implemented
by using either the EP algorithm or the TP algorithm. To have a better insight into the
similarities and differences between EP and TP, considering the posterior marginal p(sk|y)
obtained, according to the SPA rules, as the product of all incoming messages to the variable
node sk:

p(sk|y) = p f (sk)pb(sk)pu(sk) = pd(sk)pu(sk) , (42)

where pd(sk) in (34) is Gaussian and pu(sk) in (41) is a Gaussian mixture; thus, p(sk|y) is
a Gaussian mixture as well. An approximation for it can be computed by the projection
operation (23), once an approximating exponential family F is selected. In the problem
that we analyze in this manuscript, the Gaussian family seems a natural choice, so that:

p̃EP(sk|y) = proj[pd(sk)pu(sk)] = g(sk; ŝk, σ̂2
k ) . (43)

This is exactly the approach of the EP algorithm: the posterior marginal is approximated by
matching the moments of the approximating Gaussian to those of the mixture, as discussed
in Section 3.1, and the upward message pu(sk), sent to the variable node sk for the next
iteration, is replaced by the following, obtained by Gaussian division:

pEP
u (sk) =

p̃EP(sk|y)
pd(sk)

= g(sk; ŝEP
u,k, (σ̂EP

u,k )
2) . (44)

p̃TP(sk|y) = pd(sk)pTP
u (sk) , (45)

to finally get the TP symbol estimate from the posterior marginal (45).
This division of pdfs, which is inherent to the EP algorithm, is not painless and

can give rise to improper distributions, which in turn introduce instabilities into the
algorithm [21,26,27]. This is easily understood by considering a Gaussian division in (44)
where the variance of the denominator is larger than the variance of the numerator, so that
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an absurd negative variance results. Several techniques have been proposed to avoid these
instabilities; we adopt the simple improper message rejection discussed in [27].

An alternative approach, which spontaneously avoids instabilities, is that of the TP
algorithm [22], where it is the individual message pu(sk), i.e., the mixture, that is projected
onto an approximating (here Gaussian) pdf, instead of the posterior marginal, as done
in EP:

pTP
u (sk) = proj[pu(sk)] = g(sk; ŝTP

u,k , (σ̂TP
u,k )

2) . (46)

In TP, the posterior marginal, from which the signal sample is estimated, is as usual
obtained by multiplying the incoming messages to sk, i.e., the TP message (46) is multiplied
by pd(sk):

Note that the result in (46) would be obtained from the EP projection in (44) if only
the operator proj[·] in (43) were transparent to pd(sk), i.e., if it were proj[pd(sk)pu(sk)] =
pd(sk)proj[pu(sk)] (which amounts to stating p̃EP(sk|y) = p̃TP(sk|y)), which is in general
not the case. Finally, the TP algorithm is inherently stable and does not require any
complementary message rejection procedure.

5. Results

We evaluated, by numerical simulation, the mean-squared error (MSE) versus the
average signal-to-noise ratio (SNR) in a bursty impulsive noise scenario with a maximum
of M − 1 interferers, i.e., with M noise states, where the zeroth state corresponds to
background noise only. As discussed in Section 2, the peculiarity of this system is that the
actual ratio of signal-to-noise power can dramatically change at every time epoch.

Figure 4 shows the MSE for the estimated signals corrupted by impulsive noise with
M = 2, 4, 16 states (Figure 4a–c), where the following system parameters were chosen
for the simulation. The correlation parameter x was set to 0.9, meaning that the channel
state is expected to switch to a new state (including the present one) with probability 0.1;
adjacent noise samples are thus highly correlated, i.e., the noise is bursty. The impulsive
index A, i.e., the average number of active interferers, was chosen to be either 0.2 or one,
which statistically corresponds to a “hardly present interferer” or to an “almost constantly
present” one (at least). Γ is the ratio between the power of background noise and the
average power of interferers and was set to 0.01, corresponding to a strongly impulsive
noise where interference can boost noise power by a factor of Γ−1 = 100. The signal
parameters, in the AR(1) model, were set as follows: a1 = 0.9 and σ2

s = 1 (i.e., normalized
signal power). We transmitted 100 frames of 1000 samples each (for a total number of 105

received samples).
The curve labeled GAKS in Figure 4 shows the performance of a “genie-aided Kalman

smoother” and refers to an ideal receiver with perfect channel state information, i.e., with
exact knowledge of ik, hence of noise variance at every time epoch. In this case, the system
reduces to the classical estimation of correlated Gaussian samples, for which the Kalman
smoother is optimal; hence, the GAKS curve represents a lower bound for the performance
of any non-ideal receiver. The curve labeled PIS in Figure 4 is obtained through the parallel
iterative schedule algorithm discussed in Section 4.3.

A comparison of Figure 4a–c reveals that the simulation results are very close to each
other. A fine checking of the numerical values reveals, for example, that in the M = 2 case
of Figure 4a, at SNR = −5 dB, the MSE is −5.598 dB for A = 1 and −8.763 dB for A = 0.2.
In the M = 4 case of Figure 4b, at the same SNR values, the MSE changes to −5.038 and
−8.573, while in the M = 16 case of Figure 4c, the MSE values change to −5.103 and
−8.708. This implies that the performance of the estimator is not considerably changed
when we opt for noise models with more than M = 2 states, which corresponds to the
Markov-Gaussian model of Section 2.1. The reason is that a larger maximum number of
interferers implies a smaller amount of power per interferer, so that, for a given average
SNR, it is the average number of active interferers A, rather than its maximum value M− 1,
that determines the performance. Results in Figure 4 confirm, as expected, that a larger A
degrades the performance of the estimator.
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Figure 4. Simulation results for signal estimation, based on the hard decisions with: (a) M = 2, (b) M = 4, and (c) M = 16
impulsive noise states. The signal parameters are a1 = 0.9 and σ2

s = 1; the noise parameters are x = 0.9, Γ = 0.01,
and A = 0.2 or 1. We transmitted 100 frames of 1000 samples each. GAKS stands for genie aided Kalman smoother and PIS
for the parallel iterative schedule of Section 4.3.

For this reason, in the following simulations, we limited our attention to the case
M = 4 only. We considered the same noise parameters as in [6], i.e., a correlation parameter
x = 0.98, corresponding to an impulsive noise with increased burstiness, while the values
of A = 0.2 or 0.8 were slightly decreased (compared to Figure 4). The values Γ = 0.01 and
0.001, considered in Figure 5a,b, account for a strongly impulsive noise, where the impulsive
events can increase the noise power up to 1000 times the background noise power.

Figure 5 shows the performance of an estimator that implements the EP and TP algo-
rithms described in Section 4.4 (curves labeled EP and TP) that pursue the approximation of
Gaussian mixture messages. These strategies exploit soft decisions on the impulsive noise
states and show a superior performance, compared to the PIS algorithm, which is based
on hard decisions on ik. As can be seen in Figure 5, the performance of PIS is degraded
especially around SNR values where the signal and noise power are balanced. At these
SNR levels (0–10 dB), signal estimation is neither dominated by noise, nor is it similar to
a noiseless scenario. On the contrary, the performance of both EP and TP is close to the
lower bound (GAKS), meaning that these algorithms are practically optimal. If we do not
consider the issue of convergence, it would thus be irrelevant to choose either of the two.
However, we recall that the EP algorithm requires the implementation of an extra improper
message rejection strategy. In contrast, the TP algorithm is inherently stable and requires
less computations, and it is thus the preferable choice, for this problem.
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Figure 5. Signal estimation, based on the hard (PIS) or soft (EP and TP) decisions. M = 4 noise states with A = 0.2 or 0.8:
(a) Γ = 0.01, (b) Γ = 0.001.

A comparison between Figure 5a,b further proves that the performance of the esti-
mator does not strongly depend on the value of Γ, as one could expect. To complete the
picture, Figure 6 reports simulation results obtained at other different impulsive index
values (A = 0.1, 0.5, 1.2). The MSE values in Figures 5a and 6 definitely show that it is the
impulsive index A that dictates the system performance. The two values A = 0.2 and 0.8
considered in Figure 5a are associated with curves that fit in between those in Figure 6,
which are associated with the other three values of A. For each value of A, the EP and TP
algorithms provide results almost coinciding with the lower bound (GAKS), while the PIS
algorithm entails a consistent loss in performance, especially at intermediate SNR values
(5–10 dB).

The iterative algorithms that were analyzed (PIS, EP, TP) showed a fast convergence in
all cases, so that simulations were carried out in four iterations; we verified that convergence
is practically reached in three iterations and that no further modification of results occurs
after the fourth iteration (as we tested, until the 10th iteration).
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Figure 6. Signal estimation in Markov–Middleton noise with M = 4 states and Γ = 0.01 (as in
Figure 5a). Different values of the average number of interferers A are considered.
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6. Conclusions

We proposed different algorithms to estimate correlated Gaussian samples in a bursty
impulsive noise scenario, where successive noise states are highly correlated. The receiver
design was based on a factor graph approach, resulting in a loopy FG due to the correlation
among signal samples, as well as among noise samples [18]. Due to the joint presence of
continuous and discrete random variables (namely, signal samples and impulsive noise
channel states), as typically occurs in these cases, the resulting iterative sum-product
algorithm has an intractable complexity [20]. The bursty impulsive noise is in fact mod-
eled either as Markov-Gaussian [5] or as Markov–Middleton [6]; hence, the channel is
characterized by (dynamically switching) states that count the sources of electromagnetic
interference, at every time epoch [4].

Although belonging to the broad class of switching linear dynamical systems [19],
the system considered here exhibits remarkable symmetry properties that allow an effective
estimation of the signal samples through approximate variational inference. A simple
parallel iterative schedule (PIS) of messages, including dynamically updated hard decisions
on the channel states [16], was shown to provide a satisfactory, although suboptimal,
performance, for many different channel conditions [17]. The more computationally costly
expectation propagation (EP) [21] is also applicable to this problem albeit affected by its
usual instability problems during the iterations, which can however be solved by known
methods in the literature [27]. For this reason, an alternative transparent propagation (TP)
algorithm was introduced, which has a lower computational complexity (compared to
EP) and is inherently stable [22]. Both EP and TP reach a performance that is close to the
optimal one, i.e., that of a receiver with perfect channel state information.

For the first time, we applied all of these algorithms to bursty impulsive noise channels
with a very large number (up to 15) of independently switching interferers [23]. The
results demonstrate that, for a given SNR, the degradation induced by many (e.g., 15)
interferers, with limited power, is similar to that produced by fewer (e.g., three) stronger
interferers with correspondingly larger power. Hence, few-state channel models, or even
the binary Markov-Gaussian model, are adequate to predict the performance with any of
the algorithms discussed here, both suboptimal (PIS) and close to optimal (EP,TP).
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Abbreviations
The following abbreviations are used in this manuscript:

EMI Electromagnetic interference
OFDM Orthogonal frequency division multiplexing
IoT Internet of Things
PLC Power line communication
AR(1) Autoregressive model of order one
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FG Factor graph
KL Kullback–Leibler
EP Expectation propagation
TP Transparent propagation
IIR Infinite impulse response
i.i.d. independent and identically distributed
pdf probability density function
HMM Hidden Markov model
MAP Maximum a posteriori
SPA Sum-product algorithm
PMF probability mass function
BCJR Bahl, Cocke, Jelinek, and Raviv (authors of the algorithm)
PIS Parallel iterative schedule
MSE Mean squared error
SNR Signal-to-noise ratio
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