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Accurate Heartbeat Detection on Ballistocardiogram
Accelerometric Traces

Niccolò Mora , Federico Cocconcelli , Guido Matrella , Member, IEEE, and Paolo Ciampolini

Abstract— This article presents an automated procedure for
acquisition and analysis of BallistoCardioGraphy (BCG) traces.
A triaxial accelerometer and a microcontroller unit are used
to record heart-induced recoil forces generated from a lying
subject. The problem of BCG J-peak annotation is split into
two subtasks: candidates extraction, based on a detection signal,
and actual annotation, guided by subject-specific search windows.
Such a procedure is derived from an automatic calibration,
which is carried out with no need of concurrent Electro-
CardioGram (ECG) or user intervention. The algorithm also
implements postannotation checks for refinement of annotation,
which effectively reduces the number of missed J-peaks. The
impact of each algorithm phase is analyzed, assessing statistical
significance of each step; finally, performance is optimized in a
data-driven fashion. Results show that the proposed methodology
is able to achieve high sensitivity and precision (the median
score is 98.9% and 98.1%, respectively) in J-peak detection. The
quality of J-peaks timing annotation is further demonstrated by
a very low discrepancy between BCG and ECG heart rate (HR)
estimates. Overall population, the standard deviation of such
error was found to be approximately 6.56 ms, whereas the mean
absolute error was just 4.7 ms (i.e., ≈ 1.18; Ts, where Ts = 4 ms
is the sampling period). Such scores, indeed, improve over recent
related literature.

Index Terms— Accelerometer, Active Assisted Living (AAL),
BallistoCardioGram (BCG), heart rate (HR), MEMS, vital signs
monitoring.

I. INTRODUCTION

POPULATION aging is seriously challenging sustainability
of social and healthcare systems. [1]. Research address-

ing this scenario increasingly exploits modern information
and communication technologies (ICTs). Active and Ambient
Assisted Living (AAL; [2], [3]) systems emerged, aiming at
making home environments more intelligent and promoting
a sustainable model for independent living. For example,
an AAL system can help in making services more accessible,
by compensating physical or sensory impairments with new
smart devices: voice control or even brain–computer inter-
faces have been introduced to allow severely motor-impaired
users to achieve communication and home control [4], [5],
exploiting low-cost and easily deployable solutions [6], [7].
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Within the realm of smart homes, smart monitoring fea-
tures can be introduced, exploiting behavioral tracking; for
example, machine learning and deep learning techniques have
been applied to analyze data collected by home motion
sensors [8], [9], highlighting (multivariate) users’ patterns and
detecting significant behavioral changes over time. AAL mon-
itoring capabilities can be further enhanced by gathering and
merging continuous information coming from diverse sources.
In particular, fusing behavioral and physiological monitoring
could be of great interest, providing a quite comprehensive
picture of health and wellbeing status.

Many wearable devices hit the consumer market recently,
allowing to monitor physiological parameters. In particular,
embedded and low-power technologies allow acquiring infor-
mation on various vital signs in a noninvasive and minimally
obtrusive fashion. For example, heart rate (HR) information
can be easily acquired by means of PhotoPlethysmoGra-
phy (PPG) from wrist-worn devices, which also simultane-
ously allow acquiring motion data. Recent improvements in
Microelectromechanical systems (MEMS) accelerometers or
inertial measurement units (IMUs) also made it possible to
directly acquire information on heart activity by recording
heart-induced vibrational patterns. Interestingly, such patterns
can even be extracted by means of noncontact setups, i.e., not
requiring the user to carry any wearable device. By using
BallistoCardioGraphy (BCG) techniques, an accelerometer can
measure heart activity in an indirect fashion, through vibra-
tion transmitted from the subject’s body to another object
(e.g., bed, chair, and body-weight scale), thus resulting in a
truly nonintrusive approach. While many BCG implementa-
tions reported in the literature [10] exploit piezoelectric sen-
sors placed under the subject, a MEMS accelerometer is used
in this article, which allows for a more flexible and unobtrusive
setup (in terms of device size and robustness to prolonged use).
Accelerometric traces need to be processed, in order to extract
parameters of interest; this article presents a methodology for
automatic beat annotation on BCG waveforms originated from
a person in lying position (i.e., in bed) and measured at the
bed itself.

The approach minimizes the need for user intervention; all
the procedures, from calibration to data analysis, are carried
out in a fully automated fashion, without the need of a con-
current ElectroCardioGram (ECG). Indeed, ECG was acquired
here just for performance assessment purposes; comparison
with such gold standard shows that very good results can
be achieved by the proposed approach, both in terms of
heartbeat detection rate and time resolution of beat-to-beat
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intervals. Also, a preliminary experiment was carried out in
an unconstrained, overnight domestic environment to check for
more demanding use cases. Although limited in scope, such
test matches good quality expectations and allows for looking
forward to future solutions, envisaging sensor embedding
into smart beds. This would allow to simultaneously acquire
information on sleep patterns (duration, times, and quality)
and vital signs [e.g., HR and heart rate variability (HRV)],
providing relevant insights to health and wellbeing assessment
with an inexpensive and minimally intrusive setup.

This article is organized as follows. Section II reviews the
related literature and introduces the proposed methodology,
including the experimental protocol and details about the
implementation of BCG annotation algorithm. Section III
presents the results, evaluating the impact of each step of
the annotation algorithm on the overall performance, allowing
for data-driven optimization. Also, the overall performance
metrics are compared to relevant literature works. Finally,
Section IV draws the conclusions.

II. METHODS

A. Related Works

Many alternative techniques to ECG exist, aimed at mon-
itoring heart activity in a less intrusive fashion. Although
similar in their goal, such techniques exploit a variety of dif-
ferent approaches. SeismoCardioGraphy (SCG) relies on the
study of chest vibrations induced by cardiac activity; usually,
such vibrations are measured by means of an accelerometer
(or IMU) worn at the chest, close to the subject’s sternum.
SCG signal allows to appreciate many different features of the
cardiac mechanical activity [11]. For example, Mora et al. [12]
presented a fully automated methodology to extract and
annotate systolic peaks in SCG; Khosrow-Khavar et al. [13]
compared four different methods to compute signal envelopes
for feature points detection; Choudhary et al. [14] exploited
wavelet decomposition and reconstruction for identify aor-
tic valve opening (AO) events. Once annotated, such fidu-
cial points can be used for different purposes; for instance,
Shandhi et al. [15] proposed a regression framework to
estimate preejection period (PEP) times for each beat.
SCG is exploited for atrial fibrillation detection in [16].
SCG can also act as a proximal reference for pulse transit
time calculation [17], in lieu of ECG, enabling cuff-less blood
pressure estimate [18], i.e., without requiring oscillometric
measurements [19], [20]. Sharing the same principle of SCG,
GyroCardioGraphy (GCG) aims at acquiring heart-induced
vibration patterns by means of a gyroscope, allowing for better
detection of selected features [21]. On a completely different
base, HR was estimated on clothed skin in [22] by using an
airborne pulse-Doppler ultrasound system; other works use
radar systems tuned at different frequency bands [23], [24],
laser-Doppler vibrometry [25], [26], microwave sensors [27],
and video-based analysis [28].

BCG, on the other hand, studies the whole-body vibrations
resulting from recoil forces caused by blood being pumped
from the heart. A typical BCG pattern (BCG) is shown
in Fig. 1 compared with a coherent (i.e., simultaneously
sampled) ECG. The BCG waveform, involving whole-body

Fig. 1. Correlation between ECG and BCG waveforms.

vibrations, is more related to overall cardiovascular function
rather than referring to heart mechanical events (such as
SCG and GCG). Therefore, some modeling is needed to
correlate BCG acceleration patterns to cardiovascular function
phases, accounting for a wider picture including, besides
the heart, the whole systemic, and cerebral and pulmonary
circulation apparatuses [29]. Techniques for the acquisition of
recoil acceleration patterns include load cells or force plates,
piezoelectric sensors, and accelerometers. BCG is typically
monitored in resting conditions, e.g., in a lying, seated,
or standing still posture and efforts are being made to embed
BCG measurement devices within familiar, domestic objects,
such as chairs, beds, and body-weight scales, in order to reduce
intrusiveness as much as possible.

In [30], for instance, modified home weighing scales have
been used to acquire BCG vibrations, comparing waveforms
acquired with different postures, characterizing the influence
of posture on most salient BCG-derived features. In [31], force
plates have been used to extract BCG, correlating force-plates
peculiar waveform features with those extracted by a weight-
scale-based setup. Artifacts introduced by breathing activity
were investigated in [32], exploiting piezoelectric thin foils
placed under a lying subject and introducing analysis tech-
niques suitable for separating cardiac and respiratory com-
ponents. Similarly, piezoelectric sensors were exploited for
simplified real-time HR measurements [33], [34], detection
of atrial fibrillation [35], and nightlong HR monitoring [36].
A slightly different approach consists in measuring BCG by
means of an accelerometer attached to the bed frame; such
solution, although possibly offering advantages in terms of
compactness and robustness of the sensing element, is, indeed,
less explored in the literature, where piezoelectric sensors are
still more diffused. A clinical trial was conducted in [37],
validating a commercial accelerometer-based BCG device
by Murata Electronics [38]; on average, the accuracy for
HR measurements was found to be −0.5 ± 1.6 beats per
minute (mean±standard deviation, i.e., −8.3±26.7 ms), with
a 97% declared coefficient of determination (R2) between
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Fig. 2. (a) Acquisition architecture. (b) Measurement setup, with BCG
accelerometer and ECG-based validation.

the ECG- and the BCG-based average HR. In this article,
we exploit a MEMS accelerometer for BCG traces measure-
ment as well and propose a novel methodology for annotation
and calibration, providing high detection sensitivity and pre-
cision scores, with very accurate heartbeats interval estimates,
also improving over different sensing techniques.

B. Measurement Protocol and Data Acquisition

The BCG acquisition architecture is shown in Fig. 2(a) and
consists of four main units.

1) A MEMS accelerometer (Analog Devices ADXL355),
which is enclosed in a plastic container (to ensure elec-
trical insulation) and firmly taped below the lying surface
(e.g., the bed), in order to guarantee a stable mechanical
coupling with the longitudinal recoil forces. In this article,
the longitudinal axis, parallel to the head–toe direction,
is monitored. The 20-bit ADC conversion of the BCG
signal is carried out on board, with a full scale of ±2g,
where g is the acceleration of gravity; the accelerometer’s
reported noise density is as low as 20 μg/

√
Hz, which is

integrated over a passband of ODR/4, where ODR is the
output data rate, set at 250 Hz.

2) An ECG recorder, synchronized to the accelerometer rate,
allowing to simultaneously record ballistocardiogram and
electrocardiogram and thus enabling validation and per-
formance assessment. In particular, a single-lead ECG
(lead I) scheme was adopted using disposable Ag/AgCl
electrodes. Analog amplification and filtering of the ECG
signal were performed by means of the Analog Devices
AD8232 front-end device, which was also set to drive the
driven right leg DRL) electrode for common-mode noise

reduction. Digitalization of the amplified ECG signal
is carried out at 12 bits. This is more than sufficient
for our purposes, limited to the accurate recording of
QRS complexes, to provide ground truth in beat-to-beat
interval assessment.

3) A microcontroller unit (MCU) (ARM Cortex M0+) for
data synchronization and streaming.

4) A personal computer, which receives and stores data for
subsequent (offline) processing.

Sixteen healthy volunteers (6 females and 10 males, min,
average, and max age 22, 30.2, and 65, respectively), without
any documented history of cardiac pathologies, joined the pro-
posed study, which was conducted following the guidelines of
the Helsinki declaration on ethical principles. Each subject was
comfortably lying in a supine position during measurements.
Recordings lasted 5 min, during which BCG and ECG were
acquired simultaneously. The overall measurement setup is
shown in Fig. 2(b), which also illustrates the accelerometer
reference system.

In order to guarantee a precise phase relationship, both ECG
and BCG were synchronously sampled at 250 Hz under MCU
control. Data are then transmitted from the MCU over a Wi-Fi
network (IEEE 802.11 b/g/n) with the TCP/IP protocol. From
the PC receiver side, a Python script allows real-time acquisi-
tion and storage of the sampled signals, as well as providing
the tools for offline data analysis. Preprocessing is applied
to both BCG and ECG waveforms using zero-phase digital
filtering techniques in order to maintain the correct phase
relationship between them, necessary for accurately assessing
the performance of the proposed method. In particular, ECG
signals are bandpass filtered by means of a finite impulse
response (FIR) filter with a [0.5 Hz, 30 Hz] passband range,
whereas a range of [2 Hz, 14 Hz] is used for BCG signals; in
both cases, filter order is set to 1024, with filter coefficients
computed with the Parks–McClellan algorithm. Individual data
are normalized by means of z-scoring: xz = (x − μx)/σx ,
where x is the signal of interest, μx is its mean, and σx is its
standard deviation. Finally, in order to extract precise reference
systolic time intervals, R-peaks are detected from the ECG
gold standard by means of the well-known Pan–Tompkins
algorithm [39] and manually checked to ensure proper
labeling.

C. Data Analysis

The data analysis procedure is structured in the two main
phases: calibration and annotation. Calibration is required to
deal with intersubject differences in BCG signal morphol-
ogy and to make the performance less sensitive to actual
features (amplitude, duration, and peaks). Annotation then
performs actual beat detection and identification of waveform
features, by first detecting the beats coarse location (using a
suitably designed signal) and then detecting the characteristic
IJK complex, with reference to Fig. 1. In the following,
the main analysis components are described.

1) Beat Detection Signals: With reference to Fig. 1, this
phase’s goal is to detect the IJK complex in the BCG
characteristic waveform, just like that the QRS complex is
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Fig. 3. Ensembles plot of z-scored xBCG signal and min–max scaled xDET
signal.

assumed as an ECG periodic feature, suitable for heartbeat
detection. However, Fig. 1 shows that the IJK complex is not
prominently standing out against the rest of the signal (i.e., it is
much less predominant than the QRS complex in the ECG).
Hence, the detection signal xDET was introduced, to make such
complex more easily discernible

xDET[n] =
M−1∑
k=0

b[k] · x2
BCG[n − k] (1)

where xBCG[n] is the bandpass filtered BCG, as described
in Section II-B, and b[k] are the coefficients of a low-pass
FIR filter (M = 200 taps, in this article) with a given
cutoff frequency, acting as a smoother (the cutoff frequency
is optimized in a data-driven fashion as shown in the results).
An example of ensemble plots of xBCG and xDET, obtained
from a single subject, is reported in Fig. 3; the reference
ECG peak is shown as well, for comparison, together with the
annotation of salient BCG points. In order to properly isolate
IJK complexes, the resulting xDET signal is further processed
by a custom binary filter, considering the sample mean and
standard deviation (σp) over the last p points (p = 30 in this
article)

xSQR[i ] =
{

1, if xDET[i ] ≥ μi−p:i + k · σi−p:i
−1, otherwise

(2)

where μi−p:i is the sample average over the last p points,
σi−pi is the sample standard deviations, and k is a multipli-
cation factor that regulates how much the sample needs to
be prominent, with respect to the dispersion σi :i−p . In this
article, k was empirically set to 2, providing a unified reference
that was stable across different subjects. By construction,
IJK complexes will be located in an interval where xSQR is 1
(positive intervals). Nonetheless, some misdetection may still
occur; low-energy beats may still be skipped or neighboring
beats can be merged and recognized as a single complex,
if the signal energy keeps high enough in between. This results
in longer beat intervals than expected; therefore, a second

Algorithm 1 Detection of Heartbeat Events
Inputs:
• xBCG : BCG signal

Begin:
• Compute xDET and xSQ R [eq. (1) and (2), respectively]
• Find candidate peaks in xDET from xSQ R

• Calibration:

- Validate xSQ R positive intervals
- Find the J peak (maximum in xSCG ) within the validated

intervals
- Gather statistics on the difference between xDET ’s maxi-

mum and the J peak (i.e. the median, �tJ,DET )

• Annotation:

- Validate xSQ R positive intervals
- Within those positive intervals, find J peaks at a suitable

tolerance distance from xDET ’s maximum tDET,i (i.e. s.t.∣∣tDET,i − �tJ,DET

∣∣ ≤ tε)
- Mark the corresponding time instant as heartbeat

Return index of possible heartbeats

refinement pass is introduced, in which the duration of such
candidate intervals is statistically analyzed to detect anomalies:
too long positive intervals are split (likely being related to
adjacent peaks merging), whereas too long negative intervals
are further examined by locally reducing the prominence
factor k in. (2), to identify weaker beats. Eventually, validated
candidate windows are defined, where J-peaks can be found
and annotated, as explained in Section II-C2.

2) Calibration and Annotation: Intersubject differences
complicate the annotation of BCG traces; a calibration phase
helps to obtain a subject-adaptive algorithm, suitable for
coping with such variations. Basically, a quiet reference period
(1 min) is acquired before the actual test waveforms; the beat
detection signals described above are computed and candidate
beat intervals are extracted, as indicated by the xSQR signal.
Then, for each candidate interval, statistics about the distance
between the maximum in xDET and the most prominent peak
in xBCG are collected. The median value of such distance,
�tJ,DET, thus allows to estimate where the BCG’s J-peak
is to be expected with respect to a local maximum in the
detection signal; in the annotation mode, such information
can be used to coarsely localize J-peaks. In fact, a maximum
in xBCG, occurring at time instant tJ,i , is labeled as J-peak
if |tDET,i − �tJ,DET| ≤ tε , where tDET,i is the ith local
maximum in xDET (in the ith candidate xSQR epoch) and tε is a
tolerance parameter, which was set to 40 ms in this article. This
check ensures a more precise annotation of BCG waveforms,
by constraining the search window to given intervals extracted
from the more robust xDET and xSQR signals.

To summarize, the calibration and annotation steps are
reported as pseudocode in Algorithm 1, whereas Fig. 4 reports
the examples of output waveforms from the annotation phase.
In Fig. 4 (top), the coherently recorded ECG signal is reported
for comparison, with its R-peaks duly annotated for succes-
sive performance evaluations. Fig. 4 (center) shows the beat
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Fig. 4. Top: ECG and R-peaks (yellow diamonds, shown for reference in
all panes). Center: beat detector signals, with annotated coarse peaks (purple
square). Bottom: BCG signal with annotated peaks.

detection process, with the smooth detection signal xDET and
the binarized version xSQR, computed from (2). The intervals
where xSQR > 0 are candidates for J-peaks annotation.
Fig. 4 (bottom) eventually shows the annotation of the
BCG signals in such identified intervals.

III. RESULTS AND DISCUSSION

A. Performance Metrics Definitions

The performance characterization of the proposed measure-
ment and processing system targets two aspects as follows.

1) The ability to accurately detect beats, compared with
R-peaks ground-truth. In other words, a J-peak should be
detected within each R-R interval, with a given tolerance
window.

2) The ability to precisely measure beat-to-beat inter-
vals from consecutive J-peaks, with respect to the
R-R peaks ground truth. Of course, this definition
assumes that the ECG exhibits a regular rhythm, e.g.,
without ectopic beats. This assumption, indeed, is in line
with the intended target population, as better remarked in
Section (III-C).

Regarding 1), in order to measure the performance, a target
window needs to be defined, relative to each R-peak, where

a J-peak should be found. In this article, such window is
located between 140 and 260 ms after the R-peak; such a
value was found to be adequate for potentially labeling all
correct J-peaks, after careful inspection of all waveforms.
In more practical terms, a J-peak is correctly detected [true
positive (TP)] if one and only one J-peak is found between
two R-peaks, within the target window. Peaks detected outside
that window are considered false positives (FPs), whereas a
missed detection within such time frame is considered to be a
false negative (FN). Based on these definitions, we can express
the performance metrics of interest as follows.

1) Sensitivity: Percentage of correctly identified J-peaks
(ECG provides the reference location and beat counts):
Sn = 100% · TP/(TP + FN).

2) Precision: Percentage of FP in all detected J-peaks:
Pr = 100% · TP/(TP+FP).

3) F1 Score: It combines precision and sensitivity into
a single indicator (actually, their harmonic mean):
F1 = 100% · 2 · (Sn · Pr)/(Sn+Pr).

As far as the ability to precisely measure beat-to-beat
intervals is concerned (as stated in item 2), the error between
the corresponding R-R and J-J intervals was measured as
follows:

ei = (tR,i − tR,i−1) − (tJ,i − tJ,i−1) (3)

with i = (1, . . . , NB −1), where NB is the number of detected
beats, ei is the ith error term, tR,i is the ith R-peak, and tJ,i

is the ith J-peak. For convenience, we also define e as the
time series of errors ei and tR R and tJ J as the time series of
R-R and J-J intervals, respectively. Then, in order to assess
the annotation performance, the following metrics were used.

1) The mean error (μe = E{ei }), representing the bias
between tR R and tJ J .

2) The standard deviation of the error, representing uncer-
tainty: σe = (E{(ei − μe)

2})1/2.
3) The mean absolute error: MAE = E{|ei |}.

B. Performance Assessment

It is convenient to independently assess the impact that
each phase of the algorithm has on the overall performance.
First, let us examine the performance obtained by separating
J-peak detection in two distinct steps (coarse peak localiza-
tion and annotation) instead of a single-step straightforward
BCG-thresholding strategy. In the latter case, the performance
is strictly dependent on such a unique threshold; high val-
ues increase precision, at the expense of sensitivity (limited
by FNs), whereas lowering the threshold improves sensitivity
but has a negative impact on precision. In other terms, it is
troublesome to achieve a well-balanced tradeoff. By intro-
ducing the two-step strategy described earlier, fairly good
performance was obtained; on average, the sensitivity was
found to be 96.8%, with 97.0% precision (i.e., an F1 score
of 0.969), and such results represent the baseline over which
successive processing steps should improve.

Let us then assess the performance increase introduced by
second-pass refinements during the detection phase. As dis-
cussed in Section II-C1, too-long J-J intervals may be detected,
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due to either merging of two (or more) adjacent high-energy
beats or skipping a low-energy beat. By comparing the current
interval with a running estimate of beat-to-beat intervals,
lengthened frames can be detected and a search for poten-
tially missing beats can be performed, thereby lowering the
k value in (2). In our tests, such a local refinement yielded an
increase of the average sensitivity up to 97.9% (i.e., +1.1%).
Such improvement, although small in absolute terms, is quite
relevant with respect to the available sensitivity margin and
is statistically significant indeed; a Wilcoxon signed-rank test
over the population scores yields p ≈ 0.01. Precision is not
affected at all, showing that no further FP was introduced.
In other words, the refinement procedure was, indeed, able to
discover additional true peaks.

The calibration phase was then introduced, aimed at opti-
mally sizing the search window for J-peaks. In fact, it can be
observed that the average distance between the J-peaks and
the nearest detector signal maximum, �tJ,DET, is somehow
dispersed among different subjects; such values ranged from
32 up to 124 ms. Accounting for such a large range requires
to keep a conservatively large search window, possibly limit-
ing the effectiveness of the coarse peak localization strategy
described so far. Subjectwise calibration was therefore intro-
duced, according to the procedure illustrated in Section II-C2,
yielding a further increase in both sensitivity (from 97.9%
to 98.5%, on average) and precision (from 97.0% to 97.5%);
in this case too, such marginal improvements are statistically
significant (the difference of individual subject scores in the
two conditions was assessed by means of the Wilcoxon
signed-rank test, yielding p ≈ 0.03).

Another parameter that affects performance is the cutoff fre-
quency of the low-pass filter used for smoothing the detection
curve, xDET; in fact, setting a too low cutoff frequency causes
the signal to vary too slowly, making it difficult to discriminate
between the adjacent beats and possibly yielding aggregation
of multiple beats. This, in turn, jeopardizes sensitivity due to
some actual beats remaining undetected. On the other hand,
the higher the cutoff frequency, the closer xDET resembles
the squared BCG signal, for which the precision performance
degrades (i.e., FPs may be introduced by the xDET curve).
In order to optimize both sensitivity and precision, the F1 score
was chosen as maximization target; a sensitivity analysis was
conducted on the smoother cutoff frequency ( fLP), the results
of which are shown in Fig. 5. Here, the F1 score over all
subjects is represented, as a function of fLP. The shaded
area beside the F1 curve represents the interquartile range
(IQR, i.e., 25th–75th percentile range). As expected, for very
low cutoff frequencies, low values of F1 score are achieved;
sensitivity is poor due to many peaks not being detected.
On the other hand, for higher frequency values, the F1 metric
suffers some limitations due to poorer precision; spurious can-
didate beats are detected in this case, yielding FPs. By inspec-
tion of Fig. 5, it can be noticed that the maximum performance
is achieved at fLP = 1.8 Hz (median F1 score is 0.986);
nonetheless, a practical range between 1.1 and 2.1 Hz exists,
where performance is still comparable (in statistical terms)
to the maximum (as pointed out by adjusted the Wilcoxon
signed-rank test, with a significance level set to 0.05).

Fig. 5. F1 score as a function of the cutoff frequency: each data point
represents the median of subject-individual scores, whereas shaded areas show
the 25th–75th percentile range.

C. Overall Performance Discussion

As discussed in Section I, this article focuses on solutions
suitable for domestic environments, in a continuous, multi-
dimensional monitoring scenario. Therefore, the tool is not
intended as a replacement for clinical instruments. Indeed,
the approach is not meant for dealing with heart pathol-
ogy detection and classification, but, instead, for picking up
long-term trends and patterns in a nonobtrusive fashion; the
intended targets are senior citizens in relatively good health
status, not suffering from major cardiac issues. For this reason,
the methods were tested on healthy subjects. Furthermore,
since home deployment is envisioned in the future, it is worth
remarking that the methodology is carried out in a completely
automatic fashion, without requiring significant inputs from
the user. Also, the ECG waveforms collected in this study
were only used to assess the performance of the proposed
methods and were not used to guide the annotation process in
any way.

The performance metrics introduced in Section III-A were
evaluated on the full data set, aiming at quantifying the detec-
tion capability as well as the accuracy in beat interval measure-
ments. As far as the former is concerned, Fig. 6(a) shows the
box plots of the sensitivity, precision, and F1 scores: median
values of 98.9%, 98.1%, and 98.5% are found, respectively.
Such results highlight an overall good detection performance;
in absolute terms, on average, only 3.7 heartbeats were missed
(over 5 min) for each subject in the data set, with just 5.4 FP
events. The evaluated metrics are quite compact, with just a
few subjects performing slightly worse than others. For exam-
ple, subject 4 achieves the lowest sensitivity, precision, and
F1 scores (94.7%, 93.5%, and 94.1%, respectively), whereas
subject 5 achieves the second lowest scores in precision and F1
(94.1% and 95.1%, respectively); such points are highlighted
as potential outliers in Fig. 6(a) (together with subject 7 that
scores 95.8% in precision). Nonetheless, such performance
values are quite high, considering that no data were previ-
ously discarded (e.g., by filtering out segments affected by
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Fig. 6. Box plots of performance metrics. (a) Beat detection. (b) Beat interval
measurement. Potential outliers are marked as red crosses, annotated with the
subject ID.

slight motion artifacts). In particular, the reported precision is
comparable with other works in the literature [32], [36], while
better sensitivity performance is obtained (with the best value
of 92.7% reported in [32]).

The performance in heartbeat intervals estimation was
assessed on all subjects’ records. From (3), the error is defined
as the difference between the corresponding R-R and J-J inter-
vals. The results of such evaluations are reported in Fig. 6(b) as
box plots. In particular, it can be noticed that the median bias
between the R-R and J-J measurements, μe, is almost null.
Just a few potential outliers emerge (subjects 5, 7, and 8).
Nonetheless, such values are less than 0.4 ms (in absolute
terms) which, in turn, is just a fraction of the sampling period
(Ts = 4 ms); thus, the bias error μe can be practically
neglected. Errors’ standard deviation (σe) achieves a median
value of 6.2 ms, with subject 7 emerging as a potential outlier
again, as shown in the box plot. However, it is worth noting
that if errors in J-peak annotations happen on two consecutive
beats (e.g., leading in the first one and lagging in the second),
the total error in that J-J interval estimation may appear larger
than the others; standard deviations may increase due to larger,
although rare errors. Therefore, the MAE was also computed,

Fig. 7. Histogram of measurement errors between the R-R and J-J intervals,
in units of sampling interval Ts .

providing a more stable metric of the error in the beat-to-beat
interval estimation. The median score for MAE is 4.5 ms, with
subjects 7 and 8 slightly above the others; at the same time,
however, such subjects exhibit the larger mean beat-to-beat
intervals and the larger HRV (defined as the standard deviation
of the difference between consecutive heartbeat intervals): the
relative impact of such measurement errors is, therefore, more
contained.

By considering the full records as a unique population,
Fig. 7 shows a histogram approximation of the beat-to-beat
interval measurement errors. On average, the bias between the
R-R and J-J intervals is still approximately null (μe ≈ 0),
indicating good mean agreement. Errors’ standard deviation σe

and MAE are approximately 1.64 Ts (6.56 ms) and 1.18 Ts

(4.7 ms), respectively. Such errors are small compared with
the average heartbeat interval observed (≈ 1045.6 ms); also,
the MAE is just 7% of the average HRV.

A different visualization of error distribution is shown in
the Bland–Altman plot of Fig. 8; on the x-axis, the aver-
age of R-R and J-J interval measurements is reported,
whereas the y-axis shows their difference. The σe and
MAE metrics achieved by the proposed method favorably
compare with other works in the literature. For example,
Paalasmaa et al. [36] compared different setups in terms of
sex, single/double bed, and sensor type. In particular, for
single bed, an MAE of 13.22 ms is achieved (at a sample
frequency of 300 Hz, i.e., Ts = 3.33 ms); however, no statis-
tically significant difference is found between those factors.
On the other hand, Alvarado-Serrano et al. [40] reports a
standard deviation σe = 14.35 ms; a similar setup, featuring
a commercial, accelerometer-based solution [37], achieved
−0.5 ± 1.6 beats per minute (mean ± standard deviation,
i.e., −8.3 ± 26.7 ms) in HR estimation accuracy. Finally,
the degree of agreement between tR R and tJ J can be evaluated
by means of the coefficient of determination (R2). As shown
in Fig. 9, there is a very high agreement between the two
measurements, with R2 = 99.8% scored over the full data set.
This, again, favorably compares with the similar setup in [38],
where an R2 = 97% score is reported.
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TABLE I

COMPARISON OF AVERAGE (ACROSS INDIVIDUAL) SCORES BETWEEN THE EXAMINED DATA SET (DATA SET 1)
AND A SIMILAR ONE USING A DIFFERENT BED FRAME (DATA SET 2)

Fig. 8. Bland–Altman plot of full population, detailing the agreement
between the R-R and J-J intervals.

A further test was carried out, in order to assess the stability
of the proposed methodology. To this purpose, another data
set was considered, from now on named Data Set 2 (DS2)
[while the previous one will be referred to as Data Set 1
(DS1)]. DS2 comes from a different study, mostly aimed
at evaluating acceptability and performance in a realistic
deployment situation. For the sake of conciseness, we shall
omit the detailed discussion of performance metrics (as given
already for DS1) in this case. We shall limit ourselves to
mention the only differences in experimental setup between
the two data sets, which are listed in the following.

1) Sampling Rate: For DS1, it was set to 250 Hz, whereas
DS2 was acquired at 500 Hz.

2) Accelerometer Placement: To obtain DS2, a commer-
cial bed and mattress was used. The sensor was firmly
attached to a bed slat under the mattress, below the
chest. This allows testing a setting much closer to target
deployment, where installation needs to be as minimally
obtrusive as possible.

Fourteen subjects (5 females and 9 males, min, average, and
max age 22, 28.1, and 46 years, respectively, not included in
DS1 population) were recruited for DS2, according to the same
guidelines and setup. The very same methodology described
earlier was applied to DS2, with no modifications. Table I
reports the achieved performance, in terms of individual scores
averages; for comparison’s convenience, the metrics relative
to DS1 are also recalled. In order to assess whether the
scores differ significantly between data sets, a Mann–Whitney

Fig. 9. Correlation plot of full population, detailing the agreement between
tRR and tJ J .

U-test was carried out on the two populations of individual
scores. The associated p-value is reported in Table I as well.
In particular, it can be noticed that the performance scores
achieved in terms of beat detection are comparable, with no
statistical difference between data sets at a significance level
of 0.05. Furthermore, no significant evidence of annotation
error improvement is gathered (in terms of MAE and RMSE),
thus suggesting that the scores achieved on DS1 are not
particularly impacted by the lower temporal resolution. Such
observation is important if an embedded implementation is
envisaged; in this case, power consumption can be optimized
by running at lower speed.

As a final remark, it is worth mentioning that both data sets
were acquired in lab-controlled conditions, with subjects lying
on the same bed structure. Although different beds were used
in DS1 and DS2, such potential limitation is being addressed
(on a wider bed features range) by ongoing investigations
on long-term, unconstrained home scenarios. Nevertheless,
encouraging results come from preliminary results of such
investigation: data obtained from one subject, recorded for
approximately 6 h during night sleep, are in line with the
lab results. Approximately, just 2% of the data was discarded,
due to motion artifacts corrupting the ECG (i.e., the ground
truth) and thus making validation of BCG (although acquired)
impossible. On the valid set, a 95.4% sensitivity was achieved,
with a 94.8% precision; on the other hand, heartbeat inter-
vals measurement seems improved, featuring an MAE of
just 3.54 ms, σe of 5.12 ms, and an R2 score of 99.7%.
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Such results support portability of the proposed methodology
to real-life context, where long-term, overnight monitoring of
HR and HRV is envisioned; in such a scenario, the same sen-
sors might also gather information on unconscious movements,
which may contribute to sleep quality assessment and therefore
effectively complement higher level behavioral analyses.

IV. CONCLUSION

This article presented an automated procedure for acqui-
sition and analysis of BCG traces. A MEMS accelerometer
was used to record heart-induced recoil forces, generated from
a lying subject; simultaneously, for performance assessment
purposes, a lead-I ECG was acquired. The BCG waveforms
were analyzed in a fully unsupervised way, i.e., without
the need for concurrent ECG information to guide sig-
nal segmentation and annotation. Instead, such a procedure
was implemented in a two-step fashion, by first identifying
candidate intervals containing J-peaks and then annotating
actual BCG waveforms. An automated calibration procedure
was devised, to adapt the methodology to each individ-
ual subject. Furthermore, a refinement pass is performed
after the first annotation procedure, to recover potentially
missing beats by analyzing the detected beat-to-beat time
series. The impact of each algorithm phase was rigorously
analyzed, justifying each step by assessing its statistical
significance; in addition, the final performance was opti-
mized in a data-driven fashion, by selecting optimal filtering
options.

The approach features good performance in detecting
J-peaks in BCG measured waveforms: by assuming R-peaks
in ECG as a reference, a median 98.9% sensitivity and 98.1%
precision scores (yielding a 98.7% median F1 score). The time
accuracy of BCG annotation was also assessed by comparing
the J-J intervals with the gold-standard R-R ones; the results
show that a very low error standard deviation (σe ≈ 6.56 ms)
and MAE (MAE ≈ 4.7 ms) are achieved, which improves
over literature.

The presented methodology well suits the framework of
continuous monitoring; through BCG, basic information about
heart activity can be derived [e.g., HR and HRV], in an unob-
trusive fashion. Such data may enhance the dimensionality and
richness of AAL-oriented analysis. For example, HR and HRV
parameters may be fused with information about bed presence
and movements, which could be extracted from the very same
accelerometer outputs. This would allow for implementing
more expressive and detailed sleep analysis. Preliminary tests
on unconstrained home scenarios confirm the feasibility of
the presented methodology, with precision and sensitivity still
standing in the practical range and even improving over the
MAE and σe scores. This perspectively enables the devel-
opment of low-cost smart beds fitting the AAL paradigm.
More generally speaking, the approach discussed earlier lends
itself to implement low-cost and low-intrusiveness estimate
of heart parameters and is therefore particularly suitable for
enabling basic heart monitoring functionality into further
smart home objects, fully matching the Internet-of-Things
vision.
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