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Simple Summary: The Bardigiano horse is a native Italian breed bred for living in rural areas,
traditionally used in agriculture. The breed counts about 3000 horses, and it is nowadays mainly
used for recreational purposes. The relatively small size and the closed status of the breed raise
the issue of monitoring genetic diversity. We therefore characterized the breed’s genetic diversity
based on molecular data. We showed a critical reduction of genetic variability mainly driven by
past bottlenecks. We also highlighted homozygous genomic regions that might be the outcome of
directional selection in recent years, in line with the conversion of Bardigiano horses from agricultural
to riding purposes.

Abstract: Horses are nowadays mainly used for sport and leisure activities, and several local breeds,
traditionally used in agriculture, have been exposed to a dramatic loss in population size and genetic
diversity. The loss of genetic diversity negatively impacts individual fitness and reduces the potential
long-term survivability of a breed. Recent advances in molecular biology and bioinformatics have
allowed researchers to explore biodiversity one step further. This study aimed to evaluate the loss of
genetic variability and identify genomic regions under selection pressure in the Bardigiano breed
based on GGP Equine70k SNP data. The effective population size based on Linkage Disequilibrium
(Ne) was equal to 39 horses, and it showed a decline over time. The average inbreeding based on runs
of homozygosity (ROH) was equal to 0.17 (SD = 0.03). The majority of the ROH were relatively short
(91% were ≤2 Mbp long), highlighting the occurrence of older inbreeding, rather than a more recent
occurrence. A total of eight ROH islands, shared among more than 70% of the Bardigiano horses,
were found. Four of them mapped to known quantitative trait loci related to morphological traits
(e.g., body size and coat color) and disease susceptibility. This study provided the first genome-wide
scan of genetic diversity and selection signatures in an Italian native horse breed.

Keywords: conservation; selection scan; autochthonous; genomics; coat color; LCORL; IBH; ROH;
MC1R; horse

1. Introduction

The Bardigiano is an Italian autochthonous horse breed whose origin can be traced back to the
age of the Roman Empire in the Belgian Gaul province [1]. The breed consists of a homogeneous
population characterized by typical and distinct traits: (a) the height ranges between 140 and 149 cm
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for males, and 135 and 147 cm for females; (b) the only admitted coat color is bay, with a preference for
dark bay, while chestnuts and extremely light bays are not allowed; (c) limited white markings on
the legs and face are allowed, although not preferred. Conformation related characteristics include
a small head with a straight or concave profile, low withers, a slightly straight back, deep girth
and an overall muscular appearance [2]. The rustic and docile Bardigiano horse was traditionally
used as a working horse in mountain areas, and for meat production. After the Second World
War, the number of Bardigiano horses dramatically decreased, numbering only five stallions and
150 mares [3]. The decrease in population size led to the creation of the Bardigiano studbook in
1977, and since then the Bardigiano has been considered a purebred breed due to the closure policy
applied by the studbook. Nowadays, the Bardigiano breed counts roughly 3000 live horses, mainly
used for riding and light draft purposes. It is classified as a small native population, possibly at risk of
extinction [4]. However, the relatively small size and the closed status of the current population raises
the issue of monitoring genetic diversity. A recent study exploring genetic diversity in the Bardigiano
breed at pedigree level highlighted alarming levels of inbreeding and a loss of genetic diversity [5].
In this study, we present an extension of the above-mentioned work by using genomic data to analyze
the genetic diversity in the breed.

Recent techniques in genomics permit present researchers to gain more insights into genetic
diversity, population history and selection signatures compared to pedigree-based methods [6,7].
Several genome-wide population structure and genetic diversity studies have been performed in
livestock species [8–11]. The first comprehensive insight into equine genetic diversity among a large
breed cohort was published by Petersen et al. in 2013 [12]. This study used fixation index (Fst)
statistics, one of the most popular methods for the capture of between-breed divergence [9,13–15].
Runs of homozygosity (ROH) are likewise a well-established method, widely used to detect the
within-breed loss of genetic diversity [16]. Runs of homozygosity are long consecutive homozygous
segments distributed across the genome. Among other evolutionary forces, they also arise from
identical-by-descendent haplotypes which came from common ancestors [17]. Therefore, ROHs have
been used nowadays as a valuable source of information for the description of genomic inbreeding
(FROH) [18–21]. Compared to pedigree-based inbreeding, FROH is able to capture variation due to
Mendelian sampling and linkage during gamete formation [7]. In addition, FROH does not rely
on pedigree quality, which may be a limiting factor in inbreeding estimation based on genealogical
data [22,23]. Overlapping homozygous regions, highly shared among individuals belonging to the same
population, are called ROH islands. Since directional artificial selection reduces genomic variability,
ROH islands are thought to be potential signs of selection around a target locus [16,24,25]. Several recent
examples of ROH and population structure analyses applied to European horse breeds show key aspects
of history and selection pressure [25–33]. However, few studies were conducted in the framework
of European small native horse breeds [29,31,32,34] and, to the best of our knowledge, none of them
specifically analyzed Italian autochthonous horse breeds. Therefore, based on a medium-density single
nucleotide polymorphism (SNP) genotype panel, we aimed to investigate genomic diversity in the
Bardigiano breed as an example of the reservoir of Italian native breeds.

The detailed aims of this study were to (i) investigate genomic effective population size throughout
generations, (ii) calculate within-breed genomic diversity based on FROH, and (iii) evaluate the presence
of potential signs of selection based on ROH islands.

2. Materials and Methods

2.1. Sample Collection and Genotyping

The study included genotype data from 89 Bardigiano horses (38 males and 51 females). The horses
submitted to genotyping were carefully selected to represent the most of genetic variability from the
pedigree information [5]. The following criteria were applied in the selection procedure: (i) verification
of pedigree depth, excluding animals with an equivalent complete generation (defined as the sum
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for (1/2)n, where n is the number of generations separating the individual from each of its known
ancestors [35]) lower than two; (ii) horses with available conformation measurements and linear
and traditional evaluations were preferred [2]; (iii) no more than three animals descending from the
same stallion were allowed; (iv) animals had to belong to the last two generations, considering an
average generation interval of 8.74 years [5]. All samples were genotyped with the GGP Equine70k®

(Illumina, San Diego, CA, USA) SNP chip, containing 65,157 SNPs separated on average by 40 kb. The
SNP physical positions were remapped from the former reference genome EquCab2 to EquCab3 [36],
as described in [37]. Only SNPs located on the 31 Equus caballus autosome (ECA) chromosomes were
retrieved and used in this study. The quality control (QC) was performed in PLINK v1.9 [38] by
removing SNPs with a call rate lower than 0.90, a Hardy–Weinberg equilibrium (HWE) deviation
with p < 10−6 and minor allele frequencies (MAF) <0.01. Horses with a call rate lower than 0.90
were excluded.

2.2. Effective Population Size

Past and present effective population sizes (Ne) were estimated with the SNeP v.1.1 software [39]
using only horses in the last birth year cohort (2011–2019). SNeP v.1.1 estimates the trends of the
historical effective population size trajectories from SNP data based on linkage disequilibrium (LD).
The recombination rate was calculated using the Sved and Feldman’s mutation rate modifier [40],
and sample size correction was made for unphased genotypes. The cM unit in this study was set to
1.24 Mbp [41]. The minimum and maximum distance between pairs of SNPs was set to 0.5 Mbp and
26 Mbp, respectively. We also performed an Ne slope analysis (NeS) [42] to look into the rate and
directionality of Ne changes occurring throughout generations. The NeS analysis identifies subtle
changes in the inferred Ne curve not visually explicit in the Ne plot. The slope of each segment linking
pairs of neighboring Ne estimates was first calculated and then normalized using the median of the
two most proximal past Ne slope values.

2.3. Runs of Homozygosity

The ROH segments were detected using the DetectRUNS [43] package in R [44], and defined as
follows: (i) at least 15 SNPs in a run, (ii) a minimum length of a run equal to 500 kb, (iii) a maximum
distance between consecutive SNPs in a window 1000 kb, (iv) a lower density limit of 1 SNP per
100 kb [27] and (v) allowing for a maximum of one missing and one heterozygous SNP in a run [25].
The ROH segments were divided into the following five length classes: 0.5–1 Mbp, 1–2 Mbp, 2–4 Mbp,
4–8 Mbp and >8 Mbp. The total number of ROHs (NROH), average length of ROHs (LROH) and the
average ROH number (SROH) were summarized according to each ROH length category. The genomic
inbreeding coefficients (FROH) were calculated following the method described in [18]:

FROH = Σ
LROH

LAUTO
(1)

with LROH being the length of ROHs in each individual and LAUTO being the length of the autosomal
genome, which was set to 2276 Gb, based on the genome length covered by SNPs. Based on the
hypothesis that the length of ROH reflects the chronological time points when inbreeding happened [20],
the genomic inbreeding was expressed separately for five length ROH categories (0.5–1 Mbp, 1–2 Mbp,
2–4 Mbp, 4–8 Mbp, >8 Mbp). By using the formula 1/2 g Morgan, with g being equal to generation [20,45],
and the relationship between Centimorgan and Mb in horses [41], we estimated the timepoint of the
inbreeding event based on ROH length. The inbreeding was also calculated per chromosome, and the
type of distribution was evaluated based on skewness and kurtosis.

Putative ROH islands were determined based on overlapping homozygous regions within more
than 70% of the horses. The EqCab3 genomic coordinates of these regions were used to retrieve
candidate gene lists and annotations from the Biomart web interface in Ensembl [46] and from the
UCSC genome browser platform [47]. Putative ROH islands were compared with quantitative trait loci
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(QTL) regions previously identified and reported in the Horse QTL database [48]. Functional analyses
were performed on the genes potentially under selection, located in ROH shared in more than 85% of
the animals [25] or overlapping with known QTLs.

3. Results

3.1. Genotyping Quality Control

All horses except one passed the genotype data quality control (37 males, 51 females), and
58,047 SNPs were retrieved. The average genotype call rate was 0.99 and the average pedigree depth
based on complete generation equivalent of the selected horses was 6.28 (SD = 0.79). The horses
descended from 54 stallions with an average of 1.65 offspring each (SD = 0.82) and 76 mares with
1–2 offspring each. In total, 80% of the horses were born between 2011 and 2019, whereas 18 horses
were born between 2001 and 2010.

3.2. Effective Population Size

For the Ne calculation, we only included animals born between 2011 and 2019, which numbered
70 horses. The Ne declined over time, and was estimated to be ~39 horses one generation ago. Instead,
the estimated Ne 20 generations ago was around 195 horses (Figure 1).

Figure 1. Plot of effective population size change between 20 generations ago and the last generation in
the Bardigiano horse breed.

To investigate the change in slope of the inferred Ne obtained from LD-based estimation, we used
the NeS method, which offers more detailed information about population changes 1–20 generations
ago. A constant rate of change is shown as a flat line at 0 in the Y-axis, whereas deviations above and
below 0 represent relative increases and reductions, respectively, of the Ne change in slope compared to
the previous two generations. This analysis highlighted two sharp reductions in Ne in the Bardigiano
breed, being approximately ten and six generations ago (Figure 2).
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Figure 2. Ne Slope analysis (NeS) between 20 generations ago and the last generation in the Bardigiano
horse breed. A constant rate of change in the Ne is shown as a flat line at 0 in the Y-axis.

3.3. Runs of Homozygosity

A total of 28,423 ROHs were found among the 88 Bardigiano horses analyzed in this study.
An average of 323 ROHs were found per horse, with a maximum number equal to 365 and minimum
of 285 ROHs. The average length of ROHs per individual was equal to 1215.8 Kb ± 173.7 Kb (SD).
The majority of ROHs were shorter than 2 Mbp, with 69.5% being shorter than 1 Mbp and 21.4% being
between 1 and 2 Mbp length (Table 1). The proportion of ROHs longer than 8 Mbp was equal to 1.2%,
with an average length of 13.4 Mbp. A total of 84 horses exhibited ROHs in the >8 Mbp length class,
with an average of 4.2 ROHs per horse in this class and a minimum and maximum equal to 1 and
13 ROHs, respectively.

Table 1. Descriptive statistics of runs of homozygosity (ROH).

ROH

Length Class (Mbp) N. 1 NROH
2 Percentage 3 SROH

4 LROH
5

0.5–1 88 19,746 69.5% 224.4 0.70
1–2 88 6073 21.4% 69.0 1.33
2–4 88 1587 5.6% 18.0 2.74
4–8 88 664 2.3% 7.5 5.42
>8 84 353 1.2% 4.2 13.40

1 Number of animals, 2 total number of ROH, 3 relative percentage, 4 average ROH number per animal, 5 average
length of ROH.

The number of ROHs and length of ROH segments varied across chromosomes, as shown in
Figure 3. The highest number of ROHs was identified on ECA1 (2386), while the lowest was identified
on ECA31, with 273 ROHs detected. Nevertheless, when normalizing for the chromosome length,
the highest portion was found on ECA29 and ECA28. The highest chromosome length covered by
ROH was detected on ECA10, with 1.49 Mbp covered by ROHs, followed by ECA5 (1.46 Mbp), ECA1
(1.43 Mbp) and ECA3 (1.40 Mbp).
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Figure 3. Distribution and average length of runs of homozygosity (ROH) in Mbp detected across the
autosomal genome in the Bardigiano horses. The bar plots show the ROH counts per chromosome and
the orange line shows the average ROH size (Mbp) per chromosome.

3.3.1. ROH as a Measure of Inbreeding

The inbreeding, measured as the proportion of the genome covered by ROH, resulted in an
average FROH equal to 0.17 ± 0.03 (SD). To differentiate ancient and recent inbreeding, we calculated
FROH based upon five ROH length classes, as presented in Table 2. Inbreeding events occurring over
~31 generations ago were presented by FROH calculated per length below or equal to 2 Mbp. For the
ROH length class above 8 Mbp, four horses did not have ROHs and thus their inbreeding resulted
in being equal to 0. The degree of inbreeding based on the longest ROH class showed an average
inbreeding equal to 0.02, reflecting inbreeding events which happened <8 generations ago.

Table 2. Descriptive statistics of inbreeding based on runs of homozygosity (FROH) within each ROH
length class for the 88 Bardigiano horses that passed the QC.

Inbreeding Based on ROH (FROH)

Length Class (Mbp) Mean Min. 1 Max. 2 SD 3

0.5–1 0.07 0.06 0.08 0.004
1–2 0.04 0.03 0.05 0.005
2–4 0.02 0.01 0.04 0.006
4–8 0.02 0.002 0.04 0.008
>8 0.02 0.00 0.09 0.02

Total 0.17 0.12 0.26 0.03
1 Minimum, 2 maximum, 3 standard deviation.

The inbreeding calculated per chromosome showed large variation among chromosomes both
in terms of average values and the distribution of inbreeding level per individual (Figure 4).
The highest average inbreeding was found in ECA 1 (mean = 0.21 ± 0.09 SD) and the lowest on
ECA 30 (0.12 ± 0.09 SD). For all chromosomes except ECA 3, ECA 15 and ECA 17, a highly skewed
distribution towards higher values was found (i.e., a distribution skewness above one). A kurtosis
value above three was used to investigate the presence of outlier individuals per each chromosome.
In total, 21 out of the 31 chromosomes showed a kurtosis higher than three, highlighting the presence
of some horses exhibiting an excess of homozygosity.
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Figure 4. Violin plot of the inbreeding based on runs of homozygosity (FROH) calculated per chromosome
in the Bardigiano horse breed.

3.3.2. ROH as a Measure to Detect Signatures of Selection

A total of five chromosomes (ECA3, ECA10, ECA11, ECA15 and ECA19) contained ROH islands
that were shared by more than 70% of individuals in the total sample. Three ROH islands were detected
on ECA3, two on ECA10, and the remainder were equally distributed among ECA11, ECA15 and
ECA19 (Figure 5). The three ROH islands located and ECA3 were shared in more than 85% of the
animals, and in particular the ROH island located on ECA3 (ECA3: 35.48–36.01 Mbp) was shared in
93% of the animals (82 out of the 88).

Figure 5. ROH islands on ECA3, ECA10, ECA11, ECA15 and ECA19 in the Bardigiano horse breed.
The x-axis represents the chromosome position in Mbp and the y-axis represents the number of horses
showing an ROH in each chromosome position.
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Table 3 reports the genomic coordinates of the ROH islands and the annotated genes. A total of
115 annotated genes, two miRNAs and three snoRNA were located within the eight ROH islands.
The two ROH islands on ECA3, located between positions 35,477,778 and 37,590,699 bp, overlapped
with four known QTL regions; two related to insect bite hypersensitivity (IBH) [49,50], one to guttural
pouch tympany [51] and one to hair pigmentation [52]. The ROH island on ECA3: 106,769,095:
107,709,841 bp coincided with a known QTL for body height at the withers [53]. The ROH island on
ECA11 coincided with four QTL regions related to insect bite hypersensitivity [49], hair density [54],
overall body size [55] and height at the withers [56]. The ROH islands on ECA10, ECA15 and ECA19
did not overlap with any known QTLs.

Table 3. Runs of homozygosity (ROH) islands shared in over 70% of the Bardigiano horses, with
genomic coordinates and a list of annotated genes located within each ROH island.

ECA 1 Start (bp) 2 End (bp) 2 Length (Kb) Annotated Genes % of
Horses

3 35,477,778 36,012,699 535
ZNF469, ZFPM1,ZC3H18, IL17C,
CYBA, MVD, SNAI3, RNF166,
CTU2, PIEZO1

93%

3 36,131,080 37,590,699 1460

CBFA2T3, ACSF3, CDH15,
SLC22A31, ANKRD11, SPG7,
RPL13, CPNE7, DPEP1, CHMP1A,
SPATA33, CDK10, SPATA2L,
VPS9D1, ZNF276, FANCA,
SPIRE2, TCF25,
MC1R,TUBB3, DEF8, DBNDD1,
GAS8, PRDM7, CENPE, BDH2,
SLC9B2

92%

3 106,769,095 107,709,841 941 LCORL, NCAPG, DCAF16,
FAM184B, 92%

10 24,965,648 25,501,456 536

IL11, TMEM190, TMEM238,
RPL28, UBE2S, SHISA7, ISOC2,
C19orf85, ZNF628, NAT14, SSC5D,
SBK2, SBK3, ZNF579, FIZ1,
ZNF524, ZNF865, ZNF784,
ZNF580, ZNF581, CCDC106,
ZNF835, U2AF2, EPN1, RFPL4A,
EQUCABV1R902,
EQUCABV1R903, NLRP4,
NLRP13, NLRP5

76%

10 25,636,022 26,106,403 470
EDDM13, ZNF667, ZNF583,
ZNF582, SMIM17, ZNF471, ZFP28,
ZNF470, ZNF71

76%

11 22,957,922 24,177,108 1219

CDK12, MED1, STAC2, CACNB1,
ARL5C, PLXDC1, FBXO47,
LINC00672, LASP1, RPL23,
C17orf98, CWC25, PIP4K2B,
PSMB3, MLLT6, PCGF2, CISD3,
EPOP, SRCIN1, ARHGAP23,
SOCS7, GPR179, MRPL45,
NPEPPS, KPNB1, TBKBP1, TBX21,
OSBPL7, MRPL10, LRRC46,
SCRN2, SP6, SP2, PNPO

73%

15 67,045,471 67,539,463 494 LCLAT1, LBH, YPEL5 73%

19 55,113,101 55,782,316 669 // 77%
1 ECA: Equine chromosome, 2 position in base pairs (bp) on EquCab3.
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4. Discussion

The evaluation of genetic diversity with traditional methods based on pedigree analyses have
been widely used to manage animals’ genetic resources. In small livestock populations, where financial
support is generally a limiting factor, pedigree-based methods are still commonly adopted due to
their cost–effectiveness ratio [5,57–60]. However, with novel molecular and bioinformatics approaches,
genetic variability can be more proficiently evaluated by using genomic information, and could lead to
more precise and effective conservation programs. This study can be considered as the first step in
deepening our knowledge about Bardigiano genomic diversity.

Effective population size (Ne), computed using genealogical data, could be biased if pedigree
depth and quality are low [61]. To this end, molecular markers could be a valuable alternative form of
information for the characterization of Ne in livestock populations [62]. The value of Ne in the Bardigiano
horses based on LD information was approximately 39 horses in the last generation. This value of
Ne is lower than that calculated in the Persian Arabian Horses (Ne = 113) [63], in the Saxon Thuringa
Coldblood (Ne = 48.1) and in the Rhenish German Draught Horse (Ne = 46.1) [64]. Interestingly, the
Ne estimate based on pedigree data (calculated as individual increases in inbreeding [65,66] in the live
Bardigiano population) was lower than (Ne = 30.7), yet comparable to, that found by molecular data
analyses [5]. This evidence highlights that the Ne estimate obtained from pedigree can be considered
a proper approximation of molecular based Ne in the case of Bardigiano horses. The estimation of
Ne in the last 20 generations showed a steady decrease in effective population size, in line with the
known history of the breed. The NeS analysis highlighted two sharp reductions in Ne in the Bardigiano
breed, approximately ten and six generations ago. Since the average generation interval in this breed is
8.74 years [5], we hypothesized that those two reductions occurred, roughly, around 1933–1942 and
1968–1977, respectively. During World War II, the number of Bardigiano horses decreased dramatically,
with only five stallions and 150 mares surviving [3]. This evidence may justify the sharp reduction
in the Ne about 10 generations ago. The Bardigiano studbook was founded in 1977 with the aim to
recover the breed, just after the second sharp reduction in Ne found in this study. This second sharp
reduction in Ne might highlight the loss of genetic diversity due to the selection of breeding candidates
during the initial steps of the breed recovery. In contrast, the general increase and stabilization of the
Ne from the 4th generation onwards might reflect the breeding policies applied by the Bardigiano
studbook to conserve the breed.

The extent and frequency of ROH have been widely used to infer ancestry at the individual and
breed level [16]. Long ROH are generally considered to be a sign of recent inbreeding, whereas short
ROH can capture ancient inbreeding which derived from older ancestors and can capture population
bottlenecks. Under the assumption that 1 cM equals 1.24 Mbp, ROH can be separated in length classes
to express different points in time when inbreeding occurred [19]. In the Bardigiano horse, the majority
of ROH belonged to the shortest length class, being equal to 0.5–1 Mbp (69.5%). Similar results were
observed in local breeds, as in the Bosnian Mountain Horse (61.7%) [32] and in the Noriker horse
breed, where the majority (60–85%) of ROH segments were shorter than 4 Mbp [34]. This result might
mainly originate from the small population size of the Bardigiano breed and the strong founder effect
due to the experienced bottlenecks. In contrast, the lowest percentage of ROH (1.2%) resided into the
longest class (ROH > 8Mbp), which highlights a rather small reduction in genetic variability occurred
in the last generations. This result is coherent with the breeding strategies applied by the studbook to
reduce matings between highly related animals. Likewise, the FROH ranged from 17.0%, considering
all ROH regardless of the size, to 2.0%, considering only the longest class (ROH > 8Mbp). This last
result highlights the occurrence of older inbreeding, rather than inbreeding which happened in the
last few generations. Nevertheless, the average FROH in the Bardigiano was higher compared to other
small-sized horse populations. For example, in the Croatian Posavje horse breed, the FROH was equal
to 8.59%; in the Bosnian mountain horse (originating from Bosnia and Herzegovina) this value reached
a mean of 13.21%; and in the Austrian Noriker horse it ranged between 8.00% and 13.00%, depending
on coat color strains [31,34]. Similar levels of FROH to those in the Bardigiano horses were found in the
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Polish Koniks breed (mean = 16.00%), which is a primitive breed closely related to the extinct wild
Tarpan [67], and in Purebred Arabian horses (mean =1 7.70%), despite the larger population size [32].
In contrast, a higher level of inbreeding was found in Friesian horses (mean = 22.30%) compared to the
Bardigiano [68]. As expected from previous studies [7,69,70], the inbreeding based on molecular data
in the Bardigiano tended to be higher than that previously found at the pedigree level [5].

In general, the ROHs caused by inbreeding tend to be distributed unevenly over the genome,
as we have found in the Bardigiano horse, with a different distribution of numbers and sizes of ROH
for each chromosome [71]. However, ROH that are located in specific genomic regions and shared
among several individuals are thought to be potential signs of selection [24,25,27,71]. The reasons
behind this theory are the driving forces of directional selection, which increase homozygosity around
a target locus (ROH island). The breeding objective of the Bardigiano studbook can be divided into
three main goals: (a) ensure long-term survival of the breed; (b) preserve the Bardigiano’s distinctive
morphological features; and (c) increase the use of this breed in riding and draft activities [2]. For the
latter aspect, in the ’90s, the Bardigiano studbook introduced a breeding value for the height at the
withers to help the conversion of taller horses, which are thus more suitable for leisure. It is noteworthy
that, in this study, we found ROH islands in two of the four loci previously found to explain 83% of the
size variation in horses [55]. Specifically, one ROH was located on ECA3 and shared among 93% of the
Bardigiano horses, which overlapped with the ligand dependent nuclear receptor corepressor-like
(LCORL) gene [72]. The LCORL gene is a transcription factor that has been associated with human
height [73–75]. In cattle, LCORL was identified in a screen for loci under selection [76], and the
immediately adjacent gene, NCAPG, has been implicated in prenatal growth [77] as well as in the body
size in Franches–Montagnes horses [77]. The other ROH that overlapped with a locus among the
four explaining 83% of the size variation in horses was on ECA11, where the LIM and SH3 protein 1
(LASP1) gene is located. The LASP1 gene mediates cell migration and survival, and its expression
is induced by insulin-like growth factor (IGF1) [78]. However, the ROH on ECA11 is located within
a gene-dense region counting thirty-four genes; therefore, we cannot exclude that selection in this
region might target other genes. Based on the overlap with known QTLs for body size, we hypothesize
that the ongoing selection toward higher horses might have led to a reduction in variability in those
two regions.

In addition, this latter region of ECA11, together with two ROH islands on ECA3 between
35.48 and 37.59 Mbp, overlapped with known QTLs for equine insect bite hypersensitivity (IBH).
IBH is a pruritic skin allergy caused primarily by biting midges, Culicoides spp [49]. This skin
disease has polygenic inheritance and occurs at high frequencies in several horse breeds worldwide,
thus causing increased costs and reduced horse welfare. To the best of our knowledge, so far, no cases
of IBH have been reported in the Bardigiano breed, even if the animals are mostly farmed outside,
and pasture in the mountain area is commonly practiced in the breed. The summer pasture exposure
and the surrounding vegetation have been identified as risk factors associated with IBH in warmblood
horses [79]. We therefore hypothesize that long and extensive exposure to insect bites might have
shaped the genome of Bardigiano horses towards more resistant animals. Nevertheless, those three
ROH islands located on ECA3 and ECA11 also overlapped with known QTLs for hair pigmentation [52]
and hair density [54]. Interestingly, some of the distinctive features of the Bardigiano horse are actually
related to hair type and pigmentation. Indeed, the only coat color accepted by the breeding association
is bay, with a slight preference for dark bay, whereas chestnuts and extremely light bays are not allowed
in the breed. In addition, only limited white markings on the legs and face are allowed and, in general,
if present, they are scored as a defect in the horse evaluation [2]. In the study by Haase et al. 2013 [52],
seven QTLs were significantly associated with the white marking phenotype, which explained ~54%
of the total genetic variance [52,80]. The ROH island identified on ECA3 (36.13–37.59 Mbp) in the
Bardigiano horses overlapped with the melanocortin receptor gene (MC1R). The MC1R encoded by
the Extension (E) locus controls, together with the peptide antagonist agouti-signaling-protein (ASIP),
the amounts of melanin pigments in mammals [81]. We, therefore, cannot rule out the hypothesis that
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this region might be under selection pressure because of morphological requirements in terms of coat
color in the Bardigiano breed.

5. Conclusions

The genetic diversity of the Bardigiano breed was analyzed via Ne based on LD and ROHs detected
in this study. We identified a decrease in the LD-based Ne, when calculated over the last 20 generations,
in line with the known history of the breed. The ROH analysis provided additional information to
further optimize the breeding and management decisions needed to ensure the long term survival of
the breed. Inbreeding levels, especially those based on short ROH segments, were moderate to high,
suggesting the presence of past bottlenecks in the genome of Bardigiano horses. Conversely, the lowest
percentage of ROH resided in the longest ROH classes, showing a small reduction in genetic variability
during the last generations. Eight ROH islands were found in the breed; these islands were shared
among more than 70% of the Bardigiano horses analyzed in this study. Four of them overlapped
with known QTLs associated with conformation traits and disease susceptibility. Genes related with
conformation traits, coat color and disease susceptibility appear to be targets of directional selection in
the Bardigiano breed. This study has outlined the first genome-wide map of selection signatures in
an Italian native horse breed, and provides material for further functional studies on the biological
mechanisms of complex traits in horses.
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