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A Practical Approach to Verification of Floating-Point C/C++
Programs with math.h/cmath Functions

ROBERTO BAGNARA, University of Parma and BUGSENG srl

MICHELE CHIARI, University of Parma, BUGSENG srl, and Politecnico di Milano

ROBERTA GORI, University of Pisa

ABRAMO BAGNARA, BUGSENG srl

Verification of C/C++ programs has seen considerable progress in several areas, but not for programs that

use these languages’ mathematical libraries. The reason is that all libraries in widespread use come with no

guarantees about the computed results. This would seem to prevent any attempt at formal verification of

programs that use them: without a specification for the functions, no conclusion can be drawn statically about

the behavior of the program. We propose an alternative to surrender. We introduce a pragmatic approach that

leverages the fact that most math.h/cmath functions are almost piecewise monotonic: as we discovered through

exhaustive testing, they may have glitches, often of very small size and in small numbers. We develop interval

refinement techniques for such functions based on a modified dichotomic search, that enable verification via

symbolic execution based model checking, abstract interpretation, and test data generation. Our refinement

algorithms are the first in the literature to be able to handle non-correctly rounded function implementations,

enabling verification in the presence of the most common implementations. We experimentally evaluate our

approach on real-world code, showing its ability to detect or rule out anomalous behaviors.

CCS Concepts: • Software and its engineering → Software verification; • Theory of computation →
Program verification; • Mathematics of computing→ Solvers.

Additional Key Words and Phrases: Floating-point numbers, constraint propagation, model checking, abstract

interpretation, program verification, symbolic execution
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1 INTRODUCTION
The use of floating-point computations for the implementation of critical systems is perceived as

increasingly acceptable. This was facilitated by the widespread adoption of significant portions of

the IEEE 754 standard for binary floating-point arithmetic [40]. Even in modern avionics, floating-

point numbers are now used, more often than not, instead of fixed-point arithmetic [15, 56]. Thus,

the development of techniques for verifying the correctness of such programs becomes imperative.

According to [56], the main goals of floating-point program verification are the following:
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(1) Proving that the program will never trigger “undefined” or “undesirable” behaviors, such
as an overflow on a conversion from a floating-point type to an integer type.

(2) Pin-pointing the sources of roundoff errors in the program; proving an upper bound on
the amount of roundoff error in some variable.

(3) Proving that the program implements such or such numerical computation up to some
specified error bound.

An infamous example of the issues addressed by goal (1) is the crash of the Ariane 5 rocket, which

was caused by an overflow in a conversion from a 64-bit floating-point to a 16-bit integer in the

software embedded into its control system [46]. Other examples of such “undesirable” behaviors are

the generation of infinities or Not-A-Numbers (NaNs). An empirical study on real-world numerical

software [26] found out that behaviors of this kind are the cause of 28 % of numerical bugs in the

considered programs. [26] advocates for the development of tools for the detection of such bugs,

and the automated generation of test cases triggering them. In this paper, we present a technique

to achieve such goals, leaving (2) and (3) to the extensive literature concerned with evaluating the

precision of computations, such as [22, 35, 63].

To illustrate the concrete problem raised by the use of floating-point computations in program

verification settings, consider the code reproduced in Figure 1. It is a reduced version of a real-world

example extracted from a critical embedded system. The purpose of function latlong_utm_of is to
convert the latitude and longitude received from a drone to UTM coordinates, which are stored in

the two global variables at lines 45-46. For the moment, let us just notice that this code consists in

a large and varied amount of floating-point computations, many of them non-linear. Many calls to

mathematical functions are made (highlighted in red): any kind of analysis of this code must be able

to take them into account. Some of the questions to be answered for each one of the floating-point

operations in this code are:

(i) Can infinities and NaNs be generated?

(ii) Can sin, cos, and tan be invoked on ill-conditioned arguments?

(iii) If anomalies of any one of these kinds are possible, which inputs to the given functions may

cause them?

Concerning question (ii), we call the argument of a floating-point periodic trigonometric function

ill-conditioned if its absolute value exceeds some application-dependent threshold. Ideally, this

threshold should be just above 𝜋 . To understand this often-overlooked programming error, consider

that the distance between two consecutive floating-point numbers (i.e., their ULP)
1
increases with

their magnitude, while the period of trigonometric functions remains constant. Thus, if 𝑥 is an

IEEE 754 single-precision number and 𝑥 ≥ 2
23
, then the smallest single-precision range containing

[𝑥, 𝑥 + 2𝜋) contains no more than three floating-point numbers. Current implementations of

floating-point trigonometric functions, such as those of CR-LIBM,
2
libmcr

3
, and GNU libc [51],

contain precise range reduction algorithms that compute a very accurate result even for numbers

much higher than 2
23
. The point is that the function inputs at this magnitude are so distant form

each other that the graph of the function becomes practically indistinguishable from that of a

pseudo-random number generator, potentially becoming useless for the application. Substitute 2
23

with 2
52
, and the same holds for IEEE 754 double-precision numbers.

In order to answer questions (i)–(iii), we need a precise characterization of the semantics of all

operations involved in the program. Most implementations of the C and C++ programming languages

1ULP stands for unit in the last place: if 𝑥 is a finite floating-point number, ulp(𝑥) is the distance between the two finite

floating-point numbers nearest 𝑥 [58].

2
See https://gforge.inria.fr/scm/browser.php?group_id=5929&extra=crlibm, last accessed on July 16th, 2020.

3
See https://github.com/simonbyrne/libmcr/blob/master/README, last accessed on July 16th, 2020.
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1 #include <math.h>

2 #include <stdint.h>

3

4 #define RadOfDeg(x) ((x) * (M_PI/180.)) ▷ Convert degrees to radians

5 #define E 0.08181919106 /* Computation for the WGS84 geoid only */

6 #define LambdaOfUtmZone(utm_zone) RadOfDeg((utm_zone-1)*6-180+3) ▷ Origin longitude of UTM zone

7 #define CScal(k, z) { z.re *= k; z.im *= k; } ▷ Multiply complex 𝑧 by 𝑘

8 #define CAdd(z1, z2) { z2.re += z1.re; z2.im += z1.im; } ▷ Complex addition

9 #define CSub(z1, z2) { z2.re -= z1.re; z2.im -= z1.im; } ▷ Complex subtraction

10 #define CI(z) { float tmp = z.re; z.re = - z.im; z.im = tmp; } ▷ Multiply by 𝑖

11 #define CExp(z) { float e = exp(z.re); z.re = e*cos(z.im); \ ▷ Exp of complex number

12 z.im = e*sin(z.im); }

13 #define CSin(z) { CI(z); struct complex _z = {-z.re, -z.im}; \ ▷ Sine of complex number

14 float e = exp(z.re); float cos_z_im = cos(z.im); z.re = e*cos_z_im; \

15 float sin_z_im = sin(z.im); z.im = e*sin_z_im; _z.re = cos_z_im/e; \

16 _z.im = -sin_z_im/e; CSub(_z, z); CScal(-0.5, z); CI(z); }

17

18 static inline float isometric_latitude(float phi, float e) {

19 return log𝑝1(tan𝑝2(M_PI_4 + phi / 2.0))

20 - e / 2.0 * log((1.0 + e * sin𝑝3(phi)) / (1.0 - e * sin(phi)));

21 }

22

23 static inline float isometric_latitude0(float phi) {

24 return log𝑝4(tan(M_PI_4 + phi / 2.0));

25 }

26

27 void latlong_utm_of(float phi, float lambda, uint8_t utm_zone) {

28 float lambda_c = LambdaOfUtmZone(utm_zone); ▷ Function arguments:

29 float ll = isometric_latitude(phi, E); ▷ phi: latitude in radians

30 float dl = lambda - lambda_c; ▷ lambda: longitude in radians

31 float phi_ = asin(sin𝑝5(dl) / cosh(ll)); ▷ utm_zone: UTM zone of the location

32 float ll_ = isometric_latitude0(phi_); ▷ Output:

33 float lambda_ = atan(sinh(ll) /𝑝6 cos𝑝7(dl)); ▷ latlong_utm_x: easting of the location

34 struct complex z_ = { lambda_, ll_ }; ▷ latlong_utm_y: northing of the location

35 CScal(serie_coeff_proj_mercator[0], z_); ▷ Function latlong_utm_of converts the

36 uint8_t k; ▷ coordinates of a location from WGS84

37 for(k = 1; k < 3; k++) { ▷ latitude and longitude to UTM coordinates.

38 struct complex z = { lambda_, ll_ };

39 CScal(2*k, z);

40 CSin(z);

41 CScal(serie_coeff_proj_mercator[k], z);

42 CAdd(z, z_);

43 }

44 CScal(N, z_);

45 latlong_utm_x = XS + z_.im;

46 latlong_utm_y = z_.re;

47 }

Fig. 1. Code excerpted from a real-world avionic library. The original source code is available at http://paparazzi.
enac.fr, Paparazzi UAV (Unmanned Aerial Vehicle), v5.14.0_stable release, file sw/misc/satcom/tcp2ivy.c, last
accessed on July 16th, 2020. The annotations 𝑝𝑖 are referred to in Section 7.2. Comments preceded by ▷ were
not present in the original code.
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provide floating-point data types that conform to IEEE 754 as far as basic arithmetic operations and

conversions are concerned. The C and C++ floating-point mathematical functions are part of the

standard libraries of the respective languages (see, e.g., [42, 43]). Access to such functions requires

inclusion of the math.h header file in C, or the cmath header file in C++. The library implementing

them is called libm. Very few C/C++ implementations comply to the recommendation of the IEEE 754
standard [40, Section 9.2] that such functions be correctly rounded.

4
One of them is CR-LIBM,

a remarkable research prototype that, however, has still not found industrial adoption, possibly

because of the worst-case performance of some functions (the average case being usually very

good). Another freely available correctly-rounded library is libmcr, by Sun Microsystems, Inc. It

provides some double-precision functions (exp, log, pow, sin, cos, tan, atan), but its development

stopped in 2004. Even though we cannot exclude the existence of proprietary implementations of

libm providing formalized precision guarantees, we were not able to find one. In the most popular

implementations, such guarantees are usually not available. For example, the documentation of

GNU libc [51] contains:

“Therefore many of the functions in the math library have errors. The table lists the
maximum error for each function which is exposed by one of the existing tests in the test
suite. The table tries to cover as much as possible and list the actual maximum error (or at
least a ballpark figure) but this is often not achieved due to the large search space.”

This provides nothing that can really be trusted in a safety-critical context. In the embedded

world, we checked the documentation of all major toolchain providers in our possession: for four

of them we found that the lack of guarantees is explicitly mentioned (e.g., [2, page 2-338], [36,

page 591], [37, page 665], [28, page 180], [65, page 87]), whereas for all the others (incuding Arm,

CodeWarrior/Freescale/NXP, CrossWorks, HighTec, IAR, Keil, Microchip, NEC, Renesas, TASKING,

Wind River) the lack of guarantees is left implicit.

We do not have a precise specification for the library functions that are assumed in the code

of Figure 1. Its sources refer to GNU libc and to Newlib,
5
but no specific versions are mentioned.

We can probably assume a POSIX-compliant behavior with respect to special values. E.g., if log()
is called with a negative number, a NaN is returned. If atan() is called with ±1, then an infinity

is returned [41]. This information is not sufficient to provide a general answer to the verification

questions (i)–(iii). Things change if we fix a specific implementation of the mathematical library.

In this respect, we propose a practical approach that enables verification of C/C++ programs using

math.h/cmath functions, even with minimal or no specification in addition to the special cases

mandated by standards such as POSIX [41]. Our main contribution is the extension of constraint

satisfaction problem solving techniques based on interval consistency [10, 11] to programs using

libm functions, by providing interval refinement algorithms for such constraints. We use such

techniques to solve the constraint systems generated for each program path by symbolic execu-

tion [13], and perform symbolic-execution based model checking [31]. Symbolic-execution based

test data generation [4] may be performed as well. The application to abstract interpretation based

on (multi-) interval domains is also straightforward [19].

We conducted an investigation by means of exhaustive testing on the most common imple-

mentations of libm (cf. Section 9.2). We observed that, for all the implementations we tested, the

piecewise monotonicity property of the corresponding real functions is “almost” preserved. The

results of this investigation are presented in Section 4. Consider, for instance the tanhf() function,

which is meant to approximate the hyperbolic tangent function over IEEE 754 single-precision

4
A function is said to be correctly rounded if its result is as if computed with infinite precision, and then rounded to the

floating-point format in use.

5
See https://sourceware.org/newlib/, last accessed on July 16th, 2020.
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floats. While 𝑦 = tanh(𝑥) is monotonically (strictly) increasing over (−∞, +∞), y = tanhf(x) can

be monotonically non-decreasing over the full range of IEEE 754 single-precision floats, or it can

be “almost monotonically non-decreasing.” By this we mean that, going from −∞ to +∞, there

may be an occasional drop in the graph of tanhf(), but this is quickly recovered from, that is,

the function starts increasing again. We use the term glitches to name such occasional drops: we

observed that glitches are often shallow (most often just one ULP), narrow (most often just 2 ULPs),

and, on average, not very frequent. We leverage this fact to provide general interval refinement

algorithms that enable software verification and testing. Such algorithms are based on an efficient

dichotomic search of the intervals to be refined. While traditional dichotomic search can only be

applied to monotonic domains, our version is modified to work despite the presence of glitches,

by just exploiting some minimal data about them. As we explain in Section 8, our algorithms are

the first in the literature that do not require the function implementations to be correctly rounded,

thus enabling their use with the most common libm implementations.

If we have approximate but correct information about the maximal depth and width of glitches

and, possibly, their number and their localization,
6
then we can guarantee the refined intervals

are conservative. This allows performing formal verification via abstract interpretation, symbolic

model checking or automatic theorem proving. With quite precise (correct) information and

small/few glitches (or if there are no glitches at all, which includes the case of correctly rounded

implementations), the refinement results in tight intervals, and verification is computationally

cheaper and with fewer “don’t knows”. With less precise but still correct information, verification

is still possible, but slower and with more “don’t knows”. With incorrect information about glitches,

we can still automatically generate test inputs with much greater coverage than random testing.

For single-precision and half-precision IEEE 754 functions, collection of precise data about glitches

can be obtained by analysing each function on every possible input. This is perfectly feasible since

glitch data must be collected only once for each implementation of libm. For double-precision
functions, when the mathematical library comes equipped with guarantees on the maximum errors,

they can be used as correct approximations of the glitch parameters required by our algorithm. This

is the case for the HA and LA accuracy modes of the Intel Math Kernel Library.
7
Techniques for

automatically proving the correctness of error bounds in math.h/cmath implementations have been

recently developed [38, 39, 49]. When provably correct bounds are available, we can verify programs

by proving that bad things cannot happen. On the other hand, when the target mathematical library

comes equipped with merely empirical information on the maximum errors, as is the case for

GNU libc [51], such information can be used to obtain (possibly incorrect) bounds for glitches,

which enable the automatic generation of test inputs.

The approach presented in this paper has been fully implemented in a commercial tool (ECLAIR,

developed and commercialized by BUGSENG) and is used for verification and testing of real C

code. We used this tool to experimentally evaluate the effectiveness of our approach. As we detail

in Section 7, ECLAIR was able to answer questions (i)–(iii) by detecting some dangerous bugs

affecting the code of Figure 1, including the generation of a NaN when certain coordinates are

received as inputs. Moreover, ECLAIR has been able to answer the same questions for a large

and heterogeneous benchmark that we assembled with both real-world and self-developed code,

without timing out in at least 96 % of the cases. In Section 8, we compare our techniques with the

state of the art, finding out that they outperform other approaches in the ability to detect anomalous

behaviors, most of the times offering even shorter analysis times.

6
For details, see the requirements of the algorithms in Section 5.2.

7
See https://software.intel.com/sites/products/documentation/doclib/mkl/vm/vmdata.htm, last accessed on July 16th, 2020.
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Plan of the paper. Section 2 recalls basic definitions and introduces the required notation; Section 3
explains the verification framework we use; Section 4 introduces the notions of monotonicity glitch
and quasi-monotonicity; Section 5 describes direct and indirect propagation algorithms that are

able to deal with (at least) 75 of the math.h/cmath functions; Section 6 explains how trigonometric

functions, which are periodic, can be treated by partitioning a subset of their graph into a set of

quasi-monotonic branches; Section 7 briefly describes the implementation in the context of the

ECLAIR software verification platforms and illustrates the experimental results; Section 8 compares

our approach with the state of the art, and other related work; Section 9 discusses the problems

that remain to be solved and sketches several ideas for future work; Section 10 concludes the main

part of the paper. Appendix A presents additional data about glitches in single-precision functions

for several implementations of libm, and Appendix B contains more details on the algorithms of

Section 5. The proofs of the results of Sections 5 and 6 are reported in [6].

2 BACKGROUND: FLOATING-POINT NUMBERS AND INTERVALS
We denote by R+ and R− the sets of strictly positive and strictly negative real numbers, respectively.

Definition 2.1. (IEEE 754 binary floating-point numbers.) A set of IEEE 754 binary floating-

point numbers [40] is uniquely identified by: 𝑝 ∈ N, the number of significant digits (precision);

𝑒max ∈ N, the maximum exponent, the minimum exponent being 𝑒min := 1 − 𝑒max. The set of binary

floating-point numbers F(𝑝, 𝑒max, 𝑒min) includes:
• all signed zero and non-zero numbers of the form (−1)𝑠 · 2𝑒 ·𝑚, where

– 𝑠 is the sign bit;
– the exponent 𝑒 is any integer such that 𝑒min ≤ 𝑒 ≤ 𝑒max;

– the mantissa𝑚, with 0 ≤ 𝑚 < 2, is a number represented by a string of 𝑝 binary digits

with a “binary point” after the first digit:

𝑚 = (𝑑0 . 𝑑1𝑑2 . . . 𝑑𝑝−1)2 =
𝑝−1∑
𝑖=0

𝑑𝑖2
−𝑖
;

• the infinities +∞ and −∞.

The smallest positive normal floating-point number is 𝑓 nor
min

:= 2
𝑒min

and the largest is 𝑓max :=

2
𝑒max (2 − 2

1−𝑝 ). The non-zero floating-point numbers whose absolute value is less than 2
𝑒min

are

called subnormals: they always have fewer than 𝑝 significant digits. Every finite floating-point

number is an integral multiple of the smallest subnormal magnitude 𝑓min := 2
𝑒min+1−𝑝

. Note that the

signed zeroes +0 and −0 are distinct floating-point numbers.

Each IEEE 754 binary floating-point format also includes the representation of symbolic data

called NaNs, from “Not a Number.” There are quiet NaNs, which are propagated by most opera-

tions without signaling exceptions, and signaling NaNs, which cause signaling invalid operation

exceptions. The unintended and unanticipated generation of NaNs in a program (e.g., by calling the

log function on a negative number) is a serious programming error that could lead to catastrophic

consequences.

In the rest of the article we will only be concerned with IEEE 754 binary floating-point numbers,

excluding NaNs, and we will write simply F for F(𝑝, 𝑒max, 𝑒min) when there is no risk of confusion.

Definition 2.2. (Floating-point symbolic order.) Let F be any IEEE 754 floating-point format.

The relation ≺ ⊆ F × F is such that, for each 𝑥,𝑦 ∈ F, 𝑥 ≺ 𝑦 if and only if either: 𝑥 = −∞ and

𝑦 ≠ −∞, or 𝑥 ≠ +∞ and 𝑦 = +∞, or 𝑥 = −0 and 𝑦 ∈ {+0} ∪ R+, or 𝑥 ∈ R− ∪ {−0} and 𝑦 = +0, or
𝑥,𝑦 ∈ R and 𝑥 < 𝑦.

The partial order ≼ ⊆ F × F is such that, for each 𝑥,𝑦 ∈ F, 𝑥 ≼ 𝑦 if and only if 𝑥 ≺ 𝑦 or 𝑥 = 𝑦.

ACM Trans. Softw. Eng. Methodol., Vol. 37, No. 4, Article 111. Publication date: August 2019.
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Note that F is linearly ordered with respect to ‘≺’.
For 𝑥 ∈ F, we sometimes confuse the floating-point number with the extended real number it

represents, the floats −0 and +0 both corresponding to the real number 0. Thus, when we write, e.g.,

𝑥 < 𝑦 we mean that 𝑥 is numerically less than 𝑦 (for example, we have −0 ≺ +0 although −0 ≮ +0,
but note that 𝑥 ≼ 𝑦 implies 𝑥 ≤ 𝑦 if 𝑥 and 𝑦 are finite).

Definition 2.3. (Floating-point intervals.) Let F be any IEEE 754 floating-point format. The set

IF of floating-point intervals with boundaries in F is

IF := {∅} ∪
{
[𝑙, 𝑢]

�� 𝑙, 𝑢 ∈ F, 𝑙 ≼ 𝑢
}
.

[𝑙, 𝑢] denotes the set { 𝑥 ∈ F | 𝑙 ≼ 𝑥 ≼ 𝑢 }. IF is a bounded meet-semilattice with least element

∅, greatest element [−∞, +∞], and the meet operation, which is induced by set-intersection, will

be simply denoted by ∩. (A bounded meet-semilattice is a partially ordered set that has a meet, or

greatest lower bound, for any nonempty finite subset and a greatest element.)

Half-open floating-point intervals are defined similarly, so that [𝑙, 𝑢) denotes the set { 𝑥 ∈ F |
𝑙 ≼ 𝑥 ≺ 𝑢 }.

Floating-point intervals with boundaries in F allow us to capture the extended numbers in F:
NaNs should be tracked separately.

Given a floating-point interval [𝑙, 𝑢] ∈ IF, we denote by #[𝑙, 𝑢] the cardinality of the set { 𝑥 ∈ F |
𝑙 ≼ 𝑥 ≼ 𝑢 }.

Definition 2.4. (Floating-point successors andpredecessors.)The function succ :
(
F\{+∞}

)
→

F is defined, for each 𝑥 ∈ F \ {+∞}, by succ(𝑥) := min{𝑦 ∈ F | 𝑥 ≺ 𝑦 }. Similarly, function

pred :

(
F \ {−∞}

)
→ F is defined, for each 𝑦 ∈ F \ {−∞}, by pred(𝑦) := max{ 𝑥 ∈ F | 𝑥 ≺ 𝑦 }.

We will iteratively apply these functions, so that, e.g., for each 𝑛 ∈ N, we will refer to the partial

function succ
𝑛
: F↣ F given, for each 𝑥 ∈ F, by{

succ
0 (𝑥) := 𝑥 ;

succ
𝑛+1 (𝑥) := succ

(
succ

𝑛 (𝑥)
)
, if succ𝑛 (𝑥) ≠ +∞.

The definition of the iterated pred
𝑛
: F↣ F function is analogous.

Note that the notation #[𝑥,𝑦) > 𝑛 is equivalent to 𝑥 ≺ succ
𝑛 (𝑦).

When the result 𝑥 of a floating-point operation is not representable exactly in the current format,

its floating-point approximation is chosen according to the rounding mode in use. The IEEE 754

Standard defines rounding modes ‘near’, ‘up’, ‘down’ and ‘zero’, that round 𝑥 with, respectively:

near : the number 𝑥 ∈ F minimizing |𝑥 − 𝑥 |; if two such values exists, the even one is chosen.

up : the minimum number 𝑥 ∈ F such that 𝑥 < 𝑥 .

down : the maximum number 𝑥 ∈ F such that 𝑥 > 𝑥 .

zero : the same as ‘down’ if 𝑥 > 0, the same as ‘up’ if 𝑥 ≤ 0.

3 BACKGROUND: APPROACHES TO PROGRAM VERIFICATION
In this section, we recall the verification and correctness-ensuring techniques that our interval

refinement algorithms enable for floating-point programs.

3.1 Symbolic Execution
Symbolic execution is a technique originally introduced for test-data generation [44], but that has

found numerous applications also in the field of program verification [17, 18, 31]. It consists of the

evaluation of each execution path in the program by using symbolic values for variables, treating

all assignments and guards of conditional statements as constraints on such symbolic values. The
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so obtained constraint systems characterize the program variables’ values for which the execution

path is feasible. Thus, solving the constraint system for a path can either prove it unfeasible, if

the system has no solution, or yield a set of assignments for program variables, including input

variables, that causes the execution of such path.

We perform symbolic execution of floating-point computations as described in [13] and [4]. We

briefly illustrate this approach by means of an example taken from line 31 of the listing in Figure 1:

31 float phi_ = asin(sin(dl) / cosh(ll));

Program analysis starts by translating the code into static single assignment form (SSA) [1]. In

this intermediate code representation, complex expressions are decomposed into sequences of

assignment instructions where at most one operator is applied, and new variable names are

introduced so that each variable is assigned to only once. Thus, assignments can be considered as

if they were equality constraints. The above expression is transformed into

1 float phi_; double z1, z2, z3, z4, z5, z6;

2 z1 = (double) dl;

3 z2 = sin(z1);

4 z3 = (double) ll;

5 z4 = cosh(z3);

6 z5 = z2 / z4;

7 z6 = asin(z5);

8 phi_ = (float) z6;

Then, we can directly regard the assignments as a system of constraints over floating-point numbers.

When if statements are involved, the execution flow is split in two different paths, each of which

results in a different constraint system. Loops are dealt with by unrolling them, and function calls

by inlining. For more details, we refer the reader to [13].

Once the constraint system for a path has been generated, it can be immediately solved to

generate test input data that causes its execution, or to prove it is unfeasible. Additionally, it is

possible to augment the constraint system with assertions, whose truth can be evaluated by solving

the system. This is how we perform model checking by means of symbolic execution. We support

any kind of assertion formulated as a Boolean combination of constraints on the ranges of program

variables. To prove or disprove the truth of an assertion, we generate the constraint systems related

to each execution path leading to it. Then, we augment such system with the negation of the

assertion, and try to solve it. If no solution is found, we can conclude that the assertion is never

violated. Otherwise, the solution to the constraint system produces a counter-example.

For example, suppose we want to know whether a NaN can be generated by the invocation to

asin in line 7. Thus, we want to prove the assertion z5 ≥ −1 ∧ z5 ≤ 1, stating that the argument

of asin is always in its domain. We first generate the constraint system for the execution path

leading to line 7. Then, we negate the assertion, obtaining two new constraint systems, one with

the addition of z5 < −1, and the other one with z5 > 1. As we shall see in Section 3.3, both systems

are unsatisfiable, proving that a NaN can never be generated in line 7.

3.2 Constraint Solving over Floating-Point Variables
To solve constraint systems, we employ an approach called interval-based consistency, which
amounts to iteratively narrowing the floating-point intervals associated with each variable in a

process called filtering [10, 11]. In the literature on constraint propagation, the unary constraints

associated with variables, e.g., intervals, are also called labels [24]. A projection proj(𝑥𝑖 ,𝐶, 𝐼1, . . . , 𝐼𝑛),
is a function that, given a constraint 𝐶 with 𝑛 variables 𝑥1, . . . 𝑥𝑛 and the intervals 𝐼1, . . . 𝐼𝑛 associ-

ated with them, computes a possibly refined interval 𝐼 ′𝑖 for one of the variables 𝑥𝑖 , that is tighter
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Algorithm 1 Constraint Propagation

Require: Constraint store 𝑆 , Variables 𝑥1, . . . , 𝑥𝑛 , Intervals 𝐼1, . . . 𝐼𝑛 , 𝑖max ∈ N.
Ensure: Refined Intervals 𝐼 ′

1
⊆ 𝐼1, . . . , 𝐼

′
𝑛 ⊆ 𝐼𝑛 .

1: 𝐼 ′
1
:= 𝐼1; . . . ; 𝐼

′
𝑛 := 𝐼𝑛 ; 𝑄 := 𝑆 ; 𝑖 := 0;

2: while 𝑄 ≠ ∅ ∧ 𝑖 < 𝑖max do
3: proj(𝑥𝑖 ,𝐶) := dequeue(𝑄);
4: 𝐼 ′′𝑖 := proj(𝑥𝑖 ,𝐶, 𝐼𝑖1 , . . . , 𝐼𝑖𝑘 );
5: if 𝐼 ′′𝑖 = ∅ then break
6: else if 𝐼 ′′𝑖 ≠ 𝐼 ′𝑖 then
7: 𝐼 ′𝑖 := 𝐼 ′′𝑖 ;
8: ∀𝐶 ′ ∈ 𝑆, 𝑥𝑖 ∈ 𝐶 ′

: ∀𝑥 𝑗 ∈ 𝐶 ′
: enqueue(𝑄, proj(𝑥 𝑗 ,𝐶 ′))

9: end if
10: end while

than or equal to the original interval 𝐼𝑖 associated with that variable. Ternary constraints of the

form x = y ◦ z, where ◦ is one of +, -, *, /, and x, y, z are three program variables, result in

the direct projection proj(x, x = y ◦ z, 𝐼x, 𝐼y, 𝐼z), and the indirect projections proj(y, x = y ◦ z, 𝐼x, 𝐼y, 𝐼z),
and proj(z, x = y ◦ z, 𝐼x, 𝐼y, 𝐼z). Given a constraint x = f(y), where f is any unary math.h/cmath
library function, we get the direct projection proj(x, x = f(y), 𝐼x, 𝐼y) and the indirect projection

proj(y, x = f(y), 𝐼x, 𝐼y). Binary constraints of the form x = (type) y, where type is either float or
double, and binary relations found in Boolean expressions, such as ==, !=, <, <=, >, >=, result in simi-

lar projections. For example, considering z5 = z2 / z4, the projection proj(z5, z5 = z2/z4, 𝐼z5, 𝐼z2, 𝐼z4)
over z5 is called direct projection (it goes in the same sense of the TAC assignment it comes from)

while the projections proj(z2, z5 = z2/z4, 𝐼z5, 𝐼z2, 𝐼z4), and proj(z4, z5 = z2/z4, 𝐼z5, 𝐼z2, 𝐼z4) over z2
and z4 are called indirect projections.

In constraint propagation, both direct and indirect projections are repeatedly applied in order to

refine the intervals associated with the variables. We define a propagator as the actual implementa-

tion of a projection, that possibly refines an interval. For example, a propagator for the projection

proj(z5, z5 = z2/z4, 𝐼z5, 𝐼z2, 𝐼z4), with 𝐼z2 = [z2𝑙 , z2𝑢] and 𝐼z4 = [z4𝑙 , z4𝑢] could be

𝐼 ′z5 = [min(z2𝑙/z4𝑙 , z2𝑙/z4𝑢, z2𝑢/z4𝑙 , z2𝑢/z4𝑢),max(z2𝑙/z4𝑙 , z2𝑙/z4𝑢, z2𝑢/z4𝑙 , z2𝑢/z4𝑢)] ∩ 𝐼z5.

Propagators for basic floating-point operations are already present in the literature [3, 5, 13], and

are out of the scope of this paper. Moreover, integer variables can also be treated with this approach,

by employing appropriate propagators.

The application of projections by executing the corresponding propagators is governed by

heuristic algorithms that go beyond the scope of this paper. For our purposes, it suffices to show

Algorithm 1. Whenever the interval associated to a variable is refined, all the propagators are

inserted into a data structure 𝑄 (in our case a FIFO queue) of propagators that are ready to run

(line 1). Heuristics are used to select and remove from the data structure one of the ready propagators

(line 3), which is then run. If that results in the refinement of the interval of one variable, all the

propagators that depend on that variable are inserted into the same data structure, unless they are

already present (line 8). This process continues until one of the intervals becomes empty (line 5), in

which case propagation can be stopped as unsatisfiability of the given system of constraints has

been proved, or the data structure becomes empty (𝑄 = ∅ at line 2), i.e., propagation has reached

quiescence as no projection is able to infer more information, or propagation is artificially stopped,

e.g., because a timeout has expired (𝑖 = 𝑖max at line 2).
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When the constraint system reaches quiescence, the labeling procedure comes into play: a

variable is chosen and the corresponding interval, its label, is divided into two or more parts and

each part is searched independently. The way this partition is made is determined by heuristics

that go beyond the scope of this paper, although we will return on this topic in Section 9.5. For

each one of such parts, a new “child” propagation process is started, in which the interval for the

chosen variable is instantiated to such part. Once all children processes reach a new quiescent state,

labeling is performed again and this procedure repeated. This procedure stops when either one of

the children propagation processes reaches quiescence with a singleton interval, in which case the

singleton value can be used as a test-case or counterexample, or an interval becomes empty in all

children processes, in which case the system is unsatisfiable.

3.3 Examples of Constraint Solving
Let us see how this can be used for program verification. As a first example, let us consider the

question of whether the division z5 = z2 / z4 can give rise to a division by zero. Assume

all the intervals are initially full, i.e., they contain all possible numerical floating-point values

and all propagators are ready to run. We modify the interval associated to z4 to [−0, +0] and
start propagation. At some stage the indirect propagator for cosh will be called to possibly refine

the interval for z3 starting from the interval of z4: a propagator correctly capturing a passable

implementation of cosh will refine the label of z3 to the empty interval, thus proving that division

by zero is indeed not possible. As we will see, all the implementations of cosh() we have examined

are far from perfect, but none of them has a zero in its range.

As another example, let us consider z4 = cosh(z3), and suppose the intervals associated to z3
and z4 are [1, +∞] and [−∞, +∞], respectively. The direct projection for cosh, described in Sec-

tion 5.1, would compute, on amachinewewill later call xps,8 the refining interval [18B07551D9F55016·
2
−52, +∞] for z4, where 18B07551D9F55016 · 2−52 ≈ 1.543. Now suppose we want to determine for

which values of z3 the computation of z4 = cosh(z3) results in an overflow, thereby binding z4
to +∞. To answer this question we artificially refine the interval of z4 to the singleton [+∞, +∞]
and let the indirect propagator for cosh, described in Section 5.2, do its job: this will result in the

refining interval [1633CE8FB9F87E16 · 2−43, +∞] for z3, where 1633CE8FB9F87E16 · 2−43 ≈ 710.5.

Coming back to the listing in SSA form at the beginning of this section, suppose now we want

to know whether a NaN can be generated by the invocation to asin in line 7, i.e., whether we can

have z5 < −1 or z5 > 1. Let us concentrate on the latter constraint, which we impose together with

the constraints saying that dl and ll are neither NaNs nor infinities. All the other variables can
take any value. We indicate with dℓ and iℓ the direct and the indirect projections for the constraint

at line ℓ , respectively. The related propagators are either those described in Section 5, or in [3, 5].

Here is what happens on a selected constraint propagation process on machine xps, where the
numbers have been rounded for increased readability:

z5>1−−−−→ z5 ∈ [1.0000000000000002, 1.798 · 10308]
i6−→ z4 ∈ [−1.798 · 10308, 1.798 · 10308]
d5−→ z4 ∈ [1, 1.798 · 10308]
i4−→ z3 ∈ [−710.5, 710.5]
d3−→ z2 ∈ [−1, 1]

8
On xps, float and double are 32-bit and 64-bit IEEE 754 floating point numbers, respectively; see Table 4 for more details.
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d6−→ z5 ∈ ∅ = [−1, 1] ∩ [1.0000000000000002, 1.798 · 10308]
As the last constraint is unsatisfiable, the original constraint system is unsatisfiable. The same

happens if z5 < −1 is imposed, thereby proving that NaNs cannot be generated on line 7.

As a final example, in order to show the indirect projections for asin and sin at work, we

consider a partial constraint propagation starting from state

z1 ∈ [−16, 16], z5 ∈ [−1, 1],
z2 ∈ [−1, 1], z6 ∈ [−1.571, 1.571],
z4 ∈ [1, 1.798 · 10308], phi_ ∈ [+0, 1.571] .

A possible sequence of propagation steps is the following:

i8−→ z6 ∈ [+0, 1.571]
i7−→ z5 ∈ [−2−1074, 1]
i6−→ z2 ∈ [−1.332 · 10−15, 1],
i3−→ z1 ∈ [−16, 15.71] .

The constraint system has reached quiescence and labeling starts: after 7 labeling steps, a test-case

is generated that falls off line 8 without generating NaN or infinities. This test-case is very simple:

dl = +0, ll = +0, z1 = +0, z2 = +0,
z3 = +0, z4 = 1, z5 = +0 z6 = +0,

phi_ = +0.

3.4 Integration into Abstract Interpreters
In this section, we assume familiarity with Abstract Interpretation [19, 20], a static analysis tech-

nique that enables verification of program properties by soundly approximating their semantics.

We consider the concrete domain 𝐶 = ℘(F), where F is any IEEE 754 floating-point format, and

℘ denotes the power-set operation, and the abstract domain 𝐴 = IF × 𝐵, where IF is the set of
intervals with boundaries on F, and 𝐵 is a Boolean domain, that captures the possibility that a value

is NaN. In particular, the Boolean domain of an abstract value is true if it may be NaN, and false
if it cannot be NaN. The concretization function 𝛾 : 𝐴 → 𝐶 is defined as

𝛾

( (
[𝑥𝑙 , 𝑥𝑢], 𝑏

) )
= { 𝑥 ∈ F | 𝑥𝑙 ≼ 𝑥 ≼ 𝑥𝑢 } ∪

{
nan(𝑝)

�� 𝑏 = true, 𝑝 is the NaN payload

}
.

We deal with math.h/cmath functions of the form 𝑓 : F→ F, so we need abstract functions of the

form 𝑓 # : 𝐴 → 𝐴 to perform abstract interpretation, with the correctness condition

∀𝑎 ∈ 𝐴 : 𝑓 ♭
(
𝛾 (𝑎)

)
⊆ 𝛾

(
𝑓 # (𝑎)

)
,

where 𝑓 ♭ : ℘(F) → ℘(F) is the trivial extension of 𝑓 to subsets of F. The correctness condition
comprises two parts: the numeric-symbolic part on IF, and the NaN part on 𝐵. The NaN part is

simple: if 𝑓 may return NaN on any element of 𝛾 (𝑎), 𝑎 ∈ 𝐴, then the Boolean part of 𝑓 # (𝑎) must be

true. For all the functions we treat, the implication also holds in the other direction, since the POSIX

standard specifically defines for which values any function may return a NaN. For the numeric-

symbolic part, we must ensure that, if 𝑓 #
(
[𝑥𝑙 , 𝑥𝑢], 𝑏𝑥

)
=
(
[𝑦𝑙 , 𝑦𝑢], 𝑏𝑦

)
, then ∀𝑥 ∈ [𝑥𝑙 , 𝑥𝑢] : 𝑓 (𝑥) =

NaN ∨ 𝑓 (𝑥) ∈ [𝑦𝑙 , 𝑦𝑢]. Our contribution consists in determining 𝑓 # on actual implementations

of 𝑓 , and studying the conditions under which we can guarantee soundness and precision of the
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approximation. The direct projections we describe in Section 5 can be immediately used, verbatim,

as 𝑓 # in forward analysis (from the initial states to the target states). The inverse projections can

also be immediately used in backward analysis (from the target states, e.g., erroneous states, back

to the initial states).
9
For all floating-point arithmetic operations, projections that can be used as

their abstract versions are already present in the literature [3, 13].

4 (QUASI-) MONOTONICITY AND GLITCHES
A real-valued partial function

ˆ𝑓 : R↣ R is called monotonic if it is order preserving (i.e., ˆ𝑓 (𝑥) ≤
ˆ𝑓 (𝑦) whenever 𝑥 ≤ 𝑦 and both

ˆ𝑓 (𝑥) and ˆ𝑓 (𝑦) are defined) in which case we call it isotonic, or if it
is order reversing (i.e.,

ˆ𝑓 (𝑥) ≥ ˆ𝑓 (𝑦) whenever 𝑥 ≤ 𝑦 and both
ˆ𝑓 (𝑥) and ˆ𝑓 (𝑦) are defined) in which

case we say
ˆ𝑓 is antitonic.

Definition 4.1. (Quasi-monotonicity.) Let 𝐼 ⊆ F be a floating-point interval and 𝑓 : F → F

be a floating-point function meant to approximate a real-valued partial function
ˆ𝑓 : R ↣ R.

We say that 𝑓 is quasi-monotonic/quasi-isotonic/quasi-antitonic on 𝐼 if ˆ𝑓 is always defined and

monotonic/isotonic/antitonic on 𝐼 .

Let 𝑓 : F→ F be a quasi-monotonic function. The best we can hope for is that 𝑓 be monotonic

over (F, ≼) for all roundingmodes.While this is often the case, it is not always the case: monotonicity

is occasionally violated at spots we call monotonicity glitches.

Definition 4.2. (Monotonicity glitches.) Let 𝑓 : F → F be a quasi-isotonic function on 𝐼 ⊆ F.
An isotonicity glitch of 𝑓 in 𝐼 is an interval [𝑙, 𝑢] ⊆ 𝐼 such that:

𝑢 ≻ succ(𝑙) ∧ ∀𝑥 ∈ (𝑙, 𝑢) : 𝑓 (𝑙) ≻ 𝑓 (𝑥) ∧ 𝑓 (𝑙) ≼ 𝑓 (𝑢).
If 𝑓 is quasi-antitonic, an antitonicity glitch of 𝑓 in 𝐼 is an isotonicity glitch of −𝑓 in 𝐼 . Isotonicity

and antitonicity glitches are collectively called monotonicity glitches or, simply, glitches.
Let 𝐺 = [𝑙, 𝑢] be a monotonicity glitch of 𝑓 in 𝐼 . The width and the depth of 𝐺 are given,

respectively, by

width(𝐺) := #[𝑙, 𝑢] − 1,

depth(𝐺) := #

[
𝑚, 𝑓 (𝑢)

]
− 1, where𝑚 = min

𝑥 ∈(𝑙,𝑢)
𝑓 (𝑥).

Note that, for each glitch 𝐺 , we have width(𝐺) ≥ 2 and depth(𝐺) ≥ 1. A glitch of 𝑓 in 𝐼 is called

maximal if none of its proper supersets is a glitch of 𝑓 in 𝐼 . Non-maximal glitches are also called

sub-glitches.

See Figure 2 for an exemplification of these concepts:𝐺1 is a maximal glitch;𝐺2, being contained

into 𝐺1 is non-maximal; width(𝐺1) = 5, depth(𝐺1) = 4, width(𝐺2) = depth(𝐺2) = 2.

We gathered the relevant statistics about glitches for 25 functions provided by libm on several

implementations. We report in Table 1 the data for a machine we call xps, which features an

x86_64 CPU and runs Ubuntu 19.10, with GCC 9.2.1, and libm is provided by GNU libc 2.30.

The data for other platforms are reported in Appendix A. Table 1 presents, for each function,

its name and the minimum and maximum of the considered domain interval. For most of the

functions, this interval is the natural one. The exceptions are the following: for lgammaf we start
at 2, which is where monotonicity theoretically begins; for tgammaf we also start at 2 because the

considered implementations are neither monotonic nor periodic for arguments less than 2;
10
for

9
Forward and backward analysis are usually alternated in abstract-interpretation-based static analyses.

10
The real Γ function is strictly increasing in the interval [𝜇, +∞) for 1 < 𝜇 < 2.
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𝐺1

𝐺2

Fig. 2. An example of monotonicity glitches

Table 1. Glitch data for the xps machine

function 𝐷min 𝐷M near up down zero

𝑛g 𝑑M 𝑤M 𝑛g 𝑑M 𝑤M 𝑛g 𝑑M 𝑤M 𝑛g 𝑑M 𝑤M

acosf −1 1

acoshf 1 ∞ 1 1 2 1 1 2

asinf −1 1

asinhf −∞ ∞ 2 1 2 2 1 2

atanf −∞ ∞ 1 1 10
8

atanhf −1 1 2 1 2 2 1 2

cbrtf −∞ ∞ 10
6

1 2 10
6

1 2 10
6

1 2 10
6

1 2

coshf −∞ ∞ 454 1 2 466 1 2 442 1 2 448 1 2

erff −∞ ∞
expf −∞ ∞ 1 1 10

9

exp10f −∞ ∞
exp2f −∞ ∞ 1 1 10

9

expm1f −∞ ∞
lgammaf 2 ∞ 168 1 2 168 1 2 169 1 2 169 1 2

logf 0 ∞
log10f 0 ∞
log1pf −1 ∞ 1 1 2 1 1 2

log2f 0 ∞
sinhf −∞ ∞
sqrtf 0 ∞
tanhf −∞ ∞ 1 1 2 2 1 3

tgammaf 2 ∞ 10
5

4 3 10
5

4 3 10
5

4 3 10
5

4 3

cosf −223 2
23

sinf −223 2
23

tanf −223 2
23

the trigonometric functions, at the bottom of the tables, we restrict the domain to a region where

there are at least 12 floats per period, for reasons that will be discussed in Section 6.1.
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For each function and each rounding mode (near, up, down, zero), Table 1 gives the number

of glitches, 𝑛g, their maximum depth, 𝑑M, and their maximum width, 𝑤M. For the trigonometric

functions we report the cumulative results concerning all the quasi-isotonic and quasi-antitonic

branches in the given range. In the columns labeled 𝑛g, we report for these functions the maximum

number of glitches in any such quasi-monotonic branch (we will refer to this quantity in Section 6.2

as 𝑛gM). All the data above were collected by exhaustively testing the functions in their domains,

which is computationally feasible on single-precision floating-point numbers (cf. Section 9.2 for

more details).

The following observations can be made:

(1) there are few glitches: many functions have no glitch at all, several functions have just a few

glitches, a few functions have many glitches;

(2) most glitches are very shallow;

(3) with a notable exception, glitches are also very narrow.

It is important to observe that glitches are not simply bugs that will surely be fixed at the next

release. For instance, the implementation of tgammaf in Ubuntu 19.10/x86_64 has more numerous

and deeper glitches than the one in Ubuntu 14.04/x86_64. Moreover, the implementation of cosf()
in Ubuntu 18.04/x86_64 contains one glitch in all rounding modes that was not present in previous

versions. The point is that monotonicity is not one of the objectives of most implementations of

math.h/cmath functions. For instance, both the manual [51] and the FAQ of GNU libc explicitly

exclude monotonicity from the accuracy goals of the library, so that bug reports about violated

monotonicity are closed as invalid.
11

Wewill now see how quasi-monotonicity can be exploited for the purposes of interval refinement

and, in turn, software verification. Afterwards, wewill deal with the special case of the trigonometric

functions, as they pose the additional problem of periodic slope inversions.

5 PROPAGATION ALGORITHMS
Let F be any IEEE 754 floating-point format and let S ⊆ ℘(F) be a bounded meet-semilattice. A

floating-point unary constraint over S is a formula of the form x ∈ 𝑆 for 𝑆 ∈ S.
Let 𝑓 : F→ F be a function and consider a constraint of the form y = 𝑓 (x) along with the unary

constraints x ∈ 𝑆𝑥 and y ∈ 𝑆𝑦 with 𝑆𝑥 , 𝑆𝑦 ∈ S.
Direct propagation amounts to computing a possibly refined set 𝑆 ′𝑦 ∈ S, such that

𝑆 ′𝑦 ⊆ 𝑆𝑦 ∧ ∀𝑥 ∈ 𝑆𝑥 : 𝑓 (𝑥) ∈ 𝑆𝑦 =⇒ 𝑓 (𝑥) ∈ 𝑆 ′𝑦 . (1)

Of course this is always possible by taking 𝑆 ′𝑦 = 𝑆𝑦 , but the objective of the game is to compute a

“small” (possibly the smallest) 𝑆 ′𝑦 satisfying (1), compatible with the available information on 𝑓 and

computing resources. The smallest 𝑆 ′𝑦 ∈ S that satisfies (1) is such that

∀𝑆 ′′𝑦 ∈ S : 𝑆 ′′𝑦 ⊂ 𝑆 ′𝑦 =⇒ ∃𝑥 ∈ 𝑆𝑥 . 𝑓 (𝑥) ∈ 𝑆𝑦 \ 𝑆 ′′𝑦 . (2)

Indirect propagation for the same constraints, y = 𝑓 (x), x ∈ 𝑆𝑥 and y ∈ 𝑆𝑦 , is the computation

of a possibly refined set for x, 𝑆 ′𝑥 , such that

𝑆 ′𝑥 ⊆ 𝑆𝑥 ∧ ∀𝑥 ∈ 𝑆𝑥 : 𝑓 (𝑥) ∈ 𝑆𝑦 =⇒ 𝑥 ∈ 𝑆 ′𝑥 .

Again, taking 𝑆 ′𝑥 = 𝑆𝑥 is always possible and sometimes unavoidable. The best we can hope for is

to be able to determine the smallest such set, i.e., satisfying

∀𝑆 ′′𝑥 ∈ S : 𝑆 ′′𝑥 ⊂ 𝑆 ′𝑥 =⇒ ∃𝑥 ∈ 𝑆𝑥 \ 𝑆 ′′𝑥 . 𝑓 (𝑥) ∈ 𝑆𝑦 . (3)

11
See, e.g., bug reports https://sourceware.org/bugzilla/show_bug.cgi?id=15898 and https://sourceware.org/bugzilla/show_

bug.cgi?id=15899, last accessed on July 16th, 2020.
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Satisfying predicates (2) and (3) corresponds to enforcing and obtaining domain consistency [66]

on our constraint set. This goal is often difficult to reach, especially if the underlying variable

domains are large. A less demanding approach is to seek interval consistency: we associate an

interval [𝑥𝑙 , 𝑥𝑢] to variable x and an interval [𝑦𝑙 , 𝑦𝑢] to y, and we try to obtain new intervals whose

bounds satisfy y = 𝑓 (x).
If 𝑓 is isotonic, direct propagation can be reduced to finding a new interval [𝑦 ′

𝑙
, 𝑦 ′

𝑢] such that

𝑦 ′
𝑙
≽ 𝑦𝑙 ∧∀𝑥 ∈ [𝑥𝑙 , 𝑥𝑢] : 𝑓 (𝑥)≽ 𝑦𝑙 =⇒ 𝑓 (𝑥) ≽ 𝑦 ′

𝑙
,

𝑦 ′
𝑢 ≼ 𝑦𝑢∧∀𝑥 ∈ [𝑥𝑙 , 𝑥𝑢] : 𝑓 (𝑥)≼ 𝑦𝑙 =⇒ 𝑓 (𝑥)≼ 𝑦 ′

𝑢 .

Taking 𝑦 ′
𝑙
= 𝑦𝑙 , 𝑦

′
𝑢 = 𝑦𝑢 trivially satisfies these predicates, but we aim to find an interval such that

∀𝑦 ′′
𝑙
∈ F : 𝑦 ′′

𝑙
≻ 𝑦 ′

𝑙
=⇒ ∃𝑥 ∈ [𝑥𝑙 , 𝑥𝑢] . 𝑦𝑙 ≼ 𝑓 (𝑥) ≺ 𝑦 ′′

𝑙
,

∀𝑦 ′′
𝑢 ∈ F : 𝑦 ′′

𝑢 ≺ 𝑦 ′
𝑢 =⇒ ∃𝑥 ∈ [𝑥𝑙 , 𝑥𝑢] . 𝑦 ′′

𝑢 ≺ 𝑓 (𝑥) ≼ 𝑦𝑢 .

Indirect propagation consists now in finding an interval [𝑥 ′
𝑙
, 𝑥 ′

𝑢] such that

𝑥 ′
𝑙
≽ 𝑥𝑙 ∧∀𝑥 ∈ [𝑥𝑙 , 𝑥𝑢] : 𝑓 (𝑥) ≽ 𝑦𝑙 =⇒ 𝑥 ≽ 𝑥 ′

𝑙
,

𝑥 ′
𝑢 ≼ 𝑥𝑢∧∀𝑥 ∈ [𝑥𝑙 , 𝑥𝑢] : 𝑓 (𝑥)≼ 𝑦𝑢 =⇒ 𝑥≼ 𝑥 ′

𝑢 .

An optimal result would satisfy

∀𝑥 ′′
𝑙
∈ F : 𝑥 ′′

𝑙
≻ 𝑥 ′

𝑙
=⇒ ∃𝑥 ∈ [𝑥𝑙 , 𝑥 ′′

𝑙
) . 𝑓 (𝑥) ≽ 𝑦𝑙 ,

∀𝑥 ′′
𝑢 ∈ F : 𝑥 ′′

𝑢 ≺ 𝑥 ′
𝑢 =⇒ ∃𝑥 ∈ (𝑥 ′′

𝑢 , 𝑥𝑢] . 𝑓 (𝑥) ≼ 𝑦𝑢 .

A possible compromise between domain and interval consistency is the use of multi-intervals.

It achieves further granularity by splitting domains into multiple intervals. The predicates given

above can be easily extended to “multi-interval consistency.”

Unfortunately, the functions we are concerned with are neither isotonic nor antitonic, because

of glitches. Yet, we devised algorithms that, given the implementation of a quasi-monotonic library

function 𝑓 : F→ F, an interval [𝑥𝑙 , 𝑥𝑢] for x and an interval [𝑦𝑙 , 𝑦𝑢] for y, compute refined bounds

for both intervals, satisfying the correctness predicates defined above and, in some cases, even

optimality predicates. These algorithms exploit simple data describing the glitches of a specific

function to overcome the issues generated by its quasi-monotonicity. Such data consist in safe

approximations 𝑛g, 𝑑M and𝑤M of, respectively, the total number of glitches 𝑛
𝑓
g
, their maximal depth

𝑑
𝑓

M
and width𝑤

𝑓

M
. Moreover, a safe approximation 𝛼 of where the first glitch starts, 𝛼 𝑓

, and a safe

approximation 𝜔 of where the last glitch ends inside the function’s domain, 𝜔 𝑓
, are needed.

If the values of such data are conservative, then the refined intervals computed by our algorithms

contain all solutions to the constraint y = 𝑓 (x). We call this property correctness. If all projections
involved in constraint solving are also correct, then no solution is mistakenly eliminated, and the

process yields no false negatives.

In general, the refined intervals may also contain values that are not solutions to the constraint,

which could potentially lead to false positives in the verification process. This is avoided at the

constraint-solving level by the labeling process, which splits variable domains until they become

singletons. All projections are made so that they always discard singletons iff they do not contain a

solution. For mathematical functions, this is done by the direct projection. Thus, if all projections

have this property, the constraint solving process never yields false positives. This has, however,

the drawback that the labeling process may lead to the enumeration of all values in the variable

domains, if the projections fail to further refine them. If such domains are large, this likely results

in a time-out. Thus, as we shall see in Section 7, the verification process yields no false positives or
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negatives, but don’t knows when it times out. Projections that fail to satisfy such requirements can,

in fact, lead to false positives or negatives (cf. Section 8).

5.1 Direct Propagation
Given an interval [𝑥𝑙 , 𝑥𝑢] for x and a function 𝑓 , finding a refined interval [𝑦 ′

𝑙
, 𝑦 ′

𝑢] for y satisfying

constraint y = 𝑓 (x) is trivial if 𝑓 is monotonic: computing [𝑦 ′
𝑙
, 𝑦 ′

𝑢] ≡
[
𝑓 (𝑥𝑙 ), 𝑓 (𝑥𝑢)

]
suffices.

However, the presence of glitches in quasi-monotonic functions raises two main issues:

• there may be glitches in [𝑥𝑙 , 𝑥𝑢] in which the value of the function is lower than 𝑓 (𝑥𝑙 );
• 𝑥𝑢 may be inside a glitch, and there may be values of 𝑥 outside it such that 𝑓 (𝑥) ≻ 𝑓 (𝑥𝑢).

If [𝑥𝑙 , 𝑥𝑢] and [𝛼,𝜔] do not intersect, 𝑓 can be treated as if it was monotonic. Otherwise, we

exploit the information about the glitches of 𝑓 to tackle these issues.

Lower bound 𝑦 ′
𝑙
: if 𝑥𝑙 ∈ [𝛼,𝜔], the worst-case scenario is that there is a glitch starting right

after 𝑥𝑙 , where the graph of 𝑓 goes lower than 𝑓 (𝑥𝑙 ). Such a glitch cannot be deeper than

pred
𝑑M (𝑓 (𝑥𝑙 )): we take this value as 𝑦 ′

𝑙
, the lower bound of the refined interval. If 𝑥𝑙 is not in

the “glitch-area,” then we consider the value of 𝑓 (𝛼): no glitch in [𝛼, 𝑥𝑢] can go lower than

pred
𝑑M (𝑓 (𝛼)). In this case, we set 𝑦 ′

𝑙
= min

{
𝑓 (𝑥𝑙 ), pred𝑑M (𝑓 (𝛼))

}
.

Upper bound 𝑦 ′
𝑢 : if 𝑥𝑢 ∉ [𝛼,𝜔], then it cannot be in a glitch, and 𝑦 ′

𝑢 = 𝑓 (𝑥𝑢). Otherwise, it may

be in a glitch, which cannot be deeper than 𝑑M: the actual maximum value of the function,

outside of the glitch, cannot be higher than succ
𝑑M (𝑓 (𝑥𝑢)). We set 𝑦 ′

𝑢 to this value.

If the actual range of 𝑓 in its whole domain is known, 𝑦 ′
𝑙
and 𝑦 ′

𝑢 can be compared with it to make

sure they do not fall outside.

5.2 Indirect Propagation
Assume function 𝑓 is quasi-isotonic. Indirect propagation, i.e., the process of inferring a new

interval [𝑥 ′
𝑙
, 𝑥 ′

𝑢] ⊆ [𝑥𝑙 , 𝑥𝑢] for x starting from the interval [𝑦𝑙 , 𝑦𝑢] for y, is carried out by separately

looking for a lower bound for the values of 𝑥 satisfying 𝑦𝑙 = 𝑓 (x), and an upper bound for the

values of 𝑥 satisfying 𝑦𝑢 = 𝑓 (x). We use such bounds to refine correctly interval [𝑥𝑙 , 𝑥𝑢] into
[𝑥 ′

𝑙
, 𝑥 ′

𝑢]. We designed two different algorithms, lower_bound and upper_bound, that carry out such
tasks for the equation 𝑦 = 𝑓 (x), where 𝑦 is a given single value of y. They extend the well known

dichotomic search method to quasi-isotonic functions. For brevity, we describe in detail algorithm

lower_bound in the next section, leaving upper_bound, which is symmetric, to Appendix B.

Function lower_bound (Algorithm 2) returns a value 𝑙 satisfying one of the following predicates:

𝑝0 (𝑦, 𝑥𝑙 , 𝑥𝑢, 𝑙) ≡ ∀𝑥 ∈ [𝑥𝑙 , 𝑥𝑢] : 𝑦 ≻ 𝑓 (𝑥),
𝑝1 (𝑦, 𝑥𝑙 , 𝑥𝑢, 𝑙) ≡ ∀𝑥 ∈ [𝑥𝑙 , 𝑙] : 𝑦 ≺ 𝑓 (𝑥),
𝑝2 (𝑦, 𝑥𝑙 , 𝑥𝑢, 𝑙) ≡ ∀𝑥 ∈ [𝑥𝑙 , 𝑙] : 𝑦 ≻ 𝑓 (𝑥),
𝑝3 (𝑦, 𝑥𝑙 , 𝑥𝑢, 𝑙) ≡ 𝑓 (𝑙) ≺ 𝑦 ≺ 𝑓 (succ(𝑙)) ∧ ∀𝑥 ∈ [𝑥𝑙 , 𝑙) : 𝑦 ≻ 𝑓 (𝑥),
𝑝4 (𝑦, 𝑥𝑙 , 𝑥𝑢, 𝑙) ≡ 𝑦 = 𝑓 (𝑙) ∧ ∀𝑥 ∈ [𝑥𝑙 , 𝑙) : 𝑦 ≻ 𝑓 (𝑥).

Such predicates express properties on whether the new bound for x satisfies equation 𝑦 = 𝑓 (x).
When condition 𝑝0 (𝑦, 𝑥𝑙 , 𝑥𝑢, 𝑙) holds, 𝑦 = 𝑓 (x) has no solution over [𝑥𝑙 , 𝑥𝑢]. Also if 𝑝1 (𝑦, 𝑥𝑙 , 𝑥𝑢, 𝑙)
holds with 𝑙 = 𝑥𝑢 , 𝑦 = 𝑓 (x) has no solution there. When 𝑝1 (𝑦, 𝑥𝑙 , 𝑥𝑢, 𝑙) holds with 𝑙 ≺ 𝑥𝑢 or

𝑝2 (𝑦, 𝑥𝑙 , 𝑥𝑢, 𝑙) holds, 𝑦 = 𝑓 (x) may have a solution and choosing 𝑥 ′
𝑙
= succ(𝑙) gives a correct

refinement for 𝑥𝑙 . When 𝑝3 (𝑦, 𝑥𝑙 , 𝑥𝑢, 𝑙) holds, we identified the leftmost point in [𝑥𝑙 , 𝑥𝑢] where 𝑓

crosses 𝑦 without touching it and we can set 𝑥 ′
𝑙
= succ(𝑙). Finally, when 𝑝4 (𝑦, 𝑥𝑙 , 𝑥𝑢, 𝑙) holds, we

identified the leftmost solution 𝑥 = 𝑙 of 𝑦 = 𝑓 (x) and we can set 𝑥 ′
𝑙
= 𝑙 .
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Function upper_bound returns a value 𝑢 that satisfies one of the predicates below:

𝑝5 (𝑦, 𝑥𝑙 , 𝑥𝑢, 𝑢) ≡ ∀𝑥 ∈ [𝑥𝑙 , 𝑥𝑢] : 𝑦 ≺ 𝑓 (𝑥),
𝑝6 (𝑦, 𝑥𝑙 , 𝑥𝑢, 𝑢) ≡ ∀𝑥 ∈ [𝑢, 𝑥𝑢] : 𝑦 ≻ 𝑓 (𝑥),
𝑝7 (𝑦, 𝑥𝑙 , 𝑥𝑢, 𝑢) ≡ ∀𝑥 ∈ [𝑢, 𝑥𝑢] : 𝑦 ≺ 𝑓 (𝑥),
𝑝8 (𝑦, 𝑥𝑙 , 𝑥𝑢, 𝑢) ≡ 𝑓 (pred(𝑢)) ≺ 𝑦 ≺ 𝑓 (𝑢) ∧ ∀𝑥 ∈ (𝑢, 𝑥𝑢] : 𝑦 ≺ 𝑓 (𝑥),
𝑝9 (𝑦, 𝑥𝑙 , 𝑥𝑢, 𝑢) ≡ 𝑦 = 𝑓 (𝑢) ∧ ∀𝑥 ∈ (𝑢, 𝑥𝑢] : 𝑦 ≺ 𝑓 (𝑥).

These predicates are the counterparts of 𝑝0-𝑝4 for upper_bound. If 𝑝5 (𝑦, 𝑥𝑙 , 𝑥𝑢, 𝑢) or 𝑝6 (𝑦, 𝑥𝑙 , 𝑥𝑢, 𝑢)
hold, the latter only with 𝑢 = 𝑥𝑙 , then 𝑦 = 𝑓 (x) has no solution in [𝑥𝑙 , 𝑥𝑢]. If 𝑝6 (𝑦, 𝑥𝑙 , 𝑥𝑢, 𝑢) holds
with 𝑢 ≺ 𝑥𝑢 , or 𝑝7 (𝑦, 𝑥𝑙 , 𝑥𝑢, 𝑢) holds with any 𝑢 ∈ [𝑥𝑙 , 𝑥𝑢], then 𝑦 = 𝑓 (x) has no solution in interval

[𝑢, 𝑥𝑢], but it might have a solution somewhere in [𝑥𝑙 , 𝑢). So, setting 𝑥 ′
𝑢 = pred(𝑢) is correct. If

𝑝8 (𝑦, 𝑥𝑙 , 𝑥𝑢, 𝑢) holds, then we identified the rightmost point in [𝑥𝑙 , 𝑥𝑢] where the graph of 𝑓 crosses

𝑦 without touching it. Setting 𝑥 ′
𝑢 = pred(𝑢) is correct. Finally, when 𝑝9 (𝑦, 𝑥𝑙 , 𝑥𝑢, 𝑢) holds, we found

the rightmost solution 𝑥 = 𝑢 of equation 𝑦 = 𝑓 (x), and setting 𝑥 ′
𝑢 = 𝑢 is correct.

When function 𝑓 is quasi-isotonic, the results of invoking lower_bound on 𝑦𝑙 and upper_bound
on 𝑦𝑢 are combined to refine the interval [𝑥𝑙 , 𝑥𝑢] into [𝑥 ′

𝑙
, 𝑥 ′

𝑢], as follows.
• If 𝑝0 or 𝑝5 hold, then there is no solution, because the entire graph of the function is either

below or above the interval for y. Note that 𝑝0 implies 𝑝6 and 𝑝5 implies 𝑝1.

• If 𝑝1 holds, we set 𝑥
′
𝑙
= 𝑥𝑙 even if 𝑙 ≻ 𝑥𝑙 . In fact, although the graph of the function is entirely

above 𝑦𝑙 , there might be a value 𝑦 ′
𝑙
such that 𝑦𝑙 ≺ 𝑦 ′

𝑙
≼ 𝑦𝑢 that satisfies 𝑦 ′

𝑙
= 𝑓 (x) for some

𝑥 ∈ [𝑥𝑙 , 𝑙], so [𝑥𝑙 , 𝑙] cannot be excluded. However, if y is a singleton, or if 𝑝5 holds, then there

are no solutions. The upper bound is treated similarly: unless y is a singleton or 𝑝0 holds, 𝑥
′
𝑢

must be set to 𝑥𝑢 if 𝑝6 holds.

• If 𝑝3 and 𝑝8 both hold and 𝑙 ≻ 𝑢, then there is no solution for y = 𝑓 (x).
• For all other predicates, 𝑥 ′

𝑙
and 𝑥 ′

𝑢 can be set as stated below the definitions of the predicates.

The same algorithms are used for the quasi-antitonic functions, because if 𝑓 is quasi-antitonic,

then −𝑓 is quasi-isotonic. They are called with 𝑓 ′ = −𝑓 , 𝑓 i′ = 𝑓 ◦ (−id), and −𝑦𝑢 instead of 𝑦𝑙 for

lower_bound, and −𝑦𝑙 in place of 𝑦𝑢 for upper_bound. When they terminate, 𝑝𝑖 (−𝑦𝑢, 𝑥𝑙 , 𝑥𝑢, 𝑙) and
𝑝 𝑗 (−𝑦𝑙 , 𝑥𝑙 , 𝑥𝑢, 𝑢), 0 ≤ 𝑖 ≤ 4 and 5 ≤ 𝑗 ≤ 9, hold for −𝑓 . Since −𝑦 ≺ −𝑓 (𝑥) ⇐⇒ 𝑦 ≻ 𝑓 (𝑥) and
−𝑦 ≻ −𝑓 (𝑥) ⇐⇒ 𝑦 ≺ 𝑓 (𝑥), they do not hold on 𝑓 directly, but since 𝑦𝑙 and 𝑦𝑢 are switched, the

same case analysis can be done to obtain 𝑥 ′
𝑙
and 𝑥 ′

𝑢 depending on the values of 𝑖 and 𝑗 .

5.2.1 Computation of the Lower Bound for 𝑦 = 𝑓 (x). Given a value for 𝑦 and equation 𝑦 = 𝑓 (x),
Algorithm 2 computes a correct lower bound refining the interval of x. Its preconditions are
listed in the Require statement and demand a quasi-isotonic function 𝑓 : F → F, a value 𝑦 ∈ F,
and an interval [𝑥𝑙 , 𝑥𝑢] for x to be refined. To be as precise as possible, the algorithm needs safe

approximations of the glitch data listed previously in this section. It also uses an inverse function

𝑓 i : F → F, if available. To avoid complexity issues, parameter 𝑡 ∈ N fixes the maximum length

of the linear searches the algorithm performs in some cases, and 𝑠 ∈ N is the maximum number

of times function logsearch_lb in Algorithm 4 can return an interval too wide to ensure the

logarithmic complexity of the dichotomic search.

The algorithm ends guaranteeing the post-conditions in the Ensure statement, where predicates

𝑝𝑟 (𝑦, 𝑥𝑙 , 𝑥𝑢, 𝑙) for 𝑟 ∈ {0, . . . , 4} are those described previously. The post-conditions are divided

in two parts: the correctness part is preceded by c and the precision part by p . The algorithm

determines 𝑟 and 𝑙 by performing a number of calls to library function 𝑓 bounded by a small

constant 𝑘 (e.g., 𝑘 = 3), times the logarithm of #[𝑥𝑙 , 𝑥𝑢].
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Algorithm 2 Indirect propagation: lower_bound(𝑓 , 𝑦, [𝑥𝑙 , 𝑥𝑢], 𝑛g, 𝑑M,𝑤M, 𝛼, 𝜔, 𝑓
i, 𝑠, 𝑡)

Require: 𝑓 : F → F, 𝑦 ∈ F, [𝑥𝑙 , 𝑥𝑢] ∈ IF, 𝑛g ≥ 𝑛
𝑓
g
, 𝑑M ≥ 𝑑

𝑓

M
, 𝑤M ≥ 𝑤

𝑓

M
, 𝛼 ≼ 𝛼 𝑓

, 𝜔 ≽ 𝜔 𝑓
,

𝑛g > 0 =⇒ (𝑥𝑙 ≼ 𝛼 ≼ 𝜔 ≼ 𝑥𝑢), 𝑓 i : F→ F, 𝑠, 𝑡 ∈ N.
Ensure: c 𝑙 ∈ F, 𝑟 ∈ {0, 1, 2, 3, 4} =⇒ 𝑝𝑟 (𝑦, 𝑥𝑙 , 𝑥𝑢, 𝑙)

p

(
𝑓 (𝑥𝑙 ) ≼ 𝑦 ≼ 𝑓 (𝑥𝑢) ∧

(
𝑛g = 0 ∨𝑤M < 𝑡 ∨ (𝑛g = 1 ∧ 𝛼 = 𝛼 𝑓 )

) )
=⇒ 𝑟 ∈ {3, 4}

1: 𝑖 := init(𝑦, [𝑥𝑙 , 𝑥𝑢], 𝑓 i); ⊲ 𝑥𝑙 ≼ 𝑖 ≼ 𝑥𝑢
2: (lo, hi) := gallop_lb(𝑓 , 𝑦, [𝑥𝑙 , 𝑥𝑢], 𝑑M, 𝑖);
3: ⊲ (𝑥𝑙 ≼ lo ≼ hi ≼ 𝑥𝑢) ∧ (𝑥𝑙 ≺ lo =⇒ #[𝑓 (lo), 𝑦) > 𝑑M) ∧ (𝑥𝑢 ≻ hi =⇒ 𝑓 (hi) ≽ 𝑦)
4: if 𝑓 (lo) ≻ 𝑦 then
5: if 𝑛g = 0 ∨ #[𝑦, 𝑓 (𝛼)) > 𝑑M then
6: 𝑙 = 𝑥𝑢 ; 𝑟 := 1; return
7: else
8: 𝑙 := 𝛼 ; 𝑟 := 1; return
9: end if
10: else if 𝑓 (lo) = 𝑦 then
11: 𝑙 := lo; 𝑟 := 4; return
12: end if;
13: if 𝑓 (hi) ≺ 𝑦 then
14: (𝑟, 𝑙, hi) := findhi_lb(𝑓 , 𝑦, [𝑥𝑙 , 𝑥𝑢], 𝑛g, 𝑑M,𝑤M, 𝛼, 𝜔, 𝑡);
15: if 𝑟 ∈ {0, 2} then return
16: end if
17: end if;
18: lo := bisect_lb(𝑓 , 𝑦, [𝑥𝑙 , 𝑥𝑢], 𝑛g, 𝑑M,𝑤M, 𝛼, 𝜔, 𝑠, 𝑡, lo, hi);
19: while 𝑓 (succ(lo)) ≺ 𝑦 ∧ 𝑡 > 0 do
20: lo := succ(lo);
21: 𝑡 := 𝑡 − 1

22: end while;
23: if 𝑓 (succ(lo)) ≻ 𝑦 then 𝑙 := lo; 𝑟 := 3

24: else if 𝑓 (succ(lo)) = 𝑦 then 𝑙 := succ(lo); 𝑟 := 4

25: else 𝑙 := lo; 𝑟 := 2

26: end if

The code in lines 1-17 sorts out all edge cases and chooses two values lo and hi suitable to start

the dichotomic search, carried out by function bisect_lb. First, it calls function init, that takes a
value 𝑦, interval [𝑥𝑙 , 𝑥𝑢], and an inverse function 𝑓 i : F→ F, if available, and returns a point inside

[𝑥𝑙 , 𝑥𝑢]. init returns 𝑓 i (𝑦) if 𝑥𝑙 ≼ 𝑓 i (𝑦) ≼ 𝑥𝑢 , and the middle point between 𝑥𝑙 and 𝑥𝑢 , otherwise.

Next, function gallop_lb finds values lo and hi, satisfying the precondition of algorithm

bisect_lb, i.e., so that 𝑥𝑙 ≼ lo ≼ hi ≼ 𝑥𝑢 , 𝑥𝑙 ≺ lo =⇒ #[𝑓 (lo), 𝑦) > 𝑑M and 𝑥𝑢 ≻ hi =⇒
𝑓 (hi) ≽ 𝑦. gallop_lb starts with hi = 𝑖 and increases it (e.g., by multiplying it by 2) until it finds a

value such that hi ≺ 𝑥𝑢 and 𝑓 (hi) ≽ 𝑦. If no such value can be found, it sets hi = 𝑥𝑢 . Similarly, it

finds a value lo such that 𝑥𝑙 ≺ lo and #[𝑓 (lo), 𝑦) > 𝑑M, or it sets lo = 𝑥𝑙 .

The case in which 𝑓 (lo) ≻ 𝑦 is then handled by lines 4-9. We need to determine if [𝑥𝑙 , 𝑥𝑢] really
does not contain any solution for 𝑦, i.e. if, for each 𝑥 ∈ [𝑥𝑙 , 𝑥𝑢], 𝑦 ≻ 𝑓 (𝑥) holds. If glitches are too
deep, a suboptimal value for 𝑙 is returned, and the algorithm terminates. If 𝑓 (lo) = 𝑦 at line 10, the

exact solution for the lower bound was found, and it is returned.
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Algorithm 3 Indirect propagation: findhi_lb(𝑓 , 𝑦, [𝑥𝑙 , 𝑥𝑢], 𝑛g, 𝑑M,𝑤M, 𝛼, 𝜔, 𝑡)

Require: 𝑓 : F → F, 𝑦 ∈ F, [𝑥𝑙 , 𝑥𝑢] ∈ IF, 𝑛g ≥ 𝑛
𝑓
g
, 𝑑M ≥ 𝑑

𝑓

M
, 𝑤M ≥ 𝑤

𝑓

M
, 𝛼 ≼ 𝛼 𝑓

, 𝜔 ≽ 𝜔 𝑓
,

𝑛g > 0 =⇒ (𝑥𝑙 ≼ 𝛼 ≼ 𝜔 ≼ 𝑥𝑢), 𝑡 ∈ N, 𝑓 (𝑥𝑢) ≺ 𝑦.

Ensure: 𝑙 ∈ F, 𝑟 ∈ {0, 2} =⇒ 𝑝𝑟 (𝑦, 𝑥𝑙 , 𝑥𝑢, 𝑙), 𝑟 = 1 =⇒
(
hi ∈ [𝑥𝑙 , 𝑥𝑢] ∧ 𝑓 (hi) ≽ 𝑦

)
.

1: 𝑙 = 𝑥𝑙 ;

2: if 𝑛g = 0 ∨ 𝑥𝑢 ≻ 𝜔 ∨ #[𝑓 (𝑥𝑢), 𝑦) > 𝑑M then 𝑟 := 0

3: else if 𝑛g = 1 ∧
(
𝑤M > 𝑡 ∨ 𝑓 (succ(𝛼)) ≺ 𝑓 (𝛼)

)
then

4: if 𝑦 ≻ 𝑓 (𝛼) then
5: if 𝑓 (succ(𝛼)) ≺ 𝑓 (𝛼) then 𝑟 := 0

6: else 𝑙 := 𝛼 ; 𝑟 := 2

7: end if
8: else hi := 𝛼 ; 𝑟 := 1

9: end if
10: else
11: (𝑏, hi) := linsearch_geq(𝑓 , 𝑦, [𝑥𝑙 , 𝑥𝑢],𝑤M, 𝑡);
12: ⊲

(
𝑏 = 1 ∧ hi ∈ [𝑥𝑙 , 𝑥𝑢] ∧ 𝑓 (hi) ≽ 𝑦

)
∨
(
𝑏 = 0 ∧ ∀𝑥 ∈ [𝑥, 𝑥𝑢] : 𝑓 (𝑥) ≺ 𝑦

)
13: ⊲ where 𝑥 = max{𝑥𝑙 , pred𝑣 (𝑥𝑢)} and 𝑣 = min{𝑡,𝑤M}
14: if 𝑏 = 1 then 𝑟 := 1

15: else if 𝑡 ≥ 𝑤M then 𝑟 := 0

16: else 𝑙 := 𝑥𝑙 ; 𝑟 := 2

17: end if
18: end if

In line 14, function findhi_lb (Algorithm 3) handles the case where hi = 𝑥𝑢 and 𝑓 (𝑥𝑢) ≺ 𝑦. This

may arise if either for no 𝑥 ∈ [𝑥𝑙 , 𝑥𝑢] we have 𝑓 (𝑥) ≽ 𝑦, or if there is a value 𝑥 ′ ∈ [𝑥𝑙 , 𝑥𝑢] such that

𝑓 (𝑥 ′) ≽ 𝑦, but 𝑥𝑢 is in a glitch. In the latter case, 𝑓 is not monotonic in [𝑥𝑙 , 𝑥𝑢], and 𝑓 (𝑥𝑢) is not a
safe upper bound to the value of 𝑓 in it. findhi_lb discriminates quickly between these two cases

and tries to find a value of hi suitable for bisect_lb. In this case, it returns 𝑟 = 1.

• If 𝑥𝑢 might be in a glitch wider than 𝑡 (lines 3-9), for the sake of efficiency we do not perform

an exhaustive search. By inspecting 𝑓 (𝛼), we may still be able to set 𝑟 = 0, to signify that

∀𝑥 ∈ [𝑥𝑙 , 𝑥𝑢] : 𝑓 (𝑥) ≺ 𝑦, or 𝑟 = 1 and hi to 𝛼 . If we do not have enough information to chose

one of these options, we just set 𝑟 = 2 and 𝑙 to a valid (but suboptimal) lower bound.

• Otherwise, linsearch_geq(𝑓 , 𝑦, [𝑥𝑙 , 𝑥𝑢],𝑤M, 𝑡) performs a backward, float-by-float search

for no more than min(𝑡,𝑤M) steps, starting from hi = 𝑥𝑢 , looking for the first value hi such

that 𝑓 (hi) ≽ 𝑦. The search stops in two cases, discriminated by the value of variable 𝑏.

𝑏 = 0 : no value for hi was found within 𝑡 search steps. If they were enough to cover the

glitch, we set 𝑟 = 0 since ∀𝑥 ∈ [𝑥𝑙 , 𝑥𝑢] : 𝑓 (𝑥) ≺ 𝑦. Otherwise we set 𝑟 = 2 and return 𝑥𝑙 .

𝑏 = 1 : a value of hi appropriate for bisect_lb was found.

Line 16 of lower_bound is reached if findhi_lb returns 𝑟 = 1, so 𝑥𝑙 ≼ hi ≼ 𝑥𝑢 and 𝑓 (hi) ≽ 𝑦.

Before the invocation of function bisect_lb (Algorithm 4) at line 18, we have 𝑓 (lo) ≺ 𝑦 ≼ 𝑓 (hi),
so lo ≠ hi. bisect_lb adapts the dichotomic method to refine interval [lo, hi] when 𝑓 is a quasi-

isotonic function. Each iteration of the while loop on line 1 uses function split_point to pick

the middle point, mid, of interval [lo, hi], so that the cardinalities of [lo,mid] and [mid, hi] differ
at most by 1. Then, 𝑓 (mid) is compared with 𝑦. If 𝑓 (mid) ≽ 𝑦, hi is updated with the value of mid.

The critical case is when 𝑓 (mid) ≺ 𝑦. Function bisect_lb further discriminates whether lo can be

updated with the value of mid or other refinements of [lo, hi] are possible.
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Algorithm 4 Indirect propagation: bisect_lb(𝑓 , 𝑦, [𝑥𝑙 , 𝑥𝑢], 𝑛g, 𝑑M,𝑤M, 𝛼, 𝜔, 𝑠, 𝑡, lo, hi)
Require: 𝑥𝑙 ≼ lo ≺ hi ≼ 𝑥𝑢 . 𝑓 (lo) ≺ 𝑦 ≼ 𝑓 (hi), ∀𝑥 ∈ [𝑥𝑙 , lo] : 𝑓 (𝑥) ≺ 𝑦 𝑓 : F → F, 𝑦 ∈ F,

[𝑥𝑙 , 𝑥𝑢] ∈ IF, 𝑛g ≥ 𝑛
𝑓
g
, 𝑑M ≥ 𝑑

𝑓

M
, 𝑤M ≥ 𝑤

𝑓

M
, 𝛼 ≼ 𝛼 𝑓

, 𝜔 ≽ 𝜔 𝑓
, 𝑛g > 0 =⇒ (𝑥𝑙 ≼ 𝛼 ≼ 𝜔 ≼ 𝑥𝑢),

𝑠, 𝑡 ∈ N.
Ensure: c 𝑥𝑙 ≼ lo ≺ hi ≼ 𝑥𝑢 , 𝑓 (lo) ≺ 𝑦 ≼ 𝑓 (hi), ∀𝑥 ∈ [𝑥𝑙 , lo] : 𝑓 (𝑥) ≺ 𝑦,

p

(
𝑛g = 0 ∨𝑤M < 𝑡 ∨ (𝑛g = 1 ∧ 𝛼 = 𝛼 𝑓 )

)
=⇒ 𝑓 (succ(lo)) ≽ 𝑦

1: while #[lo, hi) > 1 do
2: mid := split_point(lo, hi);
3: ⊲ ∃𝑚,𝑚′ > 0 . |𝑚 −𝑚′ | ≤ 1 ∧mid = pred

𝑚 (hi) = succ
𝑚′ (lo)

4: if 𝑦 ≼ 𝑓 (mid) then hi := mid

5: else if 𝑛g = 0 ∨mid ≼ 𝛼 ∨mid ≽ 𝜔 ∨ #[𝑓 (mid), 𝑦) > 𝑑M then lo := mid

6: else if 𝑛g = 1 ∧
(
𝑤M > 𝑡 ∨ 𝑓 (succ(𝛼)) ≺ 𝑓 (𝛼)

)
then

7: if 𝑓 (𝜔) ≽ 𝑦 then
8: if 𝑓 (𝛼) ≽ 𝑦 then hi := 𝛼

9: else if 𝑓 (succ(𝛼)) ≺ 𝑓 (𝛼) then lo := mid

10: else if lo ≺ 𝛼 then lo := 𝛼

11: else break
12: end if
13: else lo := 𝜔

14: end if
15: else if 𝑤M ≤ 𝑡 then
16: 𝑏 := findfmax(𝑓 ,𝑤M, lo,mid);
17: ⊲ 𝑏 ∈

[
max{lo, pred𝑤M (mid)},mid

]
∧ ∀𝑥 ∈

[
max{lo, pred𝑤M (mid)},mid

]
: 𝑓 (𝑥) ≼ 𝑓 (𝑏)

18: if 𝑓 (𝑏) ≽ 𝑦 then hi := 𝑏

19: else lo := mid

20: end if
21: else
22: 𝑧 := logsearch_lb(𝑓 , 𝑑M, lo,mid, 𝑦, 𝑠);
23: ⊲ 𝑧 ∈ [lo,mid] ∧

(
(lo ≺ 𝑧) =⇒ #[𝑓 (𝑧), 𝑦) > 𝑑M

)
24: if lo ≺ 𝑧 then lo := 𝑧

25: else break
26: end if
27: end if
28: end while

• If mid is not in a glitch, (if-guard on line 5) lo can be updated with the value of mid.

• Otherwise, if there is only one glitch, wider than 𝑡 (𝑤M > 𝑡 ), or starting exactly at 𝛼 (i.e.,

𝑓 (succ(𝛼)) ≺ 𝑓 (𝛼)), and mid may be in it, the algorithm compares 𝑓 (𝛼) and 𝑓 (𝜔) with 𝑦 in

order to set lo to the greatest correct value. If 𝑓 (𝜔) ≺ 𝑦, then the function cannot reach 𝑦

before 𝜔 , and we set lo to 𝜔 . Otherwise, we set hi to 𝛼 if 𝑓 (𝛼) ≽ 𝑦, and continue searching

for 𝑦 in the lower part of the interval. If 𝑓 (𝛼) ≺ 𝑦 and the glitch starts at 𝛼 , then even if mid

is in the glitch, there cannot be values of 𝑓 reaching 𝑦 before mid. Otherwise, we set lo to 𝛼 .

• If mid may be in a glitch narrower than 𝑡 , function findfmax finds the value 𝑏 inside interval[
max{lo, pred𝑤M (mid)},mid

]
where 𝑓 (𝑏) is the maximal. 𝑏 is then used to refine [lo, hi].
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• If mid may be in a glitch wider than 𝑡 , bisect_lb refrains from running the expensive float-

by-float search performed by findfmax and calls logsearch_lb. If it exists, this function
finds a value 𝑧 ∈ [lo,mid] such that #[𝑓 (𝑧), 𝑦) > 𝑑M. If 𝑧 is found, it is used to refine [lo, hi].

logsearch_lb performs a logarithmic search to find a value 𝑧 as above. Its argument 𝑠 ∈ N is (for

efficiency reasons) a limit to the number of times logsearch_lb can return an excessively wide

interval as a refinement of [𝑥𝑙 , 𝑥𝑢]. If 𝑠 has not been reached yet, logsearch_lb starts with 𝑧 = mid

and decreases it (e.g., by dividing it by 2) until #[𝑓 (𝑧), 𝑦) > 𝑑M. Otherwise, it sets 𝑧 to lo.

The post-condition of bisect_lb ensures 𝑥𝑙 ≼ lo ≺ hi ≼ 𝑥𝑢 , 𝑓 (lo) ≺ 𝑦 ≼ 𝑓 (hi) and ∀𝑥 ∈
[𝑥𝑙 , lo] : 𝑓 (𝑥) ≺ 𝑦 hold when it terminates. At line 19 of lower_bound, a while loop performs a

float-by-float search (for at most 𝑡 iterations) to approach the exact solution of𝑦 = 𝑓 (x). Afterwards,
the loop invariant∀𝑥 ∈ [𝑥𝑙 , lo] : 𝑓 (𝑥) ≺ 𝑦 holds. An if block (lines 23-25) tests if an optimal solution

of 𝑦 = 𝑓 (x) was found. If the else statement is reached, then the while loop terminated because 𝑡

reached 0. In this case, 𝑙 is set to lo, a suboptimal solution of 𝑦 = 𝑓 (x).
The pseudocode of functions init, gallop_lb, linsearch_geq, findfmax and logsearch_lb

is not shown, because they are straightforward.

The next results state that Algorithms 2, 3 and 4 are correct.

Lemma 5.1. Whenever function findhi_lb of Algorithm 3 is called on actual parameters satisfying
the Require condition, all values computed by findhi_lb satisfy the Ensure condition.

Proof. (Sketch) The proof begins by assuming the precondition for findhi_lb(𝑓 , 𝑦, [𝑥𝑙 , 𝑥𝑢],
𝑛g, 𝑑M,𝑤M, 𝛼, 𝜔, 𝑡) is satisfied: in particular, 𝑓 (𝑥𝑢) ≺ 𝑦. Then, a case analysis on the values of

𝑛g,𝑤M, 𝑓 (𝑥𝑢), 𝑓 (𝛼) and succ(𝛼) determines if a value for hi suitable for bisection can be computed

with at most 𝑡 iterations. In these cases, function findhi_lb returns 𝑟 = 1. If, at least, a new value

𝑙 such that ∀𝑥 ∈ [𝑥𝑙 , 𝑙] : 𝑦 ≻ 𝑓 (𝑥) can be found, function findhi_lb returns either 𝑟 = 0 or 𝑟 = 2.

When 𝑟 = 0 the value of 𝑙 is set to 𝑥𝑢 . □

Lemma 5.2. Whenever function bisect_lb of Algorithm 4 is called on actual parameters satisfying
the Require condition, the values computed by bisect_lb satisfy the Ensure conditions.

Proof. (Sketch) We assume that the precondition for bisect_lb(𝑓 , 𝑦, [𝑥𝑙 , 𝑥𝑢], 𝑛g, 𝑑M,𝑤M, 𝛼, 𝜔,

𝑛𝑔, 𝑠, 𝑡) is satisfied and consider the following while loop invariant:

Inv ≡ (𝑥𝑙 ≼ lo ≺ hi ≼ 𝑥𝑢) ∧ (𝑓 (lo) ≺ 𝑦 ≼ 𝑓 (hi)) ∧ (∀𝑥 ∈ [𝑥𝑙 , lo] : 𝑓 (𝑥) ≺ 𝑦).
The schema of the proof consists in proving the following properties of thewhile loop of bisect_lb.
Initialization: Inv holds prior to the first loop iteration. Note that this is true since it is entailed by

the Require statement.

Maintenance: assuming that Inv holds at the beginning of an arbitrary loop iteration, we prove, by

case analysis, that Inv holds at the end of that iteration, as well.

Termination: we prove that #[lo, hi] decreases at each iteration. Since the guard of the while loop
at line 1 tests the condition #[lo, hi) > 1, that is equivalent to #[lo, hi] > 2, it is guaranteed

that the loop always terminates.

Correctness: the correctness post-condition coincides with invariant Inv. To prove the precision
post-condition we show that, at the exit of the loop, succ(lo) = hi holds. Therefore, by Inv,

we have 𝑦 ≼ 𝑓 (hi), which implies 𝑓 (succ(lo)) ≽ 𝑦.

□

As a consequence of the precision post-condition, the following result also shows that when

function 𝑓 is isotonic or it has glitches narrower than 𝑡 , Algorithm 2 finds a precise solution, i.e., it

returns either 𝑟 = 3 or 𝑟 = 4.
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Theorem 5.3. Whenever function lower_bound of Algorithm 2 is called on actual parameters
satisfying theRequire condition, the values computed by lower_bound satisfy the Ensure conditions.

Proof. (Sketch) We assume the precondition for lower_bound(𝑦, [𝑥𝑙 , 𝑥𝑢], 𝑛g, 𝑑M,𝑤M, 𝛼, 𝜔, 𝑓
i, 𝑡)

holds. In order to prove the correctness post-condition we proceed as follow. First, we prove that,

when calling function gallop_lb at line 2, the actual parameters satisfy the Require conditions
of gallop_lb. Then, we know that function gallop_lb(𝑓 , 𝑦, [𝑥𝑙 , 𝑥𝑢], 𝑑M, 𝑖) returns values for lo
and hi satisfying the post-condition of line 3. Now, a case analysis on the comparison between

the value of 𝑓 (lo) and 𝑦 on line 4 and on line 10 directly proves the post-condition for 𝑟 = 1 and

𝑟 = 4. The next step is to prove that the precondition of findhi_lb is satisfied. Afterwards, by

Lemma 5.1, the post-condition of findhi_lb holds. Therefore, when findhi_lb terminates, the

post-conditions for 𝑟 = 0 and 𝑟 = 2 are proved. Then, the last step is proving that for 𝑟 ≠ 0 and 𝑟 ≠ 2

the preconditions of function bisect_lb are met. By Lemma 5.2, after it returns, 𝑥𝑙 ≼ lo ≺ hi ≼ 𝑥𝑢 ,

𝑓 (lo) ≺ 𝑦 ≼ 𝑓 (hi) and ∀𝑥 ∈ [𝑥𝑙 , lo] : 𝑓 (𝑥) ≺ 𝑦 hold, for the new values of lo and hi. At line 19 a

while loop is entered. This loop performs a float-by-float search (for a maximum of 𝑡 iterations) to

approach the exact solution of𝑦 = 𝑓 (x). We prove that the predicate ∀𝑥 ∈ [𝑥𝑙 , lo] : 𝑓 (𝑥) ≺ 𝑦, which

is also the loop invariant, holds at line 22. To this aim, we prove the following loop properties:

Initialization: the invariant ∀𝑥 ∈ [𝑥𝑙 , lo] : 𝑓 (𝑥) ≺ 𝑦 holds prior to the first loop iteration because it

is entailed by the post-condition of function bisect_lb.
Maintenance: we assume ∀𝑥 ∈ [𝑥𝑙 , lo] : 𝑓 (𝑥) ≺ 𝑦 holds at the beginning of an arbitrary loop

iteration. This assumption, together with the guard of the loop 𝑓 (succ(lo)) ≺ 𝑦 and the

assignment lo
′
:= succ(lo) in the body of the loop, allows us to conclude that ∀𝑥 ∈ [𝑥𝑙 , lo′] :

𝑓 (𝑥) ≺ 𝑦 holds also at the end of the iteration.

Termination: the loop terminates because, by the post-condition of bisect_lb, there exists a value
hi such that lo ≺ hi and 𝑦 ≼ 𝑓 (hi). Moreover, the loop can end before reaching such value,

because the parameter 𝑡 ∈ N is decremented inside the loop, until it reaches 0.

Correctness: as a consequence, at the end of the loop, the property ∀𝑥 ∈ [𝑥𝑙 , lo] : 𝑓 (𝑥) ≺ 𝑦 holds

and either 𝑓 (succ(lo)) ≽ 𝑦 or 𝑡 = 0.

Finally, the test on 𝑓 (succ(lo)) ≻ 𝑦 at line 23 allows us to prove the post-condition for 𝑟 ∈ {2, 3, 4}
by case analysis. □

Therefore, algorithm lower_bound ensures the optimality of the bound in the following cases:

• 𝑛g = 0: the function is monotonic, or

• 𝑤M < 𝑡 : the glitches are not too large to perform linear searches, or

• 𝑛g = 1 and 𝛼 = 𝛼 𝑓
: 𝑓 has one glitch only, and the position where it begins is known exactly.

For most functions, the worst-case computational complexity of lower_bound in Algorithm 2,

measured as the number of calls to function 𝑓 , has the form 𝑘 log
2

(
#[𝑥𝑙 , 𝑥𝑢]

)
+ 𝑘 + 𝑐 , for small

constants𝑘 and 𝑐 that are related to𝑤M. This follows from lower_bound being based on a dichotomic

search, with occasional linear searches limited by a constant.

Theorem 5.4. If 𝑓 : F → F is an isotonic function, i.e., 𝑛g = 0, then, for each [𝑥𝑙 , 𝑥𝑢] ∈ IF, 𝑑M,
𝑤M, 𝛼 , 𝜔 , 𝑓 i : F → F, 𝑠, 𝑡 ∈ N, computing lower_bound as per Algorithm 2 evaluates 𝑓 at most
2 log

2
(#[𝑥𝑙 , 𝑥𝑢]) + 4 times.

Moreover, if 𝑓 has at least one glitch and𝑤M ≤ 𝑡 , 𝑘 is strictly related to𝑤M.

Theorem 5.5. If 𝑓 : F→ F has short glitches, that is,𝑛g > 0 but𝑤M < 𝑡 , then, for each [𝑥𝑙 , 𝑥𝑢] ∈ IF,
𝑑M, 𝛼 , 𝜔 , 𝑓 i : F → F, 𝑠 ∈ N, computing lower_bound as per Algorithm 2 evaluates 𝑓 at most
(𝑤M + 1) log

2

(
#[𝑥𝑙 , 𝑥𝑢]

)
+𝑤M + 6 times.

The formal proofs of all results can be found in [6].
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6 TRIGONOMETRIC FUNCTIONS
The propagators for trigonometric functions (i.e., the floating-point approximations of sin, cos and

tan) require a more complex approach to quasi-monotonicity. The underlying (partial) functions

in R ↣ R change their monotonicity periodically. In particular, the sin function changes its

monotonicity in odd multiples of
𝜋
2
(of the form (2𝑘 + 1) 𝜋

2
, 𝑘 ∈ R) while the cos functions does

so in even multiples (of the form 2𝑘 𝜋
2
). The tan function has asymptotes in odd multiples of

𝜋
2
,

and in the intervals between them it is isotonic. Because of this behaviour, Definition 4.2 fails

to distinguish glitches caused by the implementation from “legitimate” monotonicity changes.

However, if we separately consider a quasi-monotonic branch of the periodic function that is

significantly wider than the widest glitch in terms of ULPs, we can locally apply Definition 4.2. If

we limit our reasoning to each quasi-monotonic branch separately, all the statements we made for

quasi-monotonic functions locally hold, and we can use the same methods we developed for them.

To properly identify monotonicity glitches in trigonometric functions, we need:

• an interval in which the density of floating point values in every quasi-monotonic branch of

the functions’ graphs is sufficiently high;

• a way to split their domain into quasi-monotonic branches.

6.1 An Appropriate Domain for Trigonometric Functions Analysis
To choose a domain suitable for the search of monotonicity glitches, wemust consider that, while the

period of a trigonometric function is constant, the distance between two consecutive floating-point

numbers increases with the exponent. Such distance is expressed by the value of the ulp : R→ R
function: we will use the definition of ulp given in [58, Definition 5]. A floating-point interval in

which the idea of a monotonicity glitch is well defined should have a sufficient cardinality to allow

for glitches that do not cover the entire interval.

Let 𝑥 ∈ F be a positive normal floating-point number: then ulp(𝑥) = 𝑥 − pred(𝑥) = 2
𝑒
pred(𝑥 )−𝑝+1

,

where 𝑝 is the precision of the format, and 𝑒pred(𝑥) the exponent of pred(𝑥). For trigonometric

functions, the size in R of the intervals in which the function has constant monotonicity is 𝜋 . If

we consider an interval [−ℓmax, ℓmax] in which for each 𝑥 ∈ [−ℓmax, ℓmax] we have ulp(𝑥) ≤ 0.5,

then each monotonic branch contains at least 6 or 7 floats, which is acceptable for the propagators

described in Section 5, if glitches have a width of 1 or 2 floats. In intervals with a higher ulp value,

the notion of glitches would be hardly meaningful. So, we use a maximum exponent 𝑒ℓmax
= 𝑝 − 1,

leading to a domain [−ℓmax, ℓmax] with ℓmax = 2
𝑝−1

. In conclusion, ℓmax = 2
23

for the IEEE 754

single-precision format, and ℓmax = 2
52
for double-precision.

As we noted in Section 1, domains like these are still excessively large for most real-world

applications. For the experiments reported in Section 7.2, we used a bound ℓmax = 16, for example.

6.2 Outline of the Propagation Algorithms
In this section, we describe the projection algorithms we have devised for trigonometric functions.

6.2.1 Direct Propagation. The periodicity of trigonometric functions poses a fundamental issue: in

each monotonic branch the function can cover its whole range. Therefore, if the interval [𝑥𝑙 , 𝑥𝑢]
to be used to refine y spans multiple branches, almost no refinement can be performed. However,

since floating-point numbers become sparser as the exponent grows, there is the possibility that

some branches do not reach the ends of the range, because there are no points where the function

takes those values in such branches.

Our algorithm takes advantage of these facts. First, it identifies the branches of the graph of

function 𝑓 to which 𝑥𝑙 and 𝑥𝑢 belong. Let 𝑐 ∈ R: with [𝑐]↑ we will denote the upper floating-point
approximation of 𝑐 , i.e. [𝑐]↑ = min{ 𝑥 ∈ F | 𝑥 ≥ 𝑐 }. Similarly, with [𝑐]↓ we will denote the lower
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floating-point approximation of 𝑐 , so that [𝑐]↓ = max{ 𝑥 ∈ F | 𝑥 ≤ 𝑐 }. Given 𝑥 ∈ F, to identify the

branch it belongs to, we compute 𝑘 =
⌈
𝑥 2

𝜋

⌉
, with sufficient precision. This can be achieved with

a range reduction algorithm, as described in [6], or [59, 60]. Then, if 𝑘 is odd and 𝑓 = cos, or if 𝑘

is even and 𝑓 = sin or 𝑓 = tan, 𝑘 is incremented. The value of 𝑘 is then such that 𝑓 changes its

monotonicity or has a discontinuity in 𝑘 𝜋
2
and (𝑘 − 2) 𝜋

2
, and 𝑥 ∈

[ [
(𝑘 − 2) 𝜋

2

]
↑ ,

[
𝑘 𝜋

2

]
↓
]
.

If 𝑥𝑙 and 𝑥𝑢 are both in the samemonotonic branch, the refinement algorithm for regular functions

described in Section 5.1 is called. Otherwise, the refinement function should be called separately for

each branch, and then the minimum value of 𝑦𝑙 and the maximum value of 𝑦𝑢 should be returned.

Since the number of branches to be separately inspected can be high, a threshold 𝑔 is imposed

on the maximum number of branches to be analyzed. If [𝑥𝑙 , 𝑥𝑢] spans more than 𝑔 branches, the

bounds of the function’s range are returned.

Algorithm 5 Indirect propagation: bounds_trig(𝑓 , 𝑓 i, [𝑦𝑙 , 𝑦𝑢], [𝑥𝑙 , 𝑥𝑢], 𝑛gM, 𝑑M,𝑤M, 𝛼, 𝜔, 𝑔, 𝑠, 𝑡)

Require: 𝑓 : F → F, 𝑓 i : F → F, [𝑥𝑙 , 𝑥𝑢], [𝑦𝑙 , 𝑦𝑢] ∈ IF, 𝑛gM ≥ 𝑛
𝑓

gM
, 𝑑M ≥ 𝑑

𝑓

M
, 𝑤M ≥ 𝑤

𝑓

M
, 𝛼 ≼ 𝛼 𝑓

,

𝜔 ≽ 𝜔 𝑓
, 𝑛gM > 0 =⇒ (𝑥𝑙 ≼ 𝛼 ≼ 𝜔 ≼ 𝑥𝑢), 𝑔, 𝑠, 𝑡 ∈ N.

Ensure: |𝐼𝑟 | ≤ 𝑔,
⋃

0≤𝑖≤ |𝐼𝑟 | [𝑥𝑖𝑙1, 𝑥
𝑖
𝑢2] = [𝑥𝑙 , 𝑥𝑢], ∀0 ≤ 𝑖 ≤ |𝐼𝑟 | : 𝑙𝑖 , 𝑢𝑖 ∈ F

∧
(
0 ≤ 𝑟 𝑖

𝑙
≤ 4 ∧ (𝑝𝑟 𝑖

𝑙
(𝑦𝑙 , 𝑥𝑖𝑙1, 𝑥

𝑖
𝑢2, 𝑙

𝑖 ) ∨ 𝑝𝑟 𝑖
𝑙
(−𝑦𝑢, 𝑥𝑖𝑙1, 𝑥

𝑖
𝑢2, 𝑙

𝑖 ))
)

∧
(
5 ≤ 𝑟 𝑖𝑢 ≤ 9 ∧ (𝑝𝑟 𝑖𝑢 (𝑦𝑢, 𝑥

𝑖
𝑙1
, 𝑥𝑖𝑢2, 𝑢

𝑖 ) ∨ 𝑝𝑟 𝑖𝑢 (−𝑦𝑙 , 𝑥
𝑖
𝑙1
, 𝑥𝑖𝑢2, 𝑢

𝑢))
)
.

1: 𝐼 := split_interval(𝑓 , 𝑥𝑙 , 𝑥𝑢, 𝑔); 𝐼𝑟 := ∅;
2: for all ( [𝑥𝑖

𝑙1
, 𝑥𝑖𝑢1], [𝑥𝑖𝑙2, 𝑥

𝑖
𝑢2]) ∈ 𝐼 do

3: if isotonic(𝑓 , [𝑥𝑖
𝑙1
, 𝑥𝑖𝑢1]) then

4: (𝑟 𝑖
𝑙
, 𝑙𝑖 ) := lower_bound(𝑓 , 𝑦𝑙 , [𝑥𝑖𝑙1, 𝑥

𝑖
𝑢1], 𝑛gM, 𝑑M,𝑤M, 𝛼, 𝜔, 𝑓

i, 𝑠, 𝑡)
5: else
6: (𝑟 𝑖

𝑙
, 𝑙𝑖 ) := lower_bound(−𝑓 ,−𝑦𝑢, [𝑥𝑖𝑙1, 𝑥

𝑖
𝑢1], 𝑛gM, 𝑑M,𝑤M, 𝛼, 𝜔, 𝑓

i ◦ (−id), 𝑠, 𝑡)
7: end if
8: if isotonic(𝑓 , [𝑥𝑖

𝑙2
, 𝑥𝑖𝑢2]) then

9: (𝑟 𝑖𝑢, 𝑢𝑖 ) := upper_bound(𝑓 , 𝑦𝑢, [𝑥𝑖𝑙2, 𝑥
𝑖
𝑢2], 𝑛gM, 𝑑M,𝑤M, 𝛼, 𝜔, 𝑓

i, 𝑠, 𝑡)
10: else
11: (𝑟 𝑖𝑢, 𝑢𝑖 ) := upper_bound(−𝑓 ,−𝑦𝑙 , [𝑥𝑖𝑙2, 𝑥

𝑖
𝑢2], 𝑛gM, 𝑑M,𝑤M, 𝛼, 𝜔, 𝑓

i ◦ (−id), 𝑠, 𝑡)
12: end if
13: 𝐼𝑟 := 𝐼𝑟 ∪ ([𝑥𝑖

𝑙1
, 𝑥𝑖𝑢1], [𝑥𝑖𝑙2, 𝑥

𝑖
𝑢2], [𝑙𝑖 , 𝑢𝑖 ], 𝑟 𝑖𝑙 , 𝑟

𝑖
𝑢)

14: end for

6.2.2 Indirect Propagation. Algorithm 5, for indirect propagation, refines the interval for x by

splitting its initial domain [𝑥𝑙 , 𝑥𝑢] into intervals in which the function graph is monotonic, and

then applies lower_bound and upper_bound locally, to obtain a refined multi-interval. Interval

[𝑥𝑙 , 𝑥𝑢] can be wide, and the number of intervals it has to be split into can be excessively large.

So, Algorithm 5 limits their number to parameter 𝑔. The intervals closest to 0 are split with

maximum granularity (each monotonic branch is considered separately), because floating-point

numbers in this area are denser, and the probability of finding an optimal solution is higher. The

remaining branches are gathered into two larger intervals, one to the left of the domain and starting

with 𝑥𝑙 , and one to the right, ending with 𝑥𝑢 . These intervals are only refined in branches at

the boundaries. Function split_interval returns this split of the intervals, which depends on

function 𝑓 . If 𝑓 has 𝑔 or more monotonic branches in [𝑥𝑙 , 𝑥𝑢], then split_interval returns a

list of pairs ( [𝑥𝑖
𝑙1
, 𝑥𝑖𝑢1], [𝑥𝑖𝑙2, 𝑥

𝑖
𝑢2]), 1 ≤ 𝑖 ≤ 𝑔. If 𝑓 = cos, those with 2 ≤ 𝑖 ≤ 𝑔 − 1 are such that
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𝑥𝑖
𝑙1

= 𝑥𝑖
𝑙2

= max(𝑥𝑙 ,
[
2𝑘𝑖

𝜋
2

]
↑) and 𝑥𝑖𝑢1 = 𝑥𝑖𝑢2 = min(𝑥𝑢,

[
(2𝑘𝑖 + 2) 𝜋

2

]
↓), with

[
2𝑘𝑖

𝜋
2

]
↑ ≥ 𝑥𝑙 and[

(2𝑘𝑖 + 2) 𝜋
2

]
↓ ≤ 𝑥𝑢 , where the distinct values 𝑘𝑖 ∈ Z are those closest to 0 in magnitude, and

𝑘𝑖+1 = 𝑘𝑖 + 1. For 𝑖 = 1, we have [𝑥1
𝑙1
, 𝑥1𝑢1] = [𝑥𝑙 ,

[
(2𝑘1 + 2) 𝜋

2

]
↓], where 𝑘1 ∈ R is the highest value

such that

[
(2𝑘1 + 2) 𝜋

2

]
↓ ≥ 𝑥𝑙 , and [𝑥1

𝑙2
, 𝑥1𝑢2] = [

[
2𝑘1

𝜋
2

]
↑ ,

[
(2𝑘1 + 2) 𝜋

2

]
↓]. The last pair, with 𝑖 = 𝑔,

is symmetric. If 𝑓 has less than 𝑔 monotonic branches, exactly those sub-intervals are returned. For

functions sin and tan, which change monotonicity in odd multiples of
𝜋
2
, replace 2𝑘𝑖 with 2𝑘𝑖 + 1.

The multiplications by
𝜋
2
are done with enough digits of 𝜋 to be correctly rounded.

Functions lower_bound and upper_bound are called at lines 3–12, distinguishing whether 𝑓 is

isotonic or antitonic in each interval. The arguments required by Algorithm 5 are essentially the

same as those for lower_bound, except for 𝑛gM, which is a safe approximation of the maximum

number of glitches in each quasi-monotonic branch of the function.

lower_bound and upper_bound can only be called if [𝑥𝑙 , 𝑥𝑢] is a subset of [−ℓmax, ℓmax] because
they cannot operate on intervals too narrow (see section 6.1). If Algorithm 5 is applied repeatedly

on the same interval, however, a value 𝑔 > 1 could cause complexity issues: if sub-intervals are

discarded because no solutions are found in them, a repeated call of this refinement algorithm

would split the domain again and again. To avoid this problem, the algorithm should be called on a

further reduced domain. Note that, while this algorithm often succeeds in finding a refined interval

if the function has the desired values y in one of the analyzed sub-intervals, it can say nothing if

such values are not found. In this case, we cannot exclude the possibility that the function reaches

them somewhere outside [−ℓmax, ℓmax] (or a smaller domain, if chosen). This prevents us from being

able to tell when the equation y = x has no solution, which we could do for the regular functions.

However, since floating-point numbers are denser near 0, the functions take most of the values of

their image in its vicinity. This allows our algorithm to find a solution very often (when present),

making it useful for automatic test-data generation.

7 IMPLEMENTATION AND EXPERIMENTS
In this section we first describe the implementation of the algorithms introduced in this paper.

Then, we show the results of its experimental evaluation.

The main research question that we aim to answer in this section regards the feasibility of our

approach. This aim can be split into the following research questions, which concern different

aspects of the problem:

• RQ1: In what way can our approach be useful to a programmer?

• RQ2: How effective is our approach in proving or disproving the possible occurrence of

unwanted behaviors in floating-point computations?

• RQ3: What are the performances of our approach? How long does it take to perform the

activities investigated by the previous questions?

We answer to RQ1 in Section 7.2, by means of a case study, and to RQ2 and RQ3 in Section 7.3.

7.1 Implementation
All the algorithms presented in this paper have been implemented and included in the ECLAIR

software verification platform for C/C++ source code, Java source code and bytecode.
12

For the

analysis of integers and floating-point values, ECLAIR mainly uses multi-intervals with a judicious

use of polyhedral approximations made available by the Parma Polyhedra Library (PPL) [7]. For

reasoning on the floating-point arithmetic operations, ECLAIR uses:

12
http://bugseng.com/products/eclair, last accessed on July 16th, 2020.
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• algorithms realizing optimal direct projections as well as correct and precise indirect pro-

jections: the result is similar to the projections defined in [53], but the ECLAIR algorithms

never require working with precision greater than the operation data type;

• algorithms that exploit properties of the binary floating-point representations in order to

obtain enhanced precision [5];

• dynamic linear relaxation techniques [9, 25] using the PPL to enhance constraint propagation

with the relational information provided by convex polyhedra.

The algorithms defined in Section 5 have been implemented in C++ and extensively tested on

a variety of implementations with different characteristics in terms of the presence and nature

of monotonicity glitches. These algorithms are now used in three components of the platform

instantiation for C/C++: the semantic analysis engine based on abstract interpretation [20], the

automatic generator of test inputs, and the symbolic model checker, the latter being both based on

constraint solving [32, 33]. All components use multi-interval refinement, though in different ways:

the test generator and symbolic model checker are driven by labeling and backtracking search. As

these have a negative interaction with the searches controlled by the 𝑠 and 𝑡 parameters of the

algorithms, their setting needs to be controlled more carefully (and they are better set to 0 when

glitch data is precise) by these components, whereas they are used with values in the range 5–20 in

the semantic analysis engine. Here, we report on experiments with the symbolic model checker

and automatic generator of test inputs. One of its interesting features is that it optionally produces

a transformed source program that contains the original program, suitably instrumented, and a

driver that runs one of the generated tests (or model checking counterexamples) at a time. The

instrumented code checks that each one of the generated tests achieves its target, e.g., it reaches a

certain program point, or it causes an integer overflow or the generation of a floating-point NaN or

infinite value. The validation of test inputs is thus completely automatic.

7.2 Case Study
To illustrate better the potential that algorithms in Sections 5 and 6 have, let us consider again

the introductory example of Figure 1. We show how our tool can support the workflow of a

programmer in checking whether such code presents unwanted behaviors or not. Let us pretend we

know nothing about the code (which is realistic, as there are no comments besides the one at line 5).

So, we initially assume that the entry point is latlong_utm_of(); as there are no assertions, we

also assume all inputs are possible. For an exploratory analysis, we use ECLAIR’s symbolic model

checker in order to detect the possible presence of run-time anomalies: overflow, division by zero

and other sources of undefined and implementation-defined behavior over the integers, inexact

integer-to-floating conversions, finite-to-infinite and numeric-to-NaN transitions over floating

point numbers. A finite-to-infinite (resp., numeric-to-NaN ) transition is a computation whereby

the inputs to a floating-point operation or math.h/cmath function is finite (resp., numeric) and

the output is infinite (resp, NaN). We also set an analysis parameter asking ECLAIR to flag all the

invocations of trigonometric functions whose argument has an absolute value greater than, say, 16.

Not surprisingly, we obtain three test inputs showing that this is indeed possible. They concern the

following program points:

𝑝2 : (−0x864880.p − 18F, +0.0F, 1), where −0x864880.p − 18F ≈ −33.570801,
𝑝3 : (−0x8a3ae7.p − 19F, +0.0F, 1), where −0x8a3ae7.p − 19F ≈ −17.278761,
𝑝5 : (+0x96d12f.p − 21F,−0x98b6c1.p − 19F, 1), where +0x96d12f.p − 21F ≈ 4.713035

and −0x98b6c1.p − 19F ≈ −19.089235.
Of course, the latter input causes the same phenomenon at program point 𝑝7 as well. Perhaps

latlong_utm_of() callers only pass smaller values for phi and lambda. Even if that is not the

ACM Trans. Softw. Eng. Methodol., Vol. 37, No. 4, Article 111. Publication date: August 2019.



A Practical Approach to Verification of Floating-Point C/C++ Programs with math.h/cmath Functions 111:27

case, then perhaps the only problem is a slight precision issue. But ECLAIR produces two other

test inputs, with the specification that they trigger number-to-NaN transitions:

𝑝1 : (+0xc90fdb.p − 23F, +0.0F, 1), where +0xc90fdb.p − 23F ≈ 1.570796,

𝑝4 : (−0xb63223.p − 35F, +0xcfbb98.p − 23F, 1), where we can give the approximations

−0xb63223.p − 35F ≈ −3.48 · 10−4, and +0xcfbb98.p − 23F ≈ 1.622912.

As +0xc90fdb.p − 23F ≈ 1.570796 converted to double precision is slightly greater than M_PI_2, the
round-to-nearest, double-precision approximation of

𝜋
2
defined in math.h, we make the hypothesis

that phi has to be less than or equal to M_PI_2. Indeed, looking at the function callers (there is only

one in the program), we come to the realization that phi and lambda are a latitude and longitude

in radians, respectively. This part of the analysis took 27.81 seconds. We attempt validation of this

hypothesis by adding the assertions

assert(-M_PI_2 <= phi && phi <= M_PI_2);

assert(-M_PI <= lambda && lambda <= M_PI);

at the beginning of latlong_utm_of() and repeat the analysis. After 22.51 seconds, we obtain

another ill-conditioned trigonometric function argument test input for program point 𝑝5:

𝑝5 : (−0xc8f7db.p − 23F, +0xc90fda.p − 22F, 255), where −0xc8f7db.p − 23F ≈ −1.570064 and

+0xc90fda.p − 22F ≈ 3.141593

(surely utm_zone = 255 is not among the expected inputs) and another numeric-to-NaN transition:

𝑝4 : (−0xb63223.p − 35F, +0xcfbb98.p − 23F, 1), where we have the approximations

−0xb63223.p − 35F ≈ −3.48 · 10−4, and +0xcfbb98.p − 23F ≈ 1.622912.

To understand the intended inputs for latlong_utm_of(), we take into account its calling context:

1 nav_utm_zone0 =∗ (gps_lon/10000000+180) / 6 + 1;

2 latlong_utm_of(RadOfDeg(gps_lat/1e7), RadOfDeg(gps_lon/1e7), nav_utm_zone0);

The inputs to latlong_utm_of() depend on two 32-bit signed integers, gps_lat and gps_lon, that
are received from a communication channel: no check is made upon them after reading the values

out of the input buffer. Taking into account the caller context, in 25.73 seconds ECLAIR generates

three reports. If gps_lat = 0 and gps_lon = −1920000000 at line 1, then the conversion in the

assignment marked with ‘∗’ on the same line causes an unsigned wraparound (−1 mod 256 = 255, so

that, yes, latlong_utm_of() can be called with utm_zone = 255). The same input also generates an

ill-conditioned trigonometric function argument for program point 𝑝5 in Figure 1. Most importantly,

if gps_lon = 900000059 and gps_lat = −1920000000, then we have a numeric-to-NaN transition at

program point 𝑝1. This probably means that if the equipment at the other end of the communication

channel is defective or if there is a communication error, things can go horribly wrong. However,

let us now suppose that there are no problems of this kind and that we have |gps_lat · 10−7 | ≤ 90

and |gps_lon ·10−7 | ≤ 180 as the code seems to assume. In 27.18 seconds, the analysis with ECLAIR

shows this is not enough: the numeric-to-NaN transition at program point 𝑝1 is still possible

with gps_lat = −899999991 and gps_lon = −1800000000 (this point is roughly 10 cm from the

Geographic South Pole). In a couple more iterations we add the assertions

-1 assert( -899999990 <= gps_lat && gps_lat <= 899999990);

0 assert(-1800000000 <= gps_lon && gps_lon <= 1800000000);

before line 1 of the calling context, and the final ECLAIR run shows no report. This, per se, does

not mean much. However, this experiment was performed on the xps machine, for which we have

precise glitch data for the single-precision functions (which are not used in the code considered)

and we have the maximum known errors provided by the GNU libc manual for the double-precision
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functions [51]. As explained in Section 9.2.2, this data provides imprecise and possibly incorrect

information about glitches that our algorithms can exploit. In turn, all this means that:

• if the numbers in [51] do really provide upper bounds to the maximum errors of the used

functions, and

• if the caller guarantees that the values of gps_lat and gps_lon do satisfy the “stay away

from the poles” assertions at lines −1, 0
• then, in the context of such a call, all the 154 potential run-time anomalies in the 90 potentially

problematic program points of Figure 1 cannot occur on xps.

More precisely, these anomalies consist of 4 integer overflows, 4 inexact conversions, 10 ill-

conditioned trigonometric function arguments, 70 finite-to-infinity and 66-numeric-to-NaN tran-

sitions. Just to mention one potential problem, division by zero and consequent finite-to-infinite

transition at program point 𝑝6, cannot happen on that implementation.

7.3 Feasibility Evaluation
To better assess the capabilities of our approach, we analyzed with ECLAIR a benchmark that we

assembled by taking code from the GNU Scientific Library (GSL),
13
AxBench [69], a benchmark

popular in approximate computing, and a test suite that we created to evaluate the performances

of our algorithms in the most disparate ways. We also included the code from the Paparazzi UAV

avionics library from Figure 1. Since our purpose is to evaluate mainly the propagators for the

supported math.h/cmath functions, we selected only code that contains at least two calls to such

functions, and we excluded code containing unsupported functions, such as pow. We tried to

assemble a rather varied benchmark suite, containing code from different application domains.

Indeed, GSL is a library for scientific computation, while from AxBench we picked code from the

finance (blackscholes.c) and robotics (inversek2j.c) application domains. While other benchmarks

are aimed at evaluating our approach on real-world code, our self-made test suite contains various

computations aimed at generating constraint systems that are difficult to solve.

For each floating-point operation, ECLAIR tries to prove that such operation may not generate

any finite-to-infinite or numeric-to-NaN transition. If it fails, it generates a counterexample, i.e.

a program input that causes such transition. We limited the maximum number of iterations of

the constraint solving process (i.e., 𝑖max of Algorithm 1, Section 3.2) to 200. If such threshold is

reached, ECLAIR times out. Each generated input is automatically validated by executing the

original program. This showed that all inputs generated by ECLAIR actually trigger the intended

behaviour in the original code, so we can claim that no false positives were generated.

The analyses were executed on machine xps, a high-end laptop with an x86_64 CPU (6 cores

@2.20GHz) and 16 GB of RAM, running Ubuntu 19.10. This could be a typical hardware setting for

a software developer. ECLAIR does not yet support multi-threaded constraint solving, so only one

CPU core is used at a time. We report the results in Table 2.

7.3.1 RQ2: Detection of anomalous behaviors. RQ2 asks how effective our approach is in proving

or disproving the possible occurrence of unwanted behaviors in floating-point computations. In

particular, we want to assess the proportion of floating-point operations for which ECLAIR is able

to generate an answer without timing out.

Table 2 shows that a significant number of operations generating infinities or NaNs were found,

but in most cases, ECLAIR was able to prove that no such behavior may occur. The number of

timeouts is generally limited, ad it is higher in files containing long sequences of floating-point

operations with data-flow dependencies, that lead to the generation of large constraint systems.

13
https://www.gnu.org/software/gsl/, last accessed on July 16th, 2020.
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Table 2. Benchmark data for the xps machine. For each file we report the number of lines of code (# LOC),
the number of finite-to-infinite and numeric-to-NaN transitions, the total time taken by the analysis (𝑇 ) in
seconds, the time taken by propagators for math.h/cmath functions (𝑇𝑚) in milli-seconds. For each kind of
transition, ECLAIR identified all operations that may potentially trigger them. We report the total number
of such operations that ECLAIR proved feasible by generating a test-case (g), those that ECLAIR proved
unfeasible (u), and those for which ECLAIR timed out (t).

Benchmark # LOC

finite to +∞ finite to −∞ numeric to NaN Time

g u t g u t g u t 𝑇 (s) 𝑇𝑚 (ms)

GSL

bessel.c 191 6 74 1 5 75 1 1 90 1 23.79 531.24

bessel_i.c 144 4 96 0 2 92 0 0 94 0 9.83 6.32

bessel_j.c 158 0 109 0 0 109 0 0 114 0 85.18 109.89

bessel_olver.c 185 49 305 7 11 349 1 14 363 0 201.99 267.13

exp.c 426 18 195 14 8 200 2 0 210 0 342.94 7566.29

gegenbauer.c 181 33 68 5 14 84 8 4 104 0 700.79 10.75

lambert.c 219 17 41 3 6 55 3 2 65 0 20.27 56.77

sincos_pi.c 163 4 35 0 2 37 0 2 39 0 0.83 0.32

cauchy.c 57 2 8 0 2 8 0 2 8 0 0.63 6.55

cauchyinv.c 73 5 9 0 7 7 0 4 10 0 1.46 422.39

exponential.c 56 1 0 1 1 0 0 1 0 0 2.36 0.35

exponentialinv.c 36 1 1 0 2 1 0 1 2 0 0.61 1.11

gauss.c 337 31 59 8 3 91 2 0 95 1 308.89 70.51

gaussinv.c 286 11 73 14 6 85 9 2 97 3 125.57 8.69

gumbel1.c 47 4 6 0 4 3 0 2 5 0 0.94 7.58

gumbel1inv.c 59 2 1 0 3 3 0 3 3 0 0.68 3.30

laplace.c 56 2 11 0 2 7 0 2 7 0 0.63 1.72

laplaceinv.c 73 4 6 0 8 6 0 4 10 0 0.95 4.44

logistic.c 56 2 14 0 2 8 0 2 8 0 0.63 2.64

logisticinv.c 59 3 3 0 3 5 0 2 6 0 0.78 1.69

lognormal.c 38 33 61 8 7 93 2 4 97 1 308.58 72.09

lognormalinv.c 65 11 79 14 6 89 9 2 101 3 126.49 8.74

paretoinv.c 59 3 2 0 2 2 0 1 3 0 0.69 3.00

rayleigh.c 36 2 2 1 3 1 0 2 2 0 0.69 0.67

rayleighinv.c 59 2 0 0 2 1 0 2 3 0 0.66 3.50

AxBench

blackscholes.c 292 6 111 8 8 107 7 4 81 2 556.67 699.89

inversek2j.c 26 5 27 0 1 31 0 3 33 0 1.10 3.38

paparazzi.c 93 2 81 1 2 83 2 5 79 1 27.22 759.97

Test suite 3370 234 421 26 125 483 17 105 582 2 135.30 4274.81

Total 6900 497 1898 111 247 2115 63 176 2311 14 2987.16 14905.72

Overall, ECLAIR was able to either prove or disprove, without timing out, the occurrence of 2395

finite to +∞ transitions out of 2506 (96 %), 2362 finite to −∞ transitions out of 2425 (97 %), and 2487

numeric-to-NaN transitions out of 2501 (99 %). Such a low timeout rate makes our approach useful

in practice to analyze code bases such as those considered in the benchmark.

7.3.2 RQ3: Performances. RQ3 asks what are the performances of our approach, i.e. how long it

takes to perform the activities investigated by the previous questions.

The total time taken by the analysis ranges from less than a second for files with tens of lines

of code, to up to 12 minutes for files containing hundreds of lines of code. Thus, we can claim
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that this kind of analysis is most convenient for small computational kernels, but still practically

feasible for medium-large ones. We can also observe that, in general, the time taken by propagators

for math.h/cmath functions, i.e., the algorthms of Sections 5 and 6, is negligible with respect to

the total time taken by the analysis. This can be partially explained with the fact that, while

such propagators have been implemented in C++, the rest of the program analysis and constraint

propagation infrastructure has been implemented in (a small subset of) the Prolog programming

language. A full implementation in C++ or another language of comparable performances could

significantly improve the overall execution times.

8 COMPARISONWITH THE STATE OF THE ART
In this section, we compare the techniques presented in this paper with the state of the art, which

we summarize below.

Interval consistency techniques have been extended to floating-point computations in [13], with

the purpose of symbolic execution. More advanced techniques for refining arithmetic floating-point

operations have been proposed in [5]. All such works only deal with basic arithmetic operations,

and do not provide any technique to tackle math.h/cmath mathematical functions.

Interval refinement algorithms for mathematical functions, which take into account all IEEE 754

rounding modes, were introduced in [53], but they require excessively stringent features for the

functions’ implementations: they must be correctly rounded, and strictly monotonic. As we report

in Sections 4 and 9.2, most implementations are far from meeting any of such requirements.

The detection of floating-point anomalies such as the ones we consider in Section 7.2 has been

previously tackled in [55] by means of abstract interpretation, using linear real-valued approxi-

mations of floating-point constraints. This work has been implemented in the commercial tool

ASTREÉ.
14
[55] only deals with basic arithmetic operations, and not with math.h/cmath functions.

We could find no evidence in the literature of the addition of such features to ASTREÉ afterwards.

The tool Ariadne [8] performs symbolic execution of floating-point computations by approxi-

mating them with real numbers, and solves the resulting constraint systems with a SMT solver.

Mathematical functions are also supported, but the fact that they are being approximated with reals

makes this approach unsound, even if their implementations are correctly rounded and strictly

monotonic, because rounding is not taken into account.

Canalyze-fp [68] also uses symbolic execution to detect floating-point exceptions, and uses the

floating-point theory supported by the SMT solver Z3.
15 math.h/cmath functions are approximated

by just considering their (theoretical) ranges, e.g., a constraint such as y = exp(x) is approximated

to y ≥ 0 ∧ y ≤ +∞. Clearly, this approach is trivially sound, but fails to exploit the peculiarities of

the functions to effectively refine variable domains.

[67] combines symbolic execution with value range analysis to speed up the floating-point

exception detection process. While a SMT solver is used for symbolic execution, value range

analysis is performed with interval arithmetic. The indirect propagators for math.h/cmath functions
employed to refine variable ranges assume correct rounding of their implementations, and do not

take into account the effects of rounding, as [53] does. Thus, this approach is also unsound.

To the best of our knowledge, none of the tools above is available to the public. Anyways, as we

detailed above, the most advanced treatment of math.h/cmath functions is the one of [53], despite

its being less recent than other approaches. To show what kind of issues arise when using such

unsound techniques to attempt software verification, we implemented the projections of [53], and

14
https://www.absint.com/astree/index.htm, last accessed on July 16th, 2020.

15
https://github.com/Z3Prover/z3, last accessed on July 16th, 2020.
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integrated them into ECLAIR. Then, we evaluated the differences between [53] and our approach

experimentally. The research questions that we seek to answer are the following:

• RQ4:What kind of issuesmay be caused by an unsound treatment of math.h/cmath functions?
• RQ5: How often do such issues occur in practice?

• RQ6: What is the impact of the two different approaches on the performances of the analyses?

We answer to RQ4 in Section 8.1, and to RQ5 and RQ6 in Section 8.2.

8.1 RQ4: issues caused by an unsound treatment of math.h/cmath functions
In this section, we demonstrate what is the type and severity of issues caused by an unsound

treatment of math.h/cmath functions by means of another case study.

The following C function is an implementation of the Gauss Error Function, taken from [61].

1 float custom_ferf(float x) {

2 float sgn_x = signbit(x) ? -1.0F : 1.0F;

3 return (2/sqrtf(M_PI16)) * sgn_x * sqrtf(1 - expf(-(x*x)))

4 * (sqrtf(M_PI)/2

5 + (31.0/200.0)*expf(-(x*x))

6 + (3481.0/8000.0)*expf(-2*(x*x)))

7 }

A natural question that arises by looking at this code is whether it may generate NaNs. Consider,

e.g., the term sqrtf(1 - expf(-(x*x))). Since the square root function is undefined for negative

arguments, its math.h/cmath implementation sqrtf returns a NaN in such a case. But can the

result of 1 - expf(-(x*x)) be negative? A very elementary property of the real exponential

function exp(𝑥) is that exp(𝑥) ≤ 1 for 𝑥 ≤ 0, so, considering that -(x*x) ≤ 0 for any finite x, the
answer should be no. The same argument holds for a correctly rounded implementation of the

expf function, even with rounding mode ‘up’ (i.e., towards positive infinity). This is, indeed, the

conclusion reached by applying constraint solving based on the propagators of [53] on this code.

Unfortunately, the implementation of the expf function on the xps machine presents a large

glitch surrounding 0, when executed with rounding mode ‘up’. At the left border of this glitch, the

function returns a value greater than 1, even with a negative argument. E.g., it returns 1.000001

when evaluated on −2−149. Our filtering algorithms take this imprecision into account, and ECLAIR

correctly points out that an input value of x = −2−149 causes the call to the sqrtf function to return

a NaN, which is propagated in the subsequent computations, and returned by the above function.

Our approach handles the quirks of math.h/cmath function implementations soundly and pre-

cisely, enabling the discovery of subtle bugs, which are nearly impossible to find manually, and

that result in false negatives with other state-of-the-art approaches.

8.2 Comparison on real-world code
We run ECLAIR equipped with both our interval refinement algorithms and those of [53] on the

self-assembled benchmark we described in Section 7.3. Again, the purpose of the analysis is to

prove or disprove the possible occurrence of finite-to-infinite and numeric-to-NaN transitions, and

it has been run for rounding mode ‘near’. We report the results of this evaluation in Table 3, and

we comment on them with respect to the research questions below.

8.2.1 RQ5: Frequency of issues caused by unsoundness. Table 3 shows that, in all benchmark groups,

our propagators find more anomalies than those of [53]. Relatively few anomalies are missed by

[53] in GSL and AxBench, while many more are missed in paparazzi.c and our test suite. Most

16M_PI is a floating-point approximation of 𝜋 in math.h/cmath.
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Table 3. Comparison of benchmark data for the xps machine. For each file and benchmark group we report
the number of potential anomalies discovered, the total time taken by the analysis (𝑇 ), the time taken by
propagators for math.h/cmath functions (𝑇𝑚), for both our filters, and those of [53]. We report the number of
potential anomalies that have been proved possible (g), those that were proved unfeasible (u), and those for
which there was a timeout (t).

Benchmark

Our propagators [53]

g u t 𝑇 (s) 𝑇𝑚 (ms) g u t 𝑇 (s) 𝑇𝑚 (ms)

GSL 420 4205 122 2266.86 9167.68 419 4205 123 2255.85 4841.98
AxBench 27 390 17 557.78 703.27 24 390 20 679.80 1279.15

paparazzi.c 9 243 4 27.22 759.97 6 244 6 30.58 663.01
Test suite 464 1486 45 135.30 4274.81 445 1503 47 138.35 3309.77
Total 920 6324 188 2987.16 14905.72 894 6342 196 3104.59 10093.91

importantly, in the two latter cases 18 anomalies are mistakenly declared impossible by the analysis

based on [53]. Such anomalies may, instead, occur, because the test inputs generated by ECLAIR

with our propagators actually trigger them. Overall, the analysis based on [53] misses 26 anomalies,

deeming 18 of them unfeasible, and timing out on 8 of them.

Since the proportion of missed anomalies is relatively low, the propagators of [53] may be used

for the purpose of test-case generation. However, even this little miss-rate is unacceptable in the

context of program verification, especially for safety-critical code.

8.2.2 RQ6: Performance comparison. The time taken by the propagators for math.h/cmath func-
tions only (𝑇𝑚) is consistently lower for the approach of [53]. Interestingly, the total time of the

analyses (𝑇 ) shows the opposite. For the GSL group, [53] performs better, but only for a few seconds.

For all other groups, the analyses based on our algorithms are faster than those based on [53]. For

the AxBench benchmarks, the difference reaches one minute.

We manually inspected the way the constraint solving process converges for a few cases in

which this difference in analysis time is most pronounced. Our explanation for this behavior is that

the higher precision of our algorithms favorably influences the overall constraint solving process,

which converges in fewer iterations. In particular, the fact that our indirect propagation algorithms

are based on a dichotomic search allows them to prune more values from variable domains in each

iteration, decreasing the total number of iterations needed. Of course, this insight is limited to the

cases that we analyzed, but we believe it can be generalized consistently.

8.3 Related Work
Automated test-case generation for floating-point computations has also been widely studied. The

work of [54], which originated the field of search-based testing, searches the input space of the

program by numerically maximizing an objective function that represents a given test adequacy

criterion. CoverMe [27] performs its input-space exploration by minimizing a function representing

the code path to be tested through constrained programming. Symbolic execution [44] is also

widely used for structure-based test data generation. KLEE [16, 50] is a LLVM-based symbolic

execution engine that leverages several SMT solvers to generate test-cases with high code coverage.

CORAL [12] solves constraints generated by symbolic execution with several heuristic strategies

combined with interval-based solving. Dynamic Symbolic Execution [29] (DSE) combines symbolic

execution with concrete execution of the program. Runtime values gathered from the concrete

executions are used when constraint solving fails, e.g. when it timeouts or encounters unsupported

expressions. CUTE [62] uses DSE to generate test data. Other tools combine search-based approaches

with DSE. FloPSy [48] combines DSE with search-based techniques such as the Alternating Variable
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Method [45], and evolution strategies. Austin [47] uses symbolic execution combined with heuristic

search-based strategies.

The main drawbacks of pure symbolic execution come from the limitations of the underlying

constraint solver, which may timeout when excessively complex non-linear constraint systems are

involved. Search-based methods such as [54] and CoverMe generally perform better in this respect,

and tools such as CORAL, FloPSy and Austin combine them in different ways with symbolic execu-

tion to overcome such issues. Moreover, constraint solvers often do not fully support floating-point

arithmetic, and approximate it to real arithmetic, which is unsound [13]. This is the case for CORAL.

Only recently, SMT solvers acquired the ability to soundly solve floating-point constraints [14],

which can be exploited by tools based on them, such as KLEE. However, math.h/cmath library

functions are always treated as uninterpreted functions, which hinders the accuracy of constraint

solving. Tools based on DSE, namely CUTE, FloPSy and Austin, use actual program executions to

provide concrete values for such functions. The approach presented in this paper enables solving

floating-point constraints soundly, and in a fully static way, i.e. without the need to concretely

execute the program, even in the presence of math.h/cmath functions. Combining it with search-

based techniques to reduce timeouts due to constraint complexity may be an interesting line of

future work, although only adequate for testing, and not verification.

Much work has been done on the complementary goal of statically determining the accuracy

of floating-point computations. Fluctuat [34] and PRECiSA [57] estimate error bounds by means

of abstract interpretation, FPTaylor [63] uses symbolic Taylor expansions, Real2Float [52] uses

semidefinite programming, Rosa [22] uses a SMT solver combined with a novel technique based

on Lipschitz continuity, and Daisy [21] combines many of the earlier approaches. Gappa [23]

uses interval arithmetic and forward error analysis to prove error bounds. All such tools are not

concerned with the detection of floating-point exceptions or the proof of arbitrary assertions, but

rather with estimating the error affecting floating-point with respect to real-valued computations.

Among them, only Fluctuat and Daisy support the direct analysis of C code. The main similarity

between the work presented in this paper and the above tools is the need for an estimation

of program variable domains. However, none of such tools does a treatment of math.h/cmath
function implementations as precise as the one presented in this paper, as they use real-valued

approximations thereof.

9 DISCUSSION AND FURTHERWORK
In this section we discuss some aspects of the applicability of our proposal, which immediately

suggest directions for further work.

9.1 Access to the Target Library
For the purposes of true verification, our approach requires execution access to the mathematical

library used by the target. When the host and the target computer coincide, i.e. when the target

can run the verifier code, this is no problem. Alternatively, the host computer might provide an

implementation that is fully equivalent to the one used on the target: this is the case, e.g., on targets

where floating-point support is implemented in software. In other cases, an emulator must be used.

This can be seen as the major drawback of our approach. However, in our opinion the question

should be put in the following terms: in order to verify a piece of code properly using library

functions against, say, the absence of run-time anomalies, the library functions have to be fully

specified. If a specification of the form “all functions are POSIX-compliant [41] and compute

correctly-rounded results” is available, then we have no problem. Otherwise there really is no

other way than supplementing the partial specification available with the missing bits: providing
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execution access to the library during the analysis along with correct bounds on the size of the

glitches might well be the less expensive option.

9.2 Obtaining Glitch Data
The other requirement of the approach concerns the availability of (possibly imprecise) information

about glitches. Some ways to obtain such information are the topics of the next sections.

9.2.1 Brute Force. For single-precision IEEE 754 (unary) functions, collection of precise glitch data

by brute force is perfectly feasible. The glitch data presented in this paper have been obtained by

running a program that computes each function on each value of its domain, in ascending order. If

the function is quasi-isotonic, each time a value lower than the previous one is found, the program

marks the beginning of a glitch, and measures its width and depth by incrementing appropriate

counters until the end of the glitch is found (i.e., until the function yields a value greater than or

equal to the one recorded at the beginning of the glitch). The program only keeps track of the

maximum width and depth of the encountered glitches, of their number, of the input value in which

the first glitch starts, and the one in which the last one ends. This is all the data needed by the

algorithms of Section 5.

For the 25 functions studied in this paper, this procedure takes less than two hours on ordinary

hardware. With less powerful CPUs used on embedded systems, it might take ten or twenty times as

much. This is not really a problem as glitch data must be collected only once for each implementation

of the math.h/cmath functions. And, especially in safety-critical sectors, the mathematical (and

other) libraries will rarely if ever be changed once they have been selected. Of course, this method

cannot be used for double-precision or extended-precision implementations of the functions.

9.2.2 Precision Guarantees. When the mathematical library comes equipped with information

on the maximum errors for each function (see, e.g., the HA and LA accuracy modes of the Intel

Math Kernel Library), such information can be used to determine safe approximations of the

required glitch parameters. Recent developments enable the automatic proof of error bounds of

math.h/cmath implementations [38, 39, 49]. We can thus expect more and more implementations

will provide provably correct error bounds that we can directly exploit for program verification.

In fact, given a function and an architecture, the maximum error is measured in ULP and can be

used as an upper bound for the maximal depth of the glitches𝑤𝑀 . Given an interval [𝑥𝑙 , 𝑥𝑢], the
cardinality of the floating-point interval [𝑥𝑙 , 𝑥𝑢] is an upper bound to the maximum width of the

glitches and, of course 𝑥𝑙 and 𝑥𝑢 are safe approximations of where the glitches begin and end.

Finally, setting 𝑛g > 1 allows us to call the indirect propagation algorithms to refine the interval

[𝑥𝑙 , 𝑥𝑢] of the function domain with respect to a given interval [𝑦𝑙 , 𝑦𝑢] of the function range. Even

with such rough information on the glitches, the algorithms would allow us to refine the interval

[𝑥𝑙 , 𝑥𝑢] using the logarithmic searches (logsearch_lb) and returning [𝑥 ′
𝑙
, 𝑥 ′

𝑢] ⊆ [𝑥𝑙 , 𝑥𝑢] such that

𝑓 (𝑥 ′
𝑙
) is smaller than 𝑦𝑙 by more than 𝑤𝑀 ULPs and 𝑓 (𝑥 ′

𝑢) is bigger than 𝑦𝑢 by more than 𝑤𝑀

ULPs. Therefore, the cardinality of the resulting refined interval is related to the growth speed

of the considered function. For future work, we intend to investigate how information on the

maximum error, coupled with the knowledge of the function and of the interval to be refined,

allows computing sound and tight bounds to the width of glitches on that interval.

9.2.3 Analysis of the Implementation. Transcendental functions are usually implemented with

polynomial approximations. When speed is more important than precision, such computations are

carried out in the same floating-point format as the the function being approximated; otherwise

extended precision can be used to reduce the error. Whereas the total error accumulation can be

bounded, the ordinary techniques used do not allow us to relate the rounding errors for different
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input values to one another. So, if the error bound is small enough to imply monotonicity, fine.

Otherwise, as things stand today, we are left with the approach of the previous section. However,

we conjecture that (some of) the implementation algorithms can be analyzed with other techniques

in order to obtain mode precise glitch data: this is another direction for future work.

9.3 Supported Functions in math.h/cmath
For functions that are quasi-monotonic, namely acos, acosh, asin, asinh, atan, atanh, cbrt,
cosh, erf, exp, exp10, exp2, expm1, log, log10, log1p, log2, sinh, sqrt, tanh, our approach
enables verification in their full domain, provided that the required data on glitches, described

in Section 4, are correct and conservative for the math.h/cmath implementation in use. Such

data can be gathered as described in Section 9.2. If glitches are sufficiently narrow and shallow,

the algorithms of Section 5 are able to refine variable domains in a very precise manner, often

optimal, which guarantees a fast convergence of the constraint solving process. Correctly rounded

implementations of library functions also fall into this case. If glitches are too large, the results

may be less precise, causing slower convergence of constraint solving, but they are still correct. In

practice, this may result in having more timeouts, i.e. don’t knows, during verification, but may

never cause false positives or false negatives. Whether glitches are sufficiently narrow and shallow

depends on the parameter 𝑡 of the algorithms of Section 5, which controls the maximum length of

linear searches. If their maximum width,𝑤M, is lower than 𝑡 , then our algorithms return maximally

precise results. The choice of the value of 𝑡 is thus a trade-off between the computational efficiency

of the algorithms and the precision of their results. In our experiments, we found that a value

of 𝑡 = 20 is satisfactory, as it allows us to get precise results on most implementations, while

maintaining acceptable performances.

If glitch data is not precise, our approach cannot be used for verification, as it cannot reliably

state that a certain assertion is always satisfied. It can, however, prove that an assertion does not

hold, by finding a counter-example, and it can also be used for test-data generation (cf. Section 9.4).

For functions presenting natural monotonicity changes, namely tgamma, lgamma, sin, cos, and
tan, verification applies only for a restricted part of the domain. Inside this domain, the same

considerations about glitch data we made for the rest of the functions apply. For tgamma, lgamma,
such part of the domain is fixed, and it is [2, +∞]. For trigonometric functions, this part of the domain

can be chosen by the user, and such choice is mostly influenced by performance considerations. In

fact, each quasi-monotonic branch of the graphs of such functions must be analyzed separately by

the propagation algorithms, as described in Section 6. Thus, this verification domain must be chosen

to contain a reasonable amount of quasi-monotonic branches. In our experiments, we found that a

reasonable value for such domain is [−16, +16]. Once such domain has been chosen, verification

can be carried out by proving that the inputs to trigonometric functions never fall out of this

domain, by introducing appropriate assertions. As we noted in Section 1, this is generally not a

significant limitation, as in most applications the use of trigonometric functions with arguments of

excessive magnitude is discouraged, due to their ULP getting excessively large. In general, since

floating-point numbers are most dense around 0, most of the values they return can be found in a

limited domain, which makes test generation always feasible with such functions.

So far, we described how to deal with 75 (considering float, double, and long double versions)
of the standard C/C++ mathematical functions: but there are many others. Several of them are not

problematic, as they are fully specified and their treatment poses no problem (e.g., round, trunc,
floor, ceil, fma, fabs, next, . . . ). In future work we will focus on the remaining functions, i.e.

functions with two inputs, such as atan2 and pow, and complex functions.
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9.4 Verification vs. Test-Data Generation
In our experimental evaluation we performed model checking, proving important properties of the

code at hand. For such results to be achieved, a the conditions analyzed in Section 9.3 must all apply.

When such conditions do not hold, the correctness of constraint propagation is not guaranteed,

leading to the following issues:

(1) when the variable domains reach quiescence, they do not contain all existing solutions, but

some are missing;

(2) the final variable domains contain values that are not solutions.

Due to issue (1), it is not possible to rule out some program behavior when a domain becomes

empty during the constraint solving process. However, even when issue (2) occurs, as far as at least

one solution is contained in the domains, another important correctness-ensuring technique is

possible: automated test-data generation.

The approach we use enables white-box program testing, in the form of symbolic execution-based

test data generation [4]. First, a constraint system is built for each execution path selected by a

code-coverage criterion [71]. Then, the constraint-solving engine is launched. When all variable

domains reach quiescence, their contents may be used as test data that cause the execution of the

path. An instrumented version of the code to test can be executed with such input values, in order

to make sure they actually cause the requested execution path to be followed, ruling out issue (2).

This procedure can also be employed in testing approaches that mix constraint solving with other

techniques: concolic testing [62], or white-box fuzzing [29, 30, 64]. Indeed, such techniques present

an improvement with respect to pure, black-box random testing, due to their greater capability of

finding test inputs that trigger specific parts of the code.

9.5 Better Labeling Strategies for Constraint-Based Reasoning
The constraint-solving algorithms of Section 3.2 operate by interleaving constraint propagation, in
which constraints are used to refine variable domains (intervals or multi-intervals in our case), and

labeling, whereby a variable is chosen and its domain is partitioned into two or more subsets, each

of which is explored separately. It is the second process that drives the first one: when constraint

propagation goes to quiescence, i.e., when no further refinement of the domains can be achieved,

labeling splits the domain of a chosen variable, triggering a new phase of constraint propagation.

This goes on until a solution has been found or one of the domains becomes empty.

In this paper we only dealt with constraint propagation, but different labeling strategies have an

enormous influence on performance. Unfortunately, there is no such a thing as the good labeling

strategy: it is a matter of heuristics, and strategies that work well for one problem may still work

badly for another. Test input generation and model checking give rise to constraint problems of a

different nature: while the latter is very often over-constrained (i.e., there are few or no solutions at

all, as the program exhibits very few or no run-time anomalies), this is not the case for the former

(e.g., a function made of a single basic block can be covered by a single test input chosen more or

less at random). Thus, different tasks can profit from the choice of different labeling strategies.

During the experimental evaluation, we strongly felt that the current labeling strategy employed

by ECLAIR can be significantly enhanced by defining heuristics that take into account how variables

are constrained by invocations to such functions. Work on these new heuristics is ongoing.

10 CONCLUSION
There is a popular quotation in the software verification and validation community, whereby

“Without a specification, a system cannot be right or wrong, it can only be surprising!”
17

This

17
Paraphrased from [70].
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captures quite well the current state of affairs for C/C++ software that uses the functions declared in

the standard math.h/cmath header files. Despite the progress made on the development of correctly

rounded functions,
18
all implementations in widespread use, especially in the world of embedded

systems, offer little or no guarantees about the computed results. As a consequence, the verification

of programs using such functions is always painful and expensive and, for these reasons, more

often than not it is only partially performed through testing. As the search space can be huge,

testing can only cover a tiny fraction of all the possible value combinations: this cannot exclude

the manifestation of unexpected results, certainly not with the level of confidence that is required

for mission- and safety-critical applications.

The aim of this work is to improve upon the current situation now, i.e., without waiting for the

wider adoption of correctly-rounded implementations. While such adoption is generally desirable

and will certainly take place, at some stage and in some application domains, it is not clear whether

correctly-rounded implementations can meet the efficiency criteria of all application domains,

particularly in the field of embedded systems. Studying different implementations of the standard

C/C++ mathematical functions, we realized that what they have in common is a piecewise quasi-

monotonicity property: monotonicity is either preserved or only perturbed by small and, on average,

not too frequent “glitches.” Based on this observation, we developed direct and indirect propagation

algorithms for interval refinement. These algorithms can be integrated into abstract interpreters,

model checkers and automatic test input generators based on constraint propagation.

The techniques proposed here are now used in the C/C++ semantic analysis components of the

ECLAIR software verification platform and the initial experiences are quite positive. We can now

properly verify the absence of run-time anomalies for code using the C/C++ standard functions

that, before, was completely out of reach. Verification in the strong sense is only feasible modulo

the possibility of bounding the size of glitches (this can always be done for the single-precision

functions) and the ability to query the underlying implementation of the functions during the

analysis. For the cases where the first condition cannot be guaranteed, we can still detect many

definite program issues, even though we cannot draw conclusions from the fact issues have not

been found. When the second condition cannot be met, it may still be possible to use a reference

implementation with significant commonalities with the target implementation (the case where

libraries for different architectures are derived from the same code base is quite common), and we

can nonetheless detect high-severity, possible program issues.

We cannot yet claim that the problem of the verification of C/C++ programs using the standard

mathematical functions has been solved, as much remains to be done. However, we believe the

present work is a definite step in the right direction, and one that has the potential of improving,

starting from today, the current state of the art.
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A GLITCH DATA FOR OTHER IMPLEMENTATIONS OF LIBM

In this section, we provide additional data about the glitches in the single-precision functions

for other implementations of the math.h/cmath mathematical functions. Table 4 lists, for each

implementation, its identification code, which is used in the other tables, the CPU architecture, the

operating system, and, where known, the libm version.

Note that what appears as a large glitch in Table 9 for function tanf rounded down on the

macbook machine, is actually due to a clear bug in the range reduction algorithm used there.

Table 4. Glitch data: main characteristics of the tested implementations

id CPU OS compiler libm version

alpha x86_64 Ubuntu 14.04 GCC 4.8.4 EGLIBC 2.19

gcc110 POWER7 Fedora 20 GCC 4.8.1 GNU libc 2.18

gcc111 POWER7 AIX 7 GCC 4.8.1

gcc112 POWER7 Fedora 21 GCC 4.9.2 GNU libc 2.20

gcc113 AArch64 Ubuntu 14.04 GCC 4.8.4 EGLIBC 2.19

igor x86_64 Fedora 12 GCC 4.4.4 GNU libc 2.11.2

macbook x86_64 Mac OS X 10.10.5 LLVM 6.1.0 Libm-3086.1

raspi ARMv6 + VFPv2 Raspbian Jessie GCC 4.9.2 GNU libc 2.19

xps x86_64 Ubuntu 19.10 GCC 9.2.1 GNU libc 2.30

zoltan x86_64 Ubuntu 16.04 GCC 5.4.0 GLIBC 2.23

Table 5. Glitch data for the alpha machine

function 𝐷min 𝐷M near up down zero

𝑛g 𝑑M 𝑤M 𝑛g 𝑑M 𝑤M 𝑛g 𝑑M 𝑤M 𝑛g 𝑑M 𝑤M

acosf −1 1

acoshf 1 ∞ 1 1 2 1 1 2

asinf −1 1

asinhf −∞ ∞ 2 1 2 2 1 2

atanf −∞ ∞ 1 1 10
8

atanhf −1 1 2 1 2 2 1 2

cbrtf −∞ ∞ 10
6

1 2 10
6

1 2 10
6

1 2 10
6

1 2

coshf −∞ ∞ 454 1 2 466 1 2 442 1 2 448 1 2

erff −∞ ∞
expf −∞ ∞
exp10f −∞ ∞
exp2f −∞ ∞ 1 1 2 3 1 2 2 1 2 1 1 2

expm1f −∞ ∞
lgammaf 2 ∞ 163 1 2 164 1 2 166 1 2 161 1 2

logf 0 ∞
log10f 0 ∞
log1pf −1 ∞ 1 1 2 1 1 2

log2f 0 ∞
sinhf −∞ ∞
sqrtf 0 ∞
tanhf −∞ ∞ 1 1 2 2 1 3

tgammaf 2 ∞ 10
4

2 3 10
4

2 4 10
4

3 3 10
4

3 4

cosf −223 2
23

sinf −223 2
23

tanf −223 2
23
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Table 6. Glitch data for the gcc110/2/3 machines

function 𝐷min 𝐷M near up down zero

𝑛g 𝑑M 𝑤M 𝑛g 𝑑M 𝑤M 𝑛g 𝑑M 𝑤M 𝑛g 𝑑M 𝑤M

acosf −1 1

acoshf 1 ∞ 1 1 2 1 1 2

asinf −1 1

asinhf −∞ ∞ 2 1 2 2 1 2

atanf −∞ ∞ 1 1 10
8

atanhf −1 1 2 1 2 2 1 2

cbrtf −∞ ∞ 10
6

1 2 10
6

1 2 10
6

1 2 10
6

1 2

coshf −∞ ∞ 456 1 2 462 1 2 442 1 2 448 1 2

erff −∞ ∞
expf −∞ ∞
exp10f −∞ ∞
exp2f −∞ ∞ 2 1 2

expm1f −∞ ∞
lgammaf 2 ∞
logf 0 ∞
log10f 0 ∞
log1pf −1 ∞ 1 1 2 1 1 2

log2f 0 ∞
sinhf −∞ ∞
sqrtf 0 ∞
tanhf −∞ ∞ 1 1 2 2 1 3

tgammaf 2 ∞ 10
4

2 3 10
4

4 4 10
4

2 3 10
4

3 4

cosf −223 2
23

10
4

1 3 10
4

1 3 10
4

1 3 10
4

1 3

sinf −223 2
23

tanf −223 2
23

Table 7. Glitch data for the gcc111 machine

function 𝐷min 𝐷M near up down zero

𝑛g 𝑑M 𝑤M 𝑛g 𝑑M 𝑤M 𝑛g 𝑑M 𝑤M 𝑛g 𝑑M 𝑤M

acoshf 1 ∞
asinhf −∞ ∞
atanf −∞ ∞
atanhf −1 1

coshf −∞ ∞
erff −∞ ∞
lgammaf 2 ∞
sinhf −∞ ∞
tanhf −∞ ∞ 2 1 10

7

tgammaf 2 ∞
cosf −223 2

23

sinf −223 2
23

tanf −223 2
23
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Table 8. Glitch data for the igor machine

function 𝐷min 𝐷M near up down zero

𝑛g 𝑑M 𝑤M 𝑛g 𝑑M 𝑤M 𝑛g 𝑑M 𝑤M 𝑛g 𝑑M 𝑤M

acosf −1 1 1 1 10
10

1 1 10
10

acoshf 1 ∞ 1 1 2 1 1 2

asinf −1 1

asinhf −∞ ∞ 2 1 2 2 1 2

atanf −∞ ∞
atanhf −1 1 2 1 2 2 1 2

cbrtf −∞ ∞ 10
6

1 2 10
6

1 2 10
6

1 2 10
6

1 2

coshf −∞ ∞ 454 1 2 466 1 2 442 1 2 448 1 2

erff −∞ ∞
expf −∞ ∞
exp10f −∞ ∞
exp2f −∞ ∞ 1 1 2 3 1 2 2 1 2 1 1 2

expm1f −∞ ∞
lgammaf 2 ∞ 163 1 2 164 1 2 166 1 2 161 1 2

logf 0 ∞
log10f 0 ∞
log1pf −1 ∞ 1 1 2 1 1 2

log2f 0 ∞
sinhf −∞ ∞
sqrtf 0 ∞
tanhf −∞ ∞ 1 1 2 2 1 3

tgammaf 2 ∞ 155 109 2 155 122 2 157 119 2 153 119 2

cosf −223 2
23

10
4

1 3 10
4

1 3 10
4

1 3 10
4

1 3

sinf −223 2
23

tanf −223 2
23
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Table 9. Glitch data for the macbook machine

function 𝐷min 𝐷M near up down zero

𝑛g 𝑑M 𝑤M 𝑛g 𝑑M 𝑤M 𝑛g 𝑑M 𝑤M 𝑛g 𝑑M 𝑤M

acosf −1 1

acoshf 1 ∞
asinf −1 1

asinhf −∞ ∞
atanf −∞ ∞ 2 1 10

9
2 1 10

9
2 1 10

9

atanhf −1 1

cbrtf −∞ ∞
coshf −∞ ∞
erff −∞ ∞
expf −∞ ∞
exp10f −∞ ∞
exp2f −∞ ∞
expm1f −∞ ∞
lgammaf 2 ∞
logf 0 ∞
log10f 0 ∞
log1pf −1 ∞
log2f 0 ∞
sinhf −∞ ∞
sqrtf 0 ∞
tanhf −∞ ∞ 1 1 10

7

tgammaf 2 ∞
cosf −223 2

23

sinf −223 2
23

tanf −223 2
23

1 10
10

10
6
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Table 10. Glitch data for the raspi machine

function 𝐷min 𝐷M near up down zero

𝑛g 𝑑M 𝑤M 𝑛g 𝑑M 𝑤M 𝑛g 𝑑M 𝑤M 𝑛g 𝑑M 𝑤M

acosf −1 1

acoshf 1 ∞ 1 1 2 1 1 2

asinf −1 1

asinhf −∞ ∞ 2 1 2 2 1 2

atanf −∞ ∞ 1 1 10
8

atanhf −1 1 2 1 2 2 1 2

cbrtf −∞ ∞ 10
6

1 2 10
6

1 2 10
6

1 2 10
6

1 2

coshf −∞ ∞ 454 1 2 466 1 2 442 1 2 448 1 2

erff −∞ ∞
expf −∞ ∞
exp10f −∞ ∞
exp2f −∞ ∞ 1 1 2

expm1f −∞ ∞
lgammaf 2 ∞ 163 1 2 164 1 2 166 1 2 161 1 2

logf 0 ∞
log10f 0 ∞
log1pf −1 ∞ 1 1 2 1 1 2

log2f 0 ∞
sinhf −∞ ∞
sqrtf 0 ∞
tanhf −∞ ∞ 1 1 2 2 1 3

tgammaf 2 ∞ 10
4

2 3 10
4

2 4 10
4

3 3 10
4

3 4

cosf −223 2
23

10
4

1 3 10
4

1 3 10
4

1 3 10
4

1 3

sinf −223 2
23

tanf −223 2
23
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Table 11. Glitch data for the zoltan machine

function 𝐷min 𝐷M near up down zero

𝑛g 𝑑M 𝑤M 𝑛g 𝑑M 𝑤M 𝑛g 𝑑M 𝑤M 𝑛g 𝑑M 𝑤M

acosf −1 1

acoshf 1 ∞ 1 1 2 1 1 2

asinf −1 1

asinhf −∞ ∞ 2 1 2 2 1 2

atanf −∞ ∞ 1 1 10
8

atanhf −1 1 2 1 2 2 1 2

cbrtf −∞ ∞ 10
6

1 2 10
6

1 2 10
6

1 2 10
6

1 2

coshf −∞ ∞ 454 1 2 466 1 2 442 1 2 448 1 2

erff −∞ ∞
expf −∞ ∞
exp10f −∞ ∞
exp2f −∞ ∞ 1 1 2 3 1 2 2 1 2 1 1 2

expm1f −∞ ∞
lgammaf 2 ∞ 163 1 2 164 1 2 166 1 2 161 1 2

logf 0 ∞
log10f 0 ∞
log1pf −1 ∞ 1 1 2 1 1 2

log2f 0 ∞
sinhf −∞ ∞
sqrtf 0 ∞
tanhf −∞ ∞ 1 1 2 2 1 3

tgammaf 2 ∞ 10
5

4 3 10
5

4 3 10
5

4 3 10
5

4 3

cosf −223 2
23

sinf −223 2
23

tanf −223 2
23
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B COMPUTATION OF UPPER BOUNDS
The algorithm we conceived for the computation of the upper bounds is substantially similar to the

one for the lower bounds in its structure and functioning. It employs the same arguments to obtain

glitch data, and it ends ensuring the post-condition predicates listed in Section 5.2.

Algorithm 6 consists of a first phase in which it tries to find a sub-interval inside the initial

one, [𝑥𝑙 , 𝑥𝑢], that is suitable for the bisection process. If such an interval cannot be found, it tries

to determine quickly whether the equation 𝑦 = 𝑓 (x) has a solution or not, compatible with the

available glitch information.

Otherwise, the obtained interval is searched for an admissible upper bound by Algorithm 9, a

dichotomic search that takes into account the possible presence of glitches. This algorithm is similar

to bisect_lb, except for the fact that it needs to ensure that the function is strictly greater than𝑦 in

the whole interval between the found upper bound and 𝑥𝑢 . Another significant difference between

the two algorithms is the behavior in the case where the function evaluated at the mid-point mid is

greater than 𝑦. The computation should continue in the first half of the original interval, discarding

the second one and making sure that the graph of the function is entirely above 𝑦 in the latter. This

means asserting that there are no glitches after mid which are deep enough to let the function

reach 𝑦. Data such as 𝛼 , 𝜔 and the maximum glitch depth 𝑑M are almost always helpful in excluding

this circumstance. Theoretically speaking, this is not always the case, e.g., if 𝑑M is very high, or

𝑦 is very close to 𝑓 (mid). The former case seldom occurs in practice, as noted in Section 4. The

latter can occur in the last stages of the bisection process if the function increases very slowly. The

experimental evaluation we performed, however, showed that this is not a substantial problem

in practice. Anyway, should this circumstance occur, if the function has only one glitch and it is

sufficiently narrow, it can be searched float-by-float. Otherwise, the whole right interval should be

searched for glitches, which is clearly unfeasible, unless the intervals are very small.

The analogous issue with bisect_lb was making sure that mid was not inside a glitch, in order

to exclude the left half of the interval. This situation could always be clarified if𝑤M < 𝑡 , by means

of a linear search that could analyze the entire glitch. The same approach cannot clearly solve the

analogous issue for the upper-bound algorithm since all the glitches after mid would need to be

analyzed. This is the reason why the correctness post-condition is more demanding for the upper

bound than for the lower bound. In particular, it ensures optimality of the bound if the function is

monotonic, i.e., 𝑛g = 0. Otherwise, it finds an optimal upper bound if

• 𝑛g = 1: the function has one glitch only, and

• 𝑤M < 𝑡 : it is not too large to perform a linear search, and

• the position of the glitch is known exactly, i.e., one of conditions 𝛼 = 𝛼 𝑓
, 𝜔 = 𝜔 𝑓

, or

#[𝛼,𝜔) > 𝑘 ∧ 𝑘 ≤ 𝑡 is true.

Nevertheless, the algorithm for the upper bound has the same order of complexity as bisect_lb.
An in-depth analysis of these algorithms is available in [6], where we give the proof of their

correctness and more precise claims about complexity.
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Algorithm 6 Indirect propagation: upper_bound(𝑓 , 𝑦, [𝑥𝑙 , 𝑥𝑢], 𝑛g, 𝑑M,𝑤M, 𝛼, 𝜔, 𝑓
i, 𝑠, 𝑡)

Require: 𝑓 : F → F, 𝑦 ∈ F, [𝑥𝑙 , 𝑥𝑢] ∈ IF, 𝑛g ≥ 𝑛
𝑓
g
, 𝑑M ≥ 𝑑

𝑓

M
, 𝑤M ≥ 𝑤

𝑓

M
, 𝛼 ≼ 𝛼 𝑓

, 𝜔 ≽ 𝜔 𝑓
,

𝑛g > 0 =⇒ (𝑥𝑙 ≼ 𝛼 ≼ 𝜔 ≼ 𝑥𝑢), 𝑓 i : F→ F, 𝑠, 𝑡 ∈ N.
Ensure: c 𝑢 ∈ F, 𝑟 ∈ {5, 6, 7, 8, 9} =⇒ 𝑝𝑟 (𝑦, 𝑥𝑙 , 𝑥𝑢, 𝑢)

p

(
𝑓 (𝑥𝑙 ) ≼ 𝑦 ≼ 𝑓 (𝑥𝑢)

∧
(
𝑛g = 0 ∨

(
𝑛g = 1 ∧𝑤M < 𝑡 ∧

(
𝛼 = 𝛼 𝑓 ∨ 𝜔 = 𝜔 𝑓 ∨ (#[𝛼,𝜔) > 𝑘 ∧ 𝑘 ≤ 𝑡)

) ) ))
=⇒ 𝑟 ∈ {8, 9}

1: 𝑖 := init(𝑦, [𝑥𝑙 , 𝑥𝑢], 𝑓 i); ⊲ 𝑥𝑙 ≼ 𝑖 ≼ 𝑥𝑢
2: (lo, hi) := gallop_ub(𝑓 , 𝑦, [𝑥𝑙 , 𝑥𝑢], 𝑑M, 𝑖);
3: ⊲ (𝑥𝑙 ≼ lo ≼ hi ≼ 𝑥𝑢) ∧ (𝑥𝑙 ≺ lo =⇒ 𝑦 ≽ 𝑓 (lo)) ∧ (𝑥𝑢 ≻ hi =⇒ #[𝑦, 𝑓 (hi)) > 𝑑M)
4: if 𝑓 (hi) ≺ 𝑦 then
5: 𝑢 := findhi_ub(𝑓 , 𝑦, [𝑥𝑙 , 𝑥𝑢], 𝑛g, 𝑑M,𝑤M, 𝛼, 𝜔, 𝑡);
6: 𝑟 := 6; return
7: else if 𝑓 (hi) = 𝑦 then
8: 𝑢 := hi; 𝑟 := 9; return
9: end if;
10: if 𝑓 (lo) ≻ 𝑦 then
11: if 𝑛g = 0 ∨ #[𝑦, 𝑓 (𝛼)) > 𝑑M then
12: 𝑟 := 5; return
13: else
14: (𝑏, 𝑧) := check_glitch(𝑓 , 𝑦, [𝑥𝑙 , 𝑥𝑢], 𝑛g, 𝑑M,𝑤M, 𝛼, 𝜔, 𝑡, lo, lo, hi);
15: if 𝑏 = 0 then
16: 𝑟 := 5; return
17: else if 𝑏 = 1 then
18: if 𝑓 (𝑧) = 𝑦 then
19: 𝑢 = 𝑧; 𝑟 = 9; return
20: else
21: 𝑢 = succ(𝑧); 𝑟 = 8; return
22: end if
23: else
24: 𝑢 := min{hi, 𝜔}; 𝑟 := 7; return
25: end if
26: end if
27: end if;
28: hi := bisect_ub(𝑓 , 𝑦, 𝑛g, 𝑑M,𝑤M, 𝛼, 𝜔, 𝑛g, 𝑠, 𝑡, lo, hi);
29: while 𝑓 (pred(hi)) ≻ 𝑦 ∧ 𝑡 > 0 do
30: hi := pred(hi);
31: 𝑡 := 𝑡 − 1

32: end while;
33: if 𝑓 (pred(hi)) ≺ 𝑦 then
34: 𝑢 := hi; 𝑟 := 8

35: else if 𝑓 (pred(hi)) = 𝑦 then
36: 𝑢 := pred(hi); 𝑟 := 9

37: else
38: 𝑢 := hi; 𝑟 := 7

39: end if
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Algorithm 7 Indirect propagation: findhi_ub(𝑓 , 𝑦, [𝑥𝑙 , 𝑥𝑢], 𝑛g, 𝑑M,𝑤M, 𝛼, 𝜔, 𝑡)

Require: 𝑓 : F → F, 𝑦 ∈ F, [𝑥𝑙 , 𝑥𝑢] ∈ IF, 𝑛g ≥ 𝑛
𝑓
g
, 𝑑M ≥ 𝑑

𝑓

M
, 𝑤M ≥ 𝑤

𝑓

M
, 𝛼 ≼ 𝛼 𝑓

, 𝜔 ≽ 𝜔 𝑓
,

𝑛g > 0 =⇒ (𝑥𝑙 ≼ 𝛼 ≼ 𝜔 ≼ 𝑥𝑢), 𝑡 ∈ N, 𝑓 (𝑥𝑢) ≺ 𝑦.

Ensure: 𝑢 ∈ F, 𝑝6 (𝑦, 𝑥𝑙 , 𝑥𝑢, 𝑢).
1: if 𝑛g = 0 ∨ 𝑥𝑢 ≻ 𝜔 ∨ #[𝑓 (𝑥𝑢), 𝑦) > 𝑑M then
2: 𝑢 := 𝑥𝑙
3: else if 𝑛g = 1 ∧

(
𝑤M > 𝑡 ∨ (𝑓 (succ(𝛼)) ≺ 𝑓 (𝛼) ∧ 𝑦 ≽ 𝑓 (𝛼))

)
then

4: if 𝑦 ≺ 𝑓 (𝛼) ∨ 𝑓 (succ(𝛼)) ≽ 𝑓 (𝛼) then
5: 𝑢 := 𝑥𝑢
6: else if 𝑦 = 𝑓 (𝛼) then
7: 𝑢 := succ(𝛼)
8: else
9: 𝑢 := 𝑥𝑙
10: end if
11: else
12: (𝑏, hi, 𝑥) := linsearch_geq(𝑓 , 𝑦, [𝑥𝑙 , 𝑥𝑢],𝑤M, 𝑡);
13: ⊲

(
𝑏 = 1 ∧ hi ∈ [𝑥𝑙 , 𝑥𝑢] ∧ 𝑓 (hi) ≽ 𝑦 ∧ ∀𝑥 ∈ [succ(hi), 𝑥𝑢] : 𝑓 (𝑥) ≺ 𝑦

)
14: ⊲ ∨

(
𝑏 = 0 ∧ ∀𝑥 ∈ [𝑥, 𝑥𝑢] : 𝑓 (𝑥) ≺ 𝑦

)
15: ⊲ where 𝑣 = min{𝑡,𝑤M} and 𝑥 = max{𝑥𝑙 , pred𝑣 (𝑥𝑢)}
16: if 𝑏 = 1 then
17: 𝑢 := succ(hi)
18: else if 𝑡 ≥ 𝑤M then
19: 𝑢 := 𝑥𝑙
20: else
21: 𝑢 := 𝑥

22: end if
23: end if
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Algorithm 8 Indirect propagation: check_glitch(𝑓 , 𝑦, [𝑥𝑙 , 𝑥𝑢], 𝑛g, 𝑑M,𝑤M, 𝛼, 𝜔, 𝑡, lo,m, hi)

Require: 𝑥𝑙 ≼ lo ≼ m ≼ hi ≼ 𝑥𝑢 , 𝑓 (m) ≻ 𝑦, 𝑓 (hi) ≻ 𝑦, 𝑓 : F → F, 𝑦 ∈ F, [𝑥𝑙 , 𝑥𝑢] ∈ IF, 𝑛g ≥ 𝑛
𝑓
g
,

𝑑M ≥ 𝑑
𝑓

M
,𝑤M ≥ 𝑤

𝑓

M
, 𝛼 ≼ 𝛼 𝑓

, 𝜔 ≽ 𝜔 𝑓
, 𝑛g > 0, 𝑥𝑙 ≼ 𝛼 ≼ 𝜔 ≼ 𝑥𝑢 , 𝛼 ≤ hi ∧ 𝜔 ≥ m, 𝑡 ∈ N.

Ensure: 𝑏 ∈ {0, 1, 2},
𝑛g = 1 ∧𝑤M < 𝑡 ∧

(
𝛼 = 𝛼 𝑓 ∨ 𝜔 = 𝜔 𝑓 ∨ (#[𝛼,𝜔) > 𝑘 ∧ 𝑘 ≤ 𝑡)

)
=⇒ 𝑏 ∈ {0, 1},

𝑏 = 0 =⇒ ∀𝑥 ∈ [m, hi] : 𝑓 (𝑥) ≻ 𝑦,

𝑏 = 1 =⇒ 𝑧 ∈ F ∧ lo ≼ 𝑧 ≼ hi ∧ ∀𝑥 ∈ (𝑧, hi] : 𝑓 (𝑥) ≻ 𝑦 ∧ 𝑓 (𝑧) ≼ 𝑦.

1: if 𝑛g = 1 ∧𝑤M ≤ 𝑡

∧
(
𝑓 (𝜔−) ≺ 𝑓 (𝜔) ∨ 𝑓 (𝛼+) ≺ 𝑓 (𝛼) ∨ (#[𝛼,𝜔) > 𝑘 ∧ 𝑘 ≤ 𝑡)

)
then

2: 𝑠𝑙 := max{𝛼, lo};
3: if 𝑓 (𝜔−) ≺ 𝑓 (𝜔) ∨ (#[𝛼,𝜔) > 𝑘 ∧ 𝑘 ≤ 𝑡) then
4: 𝑠𝑢 := min{𝜔, hi}
5: else
6: 𝑠𝑢 := min{𝛼+𝑤M , hi}
7: end if;
8: (𝑏, 𝑧) := linsearch_leq(𝑓 , 𝑦,𝑤M, 𝑠𝑙 , 𝑠𝑢)
9: ⊲ (𝑏 = 0 ∧ 𝑧 = 𝑥 ∧ ∀𝑥 ∈ [𝑧, 𝑠𝑢] : 𝑓 (𝑥) ≻ 𝑦)
10: ⊲ ∨(𝑏 = 1 ∧ 𝑧 ∈ [𝑥, 𝑠𝑢] ∧ 𝑓 (𝑧) ≼ 𝑦 ∧ ∀𝑥 ∈ (𝑧, 𝑠𝑢] : 𝑓 (𝑥) ≻ 𝑦)
11: ⊲ where 𝑥 = max{𝑠𝑙 , 𝑠−𝑤M

𝑢 }
12: else
13: 𝑏 = 2

14: end if
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Algorithm 9 Indirect propagation: bisect_ub(𝑓 , 𝑦, [𝑥𝑙 , 𝑥𝑢], 𝑛g, 𝑑M,𝑤M, 𝛼, 𝜔, 𝑠, 𝑡, lo, hi)
Require: 𝑥𝑙 ≼ lo ≺ hi ≼ 𝑥𝑢 , 𝑓 (lo) ≼ 𝑦 ≺ 𝑓 (hi), ∀𝑥 ∈ [hi, 𝑥𝑢] : 𝑓 (𝑥) ≻ 𝑦 𝑓 : F → F, 𝑦 ∈ F,

[𝑥𝑙 , 𝑥𝑢] ∈ IF, 𝑛g ≥ 𝑛
𝑓
g
, 𝑑M ≥ 𝑑

𝑓

M
, 𝑤M ≥ 𝑤

𝑓

M
, 𝛼 ≼ 𝛼 𝑓

, 𝜔 ≽ 𝜔 𝑓
, 𝑛g > 0 =⇒ (𝑥𝑙 ≼ 𝛼 ≼ 𝜔 ≼ 𝑥𝑢),

𝑠, 𝑡 ∈ N.
Ensure: c 𝑥𝑙 ≼ lo ≺ hi ≼ 𝑥𝑢 , 𝑓 (lo) ≼ 𝑦 ≺ 𝑓 (hi), ∀𝑥 ∈ [hi, 𝑥𝑢] : 𝑓 (𝑥) ≻ 𝑦

p

(
𝑛g = 0 ∨

(
𝑛g = 1 ∧𝑤M < 𝑡 ∧

(
𝛼 = 𝛼 𝑓 ∨ 𝜔 = 𝜔 𝑓 ∨ (#[𝛼,𝜔) > 𝑘 ∧ 𝑘 ≤ 𝑡)

) ) )
=⇒ 𝑓 (pred(hi)) ≼ 𝑦

1: while #[lo, hi) > 1 do
2: mid := split_point(lo, hi);
3: ⊲ ∃𝑚,𝑚′ > 0, |𝑚 −𝑚′ | ≤ 1, mid = pred

𝑚 (hi) = succ
𝑚′ (lo)

4: if 𝑓 (mid) ≼ 𝑦 then
5: lo := mid

6: else if 𝑛g = 0 ∨ hi ≼ 𝛼 ∨mid ≽ 𝜔 ∨ #[𝑦, 𝑓 (mid)) > 𝑑M then
7: hi := mid

8: else
9: (𝑏, 𝑧) := check_glitch(𝑓 , 𝑦, 𝑛g, 𝑑M,𝑤M, 𝛼, 𝜔, 𝑡, lo,mid, hi);
10: if 𝑏 = 0 then
11: hi := mid

12: else if 𝑏 = 1 then
13: hi := succ(𝑧); break
14: else
15: 𝑧 := logsearch_ub(𝑓 , 𝑑M,mid, hi, 𝑦, 𝑠);
16: ⊲ 𝑧 ∈ [mid, hi] ∧

(
(𝑧 ≺ hi) =⇒ #[𝑦, 𝑓 (𝑧)) > 𝑑M

)
17: if 𝑧 ≺ hi then
18: hi := 𝑧

19: elsebreak
20: end if
21: end if
22: end if
23: end while

ACM Trans. Softw. Eng. Methodol., Vol. 37, No. 4, Article 111. Publication date: August 2019.


	Abstract
	1 Introduction
	2 Background: Floating-Point Numbers and Intervals
	3 Background: Approaches to Program Verification
	3.1 Symbolic Execution
	3.2 Constraint Solving over Floating-Point Variables
	3.3 Examples of Constraint Solving
	3.4 Integration into Abstract Interpreters

	4 (Quasi-) Monotonicity and Glitches
	5 Propagation Algorithms
	5.1 Direct Propagation
	5.2 Indirect Propagation

	6 Trigonometric Functions
	6.1 An Appropriate Domain for Trigonometric Functions Analysis
	6.2 Outline of the Propagation Algorithms

	7 Implementation and Experiments
	7.1 Implementation
	7.2 Case Study
	7.3 Feasibility Evaluation

	8 Comparison with the State of the Art
	8.1 RQ4: issues caused by an unsound treatment of math.h/cmath functions
	8.2 Comparison on real-world code
	8.3 Related Work

	9 Discussion and Further Work
	9.1 Access to the Target Library
	9.2 Obtaining Glitch Data
	9.3 Supported Functions in math.h/cmath
	9.4 Verification vs. Test-Data Generation
	9.5 Better Labeling Strategies for Constraint-Based Reasoning

	10 Conclusion
	Acknowledgments
	References
	A Glitch Data for Other Implementations of libm
	B Computation of Upper Bounds

