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An algorithmic approach to the multiple impact of a disk in a

corner.∗

Claudia Fassino†, Stefano Pasquero‡

Abstract

The paper presents and analyzes the iterative rules determining the impulsive behavior of a
rigid disk having a single or possibly multiple frictionless impact with two walls forming a
corner.

In the first part, two theoretical iterative rules are presented for the cases of ideal impact
and Newtonian frictionless impact with global dissipation index. The termination analysis
of the algorithms differentiates the two cases: in the ideal case, it is shown that the algo-
rithm always terminates and the disk exits from the corner after a finite number of steps
independently of the initial impact velocity of the disk and the angle formed by the walls;
in the non–ideal case, although is not proved that the disk exits from the corner in a finite
number of steps, it is shown that its velocity decreases to zero, so that the termination of
the algorithm can be fixed through an “almost at rest” condition.

In the second part, it is presented a stable version of both the theoretical algorithms. It
is shown that the stable version of the algorithm is more robust than the theoretical ones
with respect to noisy initial data and floating point arithmetic computation. The outputs
of the stable and theoretical versions of the algorithms are compared, showing that they are
similar, even if not coincident, outputs. Moreover, the outputs of the stable version of the
algorithm in some meaningful cases are graphically presented and discussed.

The paper clarifies the practical applicability of theoretical methods presented in [Pasquero, 2018]
by analyzing the paradigmatic case of the disk in the corner.

2010 Mathematical subject classification: 70E18; 70F35; 70–04
Keywords: Multipoint Impact – Iterative Method

Introduction

The study of the behavior of a rigid or multibody system subject to multiple contact and/or
impact is a very actual argument of investigation, finding application in several branches of
Classical Mechanics, from the analysis of the motion of billiard balls to that of rocking blocks
or granular materials.

The argument can be dealt adopting several different theoretical and/or numerical ap-
proaches, and focussing attention on different problems: formalization of the unilateral context,
well–posedness of the equations of motion, existence and uniqueness of local or global solutions,
energy balance and conservation laws, constitutive characterization of the constraints.

∗This version of the paper is deposited under the Creative Commons Attribution Non-commercial International
Licence 4.0 (CC BY-NC 4.0) and that any reuse is allowed in accordance with the terms outlined by the licence.
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In a recent paper ([Pasquero, 2018]), a geometric approach framed in the context of jet–
bundle theory was used to analyze, starting from a suitable constitutive characterization, the
behavior of a general mechanical system with a finite number of degrees of freedom subject
to multiple unilateral ideal constraints. Due to the frame invariance requirement that is the
rationale of the method, and the requirement of conservation of kinetic energy of the system
in the impact, this geometric approach differs in a substantial way from the analytical and
numerical methods mostly found in literature, such as the methods based on convex anal-
ysis and the LCP methods (see e.g. [Moreau, 1988, Lötstedt, 1982]), the DAE and HHT
methods (see e.g. [Haddouni et al., 2017, Negrut et al., 2007]), the differential inclusions and
measure derivative methods ([Kiseleva et al., 2018, Monteiro Marques, 1993]), analytical or nu-
merical integration methods ([Moreau, 1999, Paoli and Schatzman, 2002, Liu et al., 2008]. The
wide bibliographies of the books of Brogliato ([Brogliato, 2016]) and of Pfeiffer and Glocker
([Pfeiffer and Glocker, 2000]) give a clear idea of the hugeness of the state of the art about these
methods. For a survey about the methods, see also [Khulief, 2013, Acary and Brogliato, 2008]
and the references therein.

The jet–bundle based geometric method described in [Pasquero, 2018] has its natural appli-
cability in the context of the event–driven analysis of systems subject to frictionless constraints
with algebraic–type impact rules, and in this case led to the construction of an iterative rule
that, for several significant mechanical systems, determines the theoretical behavior of the sys-
tem, that is its “right” velocity after the impact, once the “left” velocity of the system before
the impact and the geometric and massive properties of the system are known.

In this paper we present the application of this iterative rule to the paradigmatic case of the
planar system formed by a rigid disk simultaneously impacting with both sides of a corner in
two possible situations: the ideal case, with frictionless contacts and conservation of the kinetic
energy of the disk; the so called Newtonian frictionless impact with global dissipation index, a
non–ideal case with frictionless contact and no requirement of conservation of kinetic energy.

In the ideal case, the iterative rule for the disk can be directly built starting from the
theoretical procedure of [Pasquero, 2018]. Nevertheless, the results presented in this paper for
the disk are far from being a pedestrian computation. In addition to the physical meaning of
the outputs, the paper is focused on the termination analysis of the algorithm implementing
the rule. This is an important aspect of the theoretical approach that was not discussed in
[Pasquero, 2018]: although for several meaningful systems the algorithm evidently terminates,
it is clear that the requirement of conservation of kinetic energy suggests the possibility of an
infinite number of iterations of the algorithm, reflecting the possibility of an infinite number of
“rebounds” of the disk on the walls of the corner. We prove that the algorithm applied to the
system of the disk always terminates and determines a velocity such that the disk exits from the
corner. However, notwithstanding the manifest simplicity of the mechanical system, the analysis
lights up two important aspects of multiple ideal impacts: the first is that the geometry of the
system, essentially the angle formed by the walls, can be easily arranged in order to obtain as
many iterations of the algorithm as one can decide; the second is that the case of effective double
impact of the disk with both sides of the corner, although leading to a non trivial non–linear
rule for the determination of the right velocity, is however such that that the double impact can
happen only once.

The iterative rule for the non–ideal case consists in a generalization of the ideal one suppos-
ing that the (frictionless) walls of the corner are partially or totally inelastic. The non–ideality
is introduced by a “Newtonian” restitution coefficient ε relating the orthogonal components
of the velocity of the disk with respect to the walls before and after each step of the algo-
rithm. Note that, due to the nature of the Newtonian restitution coefficient in the geometric
approach, the choice of a totally inelastic coefficient does not implies a sudden stop of the disk
([Fassino and Pasquero, 2019]). Moreover, we recall that, in the geometric approach, Newton’s
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and Poisson’s laws of restitution are equivalent ([Pasquero, 2005]). Although such a modeliza-
tion was suggested in [Pasquero, 2018] as a natural outgrowth of the ideal case, the details and
results of this generalization are, in actual fact, totally new. In this case we do not prove that
the algorithm implementing the rule always determines a velocity such that the disk exits from
the corner, but we show that the norm of the velocity decreases to 0 for increasing numbers of
steps. This gives a second termination criterion for the algorithm, with a meaningful physical
interpretation. Moreover we prove that, even in the non–ideal case, double impacts of the disk
with both the sides of the corner can happen only once.

However, in case of a pedestrian implementation of the theoretical iterative rules, small
perturbations of the input data and approximations of the computed values can cause struc-
tural changes in response with consequent different choices in the iterative methods, such as to
invalidate the final results (see the example below in Sec. 6). For this reason, we present an
algorithm, based on the theoretical rules, that is more robust with respect to the errors due to
the measurements and to the use of the floating point arithmetic. This stable version of the
algorithm differs from the theoretical rules in the criteria for selecting the behavior of the disk
after a rebound. In the theoretical rules such criteria are based on the nullity of some suitable
components of the velocity. It is however well known that an exact comparison with zero makes
an algorithm unstable, and so, in order to obtain a more robust algorithm, we introduce two
thresholds: one determining when a single component of the velocity of the disk is almost zero,
one determining when the norm of the whole velocity is almost zero. Furthermore, we compare
the theoretical and numerical versions of the algorithms showing that, starting from the same
input, they compute the same output in the same number of steps, or they compute slightly
different outputs, even if one of the versions performs more steps.

The paper is divided into two main parts: in the first, after some short preliminaries, we
introduce the theoretical iterative rule for the ideal impact in three different but equivalent
forms and we show the corresponding results. Then we introduce the theoretical algorithm
for the non–ideal impact in two different but equivalent forms and we show the corresponding
results. In the second part we introduce the stable version of the algorithm that groups both
the ideal and the non–ideal theoretical cases. Then we compare the theoretical and numerical
versions of the algorithms. Finally, we illustrate the behavior of the stable algorithm by listing
the outputs computed processing several different meaningful inputs.

Since the main aim of the paper is focused on the analysis of the algorithms giving the
velocity of the disk after the impact, we will limit the mathematical aspects to the bare necessary
to describe the rules for the case of the disk in the corner. The Reader interested in a wider
description of the geometry and the impulsive aspects of general systems subject to ideal multiple
constraints can refer to [Pasquero, 2018] and the references therein. The Reader interested in a
short synthesis of the geometric and impulsive theoretical aspects restricted to the case of the
disk in the corner can refer to [Fassino and Pasquero, 2019].

The list of possible references about multiple impacts is very huge, and a bibliography claim-
ing to be exhaustive on the argument should be excessively long compared to the length of the
paper. Moreover, only few works would be reasonably pertinent to the specific methods used in
the paper. Therefore, the list of references has been based on the minimality criterion of mak-
ing the paper self–consistent. However, for large but not recent or exhaustive lists of general
references, see for example [Brogliato, 2016, Johnson, 1985, Stronge, 2000].
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PART 1: THEORETICAL ASPECTS

1 Preliminaries

A rigid disk of unitary mass and radius R moves in the part of a horizontal plane delimited by
two walls S1,S2 forming an angle 2α ∈ (0, π) (see Fig. 1). We can describe the geometry of the
system by introducing local coordinates (x, y, ϑ) where x, y are the coordinates of the center of
the disk and ϑ is the orientation of the disk. Choosing k = tanα, then k > 0 and the walls can
be described by the cartesian relations S1 : kx− y = 0, S2 : kx + y = 0. Since we adopt the so
called event–driven approach, we assume that (x, y) = (− R

sin α , 0) so that the disk is in contact
with both the walls. We assume the contacts as frictionless.

Figure 1: Disk in contact with both sides of the corner

The kinetic state of the disk is known once the linear velocity of the (center of the) disk is
assigned through a pair v = (ẋ, ẏ), and the spin is assigned by ϑ̇. Of course, the linear velocity
can be assigned in the alternative form (v cosϕ, v sinϕ) with v > 0 and ϕ ∈ (−π, π]. Without
entering temporarily into mathematical details, it is clear that the angle ϕ determines the nature
of the impact between disk and walls: if ϕ ∈ (−α, α), the disk is subject to a multiple impact, if
ϕ ∈ [α, π−α) the disk is subject to an impact with S2 and not with S1, if ϕ ∈ (−π +α,−α] the
disk is subject to an impact with S1 and not with S2. Otherwise, the velocity v is a so–called
exit velocity, the disk does not impact with the walls and its time evolution separates it from
one or both the walls.

We can divide the space of the linear velocities of the system into four different zones
Z0,Z1,Z2,Z12 with v ∈ Zi if, with a slight abuse of notation, the linear velocity determines
an impact with Si.

Remark 1. If we restrict our attention to a physically meaningful situation and taking into
account Fig. 1, the initial velocity v0 = (ẋ0, ẏ0) is such that v0 ∈ Z12 or v0 is parallel to the
walls, that is ϕ0 ∈ [−α, α]. ♦
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We now resume the main consequences of the constitutive characterization of multiple con-
tact/impact presented in [Pasquero, 2018] for the case of the disk in the corner:

0) the constitutive characterization assigns a reactive impulse I to any kinetic state of the
disk supposed in contact with the walls;

1) independently of the kinetic state of the disk, the reactive impulse I does not involve
the spin ϑ̇ of the disk, that remains unchanged in the impact. This is coherent with the
assumption that the contacts of the disk with S1 and S2 are frictionless. Then we can
focus our attention only on the linear part v of the velocity of the disk;

2) for every linear velocity v we can determine the orthogonal components v⊥1 (v),v⊥2 (v) of
v with respect to S1,S2 respectively. The orthogonal components indicate if v is an exit
velocity or if v gives rise to an impact with S1 and/or S2. In particular, if v = (ẋ, ẏ), we
have that:

v ∈ Z0 ⇔
{

kẋ + ẏ ≤ 0
kẋ− ẏ ≤ 0

v ∈ Z1 ⇔
{

kẋ + ẏ ≤ 0
kẋ− ẏ > 0

v ∈ Z2 ⇔
{

kẋ + ẏ > 0
kẋ− ẏ ≤ 0

v ∈ Z12 ⇔
{

kẋ + ẏ > 0
kẋ− ẏ > 0

(1)

Note that the symmetry of the mechanical problem is reflected in the symmetry of the
zones Zi with respect to the (ẋ, ẏ) components of the velocity. In fact we have

(ẋn, ẏn) ∈ Z0 ⇒ (ẋn,− ẏn) ∈ Z0

(ẋn, ẏn) ∈ Z1 ⇒ (ẋn,− ẏn) ∈ Z2

(ẋn, ẏn) ∈ Z2 ⇒ (ẋn,− ẏn) ∈ Z1

(ẋn, ẏn) ∈ Z12 ⇒ (ẋn,− ẏn) ∈ Z12 .

3) the constitutive characterization determines a rule assigning a “new” velocity of the system
once an “old” velocity is known. The rule is vnew = vold + I(vold), where I represents the
reactive impulse generated by the impact with the walls, and the function I(vold) depends
on the ideal or non–ideal nature of the impact.

Of course I(vold) = 0 if v ∈ Z0: in this case, the reactive impulse acting on the disk is
null and the kinetic energy is obviously preserved, as well as the euclidean norm ‖v‖2 =√

ẋ2 + ẏ2.

The rule I = I(vold) consists in a complete or partial “reflection” of the orthogonal com-
ponent v⊥i (vold) if vold ∈ Z i, i = 1, 2. In the ideal case, the reactive impulse acting on the
disk has the form I(vold) = −2v⊥i (vold), so that the reflection of the component v⊥i (vold)
is complete. The kinetic energy and ‖v‖2 are once again preserved. In the non–ideal case,
the reactive impulse acting on the disk has the form I(vold) = −(1 + ε)v⊥i (vold) with
0 ≤ ε < 1, so that the reflection of the component v⊥i (vold) is only partial. The kinetic
energy of the system is not preserved and ‖vnew‖2 < ‖vold‖2 .
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The rule I = I(vold) consists in a strongly non–linear relation in the components of vold

in case of multiple impact vold ∈ Z12 (see (3d) and (13d) below): in this case, the re-
active impulse has the form I(vold) = λ(v⊥1 (vold) + v⊥2 (vold)) where λ is a coefficient
suitable to obtain the conservation of the kinetic energy in the ideal multiple impact (see
[Pasquero, 2018]) or involving the Newtonian restitution coefficient ε in the non–ideal one.

The resulting constitutive characterization can be synthesized with the following assign-
ments, where ε ∈ [0, 1] with ε = 1 in the ideal case, and different λ for ideal and non–ideal
cases.

vold ∈ Z0 ⇒ vnew = vold

vold ∈ Z1 ⇒ vnew = vold − (1 + ε)v⊥1 (vold)
vold ∈ Z2 ⇒ vnew = vold − (1 + ε)v⊥2 (vold)
vold ∈ Z12 ⇒ vnew = vold + λ

(
v⊥1 (vold) + v⊥2 (vold)

)
(2)

4) the iterative application of the rule determines an algorithm suitable to determine if and
how the disk exits from the corner, loosing contact with one or both the walls. The output
of the rule become constant if the “new” velocity belongs to the Z0 zone. Then, both in
the ideal and the non–ideal cases, the termination analysis of the algorithm is necessarily
related to the condition v ∈ Z0 (or, of course, on the number of steps). In the non–ideal
case, the termination analysis can be also based on the condition ‖v‖2 ≤ constant upon
proof that limn→+∞ ‖v‖2 = 0.

2 Theoretical rule for the ideal case (TRid)

In this section we present the iterative rule assigning the “new” velocity vn+1 of the disk as
function of the “old” velocity vn for the ideal case in three different forms. Each one of the
forms will be used to obtain theoretical results about the algorithm implementing the rule.

2.1 First expression of TRid: use of (ẋ, ẏ)

Given an initial velocity v0 = (ẋ0, ẏ0), the iterative rule determined by the constitutive charac-
terization of [Pasquero, 2018] is such that:

If (ẋn, ẏn) ∈ Z0 , that is if
{

kẋn + ẏn ≤ 0
kẋn − ẏn ≤ 0

, then
{

ẋn+1 = ẋn

ẏn+1 = ẏn
(3a)

If (ẋn, ẏn) ∈ Z1 , that is if
{

kẋn + ẏn ≤ 0
kẋn − ẏn > 0

, then





ẋn+1 =
1− k2

1 + k2
ẋn +

2k

1 + k2
ẏn

ẏn+1 =
2k

1 + k2
ẋn − 1− k2

1 + k2
ẏn

(3b)

If (ẋn, ẏn) ∈ Z2 , that is if
{

kẋn + ẏn > 0
kẋn − ẏn ≤ 0

, then





ẋn+1 =
1− k2

1 + k2
ẋn − 2k

1 + k2
ẏn

ẏn+1 = − 2k

1 + k2
ẋn − 1− k2

1 + k2
ẏn

(3c)

If (ẋn, ẏn) ∈ Z12 , that is if
{

kẋn + ẏn > 0
kẋn − ẏn > 0

, then





ẋn+1 =
−k4ẋ2

n + (1− 2k2)ẏ2
n

k4ẋ2
n + ẏ2

n

ẋn

ẏn+1 =
k2(k2 − 2)ẋ2

n − ẏ2
n

k4ẋ2
n + ẏ2

n

ẏn

(3d)
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Remark 2. A straightforward calculation shows that independently of the condition vn ∈ Z i

with i = 0, 1, 2, 12, we have

(‖vn+1‖2)
2

(‖vn‖2)
2 =

ẋ2
n+1 + ẏ2

n+1

ẋ2
n + ẏ2

n

= 1 . (4)

This is an easily predictable but not trivial consequence of the preservation of the kinetic energy
required in [Pasquero, 2018]. In fact, since the kinetic energy is not an absolute quantity but it
depends on the choice of a frame of reference, the validity of (4) follows from the nature itself
of the contact/impact, that does not affect the angular coordinate of the disk, and the nature
itself of the constraint and its set of rest frames. Moreover, ‖v‖2 is not the norm of the velocity
vector of the disk but only the Euclidean norm of the pair (ẋ, ẏ) viewed as an element of R2 (see
the Appendix of [Fassino and Pasquero, 2019] for details). ♦

Remark 3. The rule (3a–3d) respects the symmetry of the mechanical problem with respect
to the (ẋ, ẏ) components of the velocity. In fact an easy calculation shows that, if (ẋn, ẏn) /∈ Z0,
then {

ẋn+1(ẋn,− ẏn) = ẋn+1(ẋn, ẏn)
ẏn+1(ẋn,− ẏn) = − ẏn+1(ẋn, ẏn)

(5)

♦

2.2 Second expression of TRid: use of (cos ϕ, sin ϕ)

The rule (3a–3d) can be expressed using v0 in the form (v0 cosϕ0, v0 sinϕ0) with v0 > 0, ϕ ∈
(π, π]. Since k = tanα so that





1− k2

1 + k2
= cos 2α

2k

1 + k2
= sin 2α ,

we immediately obtain that the matrices of the linear transformations given by (3b,3c) are
orthogonal but not special orthogonal. Moreover, thanks to (4), v0 is factorized in every term.
The rule becomes

If vn ∈ Z0 , that is if
{

cosϕn < 0
| tanϕn| ≤ tanα

, then ϕn+1 = ϕn (6a)

If vn ∈ Z1 , that is if
{

sinϕn < 0
− cotα < cotϕn ≤ cotα

, then ϕn+1 = −ϕn + 2α (6b)

If vn ∈ Z2 , that is if
{

sinϕn > 0
− cotα < cotϕn ≤ cotα

, then ϕn+1 = −ϕn − 2α (6c)

If vn ∈ Z12, that is if
{

cosϕn > 0
| tanϕn| < tanα

, then





cosϕn+1 = −
(

tan4 α cos2 ϕn − sin2 ϕn

tan4 α cos2 ϕn + sin2 ϕn
+ 2

tan2 α sin2 ϕn

tan4 α cos2 ϕn + sin2 ϕn

)
cosϕn

sinϕn+1 =
(

tan4 α cos2 ϕn − sin2 ϕn

tan4 α cos2 ϕn + sin2 ϕn
− 2

tan2 α cos2 ϕn

tan4 α cos2 ϕn + sin2 ϕn

)
sinϕn

(6d)
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2.3 Third expression of TRid: use of (ξ̇, η̇)

A third version of the rule (3a–3d) can be obtained by using a standard change of coordinates
(ξ, η) = (kx + y, kx− y) that identifies the velocity using its projections in the directions of the
walls. Then we have

{
ξ̇ = kẋ + ẏ
η̇ = kẋ− ẏ

⇔





ẋ =
ξ̇ + η̇

2k

ẏ =
ξ̇ − η̇

2

. (7)

In this case we have:

If (ξ̇n, η̇n) ∈ Z0 , that is if
{

ξ̇n ≤ 0
η̇n ≤ 0

, then
{

ξ̇n+1 = ξ̇n

η̇n+1 = η̇n
(8a)

If (ξ̇n, η̇n) ∈ Z1 , that is if
{

ξ̇n ≤ 0
η̇n > 0

, then





ξ̇n+1 = ξ̇n + 2
1− k2

1 + k2
η̇n

η̇n+1 = − η̇n

(8b)

If (ξ̇n, η̇n) ∈ Z2 , that is if
{

ξ̇n > 0
η̇n ≤ 0

, then





ξ̇n+1 = − ξ̇n

η̇n+1 = η̇n + 2
1− k2

1 + k2
ξ̇n

(8c)

If (ξ̇n, η̇n) ∈ Z12 , that is if
{

ξ̇n > 0
η̇n > 0

, then





ξ̇n+1 = − (1 + k2)(ξ̇2
n + η̇2

n) + 2(1− k2)ξ̇nη̇n

(1 + k2)(ξ̇2
n + η̇2

n)− 2(1− k2)ξ̇nη̇n

ξ̇n

+2
(1− k2)(ξ̇2

n + η̇2
n)

(1 + k2)(ξ̇2
n + η̇2

n)− 2(1− k2)ξ̇nη̇n

η̇n

η̇n+1 = 2
(1− k2)(ξ̇2

n + η̇2
n)

(1 + k2)(ξ̇2
n + η̇2

n)− 2(1− k2)ξ̇nη̇n

ξ̇n

− (1 + k2)(ξ̇2
n + η̇2

n) + 2(1− k2)ξ̇nη̇n

(1 + k2)(ξ̇2
n + η̇2

n)− 2(1− k2)ξ̇nη̇n

η̇n

(8d)

Remark 4. Note that, due to the change of coordinates (7), we have:

(‖vn‖2)
2 =

1 + k2

4k2

(
ξ̇2
n + η̇2

n

)
+

1− k2

2k2
ξ̇nη̇n

♦

3 Theoretical results about TRid

Several results and some remarks can be listed about TRid. Some of them can be straight-
forwardly obtained by one or more of the expressions of the algorithm, some others requires a
detailed proof.
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Result 1. If vn ∈ Z1 then vn+1 ∈ Z2 or vn+1 ∈ Z0. Analogously, if vn ∈ Z2 then vn+1 ∈ Z1

or vn+1 ∈ Z0.

Proof: It follows immediately from (8b,8c). If vn ∈ Z1 then ηn > 0. Then ηn+1 = − ηn < 0,
so that vn+1 ∈ Z2 or vn+1 ∈ Z0. The proof is analogous if vn ∈ Z2. ¤

This shows that, if an iteration of TRid gives a velocity v /∈ Z12, then all the following
velocities do not belong to Z12. In particular, if v0 /∈ Z12, than the evolution of the disk will
be determined by a sequence of single impacts, without multiple impacts.

Result 2. If vn ∈ Z1 and k ≥ 1 then vn+1 ∈ Z0. Analogously, if vn ∈ Z2 and k ≥ 1 then
vn+1 ∈ Z0.

Proof: It follows once again from (8b,8c). If vn ∈ Z1 then ξn ≤ 0 and ηn > 0. Therefore,

if k ≥ 1, we have ξn+1 = ξn + 2
1− k2

1 + k2
ηn < 0, so that vn+1 ∈ Z0. The proof is analogous if

vn ∈ Z2. ¤
This shows that if the angle 2α ≥ π

2 and the impact is not multiple we have only one iteration
of TRid. This is the case, for instance, when 2α ≥ π

2 , the disk moves along one of the wall and
impacts the other wall.

Result 3. If vn ∈ Z1 then there exists χ ∈ N such that vn+χ ∈ Z0. Analogously, if vn ∈ Z2

then there exists χ ∈ N such that vn+χ ∈ Z0.

Proof: This is a standard proof about reflections following from (6b,6c). If vn ∈ Z1 or Z2 and
k ≥ 1 the thesis follows from the point 2) above.

If vn ∈ Z1 and k < 1, then α ∈ (0, π
4 ) and ϕn ∈ (−π + α,−α]. We can construct the odd

and even subsequences of the sequence ϕn+r with r ∈ N. We have that:
{

ϕn+2r = ϕn − 2 (2r) α
ϕn+2r+1 = −ϕn + 2 (2r + 1)α

.

Then χ is the first natural number such that

ϕn − 2 (2χ) α or − ϕn + 2 (2χ + 1)α ∈ (−π,−π + α] ∪ [π − α, π]. (9)

The proof is analogous if vn ∈ Z2. ¤
This shows that, if an iteration of TRid gives a velocity v /∈ Z12, then TRid terminates, giving

a final exit velocity for the disk. Note moreover that the reflection procedure of this situation is
conceptually identical to the well known one governing the (alternated) single impacts of a disk
with the walls of a corner in a sequence of configurations of single (and not multiple) contacts
between disk and walls.

The three results above pertain TRid applied in the case of single impact of the disk in the
corner. However the most significant results are those about multiple impacts. Note that the
condition vn ∈ Z12 implies that ẋn > 0 and cosϕn > 0. We have that:

Result 4. If vn ∈ Z12 has the direction of the angle bisector, then vn+1 = −vn ∈ Z0.

Proof: It follows immediately from (3d) requiring ẏn = 0 or alternatively from (6d) requiring
cosϕn = 1, sinϕn = 0. ¤

The main result about multiple impacts is however the following:

Theorem 3.1 If vn ∈ Z12 then vn+1 /∈ Z12.

9



Proof: Let vn ∈ Z12 and let us consider (8d). Then ξ̇n > 0, η̇n > 0. If ξ̇n = η̇n then vn

has the direction of the angle bisector and we have the thesis. Otherwise, setting for brevity

ρn =
2ξnηn

ξ̇2
n + η̇2

n

, ρn ∈ (0, 1), a straightforward calculation (see [Fassino and Pasquero, 2019] for

details) shows that




ξ̇n+1 =
ξ̇n

(1 + k2)− ρn(1− k2)

(
−(1 + k2) − ρn(1− k2) + 2

η̇n

ξ̇n

(1− k2)
)

η̇n+1 =
η̇n

(1 + k2)− ρn(1− k2)

(
−(1 + k2) − ρn(1− k2) + 2

ξ̇n

η̇n
(1− k2)

) (10)

Suppose by contradiction that vn+1 ∈ Z12: then we must have ξ̇n+1 > 0, η̇n+1 > 0, that recalling
the expression of ρn, implies





2 (1− k2)
η̇n

ξ̇n

η̇2
n

ξ̇2
n + η̇2

n

> (1 + k2)

2 (1− k2)
ξ̇n

η̇n

ξ̇2
n

ξ̇2
n + η̇2

n

> (1 + k2)

(11)

This is possible only if 1−k2 > 0, so that let k ∈ (0, 1). Since the function f(k) =
1 + k2

2(1− k2)
>

1
2

if k ∈ (0, 1), then a necessary condition for vn+1 ∈ Z12 is:




η̇n

ξ̇n

1
ξ̇2
n + η̇2

n

η̇2
n

>
1
2

ξ̇n

η̇n

1
ξ̇2
n + η̇2

n

ξ̇2
n

>
1
2

(12)

that has no solutions in η̇n

ξ̇n
> 0. Then vn+1 /∈ Z12. ¤

We have then the following:

Corollary 3.1 For every initial velocity v0 of the disk, the algorithm terminates after a finite
number of steps.

Proof: If v0 ∈ Z0, there is nothing to proof. If v0 ∈ Z1 or v0 ∈ Z2, the thesis follows from
Result 3 of this section. If v0 ∈ Z12, then v1 /∈ Z12 and then we have the thesis. ¤

Result 5. Theorem 3.1 and Result 1 imply that the system can have at most one multiple
impact if and only if v0 ∈ Z12.

Result 6. If v0 ∈ Z1, condition (9) with ϕn = ϕ0 gives the number of iterations of the
algorithm. An analogous condition holds if v0 ∈ Z2. If v0 ∈ Z12, the number of iterations is
given by condition (9) with ϕn = ϕ1 increased by 1.

10



4 Theoretical rule for the non–ideal case (TRnid)

In this section we present two different forms of the rule assigning the “new” velocity vn+1 of
the disk as function of the “old” velocity vn in the non–ideal case. They are generalizations to
non–ideal impacts (see [Fassino and Pasquero, 2019]) of the characterization of ideal impacts.
Each one of the forms will be used to obtain theoretical results about TRnid.

4.1 First expression of TRnid: use of (ẋ, ẏ)

Given an initial velocity v0 = (ẋ0, ẏ0), the rule is such that:

If (ẋn, ẏn) ∈ Z0 , that is if
{

kẋn + ẏn ≤ 0
kẋn − ẏn ≤ 0

, then
{

ẋn+1 = ẋn

ẏn+1 = ẏn
(13a)

If (ẋn, ẏn) ∈ Z1 , that is if
{

kẋn + ẏn ≤ 0
kẋn − ẏn > 0

, then





ẋn+1 =
1− εk2

1 + k2
ẋn +

(1 + ε)k
1 + k2

ẏn

ẏn+1 =
(1 + ε)k
1 + k2

ẋn − ε− k2

1 + k2
ẏn

(13b)

If (ẋn, ẏn) ∈ Z2 , that is if
{

kẋn + ẏn > 0
kẋn − ẏn ≤ 0

, then





ẋn+1 =
1− εk2

1 + k2
ẋn − (1 + ε)k

1 + k2
ẏn

ẏn+1 = −(1 + ε)k
1 + k2

ẋn − ε− k2

1 + k2
ẏn

(13c)

If (ẋn, ẏn) ∈ Z12 , that is if
{

kẋn + ẏn > 0
kẋn − ẏn > 0

, then





ẋn+1 =
−εk4ẋ2

n + (1− (1 + ε)k2)ẏ2
n

k4ẋ2
n + ẏ2

n

ẋn

ẏn+1 =
k2(k2 − (1 + ε))ẋ2

n − εẏ2
n

k4ẋ2
n + ẏ2

n

ẏn

(13d)

Remark 5. The rule (13a–13d) once again respects the symmetry of the mechanical problem
with respect to the (ẋ, ẏ) components of the velocity, since relations (5) hold for every vn /∈ Z0.
♦

4.2 Second expression of TRnid: use of (ξ̇, η̇)

The rule (13a–13d) can be expressed once again by using the coordinates (ξ, η) = (kx+y, kx−y).
We obtain:

If (ξ̇n, η̇n) ∈ Z0, that is if
{

ξ̇n ≤ 0
η̇n ≤ 0

, then
{

ξ̇n+1 = ξ̇n

η̇n+1 = η̇n
(14a)

If (ξ̇n, η̇n) ∈ Z1, that is if
{

ξ̇n ≤ 0
η̇n > 0

, then





ξ̇n+1 = ξ̇n + (1 + ε)
1− k2

1 + k2
η̇n

η̇n+1 = −εη̇n

(14b)
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If (ξ̇n, η̇n) ∈ Z2, that is if
{

ξ̇n > 0
η̇n ≤ 0

, then





ξ̇n+1 = −εξ̇n

η̇n+1 = η̇n + (1 + ε)
1− k2

1 + k2
ξ̇n

(14c)

If (ξ̇n, η̇n) ∈ Z12, that is if
{

ξ̇n > 0
η̇n > 0

, then





ξ̇n+1 = −ε(1 + k2)(ξ̇2
n + η̇2

n) + 2(1− k2)ξ̇nη̇n

(1 + k2)(ξ̇2
n + η̇2

n)− 2(1− k2)ξ̇nη̇n

ξ̇n

+(1 + ε)
(1− k2)(ξ̇2

n + η̇2
n)

(1 + k2)(ξ̇2
n + η̇2

n)− 2(1− k2)ξ̇nη̇n

η̇n

η̇n+1 = (1 + ε)
(1− k2)(ξ̇2

n + η̇2
n)

(1 + k2)(ξ̇2
n + η̇2

n)− 2(1− k2)ξ̇nη̇n

ξ̇n

−ε(1 + k2)(ξ̇2
n + η̇2

n) + 2(1− k2)ξ̇nη̇n

(1 + k2)(ξ̇2
n + η̇2

n)− 2(1− k2)ξ̇nη̇n

η̇n

(14d)

5 Theoretical results about TRnid

Several results and some remarks that can be listed about TRnid are strictly analogous to those
about TRid. For instance, Results 1, 2 and 4 can be immediately generalized to the non–ideal
case, with proofs and remarks analogous to those presented in Sec.3. Theorem 3.1 too holds in
the non–ideal case, as we prove below in this section. Instead, in the non–ideal case we cannot
state the analogous of Result 3 of Sec.3, that in the ideal case is crucial to prove that TRid

terminates. However, for TRnid, the termination will be ensured on the basis of the criterion
limn→+∞ ‖vn‖2 = 0 of the following Theorem 5.3.

Theorem 5.1 If vn ∈ Z12 then vn+1 /∈ Z12.

Proof: Let vn be in Z12, so that ξ̇n > 0 and η̇n > 0. Recalling that ε ∈ [0, 1) and k ∈ (0, +∞),
we set

β =
1− k2

1 + k2
∈ (−1, 1), z =

η̇n

ξ̇n

∈ (0, +∞) .

Eqs. (14d) can be rewritten as




ξ̇n+1 =
ξ̇n

1− β
2z

1 + z2

(
−ε + β

(
(1 + ε)z − 2z

1 + z2

))

η̇n+1 =
η̇n

1− β
2z

1 + z2

(
−ε + β

(
(1 + ε)

1
z
− 2z

1 + z2

))

where the two first factors of the RHSs are positive. Then vn+1 /∈ Z12 if and only if the system
of inequalities





−ε + β

(
(1 + ε)z − 2z

1 + z2

)
> 0

−ε + β

(
(1 + ε)

1
z
− 2z

1 + z2

)
> 0

(15)
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does not admit solutions for ε ∈ [0, 1), β ∈ (−1, 1), z ∈ (0, +∞). Obviously (15) does not have
solutions if β = 0 (that is when the amplitude 2α of the corner is π

2 ), if z = 1 (that is when vn

is along the bisector of the corner), if (1 + ε)z − 2z
1+z2 = 0, if (1 + ε)1

z − 2z
1+z2 = 0.

If ε = 0, β ∈ (−1, 0) ∪ (0, 1), straightforward calculation show that (15) has no solutions
z ∈ (0, +∞).

If ε ∈ (0, 1), β ∈ (0, 1), z ∈ (0, 1), then the first inequality of (15) can be verified only if
(1 + ε)z − 2z

1+z2 > 0. In this case we have:

β >
ε

(1 + ε)z − 2z

1 + z2

=
ε(1 + z2)

(1 + ε)(z + z3)− 2z

This can happen only if

ε(1 + z2)
(1 + ε)(z + z3)− 2z

< 1 ⇔ ε < − z(1 + z)
1 + z2

< 0

that is not admissible. If ε ∈ (0, 1), β ∈ (0, 1), z ∈ (1,+∞), then the second inequality of (15)
can be verified only if (1 + ε)1

z − 2z
1+z2 > 0. In this case we have:

β >
ε

(1 + ε)1
z −

2z

1 + z2

=
ε z(1 + z2)

(1 + ε)(1 + z2)− 2z2

This can happen only if

ε z(1 + z2)
(1 + ε)(1 + z2)− 2z2

< 1 ⇔ ε < − 1 + z

1 + z2
< 0

that is not admissible. It follows that (15) cannot have solutions, and then vn+1 /∈ Z12. ¤

Result 7. Theorem 5.1 and Result 1 (that holds for non–ideal impacts too) imply once again
that the system can have at most one multiple impact if and only if v0 ∈ Z12.

To proof the second important result about TRnid we need to introduce the convergent
matrices and their properties. Let A be an N ×N matrix and let ρ(A) its spectral radius, that
is the largest modulus of its eigenvalues. We recall that the matrix A is said to be convergent
if limk→+∞(Ak)ij = 0 for each i, j = 1, . . . , N , where (Ak)ij is the (i, j)-th element of Ak.
The following theorem (see e.g. Theorem 4 in [Isaacson and Keller, 1994, p. 14]) shows some
well-known properties of a convergent matrix.

Theorem 5.2 The following three statements are equivalent:

1. the matrix A is convergent;

2. limk→+∞ ‖Ak‖ = 0 for some matrix norm induced by a vector norm, that is defined by
‖A‖ = max‖x‖=1 ‖Ax‖;

3. ρ(A) < 1.

Remark 6. Let A be a convergent matrix and let ‖ · ‖ be the induced matrix norm for which
item 2 of Theorem 5.2 holds. Given a vector w, we have, from a property of the induced matrix
norm, that 0 ≤ ‖Akw‖ ≤ ‖Ak‖‖w‖ and so limk→+∞ ‖Akw‖ = 0. It follows that the vector Akw
converges to the zero vector. ♦
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Theorem 5.3 If vn /∈ Z0 for every n, then limn→+∞ ‖vn‖ = 0.

Proof: Result 6 implies that v1 /∈ Z12. Let once again be β = (1− k2)/(1 + k2). By
hypothesis, due to Result 6, we can take k ∈ (0, 1) and then β ∈ (0, 1).

Let us suppose that v1 = (ξ̇1, η̇1) ∈ Z1. Result 5 and the hypothesis imply that v3 =
(ξ̇3, η̇3) ∈ Z1. Applying (14b,14c) we have

(
ξ̇3

η̇3

)
=

( −ε −βε(1 + ε)
β(1 + ε) β2(1 + ε)2 − ε

) (
ξ̇1

η̇1

)

Therefore, for every h ∈ N, we have

(
ξ̇2h+1

η̇2h+1

)
=

( −ε −βε(1 + ε)
β(1 + ε) β2(1 + ε)2 − ε

)h (
ξ̇1

η̇1

)

Moreover, if v1 ∈ Z1, by Result 5 and the hypothesis we have that v2 ∈ Z2. A straigthforward
calculation shows that in this case, for every h ∈ N, h > 0, we have

(
ξ̇2h

η̇2h

)
=

(
β2(1 + ε)2 − ε β(1 + ε)
−βε(1 + ε) −ε

)h (
ξ̇2

η̇2

)
(16)

Since the two matrices

H1 =
( −ε −βε(1 + ε)

β(1 + ε) β2(1 + ε)2 − ε

)
H2 =

(
β2(1 + ε)2 − ε β(1 + ε)
−βε(1 + ε) −ε

)

have the same characteristic polynomial and eigenvalues, then Theorem 5.2 and Remark 6
imply that limn→+∞(ξ̇n, η̇n) = (0, 0) if the spectral radius ρ(H1) = ρ(H2) is such that ρ(H1) <
1. Therefore the theorem follows upon proof that ρ(H1) < 1. Needless to say, the proof is
completely analogous if v1 ∈ Z2.

If the eigenvalues λ1, λ2 of H1 are complex conjugates or coincident, then ρ(H1) = |λ1| =
|λ2| = ε < 1. If the eigenvalues are both in R and distinct, they have the same sign and a
standard study of

ρ(H1)(ε, β) =
1
2

(
β2(1 + ε)2 − 2ε + β(1 + ε)

√
β2(1 + ε)2 − 4ε

)

in the compact set Θ =
{

(ε, β)
∣∣ε ∈ [0, 1], β ∈

[
2
√

ε

1 + ε
, 1

]}
shows that, since

∂ρ(H1)
∂β

> 0, the

maximum is taken in the segment {β = 1} and max
Θ

(ρ(H1)) = 1. Then for every fixed (ε, β) ∈

Θ =
{

(ε, β)
∣∣ε ∈ (0, 1), β ∈

(
2
√

ε

1 + ε
, 1

)}
we have max

Θ
(ρ(H1)) < 1, so that ε ∈ (0, 1), k ∈ (0, 1)

implies ρ(H1) ∈ [ε, 1). Since limn→+∞ ‖(ξ̇n, η̇n)‖ = 0 = limn→+∞ ‖(ẋn, ẏn)‖ obviously implies
that limn→+∞ ‖vn‖2 = 0, we have the thesis. ¤

Remark 7. Let be v0 ∈ Z12 and ε ∈ (0, 1). A tedious but straightforward calculation1 shows
that

‖v1‖2
2
− ‖v0‖2

2
= (ε2 − 1)

(k2ẋ2
0 + ẏ2

0)
2

k4ẋ2
0 + ẏ2

0

< 0 ⇒ ‖v1‖2 < ‖v0‖2 .

1The calculation was helped by the use of the factorization command of CoCoa c©, a freely available program
for computing with multivariate polynomials.
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Moreover, another straightforward calculation shows that

vn ∈ Z1 ⇒ ‖vn+1‖2 < ‖vn‖2 , vn ∈ Z2 ⇒ ‖vn+1‖2 < ‖vn‖2 ∀n ≥ 0

and then the whole sequence (‖vn‖2)n≥0 decreases to 0. ♦

Remark 8. Theorem 5.3 states a physical property of the mechanical system and not only
a numerical property of TRnid. For example, the same procedure of the proof applied starting
from the rule (13) instead of (14) leads to the analysis of the spectral radius of the matrices

K1 =




(1− εk2)2 − k2(1 + ε)2

(1 + k2)2
k(1− k2)(1 + ε)2

(1 + k2)2

−k(1− k2)(1 + ε)2

(1 + k2)2
(ε− k2)2 − k2(1 + ε)2

(1 + k2)2




K2 =




(1− εk2)2 − k2(1 + ε)2

(1 + k2)2
−k(1− k2)(1 + ε)2

(1 + k2)2
k(1− k2)(1 + ε)2

(1 + k2)2
(ε− k2)2 − k2(1 + ε)2

(1 + k2)2


 .

It can be easily shown that the matrix B that expresses the change of coordinates (7) is such
that K1 = B−1H1B, K2 = B−1H2B. The matrices H1,H2 and K1,K2 are then respectively
similar, they have the same eigenvalues and then the same spectral radius. Similar arguments
hold for every admissible change of coordinates. ♦

Remark 9. For known results on matrices (the so called Gelfand’s formula. See e.g. Theorem
4 in [Lax, 2002, p. 28]), the spectral radius ρ(H1) of the matrix H1 can be expressed as a limit
of matrix norms, that is

ρ(H1) = lim
h→∞

∥∥∥Hh
1

∥∥∥
1
h

.

It follows that, for a large enough h, we have ‖Hh
1 ‖ ≈ ρ(H1)h, and so

‖Hh
1 v1‖ ≤ ‖Hh

1 ‖‖v1‖ ≈ ρ(H1)h‖v1‖. (17)

Therefore the spectral radius ρ(H1) = ρ(K1) gives also a measure of the rate of convergence to
0 of the velocity vn. It follows then from the proof of Theorem 5.3 that the bigger ε and β are,
the slower the convergence is. This means that we can forecast slow convergence to 0 of the
velocity for “almost elastic” walls and very small angles α. ♦
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PART 2: NUMERICAL ASPECTS

6 Stable version of the algorithms

The theoretical rules TR can be easily implemented as described in this section, where we present
an algorithm implementing the rule TRnid for the non–ideal case, the ideal case being obtained
by setting ε = 1.

For computational reasons, two thresholds S ≥ 0 and Sv ≥ 0 are introduced. If S = Sv = 0,
the algorithm implements the theoretical rules TRnid. Nevertheless, this choice of the thresholds
presents some numerical drawbacks, because of the sensitivity of the algorithm to the noise on the
input data and of its instability with respect to the floating point arithmetic: small perturbations
of ξ̇n and η̇ can cause structural changes in response, e.g. it can happen that the exact ξ̇n is a
small negative value while the computed ξ̇n is a small positive value, causing a different choice
in the iterative method (see the example below). We choose a very small threshold S > 0 to
consider as zero value the very small positive ξ̇n or η̇n. Analogously, we choose a very small
threshold Sv > 0 in order to consider as (almost) at rest a disk whose computed velocity is less
than Sv. Moreover, in the while loop, we impose a maximum number of steps.
Algorithm implementing the rule TRnid.

• Input: the coefficient ε ∈ [0, 1], the angle α ∈ (0, π
4 ], the initial velocity v0 = (ẋ0, ẏ0),

with ‖v0‖2 = 1, the maximum number of steps Nmax and two thresholds S, Sv ≥ 0.

• Output: the final velocity vf .

• First step: k = tan(α); n = 0; ξ̇0 = kẋ0 + ẏ0; η̇0 = kẋ0 − ẏ0.

• Core: While (ξ̇n > S or η̇n > S), n < Nmax, and ‖(ẋn, ẏn)‖2 > Sv:

1. if (ξ̇n ≤ S) and (η̇n > S), that is (ẋn, ẏn) ∈ Z1, then




ẋn+1 =
1− εk2

1 + k2
ẋn +

(1 + ε)k
1 + k2

ẏn

ẏn+1 =
(1 + ε)k
1 + k2

ẋn − ε− k2

1 + k2
ẏn ;

(18)

2. if (ξ̇n > S) and (η̇n ≤ S), that is (ẋn, ẏn) ∈ Z2, then




ẋn+1 =
1− εk2

1 + k2
ẋn − (1 + ε)k

1 + k2
ẏn

ẏn+1 = −(1 + ε)k
1 + k2

ẋn − ε− k2

1 + k2
ẏn ;

(19)

3. if (ξ̇n > S) and (η̇n > S), that is (ẋn, ẏn) ∈ Z12, then




ẋn+1 =
−εk4ẋ2

n + (1− (1 + ε)k2)ẏ2
n

k4ẋ2
n + ẏ2

n

ẋn

ẏn+1 =
k2(k2 − (1 + ε))ẋ2

n − εẏ2
n

k4ẋ2
n + ẏ2

n

ẏn .

(20)

4. ξ̇n+1 = kẋn+1 + ẏn+1 ; η̇n+1 = kẋn+1 − ẏn+1 ; n = n + 1.
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• vf = (ẋn, ẏn).

Later on, we denote with TA (Theoretical version of the Algorithm) the implementation with
S = Sv = 0 and with SA (Stable version of the Algorithm) the implementation with S, Sv > 0.

The following example shows that TA is more sensible to the noise on the input data and to
the floating point arithmetic computation than the SA, even in a very simple case.

Example. We consider the behaviors of TA and SA when they process the initial velocity
v0 = (ẋ0, ẏ0) = ( 1√

2
, 1√

2
), with α = π

4 and ε = 1. From the theoretical point of view, TA and
SA process the input data in the same way. Since v0 satisfies the condition of Z2, at the first
iteration both algorithms compute the new velocity v1 = (ẋ1, ẏ1) = (−ẏ0, −ẋ0) = (− 1√

2
, − 1√

2
).

Since the coordinates of v1 satisfies the conditions in Z0 for both algorithms, TA and SA stop
and v1 is the final computed velocity.

Nevertheless, when the algorithms are implemented, TA suffers from the data error and the
computational approximation, while SA has the same behavior of the theoretical case, in the ab-
sence of errors. In fact, since the computed values of ẋ1 and ẏ1 are perturbed by errors, we obtain
ẋ1 = −0.707106781186547 and ẏ1 = −0.707106781186548, so that ξ̇1 = −0.707106781186547 and
η̇1 = 4.440892098500626 · 10−16. If S = 0, that is using an implementation of TA, ξ̇1 and η̇1 sat-
isfy the conditions such that v1 ∈ Z1, and the algorithm compute a new iteration. Differently,
choosing S = 4.5 · 10−16, that is twice the machine precision using a floating point arithmetic
with t = 52 figures, SA is more robust: the values ξ̇1 and η̇1 satisfy the conditions such that
v1 ∈ Z0, and the algorithm stops, as in the theoretical case. 4

We saw that in the ideal case, TA determines a velocity such that the disk exits from the
corner, while, in the non–ideal case, TA not always determines neither a velocity such that the
disk exits from the corner nor a zero velocity, although the norm of the velocity decreases to 0
for increasing numbers of steps. For this reason the threshold Nmax is introduced, in order to
guarantee that the algorithm stops when the number of steps exceeds such a value. Analogously,
the SA algorithm stops when both ξ̇n and η̇n are less than S, or when the 2-norm of the computed
velocity is less than Sv, or when the number of steps exceeds Nmax.

The computational complexity of an algorithm can be estimated by the amount of products
required for computing the output. Since TA and SA are iterative algorithms, their compu-
tational complexity is given by the cost of each step times the number N of steps. Note that
the coefficients involved in (18)–(20) can be computed once at the beginning of the algorithm,
and so their cost can be neglected. Analogously, since the iteration (20) is computed at most
only once, its cost can be neglected too. In conclusion, the final computational cost is 5N ,
since (18) and (19) require 4 products and the tests on ξ̇ and η̇ require one additional prod-
uct. For the ideal case, the value N can be computed using (9). For the non–ideal case, the
maximum number of steps is the integer N such that ‖vN‖ < Sv. From (16) we have that
‖v2n‖ ≤ ‖Hn

2 ‖‖v0‖ ≈ ρ(H2)n‖v0‖. Choosing ‖v0‖ = 1 and Sv = 2−p, N can be estimated by
−2p/ log2(ρ(H2)).
Finally, because of the low computational complexity of the algorithm, the execution time is so
low as not to be significant: for the computational examples presented in [Fassino and Pasquero, 2019]
the maximum execution time is less than 2 · 10−3 seconds.

Remark 10. Although the condition k ∈ (0, π
4 ] entails the possibility of very small k, later

on we suppose k À S. This is a very reasonable assumption for mechanical reasons, being
k = tanα a geometric quantity of a mechanical macroscopical system and the threshold S above
of the same order of magnitude of the classical electron radius. ♦
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7 Comparison between TA and SA

In the following we show that TA and SA compute the same final velocity in the same number
of steps or, even if one of the algorithms executes more iterations, the final velocities are very
similar. We can conclude that SA is preferable when we deal with real world measurements,
since it produces analogous final velocities as TA, but it is more robust with respect to the errors
on the input data.

Lemma 7.1 Let (ẋn, ẏn) be the linear velocity at the current step. Then:

i) if (ẋn, ẏn) ∈ Z1 we have |ẋn+1 − ẋn| ≤ η̇n and |ẏn+1 − ẏn| ≤ 2η̇n ;

ii) if (ẋn, ẏn) ∈ Z2 we have |ẋn+1 − ẋn| ≤ ξ̇n and |ẏn+1 − ẏn| ≤ 2ξ̇n .

Proof: i) The thesis follows, since ε, k < 1, η̇n > 0 and since, by direct computation from
(13b),

ẋn+1 − ẋn = −(1 + ε)k
1 + k2

η̇n and ẏn+1 − ẏn =
(1 + ε)
1 + k2

η̇n .

Analogously for ii), changing the role of ξ̇n and η̇n. ¤

Lemma 7.2 Let v = (ẋ, ẏ) and vp = (ẋ + δx, ẏ + δy) be two velocity vectors such that both v,
vp ∈ Z1 or both v, vp ∈ Z2. Let w = (ṫ, ż) and wp = (ṫp, żp) be the new computed velocity
vectors starting from v and vp, respectively. Then

i)
∣∣ṫp − ṫ

∣∣ ≤ |δx|+ |δy| and |żp − ż| ≤ |δx|+ |δy| ;

ii)
∣∣(kṫp + żp)− (kṫ + ż)

∣∣ ≤ 3
2
|δx|+ |δy| and

∣∣(kṫp − żp)− (kṫ− ż)
∣∣ ≤ 3

2
|δx|+ |δy| .

Proof: If v,vp ∈ Z1 then from (13b) we obtain

ṫp − ṫ =
(1− εk2)
1 + k2

δx +
(1 + ε)k
1 + k2

δy and żp − ż =
(1 + ε)k
1 + k2

δx − ε− k2

1 + k2
δy ,

so that i) follows from ε, k < 1. Moreover, we have that

(kṫp + żp)− (kṫ + ż) = δx
k(2− εk2 + ε)

1 + k2
+ δy

2k2 + εk2 − ε

1 + k2
and

(kṫp − żp)− (kṫ− ż) = −kεδx + εδy .

Since ε, k ≤ 1, we have

0 ≤ k(2− εk2 + ε)
1 + k2

≤ 3
k

1 + k2
≤ 3

2
and

∣∣∣∣
2k2 + εk2 − ε

1 + k2

∣∣∣∣ =
∣∣∣∣1−

(1 + ε)(1− k2)
1 + k2

∣∣∣∣ ≤ 1 ,

so that ii) follows. Analogous computation holds when v, vp ∈ Z2. ¤

Proposition 7.1 Starting from the same input, that is the same angle α, the same parameter ε
and the same initial velocity vector (ẋ0, ẏ0), TA and SA either compute the same output in the
same number of steps, or they compute slightly different outputs, even if one of the algorithms
performs more steps.
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ξ̇n ≤ 0 0 < ξ̇n ≤ S ξ̇n > S

η̇n ≤ 0 TA and SA TA: small changes TA and SA
stop SA stops in Z2

0 < η̇n ≤ S TA: small changes TA: disk almost at rest TA in Z12

SA stops SA stops SA in Z2

η̇n > S TA and SA TA in Z12 TA and SA
in Z1 SA in Z1 in Z12

Table 1: Behavior of TA and SA, starting from the same (ξ̇n, η̇n).

Proof: Let (ẋn, ẏn) be the velocity vector, associated to ξ̇n = kẋn + ẏn and η̇n = kẋn − ẏn,
processed, at the n-th step, by both TA and SA. This is certainly verified at the first step, when
n = 0.

First of all, we observe that, if ‖(ẋn, ẏn)‖2 ≤ Sv, the disk is almost at rest and SA stops.
Even if TA computes further iterations, since the 2-norm of the velocity is not increasing, its
output is similar to the final velocity computed by SA.

If ‖(ẋn, ẏn)‖2 > Sv, we analyze the possible different cases, illustrated in Table 1.
In the following cases both TA and SA have the same behavior, that is they compute the

same velocity vector (ẋn+1, ẏn+1).

• If ξ̇n ≤ 0 and η̇n ≤ 0 both algorithms stop.

• If ξ̇n ≤ 0 and η̇n > S, or ξ̇n > S and η̇n ≤ 0, or ξ̇n > S and η̇n > S, both algorithms
compute the same new velocity vector.

In the other cases, we show that TA and SA have different behaviors, but they compute
similar outputs.

1. If 0 < ξ̇n ≤ S and 0 < η̇n ≤ S, then SA stops and the disk can be considered almost at
rest since k À S and

‖(ẋn, ẏn)‖2
2 =

1 + k2

4k2
(ξ̇2

n + η̇2
n) +

1− k2

2k2
ξ̇nη̇n ≤ S2

k2
.

TA consider (ẋn, ẏn) ∈ Z12 and computes a new iteration. Since the 2-norm of the velocity
vector decreases at each step also the output of TA corresponds to an almost at rest disk.

2. If 0 < ξ̇n ≤ S and η̇n ≤ 0, then SA stops, while TA computes a new velocity vector
(ẋn+1, ẏn+1) using (13c). From Lemma 7.1, (ẋn+1, ẏn+1) differs from (ẋn, ẏn), component-
wise, for less than 2S, since 0 < ξ̇n < S. Moreover, ξ̇n+1 = −εξ̇n, that is −S < ξ̇n+1 < 0
and so, if η̇n+1 is negative, then TA stops and its output is similar to the one of SA.
Otherwise, if η̇n+1 is positive, since η̇n ≤ 0, we have

0 < η̇n+1 = η̇n + (1 + ε)
1− k2

1 + k2
ξ̇n < (1 + ε)

1− k2

1 + k2
ξ̇n < 2S

and so the disk is almost at rest, and we conclude, as in item 1, that TA and SA produce
similar outputs. Analogously if 0 < η̇n ≤ S and ξ̇n ≤ 0.

3. If 0 < ξ̇n ≤ S and η̇n > S, then SA and TA process the velocity vector (ẋn, ẏn) in different
ways. We have similar behaviors if ξ̇n > S and 0 < η̇n ≤ S, changing the role of ξ̇n and η̇n.
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Let 0 < ξ̇n ≤ S and η̇n > S. SA computes (ẋ(1)
n+1, ẏ

(1)
n+1), ξ̇

(1)
n+1 = kẋ

(1)
n+1 + ẏ

(1)
n+1 and

η̇
(1)
n+1 = kẋ

(1)
n+1 − ẏ

(1)
n+1, where

ẋ
(1)
n+1 =

ξ̇
(1)
n+1 + η̇

(1)
n+1

2k
=

1
2k

ξ̇n +
1− k2 − 2εk2

2k(1 + k2)
η̇n and

ẏ
(1)
n+1 =

ξ̇
(1)
n+1 − η̇

(1)
n+1

2
=

1
2
ξ̇n +

1− k2 + 2ε

2(1 + k2)
η̇n .

Furthermore, η̇
(1)
n+1 = −εη̇n < 0 and 0 < ξ̇

(1)
n+1 = ξ̇n + (1+ε)(1−k2)

1+k2 η̇n < S + 2η̇n.

TA computes (ẋ(12)
n+1, ẏ

(12)
n+1), ξ̇

(12)
n+1 = kẋ

(12)
n+1 + ẏ

(12)
n+1 and η̇

(12)
n+1 = kẋ

(12)
n+1 − ẏ

(12)
n+1, where

ẋ
(12)
n+1 =

ξ̇
(12)
n+1 + η̇

(12)
n+1

2k
= (ξ̇n + η̇n)

(1− k2 − 2εk2)(ξ̇2
n + η̇2

n)− 2(1− k2)ξ̇nη̇n

2kD
,

ẏ
(12)
n+1 =

ξ̇
(12)
n+1 − η̇

(12)
n+1

2
= (η̇n − ξ̇n)

(1− k2 + 2ε)(ξ̇2
n + η̇2

n) + 2(1− k2)ξ̇nη̇n

2D
,

where D = (ξ̇2
n + η̇2

n)(1 + k2) + 2ξ̇nη̇n(k2 − 1). Furthermore,

η̇
(12)
n+1 =

−ε(ξ̇2
n + η̇2

n)(η̇n(1 + k2)− ξ̇n(1− k2))− ξ̇n(1− k2)(ξ̇2
n + η̇2

n)
D

and, since η̇n > ξ̇n, then also η̇
(12)
n+1 < 0.

The velocities (ẋ(1)
n+1, ẏ

(1)
n+1) and (ẋ(12)

n+1, ẏ
(12)
n+1) are very similar, in fact

ẋ
(1)
n+1 − ẋ

(12)
n+1 =

ξ̇nk(1 + ε)
(
η̇2

n(3− k2) + ξ̇2
n(1 + k2)

)

D(1 + k2)

ẏ
(1)
n+1 − ẏ

(12)
n+1 =

ξ̇n(1 + ε)
(
η̇2

n(3k2 − 1) + ξ̇2
n(1 + k2)

)

D(1 + k2)
.

If we consider ẋ
(1)
n+1− ẋ

(12)
n+1 and ẏ

(1)
n+1− ẏ

(12)
n+1 as function of ξ̇n, using their Maclaurin series,

we obtain

ẋ
(1)
n+1 − ẋ

(12)
n+1 =

ξ̇nk(1 + ε)(3− k2)
(1 + k2)2

+ O(ξ̇2
n) and ẏ

(1)
n+1 − ẏ

(12)
n+1 =

ξ̇n(1 + ε)(3k2 − 1)
(1 + k2)2

+ O(ξ̇2
n) .

Since |ξ̇n| < S, we can approximate such differences neglecting O(ξ̇2
n):

∣∣∣ẋ(1)
n+1 − ẋ

(12)
n+1

∣∣∣ ≈ ξ̇nk(1 + ε)(3− k2)
(1 + k2)2

< 2S and
∣∣∣ẏ(1)

n+1 − ẏ
(12)
n+1

∣∣∣ ≈ ξ̇n(1 + ε)|3k2 − 1|
(1 + k2)2

< 2S .

It follows that ∣∣∣ξ̇(1)
n+1 − ξ̇

(12)
n+1

∣∣∣ < |k|
∣∣∣ẋ(1)

n+1 − ẋ
(12)
n+1

∣∣∣ +
∣∣∣ẏ(1)

n+1 − ẏ
(12)
n+1

∣∣∣ < 4S
∣∣∣η̇(1)

n+1 − η̇
(12)
n+1

∣∣∣ < |k|
∣∣∣ẋ(1)

n+1 − ẋ
(12)
n+1

∣∣∣ +
∣∣∣ẏ(1)

n+1 − ẏ
(12)
n+1

∣∣∣ < 4S .

Summing up, we have

ξ̇
(1)
n+1 > 0 , η̇

(1)
n+1 < 0 , ξ̇

(1)
n+1 − 4S < ξ̇

(12)
n+1 < ξ̇

(1)
n+1 + 4S , η̇

(1)
n+1 − 4S < η̇

(12)
n+1 < 0 .

Since η̇
(1)
n+1, η̇

(12)
n+1 < 0, if one of TA and SA does not stop, then it computes a new velocity

vector using the formulae of Z2.

In general, there are the following cases.
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a) 0 < ξ̇
(1)
n+1 ≤ S and ξ̇

(12)
n+1 ≤ 0. Since η̇

(1)
n+1 < 0 and η̇

(12)
n+1 < 0, SA and TA stop and

return the similar outputs (ẋ(1)
n+1, ẏ

(1)
n+1) and (ẋ(12)

n+1, ẏ
(12)
n+1).

b) 0 < ξ̇
(1)
n+1 ≤ S and ξ̇

(12)
n+1 > 0. Since η̇

(1)
n+1 < 0, SA stops.

Since η̇
(12)
n+1 < 0, TA uses the formulae in Z2. We have 0 < ξ̇

(12)
n+1 ≤ ξ̇

(1)
n+1+4S < 5S and

η
(12)
n+1 < 0, and so Lemma 7.1 implies that TA performs small changes to (ẋ(12)

n+1, ẏ
(12)
n+1).

Moreover, ξ̇n+2 = −εξ̇
(12)
n+1 and so −5S < ξ̇n+2 < 0. If η̇n+2 ≤ 0, then TA stops with

a similar output as SA. Otherwise, if η̇n+2 > 0, then, since η̇
(12)
n+1 < 0,

0 < η̇n+2 = η̇
(12)
n+1 + (1 + ε)

1− k2

1 + k2
ξ̇
(12)
n+1 < (1 + ε)

1− k2

1 + k2
ξ̇
(12)
n+1 < 10S .

In this case, since ξ̇
(12)
n+1 and η̇

(12)
n+1 are very small, the disk, at the (n + 1)-th step, is

almost at rest and the outputs of TA and SA are very similar, independently of the
number of steps performed by TA, after SA has stopped.

c) ξ
(1)
n+1 > S and ξ̇

(12)
n+1 ≤ 0. Since η

(12)
n+1 < 0, TA stops.

Since η̇
(1)
n+1 < 0, SA uses the formulae in Z2. Since 0 > ξ

(12)
n+1 > ξ

(1)
n+1 − 4S, then

S < ξ
(1)
n+1 < 4S and, from Lemma 7.1, SA performs small changes to (ẋ(1)

n+1, ẏ
(1)
n+1).

Since ξ̇n+2 = −εξ̇
(1)
n+1, we have −4S < ξ̇n+2 < 0 and, if η̇n+2 ≤ S, then SA stops and

it returns a final velocity similar to the output of TA. Otherwise, if η̇n+2 > S, since
η̇

(1)
n+1 < 0, we have that

S < η̇n+2 = η̇
(1)
n+1 + (1 + ε)

1− k2

1 + k2
ξ̇
(1)
n+1 < (1 + ε)

1− k2

1 + k2
ξ̇
(1)
n+1 < 8S .

In this case, since ξ̇
(12)
n+1 and η̇

(12)
n+1 are very small, the disk, at the (n + 1)-th step, is

almost at rest and the output of TA and SA is very similar, independently of the
number of steps performed by SA, after TA has stopped.

d) ξ̇
(1)
n+1 > S and ξ̇

(12)
n+1 > 0. Both TA and SA compute, using the same formulae in

Z2, a new iteration starting from two similar velocities. Lemma 7.2 implies that the
new computed velocities slightly differ from each other. Moreover, the new values of
ξ̇, equal to −εξ̇

(1)
n+1 and −εξ̇

(12)
n+1 respectively, are negative, so that we can repeat an

analysis of the behavior of TA and SA analogous to the one presented in items a – d,
changing the role of ξ̇ and η̇.

In conclusion, SA and TA compute similar final velocities, even if they can perform a different
number of iterations. In fact the following cases happen.

• Both algorithms have the same behavior, that is they compute the same iterations.

• SA and TA stops at the same iterations and return similar final velocities.

• SA and TA perform a different number of iterations. Two different cases can happen.
Either one of the algorithms performs only one iteration more than the other, making
small changes to the new computed velocity or the disk is almost at rest, so that both
final velocities are similar even if one algorithm performs some more iterations.

¤
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8 Numerical Examples

In the following we show in a compact visualization the results of the stable algorithm performed
in some significant cases. In each figure, we represent input and outputs of the impact of
a unitary disk with the walls. In each figure, the walls forming the angle 2α are visualized
with two segments tangent to the disk in the contact points and the unitary initial velocity
v0 = (cos ϕ0, sinϕ0) is visualized with a dashed line ending with an empty dot on the border of
the disk. In each figure, the outputs are visualized for different values of the restitution coefficient
ε: a full dot visualizes direction and norm of output velocities belonging to Z0, no marks visualize
output velocities having an “almost at rest condition” norm. The figures show the results for
ε ∈ {1, 0.75, 0.5, 0.25, 0.05} in the following cases (a wider set of results of the stable algorithm,
presented in tabular form and briefly analyzed, can be found in [Fassino and Pasquero, 2019]):

a1) α =
π

6
, tanϕ0 =

k

2
=

tanα

2
(see Fig.a1);

a2) α =
π

6
, tanϕ0 = k = tanα, (v0 ∈ Z2 and parallel to a wall. Fig.a2);

b1) α =
π

16
, tanϕ0 =

k

2
=

tanα

2
(see Fig.b1);

b2) α =
π

16
, tanϕ0 = k = tanα, (v0 ∈ Z2 and parallel to a wall. Fig.b2);

c1) α =
π

32
, tanϕ0 =

k

2
=

tanα

2
(see Fig.c1);

c2) α =
π

32
, tanϕ0 = k = tanα, (v0 ∈ Z2 and parallel to a wall. Fig.c2).

The figures show a satisfactory agreement between numerical and theoretical results, with a
meaningful physical interpretation. With the predictable exception of the ideal case, the nar-
rowing of the angle between the walls and the decreasing of the restitution coefficient reduce the
possibility of an effective exit of the disk from the corner and, even in this case, reduce the norm
of the exit velocity. Vice versa, they increase the possibility of achieving a “rest” condition for
the disk in the corner.
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9 Conclusions

We showed that the theoretical iterative procedure described in ([Pasquero, 2018]) for de-
termining the exit velocity of a mechanical system having a multiple impact can be effectively
applied to the the study of the behavior of the basic planar system given by a disk impacting
without friction with the walls of a corner, and the applicability can be extended to non–ideal
cases without the preservation of the kinetic energy required in ([Pasquero, 2018]). The simple-
ness of the system allows:
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• to proof several theoretical results (termination of the iterative procedure in a finite number
of steps in the ideal case, norm of the velocity decreasing, possibly to zero, in the non–ideal
case) in good agreement with meaningful physical interpretations;

• an effective implementation of the procedure through a stable algorithm that:

◦ gives a meaningful output (the 2–dimensional exit velocity) starting from a small
set of input data (the 2–dimensional entrance velocity, the angle of the corner, the
restitution coefficient of the walls of the corner);

◦ requires a very low computational time, e.g. for the computational examples pre-
sented in [Fassino and Pasquero, 2019] the maximum execution time is less than
2 · 10−3 seconds;

◦ is robust, so that small perturbation of the input data and approximations of com-
puted values does not invalidate or significantly change the output and their physical
meaning.

• straightforward generalizations to rigid bodies different from the disk, such as rocking
blocks ([Yilmaz et al., 2009]).

However, the limits of the method are the limits of its theoretical approach:

– the impact and its effects are supposed instantaneous, no time integrations are performed
and no information on the motion of the disk in a finite time interval are obtained. For
this reason, the method affects the complexity of a time–integration procedure only in the
determination of new initial data for the time integration;

– the possible presence of friction and/or compliance are not taken into account.
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