
 

Crack shielding in non-planar and frictional 
discontinuities under mixed-mode loading 

Andrea Spagnoli
1
, Andrea Carpinteri, and Michele Terzano 

Department of Engineering and Architecture, Università di Parma, Parco Area delle Scienze 181/A, 

43124 Parma, Italy 

Abstract. In this paper, a two-dimensional model to describe the non-

planar features of crack morphologies is presented. The model accounts for 

frictional tractions along the crack surfaces by considering an elastic-

plastic-like constitutive interface law. Dilatancy effect due to crack 

roughness is described by the model, leading to a Mode I/II coupling 

between displacements and tractions along the crack surfaces. The non-

linear solution of the rough and frictional crack under general remote 

scenarios is obtained using the Distributed Dislocation Technique (DDT). 

By considering a linear piecewise periodic profile of the interface crack, 

the influence of roughness and friction of interface cracks is examined in 

relation to both the resulting near-tip stress field and the fracture resistance 

under monotonic mixed-mode loading. The present model is able to 

quantify the increase of the fracture resistance due to roughness- and 

friction-induced crack tip shielding and to correlate it with a dimensionless 

crack size parameter. 

1 Introduction  

Traction-free and planar cracks represent a rather idealized picture of the physical reality, 

commonly used in fracture mechanics problems. As a matter of fact, experimental 

observations of the cracking behaviour of hard brittle materials, such as concrete and rocks, 

but also bone and glassy polymers, showed that the real picture is much more complicated. 

For instance, failure of structural components under shear loading may occur at larger 

critical loads than those predicted by Linear Elastic Fracture Mechanics (LEFM); 

furthermore, the crack path kinks with respect to the direction predicted and its interfaces 

appear rough and irregular. Crack kinking is a result of dilatancy, a phenomenon caused by 

the interaction between tangential and normal displacement components along rough 

surfaces. In order to account for the actual features of crack surfaces, the first two authors 

have recently explored the influence of crack path meandering on fatigue propagation, by 

modelling the crack profile as a piecewise linear curve in two dimensions [1,2] (the same 

type of model was initially conceived in the realm of fractal geometry [3]). 

In the present paper, the influence of roughness and friction of two-dimensional cracks 

is examined in relation to both the resulting near-tip stress field and the fracture resistance 

                                                 
1
  Corresponding author: spagnoli@unipr.it 

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

MATEC Web of Conferences 300, 15003 (2019) https://doi.org/10.1051/matecconf/201930015003
ICMFF12

mailto:spagnoli@unipr.it


 

under monotonic mixed-mode loading, analysing different combinations of the Mode I and 

Mode II loadings. A non-linear model is presented where an elastic-plastic-like constitutive 

interface law [4] is adopted to describe the Mode I/II coupling between displacements and 

tractions along the crack surfaces. Positive values of Mode I relative displacement, 

corresponding to a separation condition, are locally permitted along the crack profile by 

such a model. The solution of the crack problem is obtained using the Distributed 

Dislocation Technique (DDT) [5]. By considering a linear piecewise periodic profile of the 

interface crack, the present model is employed to quantify the increase of the fracture 

resistance due to crack tip shielding (e.g. see [6]) for given values of the relative crack size, 

measured as the ratio between the crack length and the periodic length of the crack 

roughness, and various loading scenarios. 

2 The model of a non-planar and frictional crack  

Crack surfaces interference is a result of several factors, such as the presence of 

microstructural inhomogeneities, residual stresses, material properties dispersion, 

multiaxial remote stresses. A simple interface two-dimensional model, considering the 

effects of friction and roughness along the crack, has recently been presented by the authors 

[5,7,8]. Such a model is formulated as a constitutive relationship written in the form of a 

classic elastic-plastic law with non-associative flow rule. The crack is assumed as globally 

smooth, with the Coulomb’s friction and the surface roughness embedded in the 

constitutive formulation. A periodic zig-zag pattern of the crack profile is adopted, 

characterized by a constant kink angle  , mean length of the asperities equal to d  and 

height h , see Fig. 1a. 

The elastic-plastic relationship is conveniently written in terms of relative displacement 

increments and bridging stresses between two opposing points of the crack.  The increment 

of relative displacement is composed of a recoverable elastic part e

idw , related to the 

remote stress field, and a non-recoverable plastic part p

idw , which accounts for frictional 

sliding and dilatancy. The stresses on the crack interface are related to the displacement 

increments by means of interface stiffness 
EP

ijE  (summation convention is applied to 

repeated indexes): 

( ) , ,b EP

i ij j i j t nd E dw   (1) 

where ,t n  denote, respectively, the tangential and normal directions related to the 

nominally flat crack surface (Fig. 1a). The non-associative flow rule is described by a slip 

function F  and a slip potential G : 
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where m  is the coefficient of the Coulomb’s friction. The non-recoverable displacement 

increment is written as 
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while the interface stiffness 
EP

ijE  is computed as follows: 
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where ijE is the elastic interface stiffness. If the normal relative displacement is positive, 

i.e. corresponding to a separation condition of the crack surfaces, the interface stiffness is 

assumed to be null. 

This formulation of the interface model is particularly amenable for a direct 

implementation in numerical methods, such as the DDT, which is one of the so-called 

displacement discontinuity methods, commonly employed in the solution of the integral 

equations with singular terms, arising in several crack problems. We introduce a suitable 

distribution of climb and glide dislocations along the crack surface, representing opening 

and sliding displacement discontinuities between the crack surfaces, respectively. The 

stresses, resulting from such discontinues in a continuous body, are known as corrective 

stresses and present the following form (see Fig.1b for an explanation of the variables): 

0
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  is the elastic shear modulus,   is the material Kolosov constant, whereas 
ijF  are 

influence functions which account for the specific geometry of the problem, whose 

expression for the case considered here can be found in the literature [9]. ( )iB   is the 

dislocation density ( ( ) ( )i iB db d   , with  
ib = Burger vector), which yields the relative 

displacement between the crack surfaces by integration.  

The corrective stresses are superposed on the stresses generated by the remote loads to 

obtain the overall stress state along the crack. Notice that if the applied loads are expressed 

in terms of nominal SIFs 
IK  and 

IIK  (Fig. 1b), we have   ( )

n I IK Y a    and  

 ( )

t II IIK Y a   , where ,I IIY Y  are geometric factors. In the realm of LEFM, the 

overall stress state on the crack surfaces would be null; here, on the contrary, we introduce 

the bridging stresses resulting from the surface interaction. The integral equation resulting 

from equilibrium takes the following form: 
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0

( )2
( ) ( ) , ,( , ) ( )

( 1)

bi

i j

a

ij i i j t n
B

x B F x d x
x


    

  

  
 

  (6) 

Following the standard method of solution for integral equations, we normalise the interval 

between [-1,1] and replace the variables ,x   with u , v , respectively. Then, we express the 

unknown dislocation densities as follows: 

1
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where ( )u   is the fundamental singular function, suitable for an edge crack, whilst  ( )i u  

are the unknowns. Using the Gauss-Chebyshev numerical quadrature, the integral of Eq. (6) 

is converted in a set of non-linear algebraic equations. An efficient incremental solution of 

the non-linear problem is achieved by using the Newton-Raphson technique with an 

iteration control based on displacement increments and residuals. 

At each load increment, the effective Mode I and Mode II stress intensity factors at the 

crack tip are computed from the unknown functions 
i , through an extrapolation to the 

singular point 1u   : 

2 2
2 (1), 2 (1)

( 1) ( 1)
I n II tk a k a

 
   

   
 

 
 (8) 

 

Fig. 1. (a) The saw-tooth asperity model, showing the local and global reference systems adopted in 

the formulation, Eqs (1)-(4); (b) Schematic model of the geometry with an edge crack of length a. 

3 Crack shielding under mixed mode loading 

The specific case of an infinite plate containing an edge crack of length a , exposed to 

remote compressive load and shear load respectively, is considered. The tractions are 

assumed to increase proportionally up to the maximum values 
max  and 

max , so that the 

corresponding nominal SIFs (Fig. 1b) are expressed as follows: 

max1.1 )2 (I f t aK    , max (1.12 )II f t aK    (9) 
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where ( )f t  is a time function, with 0 ( ) 1f t  . Note that the Mode I SIF 
IK  is negative 

due to the compressive load applied. The load angle is expressed by 

   max maxarctan arctanII IK K      . 

At each load increment, the effective Mode I and Mode II SIFs 
Ik  and 

IIk  (see Eq. 8) 

are calculated according to the model described in the previous section. Then, the critical 

condition of fracture is obtained by means of the classical criterion of the Maximum 

Tangential Stress (MTS) [10] (some results and discussions on mixed-mode crack growth 

under fatigue loading can be found for instance in [11-13]). Accordingly, the propagation 

angle of the crack is given by 

 

2
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4 4
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k k

k k


 
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and the critical condition of fracture by 
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where 
IcK  is the Mode I fracture toughness of the material. Note that the MTS criterion has 

been conceived for positive values of Mode I SIF, so that 
Ik  is taken to be null in Eqs. (10) 

–(11) if  0Ik  . 

Let us discuss the effect of crack shielding due to friction and roughness of the crack by 

applying the present model. The load angle  is varied between 0° to 90° (corresponding to 

pure Mode II loading). The characteristic length of the crack roughness is taken equal to 
310d a , the asperity angle  is varied from 0 (smooth crack) to 10°, and the coefficient 

of Coulomb’s friction is 0.5m  . 

In Figure 2, the evolution of the normalized effective Mode II SIF is shown for different 

values of the load angle ; a non-linear trend is observed in the case of rough cracks.  

By considering the MTS criterion of Eqs. (10)-(11), the critical condition of fracture can 

be calculated in terms of the nominal Mode II SIF 
IIK . Figures 3 and 4 illustrate the 

fracture resistance in terms of the normalized SIF 
II IcK K  against the load angle  under 

different levels of crack roughness (see angle ), along with the values of the propagation 

angle 
c . As a reference, in the charts it is reported the value of the angle 26.6° equal to 

 arctan m , together with the propagation angle 
c  70.5° related to the pure Mode II 

loading. The non-monotonic trend of results shown in Figs 3 and 4 for rough cracks can be 

interpreted by considering the competing shielding effects of friction and dilatancy on 

fracture resistance. 

4 Concluding remarks 

In the present paper, we have illustrated an application of the Distributed Dislocation 

Technique (DDT) to describe the near-tip stress fields of two-dimensional cracks 

characterised by non-planar profiles. The model introduced has allowed us to account for 

the effects of friction and roughness between crack surfaces, by means of a non-associative, 

elastic-plastic-like interface law. 
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We have applied such model to investigate the crack shielding effect, due to roughness 

and friction, on the fracture resistance under remote mixed-mode loading. Specifically, we 

have considered an edge-crack exposed to a remote compressive load combined with a 

proportional shear load. Some simulations have been carried out to illustrate crack shielding 

in terms of nominal Mode II SIF against the mode-mixity load angle, considering different 

degrees of roughness (in terms of the asperity angle). In particular, it appears that crack 

shielding due to frictional effects is enhanced by the phenomenon of dilatancy, which gives 

rise to a local opening stress intensity factor. This last feature has been put in evidence 

through the computation of the kinking angle according to a suitable mixed-mode 

propagation criterion. 

Fig. 2. Evolution of the effective normalized Mode II SIF for different mixed-mode phase angle : (a) 

smooth crack ( = 0); (b) rough crack with  = 5°. 

 

Fig. 3. Effective normalized Mode II SIF at fracture against load angle for different levels of the 

crack roughness. 
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Fig. 4. Propagation angle at fracture against load angle for different levels of the crack roughness. 
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