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Abstract: Mycotoxins are low-molecular weight compounds produced by diverse genera of molds
that may contaminate food and feed threatening the health of humans and animals. Recent findings
underline the importance of studying the combined occurrence of multiple mycotoxins and the
relevance of assessing the toxicity their simultaneous exposure may cause in living organisms. In
this context, for the first time, this work has critically reviewed the most relevant data concerning
the occurrence and toxicity of mycotoxins produced by Alternaria spp., which are among the most
important emerging risks to be assessed in food safety, alone or in combination with other mycotoxins
and bioactive food constituents. According to the literature covered, multiple Alternaria mycotoxins
may often occur simultaneously in contaminated food, along with several other mycotoxins and food
bioactives inherently present in the studied matrices. Although the toxicity of combinations naturally
found in food has been rarely assessed experimentally, the data collected so far, clearly point out that
chemical mixtures may differ in their toxicity compared to the effect of toxins tested individually. The
data presented here may provide a solid foothold to better support the risk assessment of Alternaria
mycotoxins highlighting the actual role of chemical mixtures on influencing their toxicity.

Keywords: Alternaria mycotoxins; combinatory effects; food safety; combined toxicity; co-occurrence;
bioactive compounds

Key Contribution: This work provides for the first time an extensive and critical analysis of the
most relevant literature concerning the occurrence and toxicity of Alternaria mycotoxins, studied
either individually or in combination with other mycotoxins or bioactive compounds of food origin.
Overall, this review pinpoints the need to investigate the simultaneous occurrence of diverse
mycotoxins in food and to assess their combined toxicity to better support the risk assessment of
Alternaria mycotoxins.

1. Introduction

Mycotoxins are low-molecular-weight toxic compounds synthetized by different types of molds
belonging mainly to the genera Aspergillus, Penicillium, Fusarium and Alternaria [1]. They may enter the
food chain worldwide as a consequence of the ability of mycotoxin-producing molds to infect a wide
number of crops and food commodities [2]. It has been reported that up to 25 % of world crops may be
contaminated with mycotoxins and over 4.5–5.0 billion people are thought to be chronically exposed
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to these food contaminants [3]. However, a much higher prevalence of detected mycotoxins can be
found depending either on the considered mycotoxin or crop (up to 80% in certain circumstances), as
recently reported [4]. Although the highest levels of food contamination are more frequently found
in low-income countries, mycotoxins actually represent a growing threat also on account of climate
changes [5]. The contamination of food and feed by mycotoxins results in significant economic losses
worldwide, not only in terms of food and feed spoilage, but also in terms of a burden on human health,
animal productivity and international trade [6]. In particular, mycotoxins may pose a toxicological
concern for humans and animals since they may exert a wide number of effects including acute toxic,
mutagenic, carcinogenic, teratogenic, estrogenic and immunotoxic actions [7]. Among the various
categories of mycotoxins, those produced by the genus Alternaria are gaining increasing interest due to
their frequent occurrence in food, the recent insights on their genotoxic potential and mechanisms of
action, and their consequent possible effects on human health [2,7]. The Alternaria toxins belong to the
group of the so called “emerging” mycotoxins. They are compounds of possible concern due to their
abundance, occurrence or toxicity, but the limited available data do not allow a comprehensive risk
assessment with an acceptable degree of certainty.

Alternaria species are ubiquitous plant pathogens and saprophytes that may contaminate a wide
variety of crops and raw materials due to their environmental adaptability, particularly to their
tolerance to low temperature and water stress conditions. They produce a cocktail of secondary
metabolites and more than 70 Alternaria toxins have been characterized so far [2]. Based on their
chemical structures, Alternaria toxins may be divided into five groups (Figure 1): (i) dibenzo-α-pyrones,
including alternariol (AOH), alternariol monomethyl ether (AME), and altenuene (ALT); (ii) perylene
quinones, including the altertoxins I, II, III (ATX-I, ATX-II and ATX-III, respectively), stemphyltoxin
I and III (STTX-I and STTX-III, respectively), and alterperylenol/alteichin (ALP); (iii) tetramic acid
derivatives, including tenuazonic acid (TeA) and iso-tenuazonic acid (iso-TeA); (iv) A. alternata f. sp.
lycopersici toxins, which includes several phytotoxins such as AAL-TA and ALL-TB sub-groups (v)
miscellaneous structures, as tentoxin (TEN), which has a cyclic tetrapeptidic structure [2,8]. However,
many other mycotoxins might be produced by Alternaria spp. such as dihydrotentoxin, isotentoxin,
altenuisol (ALTSOH), altenusin, infectopyrone, altersetin, macrosporin A, altersolanol A, monocerin,
altenuic acids I, II, and III [9].

Due to the broad spectrum of adverse effects observed in vitro (e.g., genotoxic, mutagenic,
clastogenic, androgenic, and estrogenic effects) and in vivo (e.g., fetotoxic and teratogenic effects), some
of the Alternaria mycotoxins most frequently found in food may pose a severe threat to human health,
especially for the most exposed categories such as infants, toddler and vegetarians [10]. Nevertheless,
for most Alternaria mycotoxins, neither the toxicity nor the occurrence in food is adequately described.
The current limitation of data hinders the proper assessment of risks to human health and, consequently,
it prevents the establishment of specific regulations [11]. Therefore, the need of additional representative
data to support the proper risk assessment of Alternaria toxins, especially for AOH, AME, TeA, TEN
and ALT, was claimed by the expert Committee “Agricultural Contaminants” of the EU commission in
2012 [12]. In 2016, a call to collect data for the human exposure assessment to Alternaria toxins (AOH,
AME, TeA and TEN) was published by the European Food Safety Authority (EFSA) [13].

In this respect, the chemical risk assessment of food-related compounds is currently based on the
integration of knowledge about the single exposure to a given substance and its potential to individually
cause harmful effects [14]. However, food is typically contaminated simultaneously by more than
one mycotoxin. It is noteworthy that the simultaneous occurrence of compounds (either toxicants or
bioactive food constituents) may lead to combinatory interactions (namely, additive, synergistic or
antagonistic effects) that may significantly change the final toxicological outcome depending on the
overall composition of chemical mixtures (see Section 3.2). In addition, mycotoxins may be present in
food along with a high number of bioactive compounds, showing a huge variety of chemical structures
and mechanisms of action, which may further modify their toxic impact. On this basis, risk assessment
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studies should take into account this complexity rather than relying on individual evidences, to better
evaluate the overall risk associated with the consumption of mycotoxins-contaminated food.

Therefore, in the framework of supporting a better risk assessment of Alternaria mycotoxins, this
work aims at consolidating the current knowledge on occurrence and combined actions of Alternaria
mycotoxins. The relevance of investigating the effects and occurrence of chemical mixtures to support
the thorough assessment of the actual risk this class of mycotoxins may pose to humans is pointed out.
In more detail, this work presents the current state-of-the art in terms of co-occurrence and combinatory
effects of: (i) different Alternaria toxins; (ii) Alternaria toxins in combination with other mycotoxins; (iii)
Alternaria toxins in combination with bioactive compounds of food origin.
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Figure 1. Chemical structures of the main Alternaria mycotoxins. AOH – alternariol; AME – alternariol
monomethyl ether; ALT – altenuene; ATX-I, ATX-II, ATX-III – altertoxin I, II and III; STTX-III –
stemphyltoxin III; TeA – tenuazonic acid; Iso-TeA – iso-tenuazonic acid; TEN – tentoxin; AAL-TA1-2
Alternaria alternata f. sp. lycopersici toxins sub-group A 1 and 2; AAL-TB1-2 Alternaria alternata f. sp.
lycopersici toxins sub-group B 1 and 2; TCA - tricarballylic acid.

2. Natural Occurrence and Co-Occurrence of Alternaria Mycotoxins in Food

The occurrence of Alternaria mycotoxins in food and feed has been reviewed over the years [8,15–18].
However, in most cases, the occurrence and the relative concentrations of single or a small group of
toxins has been reported, whilst the simultaneous co-occurrence of a high number of mycotoxins likely
co-occurring together was not systematically assessed.

This section presents a collection of the co-occurrence of multiple Alternaria toxins in food
commodities. In addition, data on the co-occurrence of Alternaria mycotoxins along with other
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mycotoxins and food constituents are reviewed. The key references covered in this review addressing
the natural co-occurrence of different Alternaria mycotoxins are summarized in Table 1, while a
schematic overview of the literature concerning the study of the co-occurrence of Alternaria and
other mycotoxins is provided in Table 2. Detailed information concerning the number of samples
analyzed, mycotoxin concentrations, as well as the methods and instruments used are reported in the
Supplementary Materials (Table S1).

2.1. Co-Occurrence of Different Alternaria Toxins in Food

With regard to the co-contamination of food by different Alternaria toxins, AOH, AME, ALT, TeA,
TEN, and ATX-I are the most frequently investigated compounds, while broader sets of compounds,
including for instance ATX-II, IsoALT, AAL-TA1, AAL-TA2, ALP, macrosporin, ALTSOH, and Val-TeA,
are rarely reported.

As shown in Table 1, the presence of Alternaria mycotoxins has been well-documented both in fresh
and processed food, including fruits and vegetables, nuts, seeds, cereals, and fermented beverages.
Among the food commodities investigated so far, apples, tomato, and their derivative products have
been more frequently explored than other types of fruits and vegetables. Notably, most of them were
found simultaneously contaminated by both AOH and AME, and, in some cases, also by up to five
different mycotoxins. One of the first investigations were performed by Stinson and co-workers [19]
who reported the contamination of apples and tomatoes with several Alternaria toxins already back in
1981. The observed contamination determined by HPLC-UV was in the low mg/kg range for AOH
and AME, and in the µg/kg range for ALT and TeA in the case of apple samples. In tomatoes, TeA
showed the highest contamination levels with up to 139 mg/kg. Furthermore, the presence or absence
of ATX-I was assessed by thin layer chromatography. In the last ten years, multi-analyte measurements
using liquid chromatography coupled to mass spectrometry became more and more important. The
contamination with seven different Alternaria mycotoxins (AOH, AME, ALT, TeA, TEN, ATX-I, and
ALP) and two phase-II metabolites (AOH-3-sulfate and AME-3-sulfate) was reported in tomato sauce,
sunflower seed oil and wheat flour samples by Puntscher et al. [20]. In this study, the simultaneous
contamination in the µg/kg range was reported in sample(s) from Austria, Croatia and Italy.

Infant foods were also found to be contaminated by multiple Alternaria mycotoxins. As an example,
Gotthard and co-workers reported that tomato sauce and apple-pear-cherry puree were simultaneously
contaminated by AOH, AME, TeA, and TEN [21]. In addition, those mycotoxins were also found in
cereal-based infant formulas and they were reported along with ATX-I in wheat- and spelt-based food.
These results are particularly relevant considering that the young population (infants and toddlers)
show a higher exposure to Alternaria toxins in comparison to the other population categories due to
their high food consumption in relation to body weight [10]. The most important dietary contributors
to these mycotoxins were fruits and fruit products, vegetable oil, cereal-based foods and fruiting
vegetables (tomatoes) wherein multiple mycotoxins were often found simultaneously, as shown in
Table 1.

This scenario is further complicated by the possible presence of so called “masked mycotoxins”.
This term refers to modified forms of mycotoxins as a result of their metabolic transformations in plants.
Masked mycotoxins have been reported to abundantly co-occur in contaminated food and raw materials
along with their respective parent counterparts [22]. The most common masked mycotoxins covalently
link sulfate or glucoside groups as a result of plant phase-II metabolism [23]. After ingestion, these
phase II plant metabolites can be hydrolyzed during the digestion releasing the respective toxic parental
compounds [1]. The transformation of masked mycotoxins to metabolites with higher toxicity than the
parent compounds was also described in vitro [24,25], further highlighting the toxicological potential of
the masked forms of mycotoxins (referred to as “maskedome”). Nevertheless, masked mycotoxins are
not routinely screened, and this may result in an underestimation of the actual amounts of mycotoxins
in foods. In this respect, Puntscher et al. [26] reported the presence of some modified forms of AOH
and AME (i.e., AOH-3-glucoside, AOH-9-glucoside, AOH-3-sulfate and AME-3-sulfate) in tomato
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sauce samples from Italy. In particular, one sample was found contaminated not only with AOH,
AME, TeA and TEN, but also with AOH-3-glucoside, AOH-3-sulfate and AME-3-sulfate. Similarly,
Walravens and co-workers found tomato products (juices, sauces and concentrates) contaminated with
AOH-3-sulfate and AME-3-sulfate, with a prevalence ranging from 11% to 26% and from 32% to 78%,
respectively [27]. The authors reported the highest prevalence of AOH and AME in tomato sauces
(86% and 78%, respectively), while ALT was most frequently detected in tomato concentrates (56%). In
addition, a prevalence of TEN-contaminated products, ranging from 21% to 64% (in sauces and juices,
respectively), was also reported and, interestingly, all the tested samples showed a high contamination
with TeA. More recently, another study highlighted the contamination of both fresh and dried tomato
samples by different Alternaria toxins, among which TeA was found the most frequent and abundant
compound [28].

The frequent co-occurrence of multiple Alternaria mycotoxins was also described in many other
foods, including peppers. As an example, Gambacorta and co-workers [29] analyzed samples of
fresh, dried, grounded, and fried sweet pepper, wherein AOH, AME, TeA, and TEN were found
together (limit of quantifications in the low µg/kg range). In particular, TeA was detected in all samples,
while AOH was detected in 86%, 43%, 100% and 14% of fresh, dried, grounded and fried products,
respectively. Fresh pepper samples were mostly contaminated by AME (57% of fresh pepper samples),
while fried peppers were the least AME-contaminated samples (14% of fried peppers samples). ALT
was detected only in 43% and 13% of fresh and grounded samples, respectively.

Beside fruits and vegetables, cereals and derived products play an important role in the exposure
to Alternaria toxins, representing the main source of exposure for infants and toddlers [10]. According
to EFSA [2], the highest mean concentrations of AOH, AME, TeA and TEN in grains were observed
as follows: AOH (spelt, oats, rice); AME (oats, rice); TeA (wheat, barley, rye, spelt, oats and rice);
TEN (rye). Nevertheless, in addition to the above-mentioned mycotoxins, some authors reported
also the presence of other compounds in grains, although the actual co-occurrence was not clearly
specified. Specifically, ragi, sorghum and spelt were found contaminated by ALT [30,31], while ATX-I
was detected in spelt and wheat [20,21]. Among the least investigated mycotoxins, macrosporin, which
is produced primarily by the Stemphylium genus but it can be produce by Alternaria spp. too [32],
was found in corn and wheat silage [33], while ALP was detected in wheat flour samples [20]. The
presence of macrosporin was also detected in dried fruits and nuts, such as almonds, dried grape
berries, hazelnuts, peanuts, and pistachios [34], often in combination with other Alternaria mycotoxins.
In a study performed by Mikušová et al. [35], dried grape berries from three Slovak winemaking
regions were simultaneously contaminated by up to eight Alternaria mycotoxins, i.e., AOH, AME, ALT,
TeA, TEN, ATX-I, ATX-II, and macrosporin, whose highest concentrations were 1308 µg/kg, 776 µg/kg,
4120 µg/kg, 159.6 µg/kg, 43.1 µg/kg, 31175 µg/kg, 624 µg/kg, and 762 µg/kg, respectively. Notably, TEN
was detected in all the analyzed samples.

Alternaria toxins can be found also in beverages such as fruit juices, beers and wines [36–41], as well
as in food supplements used for various purposes [42]. Milk thistle-based supplements for liver diseases
were simultaneously contaminated by AOH, AME, TEN, and TeA with maximum concentrations of
4560 µg/kg, 3200 µg/kg, 1280 µg/kg, and 2140 µg/kg, respectively. The same mycotoxins were detected,
even though at a lower concentration, in supplements used to treat menopause symptoms (containing
red clover, flax seeds and soy) or for general health support (containing among others green barley,
nettle, goji berries and yucca). The maximum concentration of TeA was found in supplements for
general health support (6780 µg/kg), while milk thistle-based supplements showed the highest average
concentrations of all mycotoxins. Notably, the beneficial effects of health-promoting compounds of
food supplements might be impaired to various extents by the presence of mycotoxins. In addition,
taking into account that food supplements are thought to supply specific deficiencies, the presence of
mycotoxins might have a higher impact on specific categories of consumers. These aspects require
urgent investigations to timely support the enforcement of specific regulations.
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Table 1. Co-occurrence of Alternaria toxins in food.

Food/Foodstuff
Alternaria Mycotoxins

Reference
AOH AME ALT TeA TEN ATX-I Other

Fruits, Vegetables and Derivatives

Apple X X X X X [19]
Apple juice X X [36,43]

Apple juice (concentrated) X X [44]
Apple-pear-cherry (puree infant

formula) X X X X – ALP (–) [21]

Berry juice X X – [37]
Cherry-banana (puree infant formula) X X X – – ALP (–) [21]

Cranberry juice X X [39]
Cranberry nectar X X [43]

Citrus juice – X a X a – [38]
Grape juice X X [39]

Ketchup X a – X a [45]
Ketchup X X X X [38]

Mixed juice (fruits and vegetables) X X a X a X – Iso-ALT (–), AAL TA1 (–), AAL TA2(–) [46]
Orange juice X X [36]

Pepper X X X [47]
Prune nectar X X [43]
Soya beans X X [48]
Strawberry X a X a [49]

Sweet pepper X X X X [29]
Tangerine (flavedo) X X [50]

Tomato X X X X – [19]
Tomato X a X a X a – ATX-II (–) [51]
Tomato X X X [45]

Tomato (dried) X a X a X a X a [52]
Tomato (puree and ketchup) X X – X X a – Iso-ALT (–), AAL TA1 (–), AAL TA2(–) [46]

Tomato (sun-dried) X X X [45]
Tomato juice – X X X [38]
Tomato sauce X X X a X X a X ALP (X), AOH-3-S (X a), AME-3-S (X) [20]

Tomato sauce (puree infant formula) X X X X – ALP (–) [21]
Tomato soup (puree infant formula) – X X – – ALP (–) [21]

Vegetable juice X X [36]
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Table 1. Cont.

Food/Foodstuff
Alternaria Mycotoxins

Reference
AOH AME ALT TeA TEN ATX-I Other

Cereals and Derivatives

Bakery products (wheat- and rye-
based) X X – X X – Iso-ALT (–), AAL TA1 (–), AAL TA2(–) [46]

Bread X a X X X [53]
Cereal grains X a X a – X a [41]
Corn silage X a X a X a MACRO (X a) [33]

Dried noodles X a X X X [53]
Maize-based snacks X X [54]

Millet (infant formula) X X X X – ALP (–) [21]
Oat (infant formula) – X X X – ALP (–) [21]

Ragi – X X X – [30]
Rice (infant formula) X X X X – ALP (–) [21]

Sorghum – X X X – [30]
Spelt (infant formula) X X X X X ALP (–) [21]

Wheat X a X a X a X a [31]
Wheat X a X a X a [55]

Wheat (infant formula) X X X X X ALP (–) [21]
Wheat flour X a X X X [53]
Wheat flour X a X – X X a X ALP (X), AOH-3-S (-), AME-3-S (-) [20]
Wheat silage X a X a X a MACRO (X a) [33]

Weathered wheat X X X [56]
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Table 1. Cont.

Food/Foodstuff
Alternaria Mycotoxins

Reference
AOH AME ALT TeA TEN ATX-I Other

Dried Fruits and Nuts

Almonds X a X a X a [57]
Almonds X a X a X a – MACRO (X a) [34]
Chestnuts X a X a X a [57]
Dried figs X a X a – [57]

Dried grape berries X X X X X X ATX-II (X), MACRO (X) [35]
Dried jujubes X a X a X a [57]

Dried persimmons X a X a – [57]
Dried raisins X a X a – [57]
Dried raisins X X – X – [58]

Dried wolfberries X a X a – X X [58]
Hazelnuts X a X a X a [57]
Hazelnuts X X X X a MACRO (X) [34]

Peanuts X a X a X a – MACRO (X a) [34]
Pine nuts X a X a X a [57]
Pistachios – – – – MACRO (X a) [34]
Walnuts X a X a X a [57]

Other Food and Foodstuff

Beer X a – X a – X a [40]
Food supplement (antioxidants) X a X a X a X a [42]
Food supplement (milk thistle) X X X X [42]

Food supplement (phytoestrogens) X X X a X [42]
Red wines X X [39]

Sesame seeds X X X [59]
Sunflower seed oil X X – X X X a ALP (X a), AOH-3-S (-), AME-3-S (-) [20]
Sunflower seeds – – – X a X a [41]
Sunflower seeds X X X [60]
Sunflower seeds X X X a X X X a Iso-ALT (X a), AAL TA1 (–), AAL TA2(–) [46]
Sunflower seeds X a X a X X ALTSOH (X a), Val-TeA (X a) [61]

Vegetable oils (rapeseed and
sunflower seeds) X X – X a X – Iso-ALT (–), AAL TA1 (–), AAL TA2(–) [46]

White wines X X [39]
Wines X a – – X a – [41]

X: certain co-occurrence; X a: uncertain co-occurrence; –: checked but not detected.
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2.2. Co-Occurrence of Alternaria Toxins with Other Mycotoxins

As discussed above, many food categories may be contaminated by more than one Alternaria
mycotoxin. However, food commodities can be simultaneously contaminated by a high number of
different mycotoxins produced by molds other than Alternaria. In particular, mycotoxins produced by
Aspergillus, Fusarium, and Penicillium genera frequently co-occur with Alternaria mycotoxins (Table 2).
Among them, the most investigated and frequently detected were those produced by the genera
Fusarium and Aspergillus [e.g., aflatoxins, enniatins (ENNs) and beauvericin], while the least frequently
examined or detected were ochratoxins (ochratoxin A, OTA; ochratoxin B, OTB).

A study conducted by Gambacorta et al. [29] investigated the co-occurrence of 17 different
mycotoxins in fresh, fried, dried or grounded sweet pepper products. Notably, all of them were
contaminated by more than one mycotoxin simultaneously. In more detail, 6 out of 39 samples
contained 2, 3 or 4 different mycotoxins, while the remaining samples were positive for a number of
mycotoxins ranging from 5 to 16. The fried peppers showed the lowest average level of contamination
(with an average mycotoxin contamination of 231 µg/kg), while the fresh pepper samples were the
most contaminated (27,280 µg/kg). TeA was the most frequently detected mycotoxin (100% of samples)
with an average concentration of 4817.9 µg/kg. With regard to the other Alternaria toxins, 93%, 56%,
33%, and 9% of pepper samples were found to be contaminated by TEN, AOH, AME and ALT,
respectively. These compounds (except for ALT) were found to co-occur along with 7 other Fusarium
mycotoxins (nivalenol, HT-2 toxin, T-2 toxin, fumonisin B1, fumonisin B2, deoxynivalenol (DON)
and zearalenone (ZEN)), 4 other Aspergillus mycotoxins (the aflatoxins B1, B2, G1, and G2), and OTA
in the most contaminated sample. It is worth mentioning the average low level of contamination
of fried samples. In this respect, the frying process might have a role in lowering the content of
Alternaria mycotoxins, though it was not directly assessed by the authors. It would be in agreement
with other studies pointing to a significant reduction of mycotoxin content upon fry cooking [62].
In addition, high-temperature treatments already proved to be effective in mitigating the content of
certain Alternaria mycotoxins [63], supporting the possible role of fry cooking in reducing the content of
Alternaria mycotoxins. The effects of three extrusion processing parameters (moisture content, feeding
rate and screw speed) on the degradation of TeA, AOH and AME in whole wheat flour have been
investigated. With the optimal parameters, a reduction of 65.6, 87.9 and 94.5% was achieved for TeA,
AOH and AME, respectively [63]. As a general remark, the thermal stability of Alternaria mycotoxins
needs to be further investigated, along with the possible formation of toxic by-products, to identify
effective food processing for reducing their content in food.

The co-occurrence of AOH with the Fusarium mycotoxins ZEN and DON and, with the ergot
alkaloid ergometrine was described in beer [64]. In particular, ergometrine, a toxin produced by
Claviceps spp. used in pharmaceutical applications [65], was detected at low concentrations in 93% of
the beer samples (0.07–0.47 µg/L, median 0.15 µg/ L). AOH (0.23–1.6 µg/L, median 0.45 µg/L) and ZEN
(0.35–2.0 µg/L, median 0.88 µg/L) were detected in all the beer samples, while DON was found in 75%
of samples (2.2–20 µg/L, median 3.7 µg/L). In the light of the low concentrations reported above, the
authors concluded that beer should not be considered among the most important source of dietary
intake of AOH, ZEN and DON.

In another study, 253 samples of dried fruits and nuts were analyzed for the presence of
16 mycotoxins (aflatoxins, ochratoxins, Alternaria toxins and trichothecenes) [57]. The authors reported
that 124 samples were contaminated with at least one mycotoxin, while more than half (66 out of
124 samples) were contaminated by at least two mycotoxins. AME was the most frequently detected
mycotoxin (44/124), followed by AOH (found in 31 out of 124 samples) and enniatin B1 (found in 30 out
of 124 samples). The most contaminated sample contained eight different mycotoxins (i.e., aflatoxins
B1 and B2, enniatins B and B1, beauvericin (BEA), TEN, AOH, and AME). Among the number of
combinations found, the most common were binary (such as BEA + AME) and tertiary (such as BEA +

AME + AOH) combinations. Ochratoxin B was found occurring along with the Alternaria toxins AOH,
AME and TEN only in two samples.
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The co-occurrence of ochratoxin A with AOH and aflatoxin B2 was described with a low frequency
in berry juice (only 1 out of 32 samples was found positive) [37]. Additionally, although 47% of berry
juices were negative for all the investigated mycotoxins, at least one mycotoxin was present in 53%
of the samples, with percentage distributions of 9%, 9%, 22%, and 13% for 1, 2, 3 and 4 co-occurring
mycotoxins, respectively. Moreover, TEN and aflatoxin B1 were not detected in any of the analyzed
samples, while aflatoxin B2 + aflatoxin G2 + AME + AOH and aflatoxin G2 + AME + AOH were the
most frequently found combinations. Importantly, in 87% of the contaminated samples at least one
Alternaria mycotoxin was detected: AOH was most frequently found (73%; concentrations from 2.5 to
85 ng/mL) followed by AME (67%; concentrations from 267 to 308 ng/mL). Similarly, the co-occurrence
of Alternaria toxins with other mycotoxins was also reported in dried fruit samples from China (apricots,
raisins, dates, and wolfberries) [58]. In particular, 64.6% of the samples were contaminated by at
least one mycotoxin, while 31.4% of the samples were contaminated with two to four compounds.
TeA was the most abundant (from 6.9 to 5665.3 µg/kg) and frequently detected compound, followed
by TEN (20.5% of samples) and mycophenolic acid (MPA; 19.5% of samples). MPA is produced by
various Penicillium species and it is used as an immunosuppressant drug to prevent organ rejection
after transplantation. In terms of safety, its occurrence in food may raise concern on account of its
potential to predispose susceptible individuals to infectious diseases [58]. The combinations TeA +

TEN and TeA + MPA were found with a prevalence of 13.2% and 11.4%, respectively [58]. In addition,
TeA was simultaneously detected along with OTA in 7% of samples, with an apparently inverse
relationship: the higher the concentration of TeA, the lower the concentration of OTA. This might be
due to competition phenomena between mycotoxin-producing fungi or due to degrading processes, as
reported by Müller et al. [66]. They described an inverse correlation between the increase of AOH,
AME and TeA production and the decrease of Fusarium toxins (DON and ZEN) possibly due to the
degradation of the latter by Alternaria strains. In this context, in vitro studies on the synthesis of
mycotoxins during the co-incubation of Alternaria strains with other fungi may be useful to investigate
the existence of a possible mutual influence, which seems likely to exist on the basis of low level of
co-occurring mycotoxins reported so far in the literature.

As already reported in Section 2.1, food supplements might be highly contaminated by Alternaria
toxins. However, Alternaria toxins can be found in food supplements also along with other mycotoxins.
As an example, Veprikova and co-workers found 66 out of 69 samples contaminated by more than
one mycotoxin. Specifically, 58% of milk thistle-based supplements contained more than 12 different
mycotoxins simultaneously, while one of the most contaminated samples contained 14 different
mycotoxins, i.e., AOH, AME, TEN, 3-acetyl-DON, beauvericin, fusarenon-X, ZEN, HT-2 toxin, T-2 toxin
and enniatins B, B1, A and A1 [42]. The most common combinations described were ENNs + HT-2/T-2
+ AOH + AME + TEN and ENNs + AOH + AME + TEN + MPA. As a general remark, the state-of
the-art of food supplements contamination warns about a potentially dangerous scenario. Indeed,
although to date no maximum limits of Alternaria mycotoxins have been defined for food, the relatively
high concentrations of mycotoxins occasionally detected in food supplements might suggest the need
to perform dedicated risk assessment studies. Therefore, further occurrence and exposure studies have
to be done urgently paving the ground to timely enact specific regulations for food supplements.
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Table 2. Co-occurrence of Alternaria toxins with other mycotoxins.

Food/Foodstuff
Co-Occurring Mycotoxins

Reference
2 Mycotoxins 3 Mycotoxins 4 Mycotoxins >4 Mycotoxins

Berry juices AFB2, AME AFB2, AOH
AOH, AME

AFB2, AFG2, AOH

AFB2, AFG2, AME, AOH
AFG1, AFG2, AME, AOH
AFB2, AFG1, AFG2, AME

[37]

AFB2, AOH, OTA
AFB2, AFG2, AME
AFB2, AFG2, AOH
AFG2, AME, AOH
AFB2, AME, AOH

Sweet pepper
(Capsicum annuum) AFB1, TeA ZEN, TEN, TeA FB2, TEN, TeA, ZEN

n 16 (NIV, AOH, TeA, HT-2,
FB2, OTA, T-2, FB1, TEN, AME,

AFB1, DON, AFG1, AFB2,
AFG2 and ZEN)

[29]

Durum wheat n.a. n.a. n.a. n 7 (EN B, EN B1, EN A1, AME,
DON, HT2 and T2) [67]

Dried fruits (raisins, dried
apricots, dates and

wolfberries)
TeA, MPA TeA, TEN n.a. n.a. n.a. [58]

Maize-based snacks n.a. n.a. n.a. n 6 (FB1, FB2, FB3, BEAU, AME,
EMOD) [54]

Nuts and dried fruits

AFB2, TEN AFB2, TEN, AME ZEN, TEN, AOH, AME

n 8 (AFB1, AFB2, ENB, ENB1,
OTB, TEN, AOH, AME)

[57]

AFG1, AME AFB2, AOH, AME ENA1, ENB, TEN, AME
ZEN, AOH ENA1, ENB1, AME AFB2, TEN, AOH, AME
BEA, AME BEA, AOH, AME AFB1, BEA, AOH, AME
T-2, AME T-2, BEA, AME AFG1, AFG2, ENB1, TEN

ENB1, TEN AFB2, ENB, AOH AFG1, ENB1, AOH, AME

Beer AOH, ZEN n.a. Ergometrine, AOH, ZEN,
DON n.a. [64]

Food supplements
(milk thistle - based) n.a. n.a. AOH, AME, TEN, MPA

Other

n 14 (AOH, AME, TEN,
3-ADON, FUS-X, ENN-B,

ENN-B1, ENN-A, ENN-A1,
BEA, DON, HT-2, T-2, ZEN) etc.

[42]

n.a.: information not available.
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3. Individual Toxicity of Main Alternaria Toxins and Combined Toxicity with Other Mycotoxins
and Bioactive Compounds of Food Origin

Alternaria species may produce a huge variety of different mycotoxins showing a great variability
in terms of chemical structures [68]. AOH, AME, TeA, ALT, and altertoxins (I, II, III) are considered the
most relevant for food toxicology, taking into account their occurrence and/or toxicity. Nevertheless,
in vivo toxicological data currently available are not adequate for a proper risk assessment and,
therefore, they are not sufficient to define toxicological standard values for the establishment of
maximum limits in food and feed. At present, the only LD50 values are available, even if they refer to a
limited number of compounds (Table 3).

Table 3. LD50 values of Alternaria mycotoxins currently available.

Mycotoxin Animal Species Route of Exposure LD50 (mg/kg b.w.) Reference

AOH Mouse (DBA/2) intraperitoneal >400 1
[69]

AME Mouse (DBA/2) intraperitoneal >400 1

TeA

Mouse
intravenous

115 (female)

[70]162 (male)

oral
81 (female)
186 (male)

Mouse (ICR)

intravenous 125 (male)

[71]intraperitoneal 150 (male)
subcutaneous 145 (male)

oral 225 (male)

Rat
intravenous

157 (female)

[70]146 (male)

oral
168 (female)
180 (male)

Chicken embryo injection 548 2 [72]
White leghorn

chicken oral 37.5 3 [73]

1 LD50 values of AOH and AME were not reached at the maximum dose tested, corresponding to 400 mg/kg, 2 Unit
of measurement: µg/egg, 3 Information about sex not available.

As a general remark, except for these few mycotoxins, very few data are available for the other
members of the Alternaria mycotoxin family, which still remain largely uncharacterized in terms of
toxicity and mechanisms of action.

As already discussed, the simultaneous occurrence of more than one Alternaria mycotoxin, also in
combination with other mycotoxins produced by different fungi, is common in food. In this respect,
it is important to remark that the risk assessment of mycotoxins currently relies on single substance
effects [2,74], neglecting any possible mutual combined actions due to simultaneous exposure. These
mycotoxin-mycotoxin interactions might modify the individual toxicity of compounds, likely resulting
in a final toxic outcome different from the single compound tested alone. In addition, it must be
considered that many extra-nutritional constituents (such as bioactive food constituents) are widely
present in food, and their biological activity may also interfere with mycotoxin activity. The combined
actions can be referred to as: (i) additive effects, when the final toxicity is the sum of the individual
toxic effects of compounds; (ii) synergistic effects, when the resulting total toxicity is greater than the
sum of individual effects or iii) antagonistic effects, when the opposite is the case and the combinatory
effect is less than additive [75]. Several mathematical models and methods are commonly used to
evaluate the nature of the combined effects of toxic compounds. Among them, the most common are
the independent joint action model and the combination index-isobologram method. The first one
allows to calculate an expected additive value from the effects of the single compounds [76] that can in
turn be compared to a measured combinatory effect. The combination index-isobologram method
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allows to take into account the shape of dose-response curves when determining the type of interaction
(synergism, additive effect and antagonism) [75,77]. This is considered the state-of-the-art model;
however it can be challenging to meet the requirements to apply it.

As shown below, the evidence collected so far clearly states that synergistic effects of mycotoxins
in mixtures with other compounds (either mycotoxins or other food components) may have important
consequences on the single-compound activity. This might have an impact on the assessment of risk
related to the presence of Alternaria mycotoxins in food, which should consider the mixtures, rather
than focusing on single-compound evidences. The individual toxicity of the main Alternaria mycotoxins
and the effects of their combination with other mycotoxins or food constituents are reported in the
following sections.

3.1. Individual Toxicity of Alternaria Mycotoxins

3.1.1. Genotoxic Effects

Among the best characterized Alternaria toxins, those with genotoxic properties are considered of
most concern for human health by regulatory authorities. This particularly applies to AOH and AME,
for which the EFSA concluded that “the estimated mean chronic dietary exposures at the upper bound
and 95th percentile dietary exposures exceeded the TTC value” in their latest exposure assessment [10],
and thus called for more data regarding exposure and toxicity of those metabolites [13].

In human cells, both AOH and AME have been reported to induce DNA strand breaks in the
comet assay at concentrations ≥1 µM [78], to act clastogenic at ≥2.5 µM [79] and to possess mutagenic
potential at ≥10 µM, as measured by HPRT and TK gene mutation assays [80]. An in vivo study on
mice did not find AOH to cause systemic DNA damages in liver tissue and bone marrow [81]. However,
the authors argue that any toxicity of the substance would probably be limited to the gastrointestinal
tract due to poor bioavailability, but did not include corresponding organs in their survey.

Concerning the mechanisms of action, both AOH and AME were found to act as a topoisomerase
(TOP) poison at micromolar concentrations, affecting the activity of both TOP I and TOP II, with a
certain preference for the α isoform of TOP II [78]. Those enzymes are needed to untangle the DNA for
replication or transcription, a process which involves the induction of a transient DNA strand break
that is re-ligated at the end of the catalytic cycle. Poisoning of these enzymes by small molecules results
in a toxin-dependent stabilization of the covalent DNA–topoisomerase complex (i.e., the so-called
“cleavable complex”). Stabilization of the cleavable complex by TOP “poisons” hinders release of TOP
in the catalytic cycle and re-ligation of the DNA, thus resulting in a persistence of the initially induced
strand break. Thus, TOP poisons are commonly described to act genotoxic [82].

An additional mechanism contributing to the toxicity of Alternaria toxins is the induction of
intracellular reactive oxygen species (ROS), which indicate oxidative stress. ROS production induced
by AOH and AME might play an important role in the inhibitory effects on cell proliferation observed
in different cellular models [83,84].

Of note, ALT and iso-ALT were not found to affect topoisomerase activity [78], probably due to
their less planar structure not allowing for DNA intercalation in comparison to AOH/AME [85].

However, it was observed that extracts from cultured Alternaria strains by far exceeded
the genotoxicity of their dibenzo-α-pyrone contents [86]. This has led to the discovery of the
epoxide-carrying perylene quinone ATX-II as a major contributing factor to the genotoxicity of
naturally occurring mixtures of Alternaria toxins [87,88]. Later on, not only ATX II, but also the
structurally related STTX-III was found to be more mutagenic then AOH. Regarding their mode of
action, these mycotoxins were also found to act as inhibitors of TOPs at high concentrations. However,
their main genotoxic mode of action is thought to be the formation of DNA adducts, a hypothesis
which still awaits experimental confirmation [87–89].
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Of note, there is speculation that yet not characterized secondary metabolites might also possess
genotoxic properties, as an Alternaria extract very low on dibenzo-α-pyrones, which was additionally
stripped off ATX-II and STTX-III, still maintained substantial DNA-damaging properties [90].

3.1.2. Endocrine-Modulating and Other Toxic Effects

AOH and AME, as well as other related metabolites, were reported to elicit estrogenic effects in
cellular systems. In particular, AOH was described to be able to activate both ER-α and β but with
a greater affinity (approximately ten-fold higher) for ER-β [79,91], although the binding strength is
10,000-fold weaker than the endogenous hormone estradiol. AME was found to be slightly more
potent than AOH at 10 µM, and the methylation at the 9-OH group was thought to improve the
molecular fitting within the estrogen receptor pocket [92]. AOH was additionally found to induce
androgenic effects in the yeast androgen bioassay [93]. Recently, computational studies reported that
mutations of the androgen receptors might affect the capability of AOH to bind and possibly stimulate
the activation of receptors [94]. Moreover, increases in progesterone and estradiol levels, as well as in
progesterone receptor expression, were reported in human adrenocarcinoma H295R cells treated with
AOH, supporting its actual role as endocrine disruptor [95]. However, in naturally occurring mixtures
of Alternaria toxins, endocrine-disrupting effects of AOH and related metabolites might be “quenched”
by cytotoxic and anti-estrogenic properties of co-occurring compounds, as recently demonstrated in
Ishikawa cells [90].

In addition to the above listed toxic effects, AOH and AME were found to modulate innate
immunity in both human bronchial epithelial BEAS-2B cells and mouse macrophages RAW264.7,
through the suppression of the lipopolysaccharide-induced innate immune responses [96]. This
activity was also confirmed in THP-1 derived macrophages by Kollarova et al. [97]: AOH, in fact,
suppressed lipopolysaccharide (LPS)-induced NF-κB pathway activation, induced transcription of the
anti-inflammatory cytokine IL-10, and reduced the transcription of the pro-inflammatory cytokines
IL-8, IL-6 and TNF-α.

TeA deserves a particular mention as, unlike the other Alternaria mycotoxins, it exerts toxic
effects mainly by inhibiting the release of proteins from the ribosome. Although a low toxicity of this
mycotoxin has been reported in vitro [86,98], in vivo studies carried out on several animal models
highlighted more severe effects such as emesis, tachycardia and haemorrhages [18].

3.2. Combinatory Effects of Alternaria Mycotoxins

There are only a few studies investigating the combinatory effects of Alternaria mycotoxins, though
food may be quite often simultaneously contaminated by more than one single compound as shown,
for instance, for AOH and AME (Section 2.1). Notably, these two mycotoxins are not of particular
concern in terms of cytotoxic effects, also on account of the high concentrations required to cause
harmful effects when tested individually. However, the simultaneous exposure to AOH and AME may
have significant effects on the overall toxicity in respect to their individual testing. In more detail, their
combined effects (1:1 concentration ratio) were invested by Bensassi et al. on the human intestinal
cell line HCT-116 [99]. No significant difference in cell viability was detected at 25 µM up to 24 h
of exposure when mycotoxins were tested either individually or in combination. Conversely, both
mycotoxins reduced cell viability about 30% after 24 h of exposure when tested individually, while
they reduced viability about 50% when tested in combination. In this study, the nature of interactive
effects was described to be additive, while Fernández-Blanco and co-workers reported synergistic
effects in Caco-2 cells after 24 h of exposure to AOH and AME in a 1:1 binary combination and in a
concentration range from 3.125 to 30 µM [83]. Moreover, the AOH-AME binary combination reduced
cell proliferation to a greater extent than AOH alone at all tested concentrations, while it had greater
effects than AME alone at 15 and 30 µM. The binary mixture also caused a greater dose-dependent
reduction of cell proliferation after 48 h of incubation (in the concentration range 7.5–30 µM) than AOH
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or AME tested alone. In this case, the nature of the interactive effects was described as synergistic or
additive at small or higher fraction affected, respectively.

The effects exerted by the simultaneous exposure to AOH and the genotoxic Alternaria mycotoxin
ATX-II were investigated by Vejdovszky et al. [100] on two intestinal (HT-29, HCEC-1CT) and one
hepatic (HepG2) cell line. Seven different concentrations, ranging from 500 nM to 10 µM for ATX-II and
from 5 µM to 100 µM for AOH were tested for binary combinations (constant ratio of 1:10, ATX-II:AOH).
As a result, the HT-29 cell line was found to be the least sensitive to cytotoxic effects mediated by the two
tested mycotoxins and significant differences in cell viability were found starting from the combination
5 µM:50 µM (ATX-II:AOH). Among the different concentrations tested, the highest decrease in cell
viability observed was of nearly 40%. Notably, the cell treatment at low mycotoxin concentrations
led to an increase in mitochondrial activity in the co-treated samples. HepG2 cells were found the
most sensitive to the cytotoxic effects exerted by AOH, while HCEC-1CT cells proved to be the most
sensitive to the effects of ATX-II. Combining these two mycotoxins, an increased sensitivity to cytotoxic
effects was also found in the HepG2 cell line, leading to a reduction in cell viability starting from
the combination 1 µM:10 µM (ATX-II:AOH). Although most of the tested 1:10 combinations showed
additive effects, antagonistic effects were reported in HCEC-1CT and HepG2 cell lines, while only one of
the combinations analyzed showed synergistic effects on HepG2 cell line (750 nM ATX-II:750 nM AOH,
1:1 ratio). Modifications of microRNAs expression profile after incubation of HepG2 cells with the
mixture 10 µM AOH:1 µM ATX-II may partially explains such effects. The combined exposure caused
a significant increase of miR-224 expression after 12 h of exposure, which was no longer over-expressed
after 24 h, while miR-192 and miR-29a were respectively down-regulated and up-regulated after 24 h.
In addition, miR-29a was up-regulated also in samples treated with AOH alone, suggesting a possible
role in the up-regulation of this miRNA by the binary mixture. Interestingly, these three microRNAs
are involved in the regulation of apoptotic processes and the observed modifications led the authors to
conclude that such miRNAs may be in part involved in the antagonistic effects observed for some of
the combinations tested.

As previously described, Alternaria mycotoxins are often found in food commodities along with
Fusarium mycotoxins. In a recent study [101], the cytotoxic effects and the type of interactions of AOH
combined with Fusarium mycotoxins enniatin B and DON were evaluated after 24, 48, and 72 h of
exposure in Caco-2 cells. For binary and tertiary combinations, five different concentrations, ranging
from 0.3125 to 5 µM for enniatin B and DON, and from 1.875 to 30 µM for AOH, were tested. The
binary combinations enniatin B + AOH (1:6 ratio) led to higher cytotoxic effects compared to AOH
tested alone at all the timepoints and concentrations tested. However, no difference between enniatin B
tested alone and in mixture was observed, suggesting that the cytotoxic effects were mainly mediated
by enniatin B. With regard to the binary combinations DON + AOH (1:6 ratio), the resulting cytotoxicity
after 24 h of exposure was lower than that exerted by DON tested alone. On the contrary, an opposite
trend was observed after 48 and 72 h of exposure. As expected, the tertiary mixtures enniatin B +

DON + AOH (ratio 1:1:6) led to a greater decrease, albeit of slight intensity, of cell viability compared
to the binary combinations. Although the pattern was not uniform along the fraction affected, the
application of the isobologram analysis described the interactions in the binary mixtures as additive
and synergistic, depending on the concentrations and timepoints tested. Interestingly, the ternary
combinations showed antagonistic effects, which were described as due to competition mechanisms at
the same receptor site. In this respect, it is worth mentioning the marked diversity of these mycotoxins
in terms of chemical structures. Taking into account that the competition to the same protein site
usually requires strict conservation of key structural motifs [102], the inherent structural heterogeneity
among enniatin B, DON and AOH is not fully compatible with their capability to physically compete
with the same site. Therefore, both the molecular mechanisms and the network of biological targets
involved in such antagonistic behavior need to be precisely described to better understand the effects
of the enniatin B/DON/AOH ternary combination.
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The effects of binary and ternary combinations of AOH with the DON’s acetylated
derivatives 3-ADON and 15-ADON were also investigated on HepG2 cells up to 72 h of
incubation [103]. Constant ratios of 16:1 (AOH: 3-acetyl-ADON and AOH:15-acetyl-DON) and
16:1:1 (AOH:3-acetyl-DON:15-acetyl-DON) were chosen to test these mixtures, with concentrations
ranging from 3.2µM to 24µM for AOH, and from 0.2 µM to 1.5 µM for DON’s derivatives. Cytotoxicity
ranking was found to be the same for all tested time points (AOH+3-acetyl-DON + 15-acetyl-DON >

AOH + 3-acetyl-DON > AOH + 15-acetyl-DON) and a concentration-dependent decrease in HepG2
cell viability was found in all tested mixtures. The effects caused by binary and ternary mixtures were
described to be mainly synergistic, but some exceptions were found for AOH + 3-acetyl-DON at 72
h (where additive effects were observed at higher fraction affected), and for AOH + 15-acetyl-DON
(where additive or antagonistic effects were observed depending on the concentration and timepoint
tested).

Binary effects of TeA with the Fusarium mycotoxins enniatin B, ZEN, DON, nivalenol and
aurofusarin (AURO) were also evaluated on Caco-2 cells with two different concentration sets, named
“low concentrations” (none or slight cytotoxic effect) and “high concentrations” (pronounced cytotoxic
effect) [104]. TeA combinations at “low concentrations” of mycotoxins did not show significant
differences between the measured and expected effects (calculated on the basis of the Independent
Joint Action model). This indicates that the combinations of TeA at “low concentrations of mycotoxins”
only determined additive effects. On the contrary, binary combinations at “high concentrations” led to
lower cytotoxic effects then the calculated additive effects. Additional investigations allowed getting
more details about the type of interactions between TeA and Fusarium mycotoxins. No difference in
cytotoxicity was found in samples co-treated with enniatin B and ZEN keeping the concentration of
Fusarium mycotoxins constant (from 5 to 50 µM depending on the mycotoxin) and varying that of
TeA (from 1 µM to 250 µM). Indeed, the cytotoxicity of binary mixtures with TeA was found to be
equivalent to the toxicity of toxins tested individually. Notably, the toxic effect induced by 10µM DON
was reduced in a concentration-independent manner by the combination with TeA at concentrations
between 10 µM and 200 µM. A similar trend was found for the combination with 10 µM nivalenol,
although differences were not statistically significant. Keeping in mind that TeA and the Fusarium
mycotoxins DON and nivalenol are known to inhibit protein synthesis in vitro [104], the lower cytotoxic
effects of binary mixtures might be due to a molecular interplay at the level of protein synthesis
inhibition. Nevertheless, considering that nivalenol and DON inhibit protein synthesis by different
mechanisms (i.e., by inhibiting the initiation or elongation-termination steps, respectively) [105], the
observed effects cannot be straightforwardly explained in terms of mechanisms of action pointing out
the need of investigating further the molecular basis of such interaction. In this respect, the inhibition
of protein synthesis by TeA may modify the expression of specific factors, including metabolizing
enzymes, and consequences on the pattern of metabolites produced by cells are thought likely. This is
of particular relevance as some trichothecenes metabolites might be involved in mediating ribotoxic
effects of parent mycotoxins, as supported recently by in silico studies [106]. On this basis, TeA might
have indirect effects on trichothecenes toxicity acting on their metabolism and changing the relative
abundance of ribotoxic metabolites produced.

Recently, an interesting study was performed by Solhaug et al. that investigated the ability
of AOH, DON and ZEN in binary and tertiary mixtures to affect immune response checking the
differentiation of monocytes to macrophages [107]. The differentiation process leads to several changes,
including modifications of the expression of some cell surface markers such as CD14, CD11b and
CD71. AOH, DON and ZEN were able to modify the expression of these markers in THP-1 monocytes,
but with some differences: while AOH affected the expression of the all set of markers, DON did not
modify the expression of CD71 and ZEN altered only the expression of CD-14. Since CD-14 was the
only marker modified by all the three mycotoxins, its expression was used to evaluate the type of
interactions in binary and ternary mycotoxins mixtures by applying the “Concentration Addition”
(CA) and the “Independent Joint Action” (IA) models. Since authors did not find significant differences
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between the experimental data and the predicted models, the type of interaction was described to be
additive. Remarkably, at the lowest concentrations of the AOH + ZEN combination, the confidence
interval of the predicted CA model did not overlap with the experimental values, suggesting a possible
synergistic effect. The same results were obtained for the binary combinations through the application
of the isobologram analysis. To verify if the observed inhibitory effects of AOH, DON, and ZEN on the
up-regulation of CD14 led to a real reduction in macrophage activation, the pro-inflammatory cytokine
TNFα and its gene expression were quantified after incubation with single mycotoxins. Contrary
to what was observed for AOH and ZEN, DON induced an increased secretion of TNFα following
the increase of TNFα gene expression, in spite of its inhibitory action on the up-regulation of CD14.
The expression of NF-kB, a protein complex involved in TNFα expression, might provide a plausible
explanation to these differences. Indeed, ZEN was reported to reduce the expression of NF-kB [108],
and, recently, also AOH showed the ability to suppress the lipopolysaccharide-induced NF-kB pathway
activation, resulting in the reduction of TNFα [97]. In contrast, DON was found to induce both NF-kB
activation and TNF-α expression, but the signaling pathway was different from those activated by
ZEN and AOH [109].

3.3. Combined Effects with Bioactive Food Constituents

Beside the combined action of the different members of Alternaria mycotoxins group, also in
combination with mycotoxins produced by fungi other than Alternaria, it is important to take into
consideration even the complex interactions that these mycotoxins may have with the other bioactive
compounds of food origin.

In this contest, Vejdovszky et al. recently investigated the combinatory estrogenic effects of the
isoflavone genistein (GEN) in combination with ZEN and AOH [110]. To elucidate the combinatory
effects, the human endometrial adenocarcinoma Ishikawa cell line was chosen as a model system and
the phosphatase alkaline (ALP) activity assay was used to measure estrogen receptor activation. The
xenoestrogens under investigation were tested at different concentrations (ranging from pM to µM)
after 48 h of incubation. All of them increased the ALP activation when tested individually, with the
following order of potency in terms of EC50: E2 (17β-estradiol; used as positive control) > ZEN > GEN
> AOH. Moreover, these xenoestrogens did not only differ in terms of potency, but also in terms of
efficacy as none of them (at any concentration) was able to determine the same effects induced by 1 nM
E2. A possible explanation for this finding is that AOH, ZEN and GEN might act as partial agonists.
The lower capability to satisfy the pharmacophoric requirements of estrogen receptors pockets in
comparison to E2 [111,112] might provide a structural rational to explain such evidence. With regards
to binary mixtures of GEN with ZEN or AOH, some of them resulted in significantly higher effects than
the respective compounds tested individually, clearly pointing out the existence of synergistic effects.
However, combinations of GEN-AOH activated ALP to a lower extent than ZEN-AOH mixtures. It
must be highlighted that in many studies ZEN was found to be more estrogenic than AOH, and this
could partly justify the lowering of estrogenic effect observed in combinations [110]. In addition, while
the authors noted the preference of AOH and GEN to ERβ, ZEN was previously described with a
higher affinity for ERα [113]. The simultaneous activation of both α and β estrogen receptor isoforms
in the ZEN-GEN and ZEN-AOH binary mixtures may explain the stronger synergistic effects observed.
Although some GEN-AOH combinations showed synergistic effects, other combinations at very low
doses led to antagonistic effects. Indeed, anti-estrogenic effects were found testing the combination
0.001 µM GEN-0.1 µM AOH and observing a reduction of ALP activation (10.9%) compared to the
control (vehicle). A subsequent more-in-depth analysis of the combinatory effects, performed through
the combination index and the isobologram method, allowed to determine the type of interactions
occurring in the different combinations. Both methods showed that the combinatory effects of GEN
and ZEN in the constant ratio of 1000:1 were mainly synergistic and, only at very low or very high
effect levels, additive or antagonistic effects were observed. In the constant ratios of 100:1 and 10:1, the
substances led to a strong antagonism at low effect levels, and to a strong synergism at higher effects.
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Comparable outcomes were reported for the 1:10 GEN:AOH ratio (which showed antagonistic or
synergistic effects at low or high effect levels, respectively), while the 1:5 combination ratio determined
mainly antagonistic effects. Additionally, the 1:1 GEN:AOH ratio resulted in the onset of synergistic
effects up to about 65% of the maximum ALP activation observed (E2 1nM). Above, additive or
antagonistic effects were observed depending on the concentrations tested. Thus, the nature of the
interactions seemed to depend on both the ratio of substances and the specific concentrations tested.

It was also established that AOH is able to cause oxidative stress and to exert genotoxic effects in
different cellular models, mainly by acting as a topoisomerase poison [78]. Aichinger et al. investigated
the effects of AOH in combination with the two polyphenols GEN and delphinidin (DEL) [114].
These two compounds are known for their antioxidant effects at specific concentrations, although
pro-oxidant effects at certain concentrations were also demonstrated [115,116]. Both GEN and DEL
were found to interact, albeit with different mechanisms, with topoisomerases: while GEN usually
acts as a topoisomerase poison, turning the enzyme into a DNA-damaging agent, DEL acts as a
catalytic inhibitor of topoisomerase hindering the formation of the TOP-DNA intermediate. Therefore,
considering both the antioxidant effects and the interaction with the topoisomerases, a modification
of the effects induced by AOH may be expected when the mycotoxin is combined with these two
polyphenols. Preliminary investigations on the combinatory cytotoxic effects were conducted in
HT-29 colon carcinoma cells with concentrations ranging from 1 to 100 µM (1:1 ratio): cytotoxicity
was observed starting from 25 µM for AOH and GEN, and from 50 µM for DEL. Both AOH/GEN
and AOH/DEL combinations led to cytotoxic effects starting from 25 µM (1:1 ratio) and the type
of interactions was described as synergistic, with a tendency to lose synergism when increasing
cytotoxic effects. DNA strand breaks and oxidative DNA damages of the combinations of AOH
(50 µM) with DEL (10–100 µM) or GEN (25–250 µM) were evaluated by performing an alkaline comet
assay with or without treatment with formamidopyrimidin-DNA-glycosylase (FPG). When combined,
DEL and AOH showed marked antagonistic effects at 50 µM in the FPG-untreated samples, while
lower oxidative DNA damages were observed at 25 and 100 µM. Similar results were found for the
combination AOH/GEN at 25 and 100 µM, which showed a lower oxidative damage than AOH tested
individually. The authors also evaluated the influence of the co-incubations on the stabilization of
the topoisomerases/DNA intermediate (the so-called “cleavable complexes”), which is typically due
to the action of topoisomerase poisons (such as AOH). The AOH/GEN combination did not increase
the formation of cleavable complexes, rather an antagonistic effect was found at the highest GEN
concentration tested (100 µM). Antagonistic effects were also found in AOH/DEL combinations starting
from 25 µM. These results were partially attributed to the dual anti-oxidant or pro-oxidant properties
of the polyphenols. In this respect, simultaneous short-time incubations with AOH and DEL led to
a reduction of AOH-induced ROS generation at concentrations of DEL starting from 1µM. On the
contrary, GEN induced oxidative stress per se and did not suppress the pro-oxidative effects induced
by AOH. Moreover, 24-h pre-incubations with polyphenols followed by incubation with AOH, did
not result in any change in pro-oxidant effects of AOH. This evidence led to exclude any possible
modulations of anti-oxidant defense systems as a mechanism underlying the observed antagonistic
effects. Therefore, direct anti- or pro-oxidant activities are reasonably as the base of the effects observed
during the co-incubations with DEL and GEN. On this basis, DEL could help in preventing the
genotoxic effects of AOH, but, considering the low systemic bioavailability of DEL, these protective
effects may be limited to the gastrointestinal tract only [117,118].

The same authors also investigated the effects of DEL in combination with ATX-II, one of the most
genotoxic Alternaria toxins [119]. As reported for the combination with AOH, DEL reduced both DNA
strand breaks and oxidative damage in HT-29 cells after short-time co-incubation with ATX-II. The
type of interaction was found to be antagonistic according to the applied “independent joint action”
model. The production of ROS induced by 10 µM ATX-II was also reduced by DEL in concentrations
from 1 µM to 100 µM, but these reductions cannot fully explain the huge reduction of genotoxic effects
observed following the co-incubation with DEL. Indeed, no increase of ROS production was observed
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at the concentration of ATX-II used in the comet assay (1 µM). In cell-free conditions, a reduction of
the concentration of ATX-II was found upon co-incubation with DEL. The authors suggested that
DEL, after being degraded to phloroglucinol aldehyde (PGA) and gallic acid (GA), might react with
ATX-II neutralizing its epoxy group, which is the reactive chemical moiety presumably responsible for
genotoxicity. Considering the hypothesis that PGA can react with ATX-II, it is important to underline
that the reduction of adverse effects of this mycotoxin may actually occur in subjects that follow diets
with a high content of anthocyanins as they are prone to release PGA during digestion.

In the context of the evaluation of combinatory effects between Alternaria toxins and bioactive
compounds of food origin, polyphenols represent a class of compounds of great interest since they are
widely distributed in those food categories which are prone to contamination with Alternaria mycotoxins.
Quercetin (QUE) is one of the most abundant flavonoids in human diets. QUE has been previously
associated to several potential health benefits mainly related to its antioxidant properties, although
pro-oxidant effects at certain concentrations have also been described [120]. The potential ability of
QUE to reduce the cytotoxicity of AOH and AME was investigated by Fernàndez-Blanco et al. [83].
Although cytoprotective effects were attributed to QUE [121], simultaneous exposure of Caco-2 cells to
AOH and QUE (at concentrations ranging from 3.125 to 100 µM) did not result in any cytoprotective
effect. In particular, no significant differences were found between the QUE-AOH combination and
AOH tested alone after 48 h of exposure. However, the combination significantly affected cell viability
at 24 h of treatment in comparison to AOH tested alone. Similarly, no difference between the binary
combinations QUE + AME and AME tested alone were detected and, additionally, no cytoprotective
effect was found in the tertiary combination AOH + AME + QUE at any of the tested concentrations.
Therefore, QUE was not effective in reducing the effects of AOH and AME.

Possible cytoprotective properties of food components against the effects of AOH were also
evaluated by Vila-Donat et al. in Caco-2 cells [122]. Keeping in mind that AOH may contaminate
legumes (including soybeans and lentils), the authors investigated the effects of AOH in combination
with soy saponin I (Ss-I), which was previously found to possess antioxidant activity, or with a lentils
extract. In particular, the authors used two different approaches to evaluate the effects of Ss-I and
lentil extract: (i) the first one consisted in pre-treating cells with Ss-I (6.25 µM) or with the extract, and
then refreshing the growth medium and testing different dilutions of AOH (ranging from 3.125 to
50 µM); (ii) the second approach aimed at evaluating the combinatory effects and the type of interaction
co-incubating AOH with Ss-I or lentil extract. By using the first approach, no differences were found
between samples pre-treated with Ss-I and samples treated only with AOH. As an exception, the
highest AOH concentration tested (50 µM) caused an increase in cell viability in the pre-treated samples.
In contrast, co-treatments with AOH + Ss-I (1:1 ratio) above 6.25 µM resulted in an increase in cell
viability compared to AOH tested alone. These results suggested that Ss-I likely acted via a direct
interaction rather than modulating intracellular defense systems. With regard to cytoprotective effects
of the lentils extract, only one single combination was tested and about 30% increase in cell viability
was found in comparison to AOH tested alone.

4. The Key Role of Bioactive Compounds

Food is a complex matrix composed by macro- and micro-nutrients, containing also a huge
number of non-nutrient compounds that may exert several biological activities. These compounds
can interfere at different levels with mycotoxin activities. For instance, they can: (i) activate or inhibit
enzymes involved in the metabolism of xenobiotics; (ii) act as anti-oxidant or pro-oxidant compounds;
(iii) act as receptor agonists or antagonists targeting, in some cases, the same biological targets of
mycotoxins; (iv) modify the expression of genes encoding proteins involved in the regulation of
important physiological functions. On this basis, bioactive compounds of food origin may determine
the onset of additive, synergistic or antagonistic effects when combined with Alternaria mycotoxins.
Keeping in mind that the application of mitigating strategies along the food chain are supposed
to progressively reduce the dietary exposure to toxicants, the assessment of combinatory effects
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of mycotoxins with other food constituents will be the most accurate and realistic, but also highly
challenging tasks to achieve in the next decades. The challenge will be even harsher taking into account
that many food constituents potentially interplaying with mycotoxins are generally recognized as
health promoting (i.e., polyphenols) and the consumption of foods rich in such compounds is typically
recommended in healthy diet habits. In this framework, this section focuses on the modulation of
Alternaria mycotoxins toxicity by bioactive compounds.

One of the best characterized toxicological endpoints of Alternaria mycotoxins likely affected by
food constituents is the estrogenic activity. As a matter of fact, estrogenic and anti-estrogenic effects of
bioactive compounds might markedly modify the overall estrogenicity of the Alternaria mycotoxins
AOH and AME. In terms of risk characterization, this might change the toxicological relevance of such
mycotoxins case by case, though they show a weak estrogenicity per se, depending on the composition
of chemical mixtures in given foods. In this respect, foods prone to Alternaria contamination with a
high content of potentially interfering constituents (e.g., polyphenolic phytoestrogens) are legumes
(especially soy) and some alcoholic beverages (especially wine and beer). In particular, soybeans and
derived products are among the richest dietary sources of phytoestrogens, and many of the isoflavones
of soy (including genistein, daidzein, glycitein, and coumestrol) induce estrogen-receptor dependent
estrogenic stimuli [123]. As a matter of fact, combinations of GEN-AOH at specific concentrations have
been demonstrated to determine synergistic or antagonistic effects in Ishikawa cell line [110]. Similarly
to soybeans, hops used to produce beer is characterized by the presence of some prenylflavonoids (e.g.,
naringenin, 8-prenylnaringenin, 6-prenylnaringenin, 6,8-diprenylnaringenin, and 8-geranylnaringenin)
that are potent phytoestrogens with a dual effect being able to bind both estrogen receptor isoforms
and to inhibit specific enzymes involved in the estrogenic cellular responses [124,125]. In this context,
Aichinger et al. [126] demonstrated the ability of the phytoestrogens from hops xanthohumol and
8-prenylnaringenin to antagonize the estrogenic effects of the Fusarium mycotoxins ZEN and α-ZEL.
Therefore, possible interactions can be expected also in combination with the estrogenic Alternaria toxins
AOH and AME. Other important food constituents able to modulate estrogen receptor activity are
resveratrol and β-sitosterol, whose primary dietary sources are peanuts, grapes, and wine. Resveratrol,
in particular, may exhibit a super-agonist activity inducing a stimulation higher than the endogenous
ligand 17β-estradiol in estrogenic gene report assay, even if anti-estrogenic effects were found in the
MCF-7 cell line [127]. Although evidences have been not yet collected, these compounds are likely to
affect the estrogenicity of Alternaria mycotoxins.

Another focal point of the cross-talk between mycotoxins and food components that requires
further investigations is the modulation of the aryl hydrocarbon receptor (AhR) [128]. The cascade
of events following the activation of AhR is of particular interest in toxicological investigations as it
modulates the expression of genes involved in detoxification and transport of various xenobiotics,
including the expression of cytochrome P450 family members. Interestingly, AOH and AME were
able to bind and activate AhR, causing the increase of CYP1A1 expression and promoting their own
metabolism [129]. This process was not affecting the mycotoxin-dependent production of ROS in
murine hepatoma cells (Hepa1c1c7). In addition, the authors showed that mycotoxins reduced the
number of cells via an AhR-independent process, although the apoptotic phenotype was found only
in cells with functional AhR and ARNT [129]. With regard to the ability of AOH to suppress the
lipopolysaccharide-induced inflammation previously mentioned, Grover & Lawrence did not find any
correlation between AOH-mediated AhR activation and the suppression of the inflammation found in
BEAS-2B cells [96]. Thus, despite the increased metabolism of AOH and AME, AhR activation does
not seem to raise much concern for ROS production, cytotoxic and immunosuppressive effects, further
studies are needed to determine the toxicity of hydroxylated metabolites (e.g., estrogenic properties).
In particular, Dellafiora and co-workers showed that hydroxylated forms of AOH and AME cannot
interact with estrogen receptors in vitro, pointing to the relevance of phase-I metabolism to modify the
toxicodynamic of these mycotoxins. However, methylation of respective catecholic metabolites might
reactivate the estrogenic potential [92].
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Besides AOH and AME, many food constituents have been described to activate or inhibit
AhR. Thus, they are likely to interfere with the ability of AOH and AME to bind AhR and/or
with the metabolic processes following the activation of AhR. Foods consumed worldwide such
as potatoes, cruciferous, bread, hamburgers, and citrus juices were investigated for the presence of
natural AhR-agonists (NAhRAs) [128]. Among these, indole-3-carbinol, and many polyphenols and
furocoumarins were found to be responsible for the activities shown by cruciferous vegetables (Brussels
sprouts, broccoli, cabbage) and citrus juices, respectively. On the contrary, the activation of AhR
induced by the baked or fried foods tested is thought due to secondary chemicals originating from the
high-temperature processing, such as polycyclic aromatic hydrocarbons (PAHs), heterocyclic amines or
Maillard products [128]. In addition, many dietary flavonoids showed a significant context–dependent
AhR agonist or antagonist activities, depending on the concentration and cell types tested [130]. As an
example, galangin, GEN, daidzein, and diosmin were found to be AhR agonist only in Hepa-1 cells,
while cantharidin acted as an agonist only in human HepG2 and MCF-7 cells. On the contrary, AhR
antagonist activities were shown both in MCF-7 and HepG2 cells by luteolin, while the antagonistic
activity of kaempferol, quercetin and myricetin was strictly dependent on the cell context [130]. Many
other flavones, flavonols, flavanones, isoflavones, and catechins also showed a high affinity to the
AhR at dietary exposure levels [131]: apigenin, luteolin, quercetin, kaempferol, and myricetin were
found to inhibit the activation of AhR induced by the most potent AhR activator identified so far
(2,3,7,8-tetrachlorodibenzo-p-dioxin at 5 nM in MCF-7 cells) [131]. Taken together, these findings
suggest that the AhR-dependent effects of food constituents strongly depend on both the chemical
environment (which may significantly change among the different type of food) and on the cell type
tested. Therefore, both the metabolism of Alternaria mycotoxins in vivo and their ability to modulate
AhR could change depending on the food-specific chemical mixture.

An additional noteworthy activity of AOH and AME common with a number of food components is
the capability to poison topoisomerases. In particular, many food bioactives naturally occurring in fruits,
vegetables and legumes have been shown to affect the activity of both topoisomerase I and II. Taking into
consideration that some Alternaria mycotoxins exert important genotoxic effects via either the inhibition
or poisoning of these enzyme (see Section 3 for further details), the co-occurrence of other compounds
targeting topoisomerases may reasonably change the overall topoisomerase-dependent genotoxic
effects of Alternaria mycotoxins. Several studies demonstrated the ability of some polyphenols to poison
topoisomerase I and/or topoisomerase II, albeit their specific mechanism of action has been poorly
investigated. Kaempferol and quercetin were reported to be, at specific concentrations, non-covalently
binders of topoisomerase IIα, while myricetin showed the ability to covalently bind to topoisomerase IIα
and cleaving DNA in a redox-dependent way [132]. Additionally, the flavonoids quercetin, myricetin,
fisetin, and apigenin were highlighted by other authors as poisons of topoisomerase I [133], whilst
genistein, daidzein, biochanin A, chrysin, have shown poisoning effects also against topisomerases
II [134]. Interestingly, genistein and especially delphinidin (that acts as catalytic topoisomerase
inhibitor) were found to protect cells from AOH-induced genotoxicity [114]. Grapes and red wines are
characterized by a large amount of resveratrol, belonging to polyphenols’ stilbenoids group, which
has always been regarded to have beneficial effects thanks to its manifold activity. Nevertheless, the
capability to establish non-covalent cross-linking interactions with both topoisomerase II and DNA
leading to cell death was described too [135]. An influence of these compounds on poisoning and/or
inhibition of topoisomerases by Alternaria mycotoxins, also diversifying the outcomes in vivo in a
mixture-dependent way, appears therefore to be possible.

On the basis of the data reported above, Alternaria mycotoxins and a wealth of food constituents
may interfere to each other, mutually influencing their final effects. Moving further steps toward a
more precise molecular-oriented understanding of the food-specific and mixture-dependent outcomes
in vivo will allow mapping those categories of food might pose a higher risk for specific toxicological
endpoints. In the near future, adopting such an approach will effectively pave the ground to set
personalized risk/benefit assessment studies of food prone to be contaminated by Alternaria mycotoxins.
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5. Conclusions and Future Perspectives

Alternaria mycotoxins are frequently occurring in various fresh and processed foods such as
cereals, fruits, vegetables, nuts, fruit and vegetable juices, seeds and oils. In many cases, contaminated
foods have been found to simultaneously contain more than one Alternaria mycotoxin. In addition, the
co-occurrence of Alternaria mycotoxins along with Fusarium, Penicillium and Aspergillus mycotoxins
is also well documented, though not routinely checked. In addition, mycotoxins co-occur with the
huge number of food constituents inherently present in contaminated foods. Notably, a growing
number of data pointing to significant effects of chemical mixtures of mycotoxins in combination
with each other or with food components is available. On this basis, a more precise description of
mycotoxin contamination in food, detailing both the co-occurrence of mycotoxins and the types of
co-contaminated food categories, is urgently required to better support risk assessment studies.

In this respect, the current risk assessment of mycotoxins is mostly based on human exposure
data and animal toxicity evidences of individual compounds, while the evaluation of possible effects
due to chemical mixtures is only occasionally assessed. Studies on the combinatory effects of different
Alternaria mycotoxins, also in combination with other mycotoxins, have already shown that the
co-exposure may result in either additive, synergistic, or antagonistic effects, depending on the doses,
time of exposure or type of combinations assessed. In addition, recent findings have shown that
mycotoxins may interplay with other food constituents, with different outcomes depending on the
nature of combinations tested. Taken together, these results show that the toxicity of mycotoxins
may significantly change depending on the composition of chemical mixtures, whereby not only
co-contaminants but also food bioactives might act as contributors. This evidence pointed out the need
to carefully check the multiple co-occurrence of mycotoxins, also in combination with the other food
constituents. On the other side, it is crucial to characterize the effects the various combinations with
the other food constituents may cause on the toxicity of mycotoxin mixtures. However, the evaluation
of combinatory effects is not easy to perform since the toxic action exerted by individual mycotoxins is
often strictly dependent on the cellular model and the concentrations tested. In addition, the use of
different cellular models and different tested concentrations makes the inter-laboratory comparison of
results difficult. Moreover, from a practical point of view, the number of food constituents possibly
co-occurring with mycotoxins and potentially able to modulate their toxicity is so huge to make
the systematic assessment of any possible combination unaffordable. Therefore, the definition of a
consensus to define the combinations that really deserve investigations is strongly suggested. From a
toxicological point of view, the use of the Adverse-Outcome-Pathway (AOP) approach or the adoption
of grouping criteria, such as read-across methodologies or other computational-based categorizing
methods, might provide a convincing rational to support the early definition of combinations to be
tested. Moreover, in order to improve the interpretability of the data, homogeneity in the expression of
the results, as well as in the tested concentrations, used cellular models, and applied methods, should
become a common objective for researchers dealing with these issues in the future.

In summary, Alternaria toxins in food are not yet regulated mainly as a consequence of the shortage
of toxicological occurrence and exposure data. A more in-depth elucidation of their toxicity, taking
into account the effects of chemical mixtures, will ensure a more precise evaluation of their effects
on human health eventually resulting in a more reliable assessment of risks with an overall lower
degree of uncertainty. In this framework, this review collected the main data available so far in terms
of occurrence and combined actions of Alternaria mycotoxins and it highlighted that chemical mixture
may significantly change the individual toxicity of mycotoxins. Notably, most of the combinations
found naturally in food still need to be tested in terms of toxicity. Therefore, it is hard to infer with
precision the actual toxicological effects due to the consumption of food contaminated by Alternaria
mycotoxins. Nonetheless, the data presented here may serve as a ground to design further studies to
deepen the knowledge about the toxicity of this class of mycotoxins and to support the assessment of
risk taking into account the actual role of chemical mixtures. The proposed paradigm can be logically



Toxins 2019, 11, 640 23 of 29

extended to the risk assessment of other mycotoxins, as the relevance of mixtures has been described
also for other classes of mycotoxins.
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Table S1: Co-occurrence of Alternaria toxins in food.

Author Contributions: Conceptualization: F.C., C.D., L.D.; formal analysis: F.C.; data curation: F.C. and L.D.;
writing—original draft preparation: F.C. and L.D.; writing—review and editing: G.G., G.A., E.V., D.M., C.A.;
supervision: D.M., C.D.

Funding: This research received no external funding.

Acknowledgments: The study was partially supported by Fondazione Cariparma, under the TeachInParma
Project. Moreover, the authors acknowledge the financial support of the Center for Studies in International and
European Affairs of the University of Parma.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Berthiller, F.; Crews, C.; Dall’Asta, C.; de Saeger, S.; Haesaert, G.; Karlovsky, P.; Oswald, I.P.; Seefelder, W.;
Speijers, G.; Stroka, J. Masked mycotoxins: A review. Mol. Nutr. Food Res. 2013, 57, 165–186. [CrossRef]
[PubMed]

2. EFSA. Scientific Opinion on the risks for animal and public health related to the presence of Alternaria toxins
in feed and food. EFSA J. 2011, 9, 2407. [CrossRef]

3. Enyiukwu, D.N.; Awurum, A.N.; Nwaneri, J.A. Mycotoxins in Stored Agricultural Products: Implications to
Food Safety and Health and Prospects of Plant-derived Pesticides as Novel Approach to their Management.
Greener J. Microbiol. Antimicrob. 2014, 2, 32–48. [CrossRef]

4. Eskola, M.; Kos, G.; Elliott, C.T.; Hajšlová, J.; Mayar, S.; Eskola, M.; Kos, G.; Elliott, C.T.; Hajšlová, J.; Mayar, S.;
et al. Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’
of 25%. Crit. Rev. Food Sci. Nutr. 2019, 1–17. [CrossRef]

5. Van der Fels-Klerx, H.J.; Liu, C.; Battilani, P. Modelling climate change impacts on mycotoxin contamination.
World Mycotoxin J. 2016, 9, 717–726. [CrossRef]

6. Dellafiora, L.; Dall’Asta, C. Forthcoming challenges in mycotoxins toxicology research for safer food-a need
for multi-omics approach. Toxins 2017, 9, 18. [CrossRef] [PubMed]

7. Van Egmond, H.P.; Schothorst, R.C.; Jonker, M.A. Regulations relating to mycotoxins in food: Perspectives in
a global and European context. Anal. Bioanal. Chem. 2007, 389, 147–157. [CrossRef]

8. Ostry, V. Alternaria mycotoxins: An overview of chemical characterization, producers, toxicity, analysis and
occurrence in foodstuffs. World Mycotoxin J. 2008, 1, 175–188. [CrossRef]

9. Escrivá, L.; Oueslati, S.; Font, G.; Manyes, L. Alternaria Mycotoxins in Food and Feed: An Overview. J. Food
Qual. 2017, 2017, 1569748. [CrossRef]

10. European Food Safety Authority; Arcella, D.; Eskola, M.; Gómez Ruiz, J.A. Dietary exposure assessment to
Alternaria toxins in the European population. EFSA J. 2016, 14, 4654.

11. European Commission. Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum
levels for certain contaminants in foodstuffs. Off. J. 2006, 5–24.

12. Sanco, E. Summary report of the standing committee on the food chain and animal health held in brussels,
29 may 2012. European Commission 2012, 2012, 682729.

13. EFSA. Call for Data on Alternaria Toxins in Food and Feed; EFSA: Parma, Italy, 2016; pp. 3–4.
14. Alexander, J.; Benford, D.; Boobis, A.; Eskola, M.; Fink-Gremmels, J.; Fürst, P.; Heppner, C.; Schlatter, J.;

van Leeuwen, R. Risk assessment of contaminants in food and feed. EFSA J. 2012, 10, s1004. [CrossRef]
15. Bottalico, A.; Logrieco, A. Toxigenic Alternaria species of economic importance. In Mycotoxins in Agriculture

and Food Safety; Sinha, K.K., Bhatnagar, D., Eds.; Marcel Dekker: New York, NY, USA, 1998; pp. 65–108.
16. Scott, P.M. Analysis of Agricultural Commodities and Foods for Alternaria Mycotoxins. J. AOAC Int. 2001,

84, 1809–1817.
17. Fernández-Cruz, M.L.; Mansilla, M.L.; Tadeo, J.L. Mycotoxins in fruits and their processed products: Analysis,

occurrence and health implications. J. Adv. Res. 2010, 1, 113–122. [CrossRef]

http://www.mdpi.com/2072-6651/11/11/640/s1
http://dx.doi.org/10.1002/mnfr.201100764
http://www.ncbi.nlm.nih.gov/pubmed/23047235
http://dx.doi.org/10.2903/j.efsa.2011.2407
http://dx.doi.org/10.15580/GJMA.2014.3.0521014241
http://dx.doi.org/10.1080/10408398.2019.1658570
http://dx.doi.org/10.3920/WMJ2016.2066
http://dx.doi.org/10.3390/toxins9010018
http://www.ncbi.nlm.nih.gov/pubmed/28054977
http://dx.doi.org/10.1007/s00216-007-1317-9
http://dx.doi.org/10.3920/WMJ2008.x013
http://dx.doi.org/10.1155/2017/1569748
http://dx.doi.org/10.2903/j.efsa.2012.s1004
http://dx.doi.org/10.1016/j.jare.2010.03.002


Toxins 2019, 11, 640 24 of 29

18. Fraeyman, S.; Croubels, S.; Devreese, M.; Antonissen, G. Emerging fusarium and alternaria mycotoxins:
Occurrence, toxicity and toxicokinetics. Toxins 2017, 9, 228. [CrossRef] [PubMed]

19. Stinson, E.E.; Osman, S.F.; Heisler, E.G.; Siciliano, J.; Bills, D.D. Mycotoxin Production in Whole Tomatoes,
Apples, Oranges, and Lemons. J. Agric. Food Chem. 1981, 29, 790–792. [CrossRef] [PubMed]

20. Puntscher, H.; Cobankovic, I.; Marko, D.; Warth, B. Quantitation of free and modified Alternaria mycotoxins
in European food products by LC-MS/MS. Food Control 2019, 102, 157–165. [CrossRef]

21. Gotthardt, M.; Asam, S.; Gunkel, K.; Moghaddam, A.F.; Baumann, E.; Kietz, R.; Rychlik, M. Quantitation of
Six Alternaria Toxins in Infant Foods Applying Stable Isotope Labeled Standards. Front. Microbiol. 2019, 10,
109. [CrossRef]

22. Gratz, S.W. Do plant-bound masked mycotoxins contribute to toxicity? Toxins 2017, 9, 85. [CrossRef]
23. Nathanail, A.V.; Syvähuoko, J.; Malachová, A.; Jestoi, M.; Varga, E.; Michlmayr, H.; Adam, G.; Sieviläinen, E.;

Berthiller, F.; Peltonen, K. Simultaneous determination of major type A and B trichothecenes, zearalenone
and certain modified metabolites in Finnish cereal grains with a novel liquid chromatography-tandem mass
spectrometric method. Anal. Bioanal. Chem. 2015, 407, 4745–4755. [CrossRef] [PubMed]

24. Dellafiora, L.; Perotti, A.; Galaverna, G.; Buschini, A.; Dall’Asta, C. On the masked mycotoxin
zearalenone-14-glucoside. Does the mask truly hide? Toxicon 2016, 111, 139–142. [CrossRef] [PubMed]

25. Dellafiora, L.; Galaverna, G.; Righi, F.; Cozzini, P.; Dall’Asta, C. Assessing the hydrolytic fate of the masked
mycotoxin zearalenone-14-glucoside—A warning light for the need to look at the “maskedome”. Food Chem.
Toxicol. 2017, 99, 9–16. [CrossRef] [PubMed]

26. Puntscher, H.; Kütt, M.L.; Skrinjar, P.; Mikula, H.; Podlech, J.; Fröhlich, J.; Marko, D.; Warth, B. Tracking
emerging mycotoxins in food: Development of an LC-MS/MS method for free and modified Alternaria
toxins. Anal. Bioanal. Chem. 2018, 410, 4481–4494. [CrossRef]

27. Walravens, J.; Mikula, H.; Rychlik, M.; Asam, S.; Devos, T.; Ediage, E.N.; Di Mavungu, J.D.; Jacxsens, L.; Van
Landschoot, A.; Vanhaecke, L.; et al. Validated UPLC-MS/MS Methods to Quantitate Free and Conjugated
Alternaria Toxins in Commercially Available Tomato Products and Fruit and Vegetable Juices in Belgium.
J. Agric. Food Chem. 2016, 64, 5101–5109. [CrossRef]

28. Sanzani, S.M.; Gallone, T.; Garganese, F.; Caruso, A.G.; Amenduni, M.; Ippolito, A. Contamination of fresh
and dried tomato by Alternaria toxins in southern Italy. Food Addit. Contam. Part A 2019, 36, 789–799.
[CrossRef]

29. Gambacorta, L.; Magistà, D.; Perrone, G.; Murgolo, S.; Logrieco, A.F.; Solfrizzo, M. Co-occurrence of toxigenic
moulds, aflatoxins, ochratoxin A, Fusarium and Alternaria mycotoxins in fresh sweet peppers (Capsicum
annuum) and their processed products. World Mycotoxin J. 2018, 11, 159–174. [CrossRef]

30. Ansari, A.A.; Shrivastava, A.K. Natural occurrence of Alternaria mycotoxins in sorghum and ragi from
North Bihar, India. Food Addit. Contam. 1990, 7, 815–820. [CrossRef]

31. Müller, M.E.H.; Korn, U. Alternaria mycotoxins in wheat—A 10 years survey in the Northeast of Germany.
Food Control 2013, 34, 191–197. [CrossRef]

32. Lou, J.; Fu, L.; Peng, Y.; Zhou, L. Metabolites from Alternaria fungi and their bioactivities. Molecules 2013, 18,
5891–5935. [CrossRef]

33. Shimshoni, J.A.; Cuneah, O.; Sulyok, M.; Krska, R.; Galon, N.; Sharir, B.; Shlosberg, A. Mycotoxins in corn
and wheat silage in Israel. Food Addit. Contam. Part A 2013, 30, 1614–1625. [CrossRef] [PubMed]

34. Varga, E.; Glauner, T.; Berthiller, F.; Krska, R.; Schuhmacher, R.; Sulyok, M. Development and validation of
a (semi-) quantitative UHPLC-MS/MS method for the determination of 191 mycotoxins and other fungal
metabolites in almonds, hazelnuts, peanuts and pistachios. Anal. Bioanal. Chem. 2013, 405, 5087–5104.
[CrossRef] [PubMed]

35. Mikušová, P.; Sulyok, M.; Šrobárová, A. Alternaria mycotoxins associated with grape berries in vitro and in
situ. Biologia 2014, 69, 173–177. [CrossRef]

36. Asam, S.A.; Konitzer, K.K.; Schieberle, P.; Rychlik, M. Stable Isotope Dilution Assays of Alternariol and
Alternariol Monomethyl Ether in Beverages. J. Agric. Food Chem. 2009, 57, 5152–5160. [CrossRef] [PubMed]

37. Juan, C.; Manes, J.; Font, G.; Juan-García, A. Determination of mycotoxins in fruit berry by-products using
QuEChERS extraction method. LWT Food Sci. Technol. 2017, 86, 344–351. [CrossRef]

38. Zhao, K.; Shao, B.; Yang, D.; Li, F. Natural Occurrence of Four Alternaria Mycotoxins in Tomato- and
Citrus-Based Foods in China. J. Agric. Food Chem. 2014, 63, 343–348. [CrossRef]

http://dx.doi.org/10.3390/toxins9070228
http://www.ncbi.nlm.nih.gov/pubmed/28718805
http://dx.doi.org/10.1021/jf00106a025
http://www.ncbi.nlm.nih.gov/pubmed/7276385
http://dx.doi.org/10.1016/j.foodcont.2019.03.019
http://dx.doi.org/10.3389/fmicb.2019.00109
http://dx.doi.org/10.3390/toxins9030085
http://dx.doi.org/10.1007/s00216-015-8676-4
http://www.ncbi.nlm.nih.gov/pubmed/25935671
http://dx.doi.org/10.1016/j.toxicon.2016.01.053
http://www.ncbi.nlm.nih.gov/pubmed/26792714
http://dx.doi.org/10.1016/j.fct.2016.11.013
http://www.ncbi.nlm.nih.gov/pubmed/27856298
http://dx.doi.org/10.1007/s00216-018-1105-8
http://dx.doi.org/10.1021/acs.jafc.6b01029
http://dx.doi.org/10.1080/19440049.2019.1588998
http://dx.doi.org/10.3920/WMJ2017.2271
http://dx.doi.org/10.1080/02652039009373943
http://dx.doi.org/10.1016/j.foodcont.2013.04.018
http://dx.doi.org/10.3390/molecules18055891
http://dx.doi.org/10.1080/19440049.2013.802840
http://www.ncbi.nlm.nih.gov/pubmed/23789893
http://dx.doi.org/10.1007/s00216-013-6831-3
http://www.ncbi.nlm.nih.gov/pubmed/23471368
http://dx.doi.org/10.2478/s11756-013-0306-z
http://dx.doi.org/10.1021/jf900450w
http://www.ncbi.nlm.nih.gov/pubmed/19530709
http://dx.doi.org/10.1016/j.lwt.2017.08.020
http://dx.doi.org/10.1021/jf5052738


Toxins 2019, 11, 640 25 of 29

39. Scott, P.M.; Lawrence, G.A.; Lau, B.P. Analysis of wines, grape juices and cranberry juices for Alternaria
toxins. Mycotoxin Res. 2006, 22, 142–147. [CrossRef]

40. Prelle, A.; Spadaro, D.; Garibaldi, A.; Gullino, L.M. A new method for detection of five alternaria toxins in
food matrices based on LC—APCI-MS. Food Chem. 2013, 140, 161–167. [CrossRef]

41. López, P.; Venema, D.; de Rijk, T.; de Kok, A.; Scholten, J.M.; Mol, H.G.J.; de Nijs, M. Occurrence of Alternaria
toxins in food products in The Netherlands. Food Control 2016, 60, 196–204. [CrossRef]

42. Veprikova, Z.; Zachariasova, M.; Dzuman, Z.; Zachariasova, A.; Fenclova, M.; Slavikova, P.; Vaclavikova, M.;
Mastovska, K.; Hengst, D.; Hajslova, J. Mycotoxins in Plant-Based Dietary Supplements: Hidden Health
Risk for Consumers. J. Agric. Food Chem. 2015, 63, 6633–6643. [CrossRef]

43. Lau, B.P.; Scott, P.M.; Lewis, D.A.; Kanhere, S.R.; Cleroux, C.; Roscoe, V.A. Liquid chromatography—Mass
spectrometry and liquid chromatography—Tandem mass spectrometry of the Alternaria mycotoxins
alternariol and alternariol monomethyl ether in fruit juices and beverages. J. Chromatogr. A 2003, 998, 119–131.
[CrossRef]

44. Delgado, T.; Gómez-Cordovés, C. Natural occurrence of alternariol and alternariol methyl ether in Spanish
apple juice concentrates. J. Chromatogr. A 1998, 815, 93–97. [CrossRef]

45. Pavón, M.Á.; Luna, A.; de la Cruz, S.; González, I.; Martín, R.; García, T. PCR-based assay for the detection
of Alternaria species and correlation with HPLC determination of altenuene, alternariol and alternariol
monomethyl ether production in tomato products. Food Control 2012, 25, 45–52. [CrossRef]

46. Hickert, S.; Bergmann, M.; Ersen, S.; Cramer, B.; Humpf, H. Survey of Alternaria toxin contamination in food
from the German market, using a rapid HPLC-MS/MS approach. Mycotoxin Res. 2016, 32, 7–18. [CrossRef]

47. da Cruz Cabral, L.; Terminiello, L.; Pinto, V.F.; Nielsen, K.F.; Patriarca, A. Natural occurrence of mycotoxins
and toxigenic capacity of Alternaria strains from mouldy peppers. Int. J. Food Microbiol. 2016, 236, 155–160.
[CrossRef]

48. Oviedo, M.S.; Barros, G.G.; Chulze, S.N.; Ramirez, M.L. Natural occurrence of alternariol and alternariol
monomethyl ether in soya beans. Mycotoxin Res. 2012, 28, 169–174. [CrossRef]

49. Juan, C.; Oueslati, S.; Mañes, J. Evaluation of Alternaria mycotoxins in strawberries: Quantification and
storage condition. Food Addit. Contam. Part A 2016, 33, 861–868. [CrossRef]

50. Magnani, R.F.; De Souza, G.D.; Rodrigues-Filho, E. Analysis of Alternariol and Alternariol Monomethyl
Ether on Flavedo and Albedo Tissues of Tangerines (Citrus reticulata) with Symptoms of Alternaria Brown
Spot. J. Agric. Food Chem. 2007, 55, 4980–4986. [CrossRef]

51. Hasan, H.A.H. Alternaria mycotoxins in black rot lesion of tomato fruit: Conditions and regulation of their
production. Mycopathologia 1995, 130, 171–177. [CrossRef]

52. Noser, J.; Schneider, P.; Rother, M.; Schmutz, H. Determination of six Alternaria toxins with UPLC-MS/MS
and their occurrence in tomatoes and tomato products from the Swiss market. Mycotoxin Res. 2011, 27,
265–271. [CrossRef]

53. Zhao, K.; Shao, B.; Yang, D.; Li, F.; Zhu, J. Natural occurrence of Alternaria toxins in wheat-based products
and their dietary exposure in China. PLoS ONE 2015, 10, e0132019. [CrossRef] [PubMed]

54. Kayode, O.F.; Sulyok, M.; Fapohunda, S.O.; Ezekiel, C.N.; Krska, R.; Oguntona, C.R.B. Surveillance
Mycotoxins and fungal metabolites in groundnut- and maize-based snacks from Nigeria. Food Addit. Contam.
Part B 2013, 6, 294–300. [CrossRef] [PubMed]

55. Azcarate, M.P.; Patriarca, A.; Terminiello, L.; Fernandez Pinto, V. Alternaria Toxins in Wheat during the 2004
to 2005 Argentinean Harvest. J. Food Prot. 2008, 71, 1262–1265. [CrossRef] [PubMed]

56. Li, F.; Yoshizawa, T. Alternaria Mycotoxins in Weathered Wheat from China. J. Agric. Food Chem. 2000, 48,
2920–2924. [CrossRef] [PubMed]

57. Wang, Y.; Nie, J.; Yan, Z.; Li, Z.; Cheng, Y.; Chang, W. Occurrence and co-occurrence of mycotoxins in nuts
and dried fruits from China. Food Control 2018, 88, 181–189. [CrossRef]

58. Wei, D.; Wang, Y.; Jiang, D.; Feng, X.; Li, J.; Wang, M. Survey of Alternaria Toxins and Other Mycotoxins in
Dried Fruits in China. Toxins 2017, 9, 200. [CrossRef]

59. Ezekiel, C.N.; Sulyok, M.; Warth, B.; Krska, R. Multi-microbial metabolites in fonio millet (acha) and sesame
seeds in Plateau State, Nigeria. Eur. Food Res. Technol. 2012, 235, 285–293. [CrossRef]

60. Chulze, S.N.; Torres, A.M.; Dalcero, A.N.A.M.; Etcheverry, M.G.; Ramirez, M.L.; Farnochi, M.C. Alternaria
Mycotoxins in Sunflower Seeds: Incidence and Distribution of the Toxins in Oil and Meal. J. Food Prot. 1995,
58, 1133–1135. [CrossRef]

http://dx.doi.org/10.1007/BF02956778
http://dx.doi.org/10.1016/j.foodchem.2012.12.065
http://dx.doi.org/10.1016/j.foodcont.2015.07.032
http://dx.doi.org/10.1021/acs.jafc.5b02105
http://dx.doi.org/10.1016/S0021-9673(03)00606-X
http://dx.doi.org/10.1016/S0021-9673(98)00124-1
http://dx.doi.org/10.1016/j.foodcont.2011.10.009
http://dx.doi.org/10.1007/s12550-015-0233-7
http://dx.doi.org/10.1016/j.ijfoodmicro.2016.08.005
http://dx.doi.org/10.1007/s12550-012-0132-0
http://dx.doi.org/10.1080/19440049.2016.1177375
http://dx.doi.org/10.1021/jf0704256
http://dx.doi.org/10.1007/BF01103101
http://dx.doi.org/10.1007/s12550-011-0103-x
http://dx.doi.org/10.1371/journal.pone.0132019
http://www.ncbi.nlm.nih.gov/pubmed/26121047
http://dx.doi.org/10.1080/19393210.2013.823626
http://www.ncbi.nlm.nih.gov/pubmed/24779941
http://dx.doi.org/10.4315/0362-028X-71.6.1262
http://www.ncbi.nlm.nih.gov/pubmed/18592757
http://dx.doi.org/10.1021/jf0000171
http://www.ncbi.nlm.nih.gov/pubmed/10898645
http://dx.doi.org/10.1016/j.foodcont.2018.01.013
http://dx.doi.org/10.3390/toxins9070200
http://dx.doi.org/10.1007/s00217-012-1755-2
http://dx.doi.org/10.4315/0362-028X-58.10.1133


Toxins 2019, 11, 640 26 of 29

61. Hickert, S.; Hermes, L.; Marques, L.M.M.; Focke, C.; Cramer, B.; Lopes, N.P.; Flett, B.; Humpf, H.-U. Alternaria
toxins in South African sunflower seeds: Cooperative study. Mycotoxin Res. 2017, 33, 309–321. [CrossRef]

62. Bhat, R.; Rai, R.V.; Karim, A.A. Mycotoxins in Food and Feed: Present Status and Future Concerns. Compr.
Rev. Food Sci. Food Saf. 2010, 9, 57–81. [CrossRef]
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