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Direct evidence for grain boundary passivation
in Cu(In,Ga)Se2 solar cells through alkali-fluoride
post-deposition treatments
Nicoleta Nicoara 1, Roby Manaligod1, Philip Jackson2, Dimitrios Hariskos2, Wolfram Witte2,

Giovanna Sozzi 3, Roberto Menozzi 3 & Sascha Sadewasser 1

The properties and performance of polycrystalline materials depend critically on the prop-

erties of their grain boundaries. Polycrystalline photovoltaic materials – e.g. hybrid halide

perovskites, copper indium gallium diselenide (CIGSe) and cadmium telluride – have already

demonstrated high efficiencies and promise cost-effective electricity supply. For CIGSe-based

solar cells, an efficiency above 23% has recently been achieved using an alkali-fluoride post-

deposition treatment; however, its full impact and functional principle are not yet fully

understood. Here, we show direct evidence for the passivation of grain boundaries in CIGSe

treated with three different alkali-fluorides through a detailed study of the nanoscale

optoelectronic properties. We determine a correlation of the surface potential change at grain

boundaries with the open-circuit voltage, which is supported by numerical simulations.

Our results suggest that heavier alkali elements might lead to better passivation by reducing

the density of charged defects and increasing the formation of secondary phases at grain

boundaries.
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The use of polycrystalline materials for photovoltaic (PV)
energy conversion promises fast fabrication and high cost-
savings potential. However, the properties of polycrystal-

line semiconductors are frequently dominated by the properties
of grain boundaries (GBs). In recent years, thin-film solar cells
based on polycrystalline cadmium telluride (CdTe), Cu(In,Ga)Se2
(CIGSe), and lead-halide perovskite absorbers have surpassed the
barrier of 22% power conversion efficiency1. These outstanding
efficiencies have been achieved through tedious materials and
device optimization. It is obvious that in such high-efficiency
devices the GBs are not leading to strong carrier recombination2.
In fact, some of the strategies for efficiency improvement have
subsequently been identified to passivate GBs, e.g. a cadmium-
chloride (CdCl2) treatment in CdTe solar cells3–5 and a polymer
treatment in perovskite solar cells6–9. For CIGSe solar cells an
alkali-fluoride (AlkF) post-deposition treatment (PDT)10,11 has
recently led to a significant increase in the efficiencies12–15.
Indeed, it has been reported that for a potassium-fluoride (KF)-
PDT the electronic properties of the GBs are beneficially mod-
ified16. However, a full understanding of the role of GBs in CIGSe
is still lacking, especially in view of the heavier AlkF-PDT using
rubidium-fluoride (RbF) and cesium-fluoride (CsF), which have
led to higher record efficiencies in the last 2 years13,15.

Most of the studies investigating the role of GBs in CIGSe were
performed on material without any AlkF-PDT17–26. The only
alkali elements present in the absorber were those diffusing from
the soda-lime glass substrate, mainly sodium (Na). Compositional
studies at atomic level using atom probe tomography (APT)
indicated Na accumulation at the GBs27,28. More recent studies,
where a KF-PDT was applied indicate also accumulation of K at
GBs29,30. As a consequence of the relative concentrations of the
different alkali elements at GBs and in the grain interior, several
effects have been observed31, including Cu depletion, In and Se
accumulation at GBs32, a diminished downward33 and increased
upward16 band bending at GBs, increase34–36 or decrease10 of
carrier concentration, and an impact on the GB recombination
velocity37. A similar range of observations has been reported for
RbF-PDT38–41. The detailed composition, chemistry, and
microstructure at GBs leads to different GB and possibly also bulk
properties, explaining discrepancies in the literature42. Different
models have been suggested to explain the properties of GBs,
however, there is no agreement about the relevance of the elec-
tronic properties of GBs for the device performance.

We present a comprehensive Kelvin probe force microscopy
(KPFM) study of the electronic GB properties in CIGSe deposited
by co-evaporation and compare the effect of KF-, RbF-, and CsF-
PDT. A statistical analysis of more than 240 GBs shows distinct
differences of the potential variation across the GBs between the
samples. To isolate the effect of the different AlkF-PDTs, we use
nominally identical CIGSe absorbers grown with the same pro-
cessing conditions. To understand the impact of GBs on the
device performance, we perform three-dimensional (3D) device
simulations considering different GB electronic properties. Our
results indicate that GBs exhibiting downward band bending (i.e.
a hole transport barrier) have a negative impact on device per-
formance. We also find that an optimized AlkF-PDT can lead to a
passivation effect at GBs.

Results
Kelvin probe force microscopy. The CIGSe absorbers with the
different AlkF-PDTs (Alk= K, Rb, and Cs) were examined by
KPFM. To obtain reliable quantitative information, simultaneous
measurements of topography and contact potential difference
(CPD) were taken at different sample locations, separated by
several hundred µm with a total of 20–50 measurements per

sample. This approach ensures a statistically relevant character-
ization of the surface potential. The general surface morphology
(Fig. 1a–c), is independent of the alkali element used for the PDT,
exhibiting grains with typical size of ~1 μm and with smooth
facets. Simultaneously acquired work function maps (Fig. 1d–f)
from the same areas as the topography images show a significant
variation depending on the alkali element, as illustrated by the
respective histograms in Fig. 1g. From the histograms, the peak
maximum and the spread of the potential at 1/e of the maximum
were analyzed. The average values of peak maximum and spread
from all inspected areas show a single, narrow distribution for
RbF and two separated distributions for KF and CsF (see Sup-
plementary Fig. 1 and Supplementary Note 1). We do not observe
a specific trend of the work function from lighter to heavier alkali
elements. However, we clearly observe that the RbF-PDT has a
more homogeneous work function distribution than the KF- and
CsF-treated CIGSe. We note that the CIGSe deposition and PDT
were optimized for RbF and that the CIGSe growth was main-
tained identical between the different AlkF-PDTs to permit dis-
cerning the effect of the alkali elements on the absorber and
device properties.

To further investigate the work function variations between the
different AlkF-PDTs, the locally-induced effect on the electronic
properties of the GBs was analyzed. For all samples, the
identification of GBs was easily possible from the topography
images (Fig. 1a–c). The CPD profile across GBs was then
extracted from the simultaneously acquired CPD maps16,21, as
illustrated in Fig. 2 and detailed in the Supplementary Note 3. The
CPD variation across the GBs (ΔCPDGB) is then determined from
individual line profiles (see Fig. 2d). It was previously shown that
the identification of GBs based on topography images leads to the
predominant selection of GBs with random orientation, with only
a small fraction of identified symmetric (Σ3) GBs22,43. In fact, it
has been widely shown that symmetric GBs are electronically
inactive and appear to be benign for solar cell performance17,18,44.
We performed a statistical analysis of 20–65GBs per sample,
measured at different positions on the sample. The results of
ΔCPDGB for all investigated samples are plotted in Fig. 3a. It is
noted that in the present study the CPD is proportional to the
energy. Therefore, a positive potential difference at the GB means
a higher potential at the GB as compared to the grain surface
(GS), which corresponds to an electron barrier (Fig. 3b).
Conversely, a negative potential difference at a GB represents a
hole barrier. Whenever the potential variation across the GB is
very small with respect to contiguous grains, the GB is considered
neutral (ΔCPDGB= 0).

The distributions of the occurrence of different GB types
exhibit some differences between the three AlkF-PDTs (Fig. 3c).
KF-treated CIGSe (Fig. 3a, open red squares) shows the widest
distribution of the potential variation across GBs, with almost
60% of the GBs exhibiting an electron barrier and 12% of the GBs
exhibiting a hole barrier; the remaining 29% are neutral GBs. The
magnitude for both electron and hole barriers varies by
approximately 100 mV around ±200 mV. RbF-CIGSe (open green
circles) shows a significantly different distribution of GB types,
with an almost 50:50 ratio between GBs without a barrier and
GBs with an electron barrier, and a ΔCPDGB magnitude with
values below 100 mV. Similarly, CsF-CIGSe (open blue triangles)
presents also about a 50:50 ratio between electron barriers and
GBs without a barrier; however, the magnitude of the electron
barrier is larger with a variation of ~100 mV around ΔCPDGB ≈
200 mV. Importantly, in contrast to the KF sample, RbF- and
CsF-treated CIGSe do not show any GBs with negative potential
difference (hole barrier).

To confirm the validity of the above KPFM results at the GBs
and ensure that the studied sample surface is representative for
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the solar cell device pn-junction, we also investigated samples
coated with a thin zinc oxysulfide (Zn(O,S)) buffer layer grown
by chemical bath deposition (CBD) immediately after CIGSe
deposition. We chose an 8 min deposition time to grow an ~3 nm
thick layer onto the three alkali-treated CIGSe surfaces to ensure
that KPFM observation of the GBs in CIGSe is still possible. The
thin Zn(O,S) layer only slightly modifies the work function of the
samples (Supplementary Fig. 1 and Supplementary Note 2) in
agreement with previous results on a cadmium sulfide (CdS)
buffer layer, and indicating that 3 nm of Zn(O,S) buffer is
insufficient to form a pn-junction16,45. The electronic GB
properties of the Zn(O,S)-coated CIGSe samples with the three
AlkF-PDTs (orange-filled symbols in Fig. 3a) are very similar to
those observed for the CIGSe samples after annealing and rinsing
(i.e. without any buffer layer deposition). The most significant
change is observed for KF-CIGSe/Zn(O,S), where a larger fraction
of GBs without a barrier appears. Otherwise, the magnitude and
distribution of GB types are similar between the CIGSe surface
and the Zn(O,S)-coated CIGSe surface, confirming that the
observed GB properties are reflecting the properties of the CIGSe
material close to the pn-junction as present in the full device.

Solar cell device simulations. To understand the impact of the
observed GB potential profiles on the figures of merit of respec-
tive solar cell devices, we performed numerical simulations based
on the Synopsys Sentaurus TCAD suite46, using a three-
dimensional cylindrical model of a grain surrounded by a GB
(Fig. 4, see further details in the Supplementary Note 4). To get
clear qualitative indications on the effect of GB band bending on
the cell performance, and in the absence of detailed experimental
data on the electrical features of GB defects, here we simulated the
GB as a thin (1 nm) region surrounding the grain, decorated with
fixed charge (some indications about the effects of decorating the

GB with electrically active traps, as opposed to fixed charge, can
be found in the Supplementary Note 4). In the absence of the GB
the simulated cell exhibits an open-circuit voltage VOC= 742 mV,
short-circuit current density JSC= 36.8 mA cm−2, fill factor FF=
80.6%, and power conversion efficiency η= 22%. Placing fixed
charge Qf at the GB allows to simulate the band bending observed
by KPFM: the GB is thus decorated either by fixed positive
or fixed negative charges, inducing downward or upward
band bending (ΔCPDGB), respectively. The charge density Qf/q at
the GB is varied in the range from −1.25 × 1014 cm−2 to +2 ×
1011 cm−2 to obtain ΔCPDGB values in the dark between 600 mV
and −600 mV, respectively.

The results of this simulation (Fig. 4) clearly show qualitatively
different behavior between positively and negatively charged GBs.
Positively charged GBs (i.e. GBs with a downward band bending,
corresponding to a hole barrier) severely affect the solar cell
performance, leading to strong losses in Voc and FF and,
consequently, in efficiency; the larger the negative ΔCPDGB, the
lower are Voc, FF, and η. This remarkable degradation of
performance is due to increased electron density at the GB, leading
to the formation of an electron channel (Supplementary Fig. 4). As
a result, the junction is shunted, more and more as the downward
band bending gets stronger, as clearly shown by a shift in the dark
current-voltage (J-V) curves as ΔCPDGB becomes more negative
(Supplementary Fig. 5a), in qualitative agreement with the
experimental data (Supplementary Fig. 5c). Nevertheless, efficien-
cies η ≥ 20% are compatible with negative ΔCPDGB less than
−100mV, corresponding to positive charge densities at the GB
smaller than 1011 cm−2. On the other hand, negatively charged GBs
(i.e. GBs with a positive ΔCPDGB, corresponding to an electron
barrier) have negligible impact on the performance parameters of
the solar cell. In this case, the upward band bending repels electrons
from – and accumulates holes at – the GB, which does not entail
any junction shunting and has negligible effects on the J-V curve
(Supplementary Fig. 5b); it is also worth pointing out that the
simple fixed-charge GB model used here does not include possible
effects of enhanced non-radiative recombination at the GB (see
Supplementary Note 4 for a more detailed discussion of this point).

Discussion
The work function measured in KPFM depends on individual or a
combination of the following contributions: i) the measured material
through its electron affinity and surface dipole and ii) the charge
density or the presence of fixed charges. These effects apply to the
work function measurement on the surface, as well as at the GBs.

The electronic properties of alkali-treated samples can be
related to the alkali incorporation into the CIGSe. The obtained
values of the overall work function show small differences
between the different alkali elements used for the PDT (Supple-
mentary Fig. 1), where a slight correlation to the open-circuit
voltage of respective devices is observed (Supplementary Fig. 2).
This correlation could indicate that the observed change in work
function partially results from a change in the doping con-
centration of the CIGSe absorber and consequently a shift in the
Fermi-level34,47. However, we cannot exclude that the different
alkali elements lead to the formation of different surface phases.
For CIGSe subjected to a KF-PDT, KInSe2 and In2Se3 surface
phases were reported leading to a band gap widening and to
changes in the conduction band edge48–50. For RbF-PDT samples
the occurrence of a similar surface phase is still under debate51–54.

Nevertheless, our main observations relate to the GBs in CIGSe
with AlkF-PDT (as shown in Fig. 3) and can be summarized
as follows: (i) all studied samples except for the annealed-rinsed
KF-PDT sample show about half of the GBs with no potential
variation (GBs with no barrier). (ii) All samples show GBs with

E
ne

rg
y

Electron barrier

GBa b

c

+
 Z

n (O
,S

)
ann +

 rinse

50%

64%

36%50%

50%60%

37% 3%

Hole barrierE
ne

rg
y

NeutralE
ne

rg
y

–400

–200

0

200

400

ΔC
P

D
G

B
 (m

V
)

KF RbF CsF

AlkF-PDT CIGSe
AlkF-PDT CIGSe + 3 nm Zn(O,S) 

29%59%
12%

44%

56%

60%

40%

Fig. 3 Potential variations at grain boundaries. a Contact potential
difference at GBs (ΔCPDGB) extracted from KPFM measurements in the
dark on KF- (open red squares), RbF- (open green circles), and CsF-PDT
CIGSe (open blue triangle). The orange-filled symbols correspond to
identical samples with a Zn(O,S) buffer layer from an 8min. CBD process.
b Schematic potential profiles for the different types of GBs: negative
ΔCPDGB or dip-like shape (blue), negligible ΔCPDGB or neutral (grey) and
positive ΔCPDGB or spike-like shape (pink) and the corresponding models
(hole or electron barrier). c Pie-charts indicating the proportion of the GB
types found in CIGSe with different AlkF-PDT (top row) and on identical
samples with Zn(O,S) layer (bottom row)

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11996-y

4 NATURE COMMUNICATIONS |         (2019) 10:3980 | https://doi.org/10.1038/s41467-019-11996-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


electron barriers, while (iii) only the KF-PDT sample shows a
non-negligible fraction of GBs with hole barriers. (iv) The mag-
nitude of the potential barriers at the GBs found for RbF-PDT is
significantly smaller than that found for KF- and CsF-PDT. As
stated above, the CPD variation at the GBs can result from a
change in the material or the presence of localized charges.

Recent studies imaging the atomic-scale elemental distribution
at and around GBs in CIGSe by atom probe tomography (APT)
and by nano X-ray fluorescence (nano-XRF) have shown a seg-
regation of the heavy alkali elements for RbF- and KF-PDT38,39,55.
At the same time, the lighter Na (which diffuses from the soda-
lime glass during CIGSe deposition at elevated temperatures) is
displaced into the surrounding CIGSe grain interiors, where it is
assumed to modify the doping concentration34,41,47. The con-
centration of the alkali elements at the GBs ranges between 0.1 and
3.7% (Supplementary Table 2), as determined by APT and trans-
mission electron microscopy (TEM) studies26–30, and even up to
24%, determined by nano-XRF39. On the other hand, density
function theory (DFT) has demonstrated that the formation of an
AlkInSe2 phase is energetically favorable over the mixed (Alk,Cu)
InSe2 phase for the heavier alkali elements K, Rb, and Cs56.
Furthermore, the thermodynamic stability range of the AlkInSe2
phase in the phase diagrams increases from K→Cs (Supplemen-
tary Fig. 7). Therefore, with the concentration of the heavy alkali
elements of a few atom percent, the formation of secondary phases
of AlkInSe2 becomes highly probable. On the other hand, the
presence of charged defects has long been argued to be responsible
for CPD variations at GBs as observed by KPFM16,19,57. We note
here that in our previous study16 of KF-PDT CIGSe the observed
ΔCPDGB values were smaller than those observed on the present
KF-PDT samples, but rather similar to those observed here for
the RbF-PDT sample. While this similarity might reflect that
the PDT in our previous study was optimized for KF-PDT, we
cannot exclude that the smaller values observed in that study are

due to a larger tip-sample distance, typical for measurements in
air-KPFM58.

With the goal to discern between these two scenarios (sec-
ondary phase vs. charges at GBs), we also measured the surface
photovoltage (SPV) at the GBs by analyzing additional KPFM
data taken under illuminated conditions (here we define SPV=
CPDlight - CPDdark). In case of the presence of a different material
at the GB, no change upon illumination is expected, while photo-
generated charges are expected to change the charge state at the
GBs, leading to a modification of the CPD and thus the obser-
vation of a SPV59. The statistical analysis of the SPV at the GBs
for the annealed-rinsed CIGSe samples subjected to the different
AlkF-PDTs (Supplementary Fig. 8 and Supplementary Note 5)
indicates an increasing fraction of uncharged GBs toward heavier
alkali elements (the CsF-PDT sample has more than 70% of
the GBs uncharged). At the same time, a decreasing fraction
of charged GBs toward heavier alkali elements is observed,
and prominently, a decreased fraction of positively charged
GBs, which were identified to be detrimental to solar cell per-
formance in the simulations presented above. Assuming that the
photo-excited charges screen the fixed charges at the GBs,
the ΔCPDGB,illum. under illumination should be related to a
band offset at the GB (see Supplementary Fig. 9) with values of
(221 ± 73) meV for KF-PDF, (40 ± 23) meV for RbF-PDF, and
(108 ± 21) meV for CsF-PDF. These values are in the range of
the variation of the band gap between the respective AlkInSe2
compounds56. The lowest value observed for the RbF-PDT
sample might reflect that the RbF-PDT and CIGSe growth were
optimized with respect to each other for best performance of the
solar cell devices. Nevertheless, the large fraction of uncharged
GBs for the CsF-PDT could indicate that further optimization
might lead to improved performance also for a CsF-PDT; in fact,
the former world record CIGSe solar cell with 22.9% efficiency
was obtained using a CsF-PDT process14.
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We also explored the effect of a secondary phase – i.e., AlkInSe2
compound – at the GB by numerical simulations. The 1 nm thick
GB region surrounding the grain (see Fig. 4a) has been modeled in
this case as a different material, with bandgap of 2.53 eV56; to cover
the range of conduction band offsets discussed above – i.e., 221, 40,
and 108meV for KF-PDF, RbF-PDF, and CsF-PDF, respectively –
we simulated different conduction band offsets (electron barriers) of
400, 200, and 50meV, as well as the case where the conduction
band offset is zero and the valence band offset (hole barrier) equals
the whole bandgap difference between the CIGSe and the secondary
phase. Consistently with the simulation result shown in Fig. 4b,
where no effect is seen for electron barriers at the GB, the cell’s
performance is not in the least modified by the presence of the
secondary phase at the GB. In the presence of GB defects – as
discussed above and also shown for the case where the secondary
phase is present at the CIGSe surface60 – the higher bandgap
AlkInSe2 compound is expected to provide partial or complete
defect passivation, depending on the specific defect characteristics.

Figure 5 presents the overall results of our study, relating the
observed GB properties to the solar cell device properties and
illustrates the proposed action of the heavy-alkali fluoride PDTs.
The Voc analyzed from the J–V curves (Fig. 5a) of the studied
reference devices with CBD-Zn(O,S) buffer layers shows a clear
dependence on the potential change observed at the GBs (Fig. 5b),
which is explained by our numerical simulations (black dashed
curve). It should be noted that the J-V-curves were measured in
the as-grown state and Voc values of Zn(O,S)-buffered devices
could be significantly improved after a light-soaking and/or a
post-annealing procedure. For comparison, also some values from
the literature are included. We therefore propose the following
processes during the PDT: initially, a high concentration of Na
which has diffused from the soda-lime glass is found at the GBs.
During the PDT, the heavier alkali elements diffuse into the grain
boundaries and displace the lighter Na into the grain interior,

where they occupy Cu vacancies and modify the charge-carrier
concentration34. The heavier alkalis can lead to the partial for-
mation of AlkInSe2 phases at the GB56, nevertheless, some
charged defects remain at the GBs. The AlkInSe2 phase leads to a
band offset due to the larger band gap and a reduction of charged
defects (passivation effect). Nevertheless, in the studied samples
some charged defects still remain. Our results indicate that the
CsInSe2 formation might act more efficiently for the passivation of
charged GB defects, in agreement with the lower formation
enthalpy of this compound over the other AlkInSe2 phases56.
However, obtaining an efficient passivation of the GBs through the
AlkF-PDT requires a careful fine-tuning of the CIGSe deposition
in combination with the PDT conditions. In fact, Malitckaya
et al.56 show that the stability region of the AlkInSe2 phases
depends on the detailed Cu, In, and Se chemical potentials, and
that CsInSe2 shows the largest stability region (Supplementary
Fig. 7). On the other hand, we attribute the low performance of
the KF-PDT sample to a non-optimized combination of CIGSe
deposition and KF-PDT process. Our results strongly suggest that
GB passivation in this sample did not function properly and the
observed inferior performance can be (at least partially) ascribed
to non-passivated GBs. Specifically, when the figure of merit (Voc)
has ‘good values’, the GBs have a low potential barrier, and vice
versa, a large GB downward band bending has a detrimental
influence on the device performance through losses in Voc and FF.

In conclusion, using Kelvin probe force microscopy imaging,
solar cell device characteristics, and numerical 3D device simula-
tions, we could correlate the detrimental effect of downward band
bending at grain boundaries in CIGSe absorbers with losses in the
device performance of respective thin-film solar cells, pre-
dominantly with losses in the open-circuit voltage. Alkali-fluoride
post-deposition treatments can passivate charged defects at grain
boundaries and lead to the formation of alkali-indium-selenide
phases which form more likely for heavier alkali elements K, Rb,
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and Cs. Our findings indicate that a careful optimization of the
alkali-fluoride post-deposition treatment in conjunction with the
CIGSe growth process is required to achieve efficient grain
boundary passivation, likely controlled by the thermodynamic
balance for the AlkInSe2 phase formation. The direct observation of
such phases at grain boundaries will be the challenging task for
future studies. Our findings are relevant in view of industrial pro-
duction of full-size CIGSe solar modules, since for slight variations
in the CIGSe material, alkali-fluoride PDTs can effectively passivate
charges at grain boundaries and therefore mitigate losses due to the
presence of GBs. Therefore, AlkF-PDT is an interesting option for
industrial fabrication to make the material more homogeneous over
large areas. Furthermore, the presented method to perform and
analyze Kelvin probe force microscopy in dark and under illumi-
nation serves as a blueprint for the study of grain boundaries in
other energy materials and polycrystalline materials in general.

Methods
Samples. CIGSe absorbers were deposited onto molybdenum (Mo)-coated alkali-
aluminosilicate glass, which serves as a Na source during the three-stage eva-
poration process following the ZSW standard procedure established for the growth
of high-efficiency CIGSe solar cells. CIGSe absorbers and the alkali-fluoride PDT
were prepared in the same vacuum chamber without breaking the vacuum. Both
CIGSe growth and AlkF-PDT were performed according to ref. 13. In the present
study, the growth of the CIGSe was optimized for the RbF-PDT. Here “optimized”
refers to a predictive correction for temperature and evaporation rate drifts based
on long-term observation of these drifts, which requires a continuous observation
of a series of processes. Naturally, switching from one alkali-fluoride post
deposition treatment to another one does not allow such predictive correction due
to a lack of long-term observation of drifts. The [Cu]/([In]+ [Ga]) (CGI) and
[Ga]/([In]+ [Ga]) (GGI) ratios for the three CIGSe runs were determined by X-ray
fluorescence measurements to 0.90 ± 0.01 and 0.32 ± 0.02, respectively. CIGSe from
three consecutive and nominally identical runs was used to evaporate KF, RbF, and
CsF onto the absorber surface. All analyzed samples were annealed and rinsed after
the PDT process and before sending them for the KPFM measurements. In
addition to these CIGSe surfaces, we also studied CIGSe onto which a thin Zn(O,S)
buffer layer (thickness ~3 nm) was grown by an 8 min chemical bath deposition
(CBD) process. Details of the CBD process are given in Ref. 61. For the reference
solar cells a Zn(O,S) buffer layer with a thickness of 20 nm was grown by a 20 min
CBD process. We note that respective reference solar cells with a CdS buffer layer
reach efficiencies up to 20% (0.5 cm2 area with anti-reflective coating and after
15 min cold light soaking). Surface contamination during shipping was minimized
by sealing all samples in N2 atmosphere directly after preparation. During
mounting the samples on holders for the ultra-high vacuum (UHV) KPFM system
(base pressure below 10−10 mbar), they were exposed for less than 10 min to air.

Kelvin probe force microscopy. KPFM measurements on the CIGSe surface were
carried out in a scanning probe microscope (Omicron Nanotechnology GmbH),
controlled by a Nanonis controller (SPECS Zurich GmbH) using Pt/Ir-coated Si
cantilevers (Nanosensors). Topography images were acquired using the frequency
modulation technique at the fundamental resonance of the cantilever (frequency f0
~ 165 kHz). Amplitude modulation (AM) KPFM was used for the detection of the
contact potential difference (CPD) with an applied bias VAC= 300 mV tuned to the
second resonance frequency of the cantilever (f2 ~ 1.035 MHz). The CPD is the
work function (Φ) difference between sample and tip: CPD=Φsample−Φtip.
Reference measurements on Au surfaces were used to calibrate the work function
of the tip (Φtip) and to ensure comparability of the obtained CPD values. Subse-
quently, the work function of the sample was calculated from the CPD data
according to Φsample=CPD+Φtip. KPFM measurements under illumination were
performed using a 635 nm wavelength laser with ~100 mW cm−2 power.

Numerical simulations. Three-dimensional (3D) numerical simulations of the
solar cell were performed with the Synopsys Sentaurus TCAD suite46 which cal-
culates the charge-carrier distribution and transport by solving the Poisson, elec-
tron and hole continuity, and drift-diffusion equations. The Shockley–Read–Hall
(SRH) model is included to account for non-radiative recombination. Light pro-
pagation is calculated by the transfer matrix method (TMM) under AM1.5 G solar
spectrum illumination. The simulated cell features the standard stack made of Al-
doped ZnO (AZO) and highly resistive i-ZnO window, CdS buffer, and CIGSe
absorber with the double-graded GGI composition of the 21.7% efficiency cell
reported in ref. 12; the measured GGI profile is loaded into the model to give the
corresponding bandgap grading profile and complex refractive indices depending
on both GGI and CGI ratios, as explained in ref. 62. The 3D model considers a
cylindrical CIGSe grain with 1 μm diameter surrounded by a 1-nm-thick grain
boundary; fixed charges of different density and polarity are considered in the GB
to simulate the experimentally observed band bending.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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