
14 May 2024

University of Parma Research Repository

DYNAMICS OF TRANSCENDENTAL HENON MAPS / Arosio, L; Benini, A; Fornaess, Je; Peters, H. - In:
MATHEMATISCHE ANNALEN. - ISSN 1432-1807. - (2019). [10.1007/s00208-018-1643-6]

Original

DYNAMICS OF TRANSCENDENTAL HENON MAPS

Publisher:

Published
DOI:10.1007/s00208-018-1643-6

Terms of use:

Publisher copyright

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available

Availability:
This version is available at: 11381/2867089 since: 2020-10-15T11:06:35Z

Springer New York LLC

This is a pre print version of the following article:

note finali coverpage



DYNAMICS OF TRANSCENDENTAL HÉNON MAPS

LEANDRO AROSIO†, ANNA MIRIAM BENINI†, JOHN ERIK FORNÆSS∗, AND HAN PETERS

Abstract. The dynamics of transcendental functions in the complex plane has received a significant

amount of attention. In particular much is known about the description of Fatou components. Besides

the types of periodic Fatou components that can occur for polynomials, there also exist so-called Baker
domains, periodic components where all orbits converge to infinity, as well as wandering domains.

In trying to find analogues of these one dimensional results, it is not clear which higher dimensional

transcendental maps to consider. In this paper we find inspiration from the extensive work on the
dynamics of complex Hénon maps. We introduce the family of transcendental Hénon maps, and study

their dynamics, emphasizing the description of Fatou components. We prove that the classification of

the recurrent invariant Fatou components is similar to that of polynomial Hénon maps, and we give
examples of Baker domains and wandering domains.
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1. Introduction

Our goal is to combine ideas from two separate areas of holomorphic dynamics: the study of transcen-
dental dynamics on the complex plane, and the study of polynomial Hénon maps in C2. Recall that a
polynomial Hénon map is a map of the form

F : (z, w) 7→ (f(z)− δw, z),
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2 L. AROSIO, A.M. BENINI, J.E. FORNÆSS, AND H. PETERS

where f is a polynomial of degree at least 2, and δ is a non-zero constant. Here we consider maps of the
same form, but where f is a transcendental entire function. We call such F a transcendental Hénon map,
and it is easy to see that F is a holomorphic automorphism of C2 with constant Jacobian determinant δ.

The main reason for considering transcendental Hénon maps and not arbitrary entire maps in C2 is
that the space of entire maps is too large. Even the class of polynomials maps in two complex variables
is often considered too diverse to study the dynamics of these maps all at the same time. On the other
side, the family of polynomial automorphisms of C2 has received a large amount of attention. It portrays
a wide variety of dynamical behavior, yet it turns out that this class of maps is homogeneous enough
to describe its dynamical behavior in detail. A result of Friedland and Milnor [FM89] implies that any
polynomial automorphism with non-trivial dynamical behavior is conjugate to a finite composition of
polynomial Hénon maps. It turns out that finite compositions of polynomial Hénon maps behave in
many regards similarly to single Hénon maps, and the family of Hénon maps is sufficiently rigid to allow
a thorough study of its dynamical behavior.

Very little is known about the dynamics of holomorphic automorphisms of C2, although there have
been results showing holomorphic automorphisms of C2 with interesting dynamical behavior, such as the
construction of oscillating wandering domains by Sibony and the third named author [FS98], and a result
of Vivas, Wold and the last author [PVW08] showing that a generic volume preserving automorphisms of
C2 has a hyperbolic fixed point with a stable manifold which is dense in C2. Transcendental Hénon maps
seems to be a natural class of holomorphic automorphisms of C2 with non-trivial dynamics, restrictive
enough to allow for a clear description of its dynamics, but large enough to display interesting dynamical
behaviour which does not appear in the polynomial Hénon case.

We classify in Section 4 the invariant recurrent components of the Fatou set of a transcendental Hénon
map, that is, components which admits an orbit accumulating to an interior point. Invariant recurrent
components have been described for polynomial Hénon maps in [BS91b]; our classification holds not only
for transcendental Hénon maps but also for the larger class of holomorphic automorphisms with constant
Jacobian. Moreover, using the fact that f is a transcendental holomorphic function, we obtain in Section
3 results about periodic points and invariant algebraic curves. We show that the set Fix(F 2) is discrete,
and (if δ 6= −1) that F admits infinitely many saddle points of period 1 or 2, which implies that the Julia
set is not empty. We also show that there is no irreducible invariant algebraic curve (the same was proved
by Bedford-Smillie for polynomial Hénon maps in [BS91a]). The dynamical behavior can be restricted
even further by considering transcendental Hénon maps whose map f has a given order of growth. For
example, if the order of growth is smaller than 1

2 , then Fix(F k) is discrete for all k ≥ 1.
We then give examples of Baker domains, escaping wandering domains, and oscillating wandering

domains. Such Fatou components appear in transcendental dynamics in C, and for trivial reasons they
cannot occur for polynomials. The existence of the filtration gives a similar obstruction for polynomial
Hénon maps, but this filtration is lost when considering transcendental Hénon maps.

For a transcendental function a Baker domain is a periodic Fatou component on which the orbits
converge locally uniformly to the point ∞, which is an essential singularity [Ber93]. We give an example
in Section 5 of a transcendental Hénon map with a two-dimensional analogue: a Fatou component on
which the orbits converge to a point at the line at infinity `∞, which is (in an appropriate sense) an
essential singularity. In one complex variable for any Baker domain there exists an absorbing domain,
equivalent to a half plane H, on which the dynamics is conjugate to an affine function, and the conjugacy
extends as a semi-conjugacy to the entire Baker domain. In our example the domain is equivalent to
H× C, and the dynamics is conjugate to an affine map.

The final part of the paper is devoted to wandering domains. Recall that wandering domains are
known not to exist for one-dimensional polynomials and rational maps [Su85], but they do arise for
transcendental maps (see for example [Ber93]). In higher dimensions it is known that wandering domains
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can occur for holomorphic automorphisms of C2 [FS98] and for polynomial maps [ABDPR16], but whether
polynomial Hénon maps can have wandering domains remains an open question. We will consider two
types of wandering Fatou components, each with known analogues in the one-dimensional setting. We
construct in Section 6 a wandering domain, biholomorphic to C2, which is escaping: all orbits converge to
the point [1 : 1 : 0] at infinity. The construction is again very similar to that in one dimension. However,
the proof that the domain and its forward images are actually different Fatou components is not the proof
usually given in one dimension. Instead of finding explicit sets separating one component from another,
we give an argument that uses exponential expansion near the boundary of each of the domains.

Finally, we construct in Section 7 a transcendental Hénon map F with a wandering domain Ω, biholo-
morphic to C2, which is oscillating, that is it contains points whose orbits have both bounded subsequences
and subsequences which converge to infinity. Up to a linear change of variable, the map F is the limit as
k → ∞ of automorphisms of C2 of the form Fk(z, w) := (fk(z) + 1

2w,
1
2z), all having a hyperbolic fixed

point at the origin. The family (Fk) is constructed inductively using Runge approximation in one variable
to obtain an entire function fk+1 which is sufficiently close to fk on larger and larger disks, in such a way
that the orbit of an open set U0 ⊂ C2 approaches the origin coming in along the stable manifold of Fk
and then goes outwards along the unstable manifold of Fk, over and over for all k ∈ N.

Regarding the complex structure of those Fatou components, in both the Baker domain and the
oscillating wandering domain case one encounters the same difficulty. Namely, in both cases one finds
a suitable invariant domain A of the Fatou component on which it is possible to construct, using the
dynamics of F , a biholomorphism to a model space (H × C and C2 respectively, where H denotes the
right half-plane). One then needs to prove that the domain A is in fact the whole Fatou component,
and this is done by using the following plurisubharmonic method : If A is strictly smaller than Ω then we
can construct a plurisubharmonic function u : Ω → R ∪ {−∞} for which the submean value property is
violated at points in ∂A ∩ Ω. We note that a somewhat similar argument was given by the third author
in [Fo04], and we believe that this method can be applied in a variety of similar circumstances.

It is important to point out that for an entire map F : C2 → C2 there are two natural definitions of

the Fatou set, which correspond to compactifying C2 either with the one-point compactification Ĉ2, or
with P2. In one dimension the two Fatou sets coincide, and the same is true for polynomial Hénon maps,
since by the existence of the filtration all forward orbits that converge to infinity converge to the same
point on the line at infinity `∞ = P2 \ C2. For a general entire self-map of C2 these two definitions can

give two different Fatou sets (see Example 2.6). Notice that, if we compactify with Ĉ2, any open subset
of C2 on which the sequence of iterates Fn diverges uniformly on compact subsets would be in the Fatou
set regardless of how the orbits go to infinity. This seems to be too weak a definition in two complex
variables. We thus define the Fatou set compactifying C2 with P2 (which has the additional advantage
of being a complex manifold). Section 2 is devoted to this argument.

2. The definition of the Fatou set

Let n ∈ N and let X be a complex manifold. There are (at least) two natural definitions of what it

means for a family F ⊂ Hol(X,Cn) to be normal. We denote by Ĉn the one-point compactification of
Cn, and with the symbol ∞ we denote both the point at infinity and the constant map z 7→ ∞.

Definition 2.1. A family F ⊂ Hol(X,Cn) is Pn-normal if for every sequence (fn) ∈ F there exists
a subsequence (fnk) converging uniformly on compact subsets to f ∈ Hol(X,Pn). In other words, F is
pre-compact in Hol(X,Pn).

A family F ⊂ Hol(X,Y ) is Ĉn-normal if for every sequence (fn) ∈ F which is not divergent on compact
subsets there exists a subsequence (fnk) converging uniformly on compact subsets to f ∈ Hol(X,Cn).

This is equivalent to F being pre-compact in Hol(X,Cn) ∪∞ ⊂ C0(X, Ĉn).
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Figure 1. The mouth of Pac-man Pn+1 is contained in bait Rn.

Remark 2.2. When n = 1 the two definitions are equivalent.

A family F ⊂ Hol(X,Cn) is Pn-normal if and only if it is equicontinuous with respect to the Fubini-
Study distance on Pn. This follows from the Ascoli-Arzelà theorem and from the fact that Hol(X,Pn) is

closed in C0(X,Pn). One may think that, similarly, a family F ⊂ Hol(X,Cn) is Ĉn-normal if and only

if it is equicontinuous with respect to the spherical distance dĈn on Ĉn, but this is not the case, as the
following example shows.

Example 2.3. For n ≥ 2, the family Hol(D,Cn) ∪∞ is not closed in C0(D, Ĉn). As a consequence, for

a family F ⊂ Hol(D,Cn), being pre-compact in C0(D, Ĉn) is not equivalent to being Ĉn-normal.

Proof. Let n = 2. Let sn ≥ 0 be an increasing sequence of real numbers converging to 1
2 . Let αn ≤ π

2 be
a decreasing sequence converging to 0. We define the Pac-man

Pn := D \ {sn + ρeiθ : ρ > 0, |θ| < αn}.

Let rn ≥ 0 be an increasing sequence converging to 1
2 . Let βn be a sequence decreasing to 0. We define

the bait

Rn := D ∩ {z ∈ C : |Im z| ≤ βn,Re z ≥ rn}.
Clearly ⋂

n∈N
Rn = {z ∈ C : |Im z| = 0,

1

2
≤ Re z ≤ 1},

which we call the slit S.
We can choose the sequences (sn), (αn), (rn), (βn) in such a way that

Pn ∩Rn = ∅
D \ Pn+1 ⊂ Rn.

Notice that this implies that sn ≤ rn ≤ sn+1 for all n ∈ N. See Figure 1 for an illustration of a single
Pac-man Pn+1 and two baits Rn+1 and Rn.
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Let bi > 0 be a sequence such that for all n ∈ N, x ∈ C2 the following implication holds

‖x‖+
1

2n
≥
n−1∑
i=0

bi =⇒ dĈ2(x,∞) ≤ 1

2n+1
. (1)

By using Runge approximation we can define a sequence of holomorphic functions fn : D(0, 1 + ε) →
C such that |fn| ≤ 1

2n+1 on P2n, and Re fn ≥ bn on R2n, and a sequence of holomorphic functions

gn : D(0, 1 + ε) → C such that |gn| ≤ 1
2n+1 on P2n+1, and Re gn ≥ bn on R2n+1. For all n ≥ 0, let

Hn : D(0, 1 + ε)→ C2 be defined as Hn(z) =
∑n
j=0(fn, gn). Denote

an := max
z∈D

dĈ2(Hn(z), Hn−1(z)).

We claim that an ≤ 1
2n , and thus the sequence (Hn) converges uniformly on the disk D to a continuous

mapping H : D→ Ĉ2 such that H(D \ S) ⊂ C2 and H(S) = {∞}. Fix n ∈ N. If z ∈ P2n, then |fn(z)| ≤
1

2n+1 and |gn(z)| ≤ 1
2n+1 . Thus ‖(fn(z), gn(z))‖ ≤ 1

2n , which implies that dĈ2(Hn(z), Hn−1(z)) ≤ 1
2n . If

z ∈ D \ (P2n ∪ R2n), then we have that Re
∑n−1
i=0 gi(z) ≥

∑n−1
i=0 bi and |gn(z)| ≤ 1

2n , and thus by (1)

both Hn(z) and Hn−1(z) belong to the ball of radius 1
2n+1 centered at ∞. If z ∈ R2n, then we have that

Re
∑n−1
i=0 fi(z) ≥

∑n−1
i=0 bi and Re fn(z) ≥ bn, and thus by (1) both Hn(z) and Hn−1(z) belong to the ball

of radius 1
2n+1 centered at ∞. �

Lemma 2.4. If a family F ⊂ Hol(X,Cn) is Pn-normal, then it is Ĉn-normal.

Proof. Let (fn) be a sequence in F . Since F is Pn-normal there exists a subsequence (fnk) converging
uniformly on compact subsets to a map f ∈ Hol(X,Pn). If there is a point x ∈ X such that f(x) ∈ `∞,
then f(X) ⊂ `∞. Indeed, it suffices to show that f−1(`∞) is open, and this follows taking an affine chart
around f(y) ∈ `∞ in such a way that `∞ = {z1 = 0} and applying Hurwitz theorem to the sequence
π1 ◦ fn.

Thus, if the sequence (fn) is not diverging on compact subsets, the subsequence (fnk) converges
uniformly on compact subsets to a map f ∈ Hol(X,Cn).

�

As a consequence of the previous discussion, for an entire map F : Cn → Cn we have two possible
definitions of the Fatou set.

Definition 2.5. A point z ∈ Cn belongs to the Ĉn-Fatou set if the family of iterates (Fn) is Ĉn-normal
near z. A point z ∈ Cn belongs to the Pn-Fatou set if the family of iterates (Fn) is Pn-normal near z.

By Lemma 2.4 the Pn-Fatou set is contained in the Ĉn-Fatou set, but if n > 1 the inclusion may be
strict as the following example shows.

Example 2.6. Given an increasing sequence Nj ∈ N, and consider the sequence of polynomials

fj(z) = (z − 5(j − 1))Nj ,

defined respectively on the disks Dj = D(5(j − 1), 2), where j ≥ 1. Given a sequence εj ↘ 0, by Runge

approximation (see e.g. Lemma 7.4) we can find an entire function f that is εj-close to fj on Dj for all
j.

Define the map F ∈ Aut(C2) by

F (z, w) = (z + 5, w + f(z)).

It follows immediately from the first coordinate that the forward orbit of any point (z0, w0) converges

to infinity, ie. ‖Fn(z0, w0)‖ → ∞, hence the Ĉ2-Fatou set equals all of C2. Moreover, if |z0| < 1 then
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Fn(z0, w0) → [1 : 0 : 0], uniformly on compact subsets. Thus, the domain D × C is contained in a
P2-Fatou component.

On the other hand, if the sequence Nj increases sufficiently fast, then for 1 < |z0| ≤ 2 we have that
Fn(z0, w0) → [0 : 1 : 0] ∈ `∞, again uniformly on compact subsets. It follows that D × C is a P2-Fatou

component. Therefore in this example the single Ĉ2-Fatou component contains infinitely many distinct
P2-Fatou components.

Remark 2.7. For a polynomial Hénon map, it follows from the existence of the invariant filtration that
any forward orbit that converges to infinity must converge to the point [1 : 0 : 0] ∈ `∞. Thus, the two
definitions of Fatou set coincide.

In what follows, we will only consider P2-normality. We will call the P2-Fatou set simply the Fatou
set. The Julia set is the complement of the Fatou set.

3. Invariant subsets

3.1. Periodic points. If ` is a transcendental function or a polynomial Hénon map, then, for each k ≥ 1,
the set Fix(`k) is discrete. Clearly this statement is not satisfied for holomorphic automorphisms of C2.
For example, one can consider any holomorphic conjugate of a rational rotation.

Consider a periodic orbit

(z0, w0) 7→ (z1, w1) 7→ · · · 7→ (zk, wk) = (z0, w0)

Since wj+1 = zj for each j, the first coordinate function of the Hénon map gives the following relations
f(z0) = z1 + δzk−1

f(z1) = z2 + δz0

...

f(zk−1) = z0 + δzk−2.

(2)

Lemma 3.1. If F is a transcendental Hénon map, then Fix(F ) and Fix(F 2) are discrete.

Proof. The fixed points (z, w) of F satisfy z = w and thus z = f(z)− δz. Since f is not linear the set of
solutions is discrete.

When k = 2 the system (2) gives {
f(z0) = (1 + δ)z1

f(z1) = (1 + δ)z0.
(3)

When δ = −1 it is immediate that the set of solutions is discrete. When δ 6= −1 the solutions satisfy{
f(
f(z0)
1+δ )

1+δ = z0

z1 = f(z0)
1+δ .

(4)

and again one observes a discrete set of solutions. �

Without making further assumptions it is not clear to the authors that Fix(F k) is discrete when k ≥ 3.
However, we can show discreteness when we assume that the function f has small order of growth.

Proposition 3.2. Let F be a transcendental Hénon maps such that f has order of growth strictly less
than 1

2 . Then Fix(F k) is discrete for all k ≥ 1.
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Proof. Consider the entire function

g(z) :=
f(z)− f(0)

z
.

Write
m(r) := inf

|z|=r
|g(z)|.

Since f is assumed to have order of growth strictly less than 1
2 , so does g, and Wiman’s Theorem [Wi1905]

implies that there exist radii rn →∞ for which m(rn)→∞.
Suppose for the purpose of a contradiction that the solution set in Ck of the system (2) is not discrete.

Then there exists an unbounded connected component V . Let n ∈ N be such that V intersects the
polydisk D(0, rn)k. Then V also intersects the boundary ∂D(0, rn)k, say in a point (z0, . . . , zk−1). By
the symmetry of the equations in (2) we may then well assume that |z0| = rn, and of course that |zj | ≤ rn
for j = 1, . . . , k − 1.

By Wiman’s Theorem we may assume that |g(z0)| is arbitrarily large, and in particular that |f(z0)| >
(1 + |δ|)rn. But this contradicts the first equation in (2), completing the proof. �

We now turn to the question whether transcendental Hénon maps always have periodic points. Recall
that if f is an entire transcendental function, then Fix(F 2) has infinite cardinality by [Ro48].

Proposition 3.3. If F (z, w) = (f(z)− δw, z) is a transcendental Hénon map, then Fix(F 2) 6= ∅ unless
if δ = −1 and f(z) = eh(z) for some holomorphic function h(z). If δ 6= −1, the set Fix(F 2) 6= ∅ has
infinite cardinality.

Proof. Let Z := {f = 0} ⊂ C. If δ = −1 the solutions of the system (3) is given by the points in
Z×Z ⊂ C2. In particular there are no solution if and only if f(z) = eh(z) for some holomorphic function
h(z).

If δ 6= −1, let g(z) := f(z)
1+δ . The solutions of the system (4) are the points

{(z0, g(z0)) ∈ C2 : z0 ∈ Fix(g2)},
which is non-empty and has infinite cardinality. �

Remark 3.4. Notice that the set Z has finite cardinality if and only if f is of the form f(z) = p(z)eh(z),
where p is a nonzero polinomial p and h is entire function. Thus in all other cases, even if δ = −1, the
set Fix(F 2) has infinite cardinality.

If f : C→ C is an entire transcendental function, we have additional information on the multiplier of
repelling periodic points of period n ≥ 2. Indeed we have the following theorem [Ber05, Theorem 1.2]:

Theorem 3.5. Let f be a transcendental entire function and let n ∈ N, n ≥ 2. Then f has a sequence
zk of periodic points of period n such that

|(fn)′(zk)| → ∞ as k →∞. (5)

Corollary 3.6 (Non-empty Julia set). If δ 6= −1, then F admits infinitely many saddle points of period
1 or 2, and thus its Julia set is non-empty.

Proof. We have seen that for all z0 ∈ Fix(g2), the point (z0, g(z0)) ∈ Fix(F 2). A computation using the
explicit form for F gives

d(z0,g(z0))F
2 =

(
f ′(g(z0)) · f ′(z0)− δ −δf ′(g(z0))

f ′(z0) −δ

)
Since

det d(z0,g(z0))F
2 = δ2, tr d(z0,g(z0))F

2 = f ′(g(z0)) · f ′(z0)− 2δ,
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the point (z0, g(z0)) is a periodic saddle point for |f ′(g(z0)) · f ′(z0)| sufficiently large (Observe that
g′(g(z0)) · g′(z0), and hence f ′(g(z0)) · f ′(z0), can be taken arbitrarily large by Theorem 3.5).

�

3.2. Invariant algebraic curves. It follows from a result of Bedford-Smillie [BS91a] that a polynomial
Hénon map does not have any invariant algebraic curve. Indeed, given any algebraic curve, the normalized
currents of integration on the push-forwards of this curve converge to the (1, 1) current µ−, whose support
does not lie on an algebraic curve.

This type of argument is not available for transcendental dynamics. Here we present a different
argument.

Theorem 3.7. Let F be a holomorphic automorphism of the form

F : (z, w) 7→ (f(z)− δw, z),

where f is an entire function, and assume that F leaves invariant an irreducible algebraic curve {H(z, w) =
0}. Then f is affine.

As we remarked earlier, the statement is known when f is a polynomial of degree at least 2, so we will
assume that f is a transcendental entire function and obtain a contradiction. Let us first rule out the
simple case where {H = 0} is given by a graph {z = g(w)}. In that case the invariance under F gives

f(g(w))− δw = g ◦ g(w).

Writing f(z) = g(z) + h(z) gives

h ◦ g(w) = δw,

which implies that g and h are invertible and thus affine. But then f is also affine and we are done.
For a graph of the form {w = g(z)} we obtain the functional equation

z = g(f(z)− δg(z)),

which again implies that the function g is affine, and then so is f .
For the general case {H = 0}, where we may now assume that we are not dealing with a graph, we

will use the following two elementary estimates.

Lemma 3.8. There exist (zj , wj) ∈ {H = 0}, with |zj | → ∞, for which

|f(zj)| > |zj |j .

Proof. As we have already shown that {H = 0} is not a graph, it follows that {H = 0} intersects all but
finitely many lines {z = c}. The result follows from the assumption that f is transcendental. �

We use two forms for the polynomial H:

(1) H(z, w) = p(w)zN1 +
∑N1−1
k=0

∑N2

`=0 αk,`z
kw`.

(2) H(z, w) = q0(z) +
∑n
`=1 q`(z)w

`.

Note that q0 cannot vanish identically, because otherwise w is a factor of H and the zero set is not
irreducible.

Lemma 3.9. There exist d large enough so that if H(z, w) = 0 for |z| sufficiently large, then |w| < |zd|.

Proof. If |w| > |z|d for arbitrarily large |z| and d, then |w|n|qn(z)| dominates the other terms in the form
(2), so H(z, w) cannot vanish. �



DYNAMICS OF TRANSCENDENTAL HÉNON MAPS 9

Proof of Theorem 3.7. By Lemma 3.8 there exist (zj , wj) with zj →∞, H(zj , wj) = 0 and |f(zj)| > |zj |j .
Let (z′j , w

′
j) = F (zj , wj) so that z′j = f(zj)− δwj and w′j = zj . Since {H = 0} is invariant we have that

H(z′j , w
′
j) = 0.

By Lemma 3.9 there exists d ∈ N such that |wj | < |zj |d for j sufficiently large. Hence for j sufficiently
large

|z′j | = |f(zj)− δwj | ≥ |f(zj)| − |δwj | ≥ |f(zj)|/2. (6)

It follows that

|p(w′j)(z′j)N1 | ≥ c|z′j |N1 ≥ c|z′j |N1−1 · |zj |
j

2
,

where c > 0 is a constant. But since zj = w′j it follows that for large enough j, all terms of the form

αk,`(z
′
j)
k(w′j)

` for k ≤ N1−1 will be negligible compared to p(w′j)(z
′
j)
N1 , which contradicts H(z′j , w

′
j) = 0.

�

4. Classification of recurrent components

In this section we only assume that F is a holomorphic automorphism of C2 with constant Jacobian
δ.

Definition 4.1. A point x ∈ C2 is recurrent if its orbit (Fn(x)) accumulates at x itself. A periodic
Fatou component Ω is called recurrent if there exists a point z ∈ Ω whose orbit (Fn(z)) accumulates at
a point w ∈ Ω.

Since the class of holomorphic automorphism of C2 with constant Jacobian is closed under composition,
by replacing F with an iterate we can restrict to the case where Ω is invariant. For an invariant Fatou
component Ω, a limit map h is a holomorphic function h : Ω → P2 such that fnk → h uniformly on
compact sets of Ω for some subsequence nk →∞.

Theorem 4.2. Let F be a holomorphic automorphism of C2 with constant Jacobian δ and let Ω be an
invariant recurrent Fatou component for F . Then there exists a holomorphic retraction ρ from Ω to a
closed complex submanifold Σ ⊂ Ω, called the limit manifold, such that for all limit maps h there exists
an automorphism η of Σ such that h = η ◦ ρ. Every orbit converges to Σ, and F |Σ : Σ → Σ is an
automorphism. Moreover,

• If dim Σ = 0, then Ω is the basin of an attracting fixed point, and is biholomorphically equivalent
to C2.

• If dim Σ = 1, either Σ is biholomorphic to a circular domain A, and there exists a biholomorphism
from Ω to A× C which conjugates the map F to

(z, w) 7→ (eiθz,
δ

eiθ
w),

or there exists j ∈ N such that F j |Σ = idΣ, and there exists a biholomorphism from Ω to Σ× C
which conjugates the map F j to

(z, w) 7→ (z, δjw).

• dim Σ = 2 if and only if |δ| = 1. In this case there exists a sequence of iterates converging to the
identity on Ω.

By a circular domain we mean either the disk, the punctured disk, an annulus, the complex plane or
the punctured plane. For the polynomial Hénon maps case, see [BS91b] and [FS95].

Let (Fnk) be a convergent subsequence of iterates on Ω, with Fnk(z) → w ∈ Ω. We denote the limit
of (Fnk) by g.



10 L. AROSIO, A.M. BENINI, J.E. FORNÆSS, AND H. PETERS

Lemma 4.3. The image g(Ω) is contained in C2.

Proof. If there is a point x ∈ Ω for which F (x) belongs to the line at infinity `∞, then g(Ω) ⊂ `∞ (see
e.g. the proof of Lemma 2.4), which gives a contradiction. �

Definition 4.4. We define the maximal rank of g as maxz∈Ω rk(dzg).

4.1. Maximal rank 0.

Lemma 4.5. Suppose that g has maximal rank 0. Then g(Ω) is the single point w, which is an attracting
fixed point.

Proof. Since the maximal rank is 0, the map g is constant and must therefore equal w. Since F and g
commute, the point w must be fixed. Suppose that the differential dwF has an eigenvalue of absolute
value ≥ 1. Then the same is true for all iterates Fnk . Hence they cannot converge to a constant map. So
w must be an attracting fixed point. �

It follows that Ω is the attracting basin of the point w, and the entire sequence Fn converges to g. In
this case the limit manifold Σ is the point {w}.

4.2. Maximal rank 2.

Theorem 4.6. Suppose that g has maximal rank 2. Then there exists a subsequence (mk) so that
Fmk → Id on Ω.

Proof. Let x be a point of maximal rank 2. There exist an open neighborhood U of x and an open
neighborhood V ′ of g(x) such that g : U → V ′ is a biholomorphism. Denote h := g−1 defined on V ′. Let
V ⊂⊂ V ′ be an open neighborhood of g(x). Since Fnk → g on U , we have that V ⊂ Fnk(U) for large k
and the maps (Fnk)−1 converge to h uniformly on compact subsets of V . In particular V ⊂ Ω. We can
then write Fnk+1−nk = Fnk+1 ◦ (Fnk)−1 on V . If we set mk := nk+1 − nk, then Fmk → Id on V . Since
we are in the Fatou set this implies that Fmk → Id on Ω. �

It follows that every point p ∈ Ω is recurrent and that F is volume preserving. The following fact is
trivial but we recall it for convenience.

Lemma 4.7. Let (Gn : Ω ⊂ C2 → C2) be a sequence of injective holomorphic mappings which are volume
preserving. If Gn converges to G uniformly on compact subsets, then G is holomorphic, injective and
volume preserving.

Proof. The map G is holomorphic and dGn
n→∞−→ dG, and thus G is volume preserving. Thus by Hurwitz

Theorem G is injective. �

Proposition 4.8. If g has maximal rank 2 then each orbit (Fn(z)) is contained in a compact subset of
Ω.

Proof. Let (Kj) be an exhaustion of Ω by compact subsets such that Kj ⊂
◦
Kj+1 for all j ∈ N. By passing

to a subsequence of the exhaustion if needed, we may assume that F (Kj) ⊂⊂ Kj+1. Let p ∈ Ω. We can
assume that p ∈ K1, and let r > 0 be such that B(p, r) ⊂ K1.

We may assume that if Fn(p) ∈ Kj then Fn(B(p, r)) ⊂ Kj+1. Indeed, suppose by contradiction that
there exist j ∈ N and subsequence `k such that F `k(p) ∈ Kj for all k ∈ N, but

F `k(B(p, r)) 6⊂ Kj+k. (7)

Then up to passing to a subsequence, F `k(p) converges uniformly on B(p, r) to a holomorphic map h
such that h(B(p, r)) is open and does not intersect the line at infinity `∞. Thus h(B(p, r)) ⊂⊂ Ω, which
contradicts (7). Similarly we may assume that if Fn(p) /∈ Kj then Fn(B(p, r)) ∩Kj−1 = ∅.
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Suppose by contradiction that the orbit of p is not contained in a compact subset of Ω. Then the
orbit of p is not contained in any Kj . But since p is a recurrent point, the orbit of p must also return
to K1 infinitely often. Thus, there exists a sequence k1 < l1 < m1 < k2 < l2 < m2 < . . . and a strictly
increasing sequence (nj), nj ≥ 3, such that

(i) Each F kj (p) lies in K4 \K3

(ii) For kj < n < lj the points Fn(p) lie outside of K3.
(iii) Each F lj (p) lies outside Knj ,
(iv) Each point Fmj (p) lies in K1,
(v) For kj < n < mj the points Fn(p) lie in Knj+1−2.

We claim that the sets F kj (B(p, r)) must be pairwise disjoint. To see this, suppose that F ki(B(p, r)) ∩
F kj (B(p, r)) 6= ∅ for some i < j. Then clearly

F ki+n(B(p, r)) ∩ F kj+n(B(p, r)) 6= ∅, ∀n ∈ N.
If lj − kj > mi − ki, then a contradiction is obtained since F kj+mi−ki(B(p, r)) ∩ K2 = ∅ due to (ii)
while Fmi(B(p, r)) ⊂ K2 due to (iv). If lj − kj < mi − ki, then a contradiction is obtained since
F lj (B(p, r)) ∩Knj−1 = ∅ due to (iii), while F ki+lj−kj (B(p, r)) ⊂ Kni+1−1 ⊂ Knj−1 due to (v). Finally,

if lj − kj = mi − ki, then Fmi(B(p, r)) ∩ F `j (B(p, r)) 6= ∅, which contradicts (iii) and (iv). This proves
the claim. Since F is volume preserving and the volume of K4 \K3 is finite, we have a contradiction.

�

Corollary 4.9. The limit of any convergent subsequence (Fnk) is an automorphism of Ω.

In this case the limit manifold Σ is the whole Ω.

Remark 4.10. It follows that the maximal rank of a limit map is independent of the chosen convergent
subsequence.

4.3. Maximal rank 1. We now consider the case where the limit map g has maximal rank 1. By Remark
4.10 every other limit of a convergent subsequence on Ω must also have maximal rank 1.

Recall that (Fnk) is a convergent subsequence of iterates on Ω such that Fnk(z) → w ∈ Ω. Replace
nk by a subsequence so that nk+1 − nk ↗ ∞. Let (mk) be a subsequence of (nk+1 − nk) so that Fmk

converges, uniformly on compact subsets of Ω. From now on we assume that g is the limit of the sequence
(mk).

Remark 4.11. Notice that g(w) = w. Actually, if follows by the construction that there exists an open
neighborhood N of z in Ω such that g(N) ⊂ Ω and for all y ∈ g(N), g(y) = y.

Lemma 4.12. The map F is strictly volume decreasing.

Proof. By assumption the Jacobian determinant δ of F is constant. Since Ω is recurrent we have |δ| ≤ 1.
Since (Fnk) converges to the map g : Ω→ C2 of maximal rank 1, it follows that |δ| < 1. �

We write Σ := g(Ω). Notice that Σ is a subset of Ω ∩ C2, and that, since F and g commute, the map
F |Σ : Σ→ Σ is bijective. We need a Lemma.

Lemma 4.13. Let U be an open set in C2, and let h : U → C2 be a holomorphic map of maximal rank
1. Then for all w ∈ h(U), the fiber h−1(w) has no isolated points.

Proof. Assume by contradiction that q ∈ h−1(w) is isolated. If ε is small enough, then h(∂B(q, ε)) is
disjoint from w. Hence there exists a small ball B(w, δ) which is disjoint from h(∂B(q, ε)) Hence if we
restrict h to V := h−1(B(w, δ)) ∩B(q, ε), then h : V → B(w, δ) is a proper holomorphic map. Let ζ ∈ V
be such that rkζh = 1. Then the level set h−1(h(ζ)) contains a closed analytic curve in V . Such curve is
not relatively compact in V , and this contradicts properness. �
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It is not clear a priori that Σ is a complex submanifold, but we will show, following a classical

normalization procedure, that there exists a smooth Riemann surface Σ̂ such that the self-map F on

Σ can be lifted to a holomorphic automorphism F̂ on Σ̂. Note that such normalization procedure was
used in a similar context in [We03].

Lemma 4.14. For each point z ∈ Ω there is an open connected neighborhood U(z) ⊂ Ω, an affine disk
∆z ⊂ Ω through z and an injective holomorphic mapping γz : ∆z → C2 such that

(1) γz(∆z) is an irreducible local complex analytic curve which is smooth except possibly at γz(0)
where it could have a cusp singularity,

(2) γz(∆z) = g(U(z)).

Moreover, if g has rank 1 at z, then γz(∆z) is smooth and γz = g|∆z .

Proof. If g has rank 1 at z, the result follows immediately from the constant rank Theorem. So suppose
that g has rank 0 at z, and let ∆z ⊂ Ω be an affine disk through z on which g is not constant. By the
Puiseux expansion of g : ∆z → C2, it follows that, up to taking a smaller ∆z, g(∆z) is an irreducible
local complex analytic curve (with possibly an isolated cusp singularity at g(z)). Hence g(∆z) is the zero
set of a holomorphic function G defined in a open neighborhood V of g(z). Let U(z) be the connected
component of g−1(V ) containing z. We claim that G ◦ g vanishes identically on U(z), which implies that
g(U(z)) = g(∆z). If not, then (G ◦ g)−1(0) is a closed complex analytic curve in U(z) containing ∆z.
Pick a point q ∈ ∆z where locally (G ◦ g)−1(0) = ∆z. Then g−1(g(q)) is isolated at q since g is not
constant on ∆z, which gives a contradiction by Lemma 4.13.

Finally, again by the Puiseux expansion of g : ∆z → C2, there exists a holomorphic injective map
γz : ∆z → C2 such that γz(∆z) = g(∆z).

�

Remark 4.15. For all z ∈ Ω, there exists a unique surjective holomorphic map hz : U(z) → ∆z such
that g = γz ◦ hz on the neighborhood U(z). If if g has rank 1 at z, then hz|∆z

= id.

Consider the disjoint union
∐
z∈Ω ∆z, and define an equivalence relation in the following way: (x, z) '

(y, w) if and only if γz(x) = γw(y) and the images coincide locally near this point. Define Σ̂ as
∐
z∈Ω ∆z,

endowed with the quotient topology, and denote π' :
∐
z∈Ω ∆z → Σ̂ the projection to the quotient.

It is easy to see that the map π' is open. For all z ∈ Ω, define a homeomorphism πz : ∆z → Σ̂ as
πz(x) := [(x, z)].

Definition 4.16. We define a continuous map γ : Σ̂ → C2 such that γ(Σ̂) = Σ in the following way:
γ([(x, z)]) = γz(x). Notice that this is well defined. The map g : Ω → C2 can be lifted to a unique

surjective continuous map ĝ : Ω → Σ̂ such that g = γ ◦ ĝ. Such map is defined on U(z) as ĝ := πz ◦ hz.
Notice that if g has rank 1 at z then ĝ|∆z

= πz.

Lemma 4.17. The topological space Σ̂ is connected, second countable and Hausdorff.

Proof. Since Σ̂ = ĝ(Ω), and Ω is connected, it follows that Σ̂ is connected. Since ĝ is open, it follows also

that Σ̂ is second countable. Let [(x, z)] 6= [(y, w)] ∈ Σ̂. Then we have two cases. Either γz(x) 6= γw(y),
or γz(x) = γw(y) but the images do not coincide locally near this point. In both cases there exist a
neighborhood U ⊂ ∆z of x and a neighborhood V ⊂ ∆w of y such that π'(U) ∩ π'(V ) = ∅.

�

We claim that the collection of charts (πz)z∈Ω gives Σ̂ the structure of a smooth Riemann surface. Let
z, w ∈ Ω such that πz(∆z) ∩ πw(∆w) 6= ∅. Then consider the map

π−1
w ◦ πz : π−1

z (πz(∆z) ∩ πw(∆w))→ π−1
w (πz(∆z) ∩ πw(∆w)).
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Let x ∈ ∆z, y ∈ ∆w such that πz(x) = πw(y). This means that γz(x) = γw(y) and the images coincide
locally near this point. There exists an open neighborhood U ⊂ ∆z of x, an open neighborhood V ⊂ ∆w

of y, and a unique biholomorphic function k : U → V such that γw ◦ k = γz. It is easy to see that
k = π−1

w ◦ πz on U .

Remark 4.18. With the complex structure just defined on Σ̂, the maps γ and ĝ are holomorphic.

Definition 4.19. Define R ⊂ Σ̂ as the set of points ζ ∈ Σ̂ such that there exists z ∈ Ω with ĝ(z) = ζ
and rkz ĝ = 1.

Lemma 4.20. The set Σ̂ \R is discrete.

Proof. Let w ∈ Ω such that rkwĝ = 0. By the identity principle there exists a neighborhood V of w in
∆w such that rkz(hw|∆w

) = 1 for all z ∈ V \ {w}. The result follows since ĝ = πw ◦ hw on U(w), and
πw : ∆w → πw(∆w) is a biholomorphism.

�

Lemma 4.21. There exists a unique holomorphic map F̂ : Σ̂ → Σ̂ such that the following diagram
commutes:

Ω
g //

ĝ

&&MM
MMM

MMM
MMM

MM

F

��

Σ

F

��

Σ̂

γ

??��������

F̂

��

Ω
g //

ĝ

&&MM
MMM

MMM
MMM

MM Σ

Σ̂.

γ

??��������

Proof. Let ζ ∈ R, and let z ∈ Ω such that ĝ(z) = ζ and rkz ĝ = 1. Define on πz(∆z) the map F̂ :=

ĝ ◦ F ◦ π−1
z . This is well-defined and holomorphic away from the discrete closed set Σ̂ \ R, and can be

extended holomorphically to the whole Σ̂. �

The inverse of F̂ is given by F̂−1, therefore F̂ is an automorphism.

Lemma 4.22. The Riemann surface Σ̂ contains an open subset on which the sequence (F̂mk) converges
to the identity.

Proof. By Remark 4.11 there exists an open neighborhood N of z such that g(N) ⊂ Ω and for all
y ∈ g(N), Fmk(y)→ y. Then, for all y ∈ g(N),

F̂mk(ĝ(y)) = ĝ(Fmk(y))→ ĝ(y).

The set ĝ(N) is open. �

Lemma 4.23. Either there exists a j ∈ N for which F̂ j = Id, or Σ̂ is biholomorphic to a circular domain,

and the action of F̂ is conjugate to an irrational rotation.

Recall that by a circular domain we mean either the disk, the punctured disk, an annulus, the complex
plane or the punctured plane.
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Proof. Assume that F̂ j 6= Id for all j ≤ 1. Since the holomorphic map γ : Σ̂ → C2 is nonconstant, it

follows that the Riemann surface Σ̂ is not compact. Thus if Σ̂ is not a hyperbolic Riemann surface, then

it has to be biholomorphic either to C or to C∗. In both cases, since F̂ is an automorphism, it is easy

to see that Lemma 4.22 implies that F̂ is a rotation. If Σ̂ is hyperbolic, then the family (F̂n) is normal,

and thus Lemma 4.22 implies that the sequence (F̂mk) converges to the identity uniformly on compact

subsets of Σ̂. Thus the automorphism group of Σ̂ is non-discrete. Hence (see e.g. [FK92, p. 294]) the

Riemann surface Σ̂ is biholomorphic to a circular domain and the action of F̂ is conjugate to an irrational
rotation. �

Definition 4.24. Define the set I ⊂ Σ̂ × Σ̂ as the set of pairs (x, y) such that x 6= y and γ(x) = γ(y).

Define the set C ⊂ Σ̂ as the set of x such that γ : Σ̂→ C2 has rank 0 at x.

Since the map π' is open, it follows immediately that the set I is discrete in Σ̂× Σ̂ and that the set

C is discrete in Σ̂.
Our goal is to prove that the set Σ is a closed complex submanifold of Ω. We will first consider the

case where Σ̂ is biholomorphic to a circular domain and F̂ is conjugate to an irrational rotation.

Lemma 4.25. If F̂ is conjugate to an irrational rotation then there is at most one element ζ0 ∈ C. The

set I is empty, and thus the map γ : Σ̂→ Σ is injective.

Proof. The set C is invariant by F̂ . Since the action of F̂ is conjugate to an irrational rotation, and since
C is discrete it follows that C can only contain the center of rotation ζ0 (if there is one).

Similarly, the set I is invariant by the map (x, y) 7→ (F̂ (x), F̂ (y)), but this contradicts the discreteness
of I. �

Let V̂ ⊂⊂ Σ̂ \ {ζ0} be open and invariant under the action of F̂ , and let V be its image in C2, which
is an embedded complex submanifold of C2.

We claim that there exists a continuous function ϕ : V → (0,∞), bounded from above and from below
by compactness, such that

‖dz(F |V )‖ =
ϕ(z)

ϕ(F (z))
. (8)

Indeed, regardless of whether Σ̂ is a hyperbolic or Euclidean Riemann surface, there exists a conformal

metric ‖ · ‖ on Σ̂ which is invariant under F̂ . The function

ϕ(z) := ‖dzγ−1‖
satisfies (8).

Given ε > 0 and z ∈ V , we define the tangent cone Cz ⊂ Tz(C2) by

Cz = {w : |〈w, v⊥z 〉| ≤ εϕ(z)2|〈w, vz〉|},
where vz is a unit tangent vector to z ∈ V and v⊥z is a unit vector orthogonal to vz.

Lemma 4.26. One can choose ε > 0 sufficiently small so that

dzF (Cz) ⊂⊂ CF (z).

Proof. This is a matter of linear algebra. Without loss of generality we may assume that vz = vF (z) =
(1, 0). Thus, the cone field Cz contains all vectors w = (w1, w2) for which

|w2| ≤ εϕ(z)2|w1|.
The vector dzF (w) is given by

dzF (w) = (θ(z)w1 + α(z)w2, β(z)w2) ,
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where |θ(z)| = ϕ(z)
ϕ(F (z)) . Since F has constant Jacobian determinant δ it follows that

|θ(z)β(z)| = |δ|.
Since |α(z)| is bounded on V , by choosing ε sufficiently small we can guarantee that for all z ∈ V we have

1− |δ|
ϕ(F (z))ϕ(z)

> ε|α(z)|,

from which it follows that
εϕ(F (z))2|dzF (w)1| > |dzF (w)2|.

Thus, dzF sends the cone Cz strictly into CF (z). �

Lemma 4.27. Σ \ γ(ζ0) is contained in Ω.

Proof. Since F is C1, we can extend the invariant cone field to a neighborhood N (V ). Let z be a point
whose forward orbit remains in N (V ), which holds in particular for all points in V . Then there exists a
stable manifold W s(z), transverse to V , and these stable manifolds fill up a neighborhood of V , see the
reference [HPS70] for background on normal hyperbolicity.

The forward iterates of F form a normal family on this neighborhood, which implies that V is contained
in the Fatou set. �

Lemma 4.28. The set C ⊂ Σ̂ is empty, and Σ ⊂ Ω.

Proof. If Σ̂ has no center of rotation, then there is nothing to prove. Suppose for the purpose of a

contradiction that there is a center of rotation ζ0 ∈ Σ̂ and that ζ0 ∈ C.

Then Σ has a cusp at z := γ(ζ0). Notice that F (z) = z. Since F̂ acts on Σ̂ as a rotation, it follows
that the tangent direction of Σ to z is an eigenvector of dzF with eigenvalue |λ1| = 1. Since F is strictly
volume decreasing, the other eigenvalue λ2 of dzF satisfies 0 < |λ2| < 1. Thus we obtain a forward
invariant cone in Tz(C2), centered at the line Tz(Σ). Extending this cone to a constant cone field in a
neighborhood of z, it follows that we obtain stable manifolds through z and all nearby points in Σ, giving
a continuous Riemann surface foliation near the point z.

Since F̂ acts on Σ̂ as a rotation, the stable manifolds through different points in Σ must be distinct.
However, this is not possible in a neighborhood of z. To see this, let h be a locally defined holomorphic
function such that Σ equals the zero set of h near z. We may assume that h vanishes to higher order
only at z. Now consider the restriction of h to the stable manifold through z. Then h has a multiple
zero at z, hence by Rouché’s Theorem, the number of zeroes for nearby stable manifolds is also greater
than one. But since nearby stable manifolds are transverse to Σ, and h does not vanish to higher order
in nearby points, it follows that the restriction of h to nearby stable manifolds must have multiple single
zeroes. Hence these nearby stable manifolds intersect Σ in more than one point, giving a contradiction.

We conclude that C = ∅. As in the proof of the previous lemma it follows that Σ is contained in the
Fatou set, and thus in Ω. �

Corollary 4.29. The map g : Ω → Σ is a holomorphic retraction. In particular Σ is a closed smooth
one-dimensional embedded submanifold.

Proof. On Σ = g(Ω) ⊂ Ω,
g = lim

k→∞
Fmk = Id,

which proves that g is a holomorphic retraction. �

In the case where F̂ j equals the identity, it follows that F j equals the identity on Σ. In this case we
immediately get stable manifolds transverse to Σ, which imply as above that g : Ω→ Σ is a holomorphic
retraction.
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Lemma 4.30. The retraction g has constant rank 1 on Ω.

Proof. Since g is a retraction to the 1-dimensional manifold Σ, there exists a neighborhood V of Σ such
that rkxg = 1 for all x ∈ V . Let x ∈ Ω and N ≥ 0 be such that y = FN (x) ∈ V . The result follows from
the fact that FN has rank 2 and that

g ◦ FN (x) = FN ◦ g(x).

�

Remark 4.31. The stable manifolds of the points in Σ fill up a neighborhood of Σ. Since all orbits in
the Fatou component Ω get close to Σ, this implies that the stable manifolds of the points in Σ fill up
the whole Ω. Thus for any limit map h : Ω→ P2 we have that h(Ω) ⊂ Σ. Moreover, by Lemma 4.23, the
restriction h|Σ is an automorphism of Σ, and thus h(Ω) = Σ. Notice that for all z ∈ Σ the fiber g−1(z)
coincides with the stable manifold W s(z). Hence h = h|Σ ◦ g.

Remark 4.32. In the view of the contents of this section if a Fatou component Ω is recurrent then for
every z ∈ Ω the orbit is relatively compact in Ω.

Now we investigate the complex structure of Ω. Notice that Σ, being an open Riemann surface, is
Stein.

Proposition 4.33. If some iterate F j |Σ is the identity, then there exists a biholomorphism Ψ: Ω→ Σ×C
which conjugates the map F j to (z, w) 7→ (z, δjw).

Proof. Let L be the holomorphic line bundle on Σ given by Ker dg restricted to Σ. Since Σ is Stein, there
exists a neighborhood U of Σ and an injective holomorphic map h : U → L such that for all z ∈ Σ we have
that h(z) = 0z, and h maps the fiber g−1(z)∩U biholomorphically into a neighborhood of 0z in the fiber
Lz [Fo11, Proposition 3.3.2]. We can assume that dzh|Lz = idLz . Notice that the map dF j |Lz : Lz → Lz
acts as multiplication by δj . The sequence (dF |−njL ◦ h ◦ Fnj) is eventually defined on compact subsets
of Ω and converges uniformly on compact subsets to a biholomorphism Ψ: Ω → L, conjugating F j to
dF j |L : L→ L. The line bundle L is holomorphically trivial since Σ is a Stein Riemann surface.

�

If no iterate of F is the identity on Σ, then Σ is a biholomorphic to a circular domain A, and by the
same proof as in [BS91b, Proposition 6] there exists a biholomorphism from Ω to A×C which conjugates
the map F to

(z, w) 7→ (eiθz,
δ

eiθ
w).

4.4. Transcendental Hénon maps. So far in this section we have not used that the maps we study
here are of the form F (z, w) = (f(z)− δw, z). Absent of any further assumptions we do not know how to
use this special form to obtain a more precise description of recurrent Fatou components. We do however
have the following consequence of Proposition 3.2 and Theorem 4.2.

Corollary 4.34. Let F be a transcendental Hénon map, and assume that f has order of growth strictly
smaller than 1

2 . Then any recurrent periodic Fatou component Ω of rank 1 must be the attracting basin of
a Riemann surface Σ ⊂ Ω which is biholomorphic to a circular domain, and f acts on Σ as an irrational
rotation.
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5. Baker domain

A Baker domain for a transcendental function f in C is a periodic Fatou component on which the
iterates converge to the point∞, an essential singularity for f . Notice that, in contrast, every polynomial
p in C can be extended to a rational function of P1 for which ∞ is a super-attracting fixed point. The
first example of a Baker domain was given by Fatou [Fa19], who considered the function

f(z) = z + 1 + e−z (9)

and showed that the right half-plane H is contained in an invariant Baker domain.
For holomorphic automorphisms of C2 the definition of essential singularity at infinity has to be

adapted in order to be meaningful.

Definition 5.1. Let F be a holomorphic automorphism of C2. We call a point [p : q : 0] ∈ `∞ an
essential singularity at infinity if for all [s : t : 0] ∈ `∞ there exists a sequence (zn, wn) of points in C2

converging to [p : q : 0] whose images F (zn, wn) converge to [s : t : 0].

Remark 5.2. If F is a transcendental Hénon map, then any point in `∞ is an essential singularity at
infinity. To see this, it is in fact sufficient to consider only points on the line {(pζ, qζ)} when p 6= 0.
Define the entire function

g(ζ) =
f(pζ)− f(0)− δqζ

pζ
.

Since f is transcendental, the function g must also be transcendental. Let ζn be a sequence of points for
which g(ζn)→ s

t . Then

F (pζn, qζn) = (pζn · g(ζn) + f(0), pζn)→ [s : t : 0].

Here we consider the iteration of a map on C2 analogous to (9), namely the transcendental Hénon map

F (z, w) := (e−z + 2z − w, z),
and we show that it admits an invariant Fatou component U on which the iterates tend to the point
[1 : 1 : 0] on the line at infinity.

Remark 5.3. Notice that by Remark 5.2 the point [1 : 1 : 0] is an essential singularity at infinity for
the map F , and this implies that F cannot be extended, even continuously, to the point [1 : 1 : 0]. The
situation is radically different for a polynomial Hénon map H, for which the escaping set

I∞ := {(z, w) ∈ C2 : ‖Hn(z, w)‖ → ∞}
is a Fatou component on which all orbits converge to the point [1 : 0 : 0], and the map H extends to

holomorphic self-map Ĥ of P2 \ {[0 : 1 : 0]} with a super-attracting fixed point at [1 : 0 : 0].

For a transcendental function f in C it is known that Baker domains are simply connected (proper)
domains of C and by results of Cowen [Co81] (see also [BZ12, Lemma 2.1]) the function f is semi-conjugate
to one of the following automorphisms:

(1) z 7→ λz ∈ Aut(H), where λ > 1,
(2) z 7→ z ± i ∈ Aut(H),
(3) z 7→ z + 1 ∈ Aut(C).

In our case we show that on the Fatou component U the map F is conjugate to the linear map L ∈
Aut({Re(z − w) > 0}) given by

L(z, w) := (2z − w, z).
We show that the conjugacy maps U onto the domain {Re(z−w) > 0}, proving that U is biholomorphic
to H× C.
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We begin by constructing an appropriate forward invariant domain R. For each α > 0 we define the
domain

Rα := {(z, w) : Re z > Rew + α+ ηα(Rew)},
where

ηα(x) :=
e−α

1− e−α
· e−x := Aα · e−x.

Notice that ηα > 0, Aα
1+Aα

= e−α, and that the domains Rα are not nested.

Lemma 5.4. Each domain Rα is forward invariant.

Proof. Let (z0, w0) ∈ Rα. We claim that Re z1 > Rew1 + α+ ηα(Rew1). Since w1 = z0,

Re z1 − Rew1 = Re e−z0 + Re z0 − Rew0 > α+ ηα(Rew0) + Re (e−z0) ≥ α+ ηα(Rew0)− e−Re z0 .

Hence the claim follows if we show that

ηα(Rew0) ≥ ηα(Re z0) + e−Re z0 .

This is the same as Aαe
−Rew0 ≥ (1 + Aα)e−Re z0 , or equivalently e−α ≥ e−Re z0+Rew0 . The latter is

satisfied because Re z0 − Rew0 ≥ α (since ηα is always positive). �

We immediately obtain the following.

Corollary 5.5. The domain

R :=
⋃
α>0

Rα

is forward invariant.

Remark 5.6. Let (z0, w0) ∈ Rα. Since w1 = z0 we have that

Re z1 − Re z0 > α+ ηα(Re z0). (10)

It easily follows that then Re zn > Re z0 + nα, and that Rewn > Re z0 + (n− 1)α→∞.

Lemma 5.7. All the orbits in R converge uniformly on compact subsets to the point [1 : 1 : 0] on the
line at infinity.

Proof. Let K be a compact subset of Rα for some α > 0. Let M > 0. Then by Remark 5.6 we
have that |zn| and |wn| converge to ∞ uniformly on K. Moreover, since for all n ≥ 0 we have that
zn+1 − wn+1 = zn − wn + e−zn , it follows that

zn − wn = z0 − w0 +

n−1∑
j=0

e−zj ,

and thus zn
wn

converges to 1 uniformly on K.
�

The domain R is therefore contained in an invariant Fatou component U . Our next goal is to show
that R is an absorbing domain for U , i.e.

U = A :=
⋃
n∈N

F−n(R).

It is immediate that A is contained in U . In order to show that U is not larger than A, we will for the
first time use the plurisubhamonic method referred to in the introduction.
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Definition 5.8. Define the sequence of pluriharmonic functions (un : U → R)n≥1 by

un(z0, w0) :=
−Re (zn)

n
.

Lemma 5.9. The functions un are uniformly bounded from above on compact subsets of U , and

lim sup
n→+∞

un ≤ 0.

Proof. Let K be a compact subset of U . Since U is a Fatou component, on K the orbits converge
uniformly to [1 : 1 : 0]. So for every ε > 0 there exists nε ≥ 0 such that∣∣∣∣ znzn−1

∣∣∣∣ =

∣∣∣∣ znwn
∣∣∣∣ < 1 + ε, (11)

for all n > nε and for all (z0, w0) ∈ K. It follows that for every ε > 0 there exists C = Cε such that

max{|zn|, |wn|} ≤ C · (1 + ε)n (12)

for every n ∈ N and for all (z0, w0) ∈ K. Let β > 0. We claim that there exists an N > 0 so that un < β
on K for every n ≥ N . To prove this claim, let us suppose by contradiction that there exist a sequence
(zk0 , w

k
0 )k∈N in K and a strictly increasing sequence (n(k))k∈N in N such that

un(k)(z
k
0 , w

k
0 ) ≥ β

for all k ∈ N. Then Re(zkn(k)) ≤ −n(k) · β. It follows that

|zkn(k)+1| = |e
−zkn(k) + 2zkn(k) − w

k
n(k)|

≥ |e−z
k
n(k) | − |2zkn(k) − w

k
n(k)|

≥ en(k)·β − 3C(1 + ε)n(k).

By taking ε > 0 sufficiently small so that eβ > (1 + ε), we obtain, for k sufficiently large,

|zkn(k)+1| > C(1 + ε)n(k)+1,

which contradicts (12).
The claim implies that there is a uniform bound from above for the functions un on K, and that

lim sup
n→∞

un ≤ 0,

which completes the proof. �

Lemma 5.10. Let H be a compact subset of A. Then there exists γ > 0 such that on H,

lim sup
n→+∞

un ≤ −γ.

Proof. Let K be a compact subset of Rα for some α > 0. Then by Remark 5.6 we have,

un(z0, w0) < −Re z0

n
− α, ∀ (z0, w0) ∈ K,n ≥ 1,

which implies that lim supn→+∞ un(z0, w0) ≤ −α for all (z0, w0) ∈ K.
Let now H be a compact subset in A. Then there exist α1, . . . , αk > 0 and n1, . . . , nk ∈ N such that

H ⊂ F−n1(Rα1
) ∪ · · · ∪ F−nk(Rαk).

Thus, on H,
lim sup
n→+∞

un ≤ max{−α1, . . . ,−αk}.

�
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Lemma 5.11. On U \A, lim supn→+∞ un = 0.

Proof. Let (z0, w0) ∈ U \ A. Suppose by contradiction that there exists α > 0 and N ∈ N such that
un(z0, w0) ≤ −α for all n ≥ N , that is,

Re zn
n
≥ α, ∀n ≥ N.

Let n0 ≥ 0 be such that ηα/3(Re zn) < α/3 for all n > n0. For all 0 < β < α there are arbitrarily large n
such that Re zn+1 − Re zn ≥ β. Setting β := 2α/3, there exists n ≥ n0 such that

Re zn+1 − Re zn > 2α/3 > α/3 + ηα/3(Re zn),

which implies that (zn+1, wn+1) ∈ Rα/3.
�

Proposition 5.12. The set R is an absorbing domain.

Proof. Let us assume, for the purpose of a contradiction, that U 6= A. Define

u(z) := lim sup
n→+∞

un(z)

and let u? be its upper semicontinuous regularization. Then by [Kl91, Prop 2.9.17] the function u? is
plurisubharmonic. By Lemma 5.10 and 5.11 the function u? is strictly negative on A, and constantly equal
to zero on U \A. But then u? contradicts the sub-mean value property at boundary points ζ ∈ ∂A. �

Remark 5.13. It is easy to see that for all n ∈ Z, (z, w) ∈ C2,

Ln(z, w) = ((n+ 1)z − nw, nz − (n− 1)w).

Definition 5.14. We denote by Ω the domain {(z, w) ∈ C2 : Re (z−w) > 0}, which is biholomorphic to
H× C.

Theorem 5.15. There exists a biholomorphism ψ : U → Ω which conjugates F to the map L. In
particular U is biholomorphic to H× C.

Proof. We will construct the map ψ as the uniform limit on compact subsets of U of the maps

ψn := L−n ◦ Fn : U → C2.

Notice that for all n > 1, the mapping ψn is an injective volume-preserving holomorphic mapping. We
have

δn(z0, w0) := ‖L−n−1(Fn+1(z0, w0))− L−n(Fn(z0, w0))‖
= ‖L−n

(
L−1F (zn, wn)− (zn, wn)

)
‖

= ‖L−n(0,−e−zn)‖

= ‖(−ne−zn , (−n− 1)e−zn)‖ ≤
√

2(n+ 1)e−Re zn .

By Remark 5.6, on Rα √
2(n+ 1)e−Re zn ≤

√
2(n+ 1)e−Re z0−nα,

Hence for all (z0, w0) ∈ Rα, we have
∑∞
k=0 δn(z0, w0) < +∞, and thus the sequence (ψn)n≥0 converges

uniformly on compact subsets of R to an injective volume-preserving (see Lemma 4.7) holomorphic
mapping ψ : R→ C2, satisfying

L ◦ ψ = ψ ◦ F. (13)

Since R is an absorbing domain, ψ extends to an injective volume-preserving holomorphic mapping (still
denoted by ψ) defined on the whole Fatou component U and still satisfying (13). We claim that ψ(U) = Ω.
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We first show that ψ(U) ⊂ Ω. Let (z0, w0) be in Rα. Notice that the Euclidean distance d(Rα,Ω
{) > 0.

We claim that

lim
n→∞

‖ψ(zn, wn)− (zn, wn)‖ = 0.

Indeed,

‖ψ(zn, wn)− (zn, wn)‖ ≤
∞∑
j=0

‖ψj+1(zn, wn)− ψj(zn, wn)‖ =

∞∑
j=0

‖δj(zn, wn)‖ ≤
√

2

∞∑
j=0

(j + 1)e−Re (zn+j),

and the claim follows since Re zn+j ≥ Re z0 + (n+ j)α. Hence, if n is large enough, ψ(zn, wn) ∈ Ω. Since
Ω is completely invariant under L and U is completely invariant under F , it follows that ψ(U) ⊂ Ω.

What is left is to show that Ω ⊂ ψ(U). Let (x0, y0) ∈ Ω, and write (xn, yn) := Ln(x0, y0). By
definition of Ω we have that β := Re(x0 − y0) > 0. Note that Re(xn − yn) also equals β, and that
Re(xn),Re(yn)→∞. Let 0 < α < β. Recalling that ηα(x)→ 0 as x→ +∞ it follows that (xn, yn) ∈ Rα
for all n ∈ N sufficiently large. In fact, there exists an r > 0 and an N ∈ N such that Rα contains the
closed ball B((xn, yn), r) for all n ≥ N . We claim that

lim
n→∞

‖ψ − Id‖B((xn,yn),r) = 0.

Indeed, for all n ∈ N,

‖ψ−Id‖B((xn,yn),r) ≤
∞∑
j=0

‖ψj+1−ψj‖B((xn,yn),r) =

∞∑
j=0

‖δj‖B((xn,yn),r) ≤
√

2

∞∑
j=0

(j+1)‖e−Re (π1◦F j)‖B((xn,yn),r).

Assume now that n ≥ N . Since B((xn, yn), r) ∈ Rα we have that for all (x, y) ∈ B((xn, yn), r),

e−Reπ1(F j(x,y)) ≤ e−Re x−jα ≤ e−Re x0−(n+j)α+r,

where the last inequality follows from the fact that for all n ∈ N and (x, y) ∈ B((xn, yn), r) we have
Rex ≥ Rex0 + nα− r. This proves the claim.

Let n ≥ N be such that ‖ψ − Id‖ ≤ r
2 on B((xn, yn), r). By Rouché’s Theorem in several complex

variables it follows that (xn, yn) ∈ ψ(B((xn, yn), r)) ⊂ ψ(U). Since Ω is completely invariant under L
and U is completely invariant under F , it follow that (x0, y0) ∈ ψ(U).

�

6. Escaping wandering domain

Definition 6.1. Let F be a transcendental Hénon map. A Fatou component Ω is a wandering domain
if it is not preperiodic. A wandering domain

(1) is escaping if all orbits converge to the line at infinity,
(2) is oscillating if there exists an unbounded orbit and an orbit with a bounded subsequence,
(3) is orbitally bounded if every orbit is bounded.

For polynomials in C it is known that wandering domains cannot exist [Su85]. For transcendental
functions there are examples of escaping wandering domains. [Ber93] uses for example the function
f(z) = z + λ sin(2πz) + 1 for suitable λ. There are also examples of oscillating wandering domains
([EL87], [Bi15]), and it is an open question whether orbitally bounded wandering domains can exist.

It follows from the existence of the filtration that a polynomial Hénon map does not admit any escaping
or oscillating wandering domain. In the remainder of the paper we will give examples of both escaping
and oscillating wandering domains for transcendental Hénon maps. The existence of orbitally bounded
wandering domains is an open question for both polynomial and transcendental Hénon maps.
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We start with the escaping case, and we will be inspired by the construction of escaping wandering
domains for transcendental functions. Similar to [Ber93] we will use functions of the form

f̃(z) = z + sin(2πz) + λ

with appropriate values of λ. It will be convenient for us to take the constant λ such that we obtain an
escaping orbit, all consisting of critical points. Note that

f̃ ′(z) = 1 + 2π cos(2πz).

The critical points of f̃ are therefore the points that satisfy

cos(2πz) =
−1

2π
. (14)

A computation gives that f̃ has two distinct bi-infinite sequences of critical points

cn,+ := α+ n with sin(2πcn,+) = +

√
1− 1

4π2

cn,− := −α+ n with sin(2πcn,−) = −
√

1− 1

4π2

for the appropriate value of 1
4 < α < 1

2 given by solving (14).
Note that the set of critical points is invariant under translation by 1. By taking

λ = 1−
√

1− 1

4π2
,

f̃ acts as a translation by 1 on the sequence cn,+.

For simplicity of notation we consider the map f obtained by conjugating f̃ with a real translation by
α+ 1

4 , so that the critical points cn,+ for f̃ are mapped to critical points zn = n for f . Thus, f will act
on Z as a translation by 1, and f commutes with translation by 1.

Consider the function g(z) := f(z) − 1, which commutes with f and with the translation by 1. For
the function g each point zn is a super-attracting fixed point. For all n ∈ Z denote by Bn the immediate
basin for g of the point zn. Clearly the basins Bn are disjoint, Bn+1 = Bn + 1, and f(Bn) ⊂ Bn+1. If
one shows that each Bn is also a Fatou component for f , then clearly each Bn is an escaping wandering
domain for f .

There are two classical ways in one dimensional complex dynamics to show that each zn belongs to
a different Fatou component for such a function f . One is by constructing curves in the Julia set that
separate the points zn [De94, p. 183], and the other one is by showing that any two commuting maps
which differ by a translation have the same Julia set [Ba84, Lemma 4.5]. The first kind of argument
is typically unavailable in higher dimensions. The proof we present is an ad hoc version of the second
argument. We will define transcendental Hénon maps F,G : C2 → C2 which behave similarly to f, g,
then use G to show that the norm of the differentials dGn and dFn at points on the boundaries of the
attracting basins for G grow exponentially in n, and finally use the latter information to imply that those
boundaries must be contained in the Julia set for F . Since the attracting basins are disjoint for G, the
corresponding sets are disjoint for F , giving a sequence of wandering domains.

Let us define the Hénon map

F (z, w) = (f(z) + δ(z − 1)− δw, z),

where f is as constructed before and δ > 0 is some constant to be suitably chosen later. Since f commutes
with translation by 1, the map F commutes with translation by (1, 1). Moreover, on the sequence of
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points (n, n− 1) the map F acts as a translation by (1, 1). We also define the map

G(z, w) := F (z, w)− (1, 1).

Hence the points Pn = (n, n− 1) are all fixed points of G. Since the points zn are critical points of f , we
can choose δ sufficiently small so that the fixed points Pn = (n, n−1) are attracting for G. Denote by An
the attracting basin of the point Pn, which is biholomorphic to C2. It is easy to see that An+1 = An+(1, 1)
and that F (An) = An+1. We claim that each An is also a Fatou component for F , and thus each (An)
is an escaping wandering domain. We first need a Lemma.

Lemma 6.2. Let 0 < λ < 1, and let (ξn : D→ C) be a sequence of holomorphic functions satisfying

|ξn(z)| < λn

for all z ∈ D. Let 0 < β < 1. Then

|ξ(k)
n (0)| < k! · βk

for

k <
n

logλ(β)
.

Proof. It follows from the Cauchy estimates since the assumption on k is equivalent to

λn < βk.

�

Theorem 6.3. Let F be a transcendental Hénon map that commutes with a translation T = T(1,1). Write

G := T−1 ◦ F,

assume that G has an attracting fixed point Q, and denote its basin of attraction by A. Then A is also a
Fatou component of F .

Proof. Notice that (T k(Q)) is an F -orbit converging to the point [1 : 1 : 0] on the line at infinity. Since
Fn = Tn ◦Gn for all n ∈ N, it follows that the F -orbits of all points in A converge to [1 : 1 : 0]. Hence
A is contained in a Fatou component Ω of F . We show that Ω equals A by proving that all boundary
points of A are contained in the Julia set of F .

Without loss of generality we may assume that the point Q is the origin. Let P ∈ ∂A. Since P /∈ A,
its G-orbit avoids some definite ball centered at (0, 0), hence there exists 0 < µ < 1 for which

‖Gn(P )‖ ≥
∞∑
k=0

µk

for all n ∈ N. For each n we can choose an orthogonal projection πn onto a complex line through (0, 0)
so that

|πn(Gn(P ))| ≥
∞∑
k=0

µk.

Let ϕ : C → C2 be an affine embedding for which P ∈ ϕ(D) and ϕ(0) ∈ A. We will show that for
any choice of ϕ the derivatives of Gn ◦ ϕ grow exponentially fast for some point in the disk D(0, η),
where η > 1

µ is chosen independently of ϕ. This will imply that some point in ϕ(D(0, η)) is contained

in the Julia set of F . Since ϕ is arbitrary, one can choose ϕ(D(0, η)) to be contained in arbitrarily small
neighborhoods of P , giving a sequence of points Zn → P belonging to the Julia set of F . Since the latter
is closed, the statement of the theorem follows.
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We consider the sequence of maps ψn : C→ C defined by

ψn := πn ◦Gn ◦ ϕ.

Let r > 0 be such that ϕ(D(0, r)) ⊂⊂ A0. Then there exist C > 0 and λ < 1 so that

‖ψn‖D(0,r) < C · λn.

By instead defining

ψn = πn ◦Gn+N ◦ ϕ.
for some large integer N ∈ N we may assume that

‖ψn‖D(0,r) < λn.

By defining the maps ξn(z) := ψn(r · z) we obtain a sequence of maps (ξn : D → C) that satisfy the
conditions of Lemma 6.2, which we apply with β := µ · r. Hence

|ξ(k)
n (0)| < k!µkrk for k <

n

logλ(µr)
,

which implies that

|ψ(k)
n (0)| < k!µk for k <

n

logλ(µr)
. (15)

Writing ζ = ϕ−1(p) ∈ D, we also have that

|ψn(ζ)| ≥
∞∑
k=0

µk (16)

for all n. Writing

ψn(z) =

∞∑
k=0

akz
k,

by (16) there is at least one k ∈ N for which

|ak| ≥ µk,

and by (15), k ≥ n
logλ(µr) . Putting things together we get

|ψ(k)
n (0)| ≥ k!µk for some k ≥ n

logλ(µr)
.

Let η > 1
µ . By Cauchy estimates this implies the existence of a z∗ ∈ D(0, η) for which

|ψ′n(z∗)| >
ηk−1µkk!

(k − 1)!
≥ CΛn,

where Λ = (ηµ)
1

logλ(µr) > 1 and C > 0 is constant. Denote P∗ := ϕ(z∗). Since ‖πn‖ = 1 we get, up to
changing C,

‖dP∗(Gn)‖ ≥ CΛn.

It follows from Fn = Tn ◦Gn that

‖dP∗(Fn)‖ ≥ CΛn. (17)

We now show that a point in ϕ(D(0, η)) is contained in the Julia set of F . Assume for the purpose of
a contradiction that ϕ(D(0, η)) is contained in the Fatou component Ω. It follows that Fn → [1 : 1 : 0]
uniformly on a neighborhood U of P∗.
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Consider the affine chart of P2 defined as [z : w : t] 7→ (w/z, t/z) defined on {z 6= 0}. On {z 6= 0}∩{t 6=
0} such chart has the expression H(z, w) = (w/z, 1/z). The sequence (H ◦ Fn : U → C) is defined for n
large enough and converges uniformly to the point (1, 0) ∈ C2. Hence, denoting P∗ := (z0, w0),

d(zn,wn)H ◦ d(z0,w0)(F
n) = d(z0,w0)(H ◦ Fn)→ 0. (18)

We have that

(d(zn,wn)H)−1 =

(
0 −z2

n

zn −wnzn

)
.

Since (zn, wn) → [1 : 1 : 0], arguing as in (12) we obtain that for every ε > 0 there exists C ′ > 0 such
that

1

‖(d(zn,wn)H)−1‖
≥ 1

C ′
1

(1 + ε)n
,

and thus

‖d(zn,wn)H ◦ d(z0,w0)(F
n)‖ ≥

‖d(z0,w0)(F
n)‖

‖(d(zn,wn)H)−1‖
≥ C

C ′
Λn

(1 + ε)n
.

Hence if ε is small enough, this contradicts (18).
�

7. Oscillating wandering domain

We show in this section the existence of a transcendental Hénon map with an oscillating wandering
domain biholomorphic to C2.

Notice that, up to a linear change of variables, any transcendental Hénon map can be written in the
alternative form F (z, w) = (f(z) + aw, az), where f is a transcendental function and a 6= 0. We will
consider maps of the form

F (z, w) := (f(z) + aw, az), f(z) := bz +O(|z|2),

where a, b ∈ R, a < 1, are such that the origin is a saddle point. For example, since the eigenvalues of
d0F are

λ =
b±
√
b2 + 4a2

2
,

we can pick a = 1/2, and b = 1 to obtain λs = 1−
√

2
2 , λu = 1+

√
2

2 .
We will construct F as the uniform limit on compact subsets of a sequence of automorphisms Fk(z, w) :=

(fk(z) + aw, az) with the same value for a and b. We note that for transcendental Hénon maps
F (z, w) = (f(z) + aw, az), G(z, w) = (g(z) + aw, az) and any subset A ⊂ C we have

‖f − g‖A = ‖F −G‖A×C.

Proposition 7.1. There exists a sequence of entire maps

Fk(z, w) = (fk(z) + aw, az), fk(z) = bz +O(|z|2), k = 0, 1, 2, . . .

a sequence of points Pn = (zn, wn), where n = 0, 1, 2, . . . , sequences Rk →∞, 0 < εk ≤ 1
2k

and βn → 0, a
decreasing sequence θk → 0, and strictly increasing sequences of integers {nk}, {n′k} with nk < n′k < nk+1,
such that the following five properties are satisfied:

(i) ‖Fk − Fk−1‖D(0,Rk−1)×C ≤ εk for all k ≥ 1;
(ii) Fk(Pn) = Pn+1 for all 0 ≤ n < nk;

(iii) Fk(B(Pn, βn)) ⊂⊂ B(Pn+1, βn+1) for all 0 ≤ n < nk, where βn ≤ θρ
2 for all 0 ≤ n ≤ nk;

(iv) |zn| < Rk − θρ for all 0 ≤ n < nk, and |znk | > Rk + 5θk;
(v) Pj ∈ B(0, 1

k ) for some j with nk−1 ≤ j ≤ nk, for all k ≥ 1.
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Here ρ := ρ(n) denotes the unique integer for which n′ρ−1 ≤ n < n′ρ, using n′−1 = 0.

Before proving this proposition, let us show that it implies the existence of a wandering Fatou com-
ponent. By (i), the maps Fk converge uniformly on compact subsets to a holomorphic automorphism
F (z, w) = (f(z) + aw, az). By (ii), (iv) and (v) it follows that (Pn) is an oscillating orbit for F , that is,
it is unbounded and it admits a subsequence converging to the origin. Since by (iii) for all j ∈ N the
iterate images of B(Pj , βj) have uniformly bounded Euclidean diameter (in fact, the diameter goes to
zero), each ball B(Pj , βj) is contained in the Fatou set of F .

Lemma 7.2. If i 6= j, then Pi and Pj are in different Fatou components of F , and hence F has an
oscillating wandering domain.

Proof. For all j ∈ N, denote Ωj the Fatou component containing B(Pj , βj). Since βn → 0 as n→∞, by
(iii) and by identity principle it follows that all limit functions on each Ωj are constants.

Assume j > i and let k = j − i. Let N (0) be a neighborhood of the origin that contains no periodic
points of order less than or equal to k. Since the orbit (Pn) enters and leaves a compact subset of N (0)
infinitely often, there must be a subsequence (nj) for which Pnj converges to a point z ∈ N (0)\{0}. But

then Pnj+k converges to F k(z) 6= z, which implies that Pi and Pj cannot be contained in the same Fatou
component. �

We will prove Proposition 7.1 by induction on k. We start the induction by letting R0 := 1, θ0 := 1,
β0 := 1

2 and P0 := (z0, w0) with |z0| > 6. We set F0(z, w) := (bz + aw, az) and n0 := 0.
Let us now suppose that (i)-(v) hold for certain k, and let us proceed to define Fk+1 and the points

(Pn)nk<n≤nk+1
. This is done in two steps. The first step relies upon the classical Lambda Lemma 7.3:

Lemma 7.3 (Lambda Lemma, see e.g. [PdM82]). Let G be a holomorphic automorphism of C2 with a
saddle fixed point at the origin. Denote by W s(0) and Wu(0) the stable and unstable manifolds respec-
tively. Let p ∈W s(0) \ {0} and q ∈Wu(0) \ {0}, and let D(p) and D(q) be holomorphic disks through p
and q, respectively transverse to W s(0) and Wu(0). Let ε > 0. Then there exists N ∈ N and N1 > 2N+1,
and a point x ∈ D(p) with GN1(x) ∈ D(q) such that ‖Gn(x)−Gn(p)‖ < ε and ‖GN1−n(x)−G−n(q)‖ < ε
for 0 ≤ n ≤ N , and ‖Gn(x)‖ < ε when N < n < N1 −N .

Using the Lambda Lemma we find a finite Fk-orbit (Qj)0≤j≤M , the new oscillation, which goes inward
along the stable manifold of Fk, reaching the ball B(0, 1

k+1 ), and then outwards along the unstable
manifold of Fk.

The second step of the proof relies upon another classical result:

Lemma 7.4 (Runge approximation). Let K ⊂ C be a polynomially convex compact subset (recall that
K is polynomially convex if and only if C \K is connected). Let h ∈ O(K), and let {pi}0≤i≤q be a set of
points in K. Then for all ε > 0 there exists an entire holomorphic function f ∈ O(C) such that

‖f − h‖K ≤ ε

and such that

f(pi) = h(pi), f
′(pi) = h′(pi) ∀ 0 ≤ i ≤ q.

Using Runge approximation we find a map Fk+1 connecting the previously constructed finite orbit
(Pn)0≤n≤nk with the new oscillation (Qj)0≤j≤M via a finite orbit along which Fk+1 is sufficiently con-
tracting. The contraction neutralizes possible expansion along the new oscillation (Qj)0≤j≤M , and we
refer to this connecting orbit as the contracting detour.
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Figure 2. The first coordinates of the orbit (Pn).

7.1. Finding the new oscillation.

Lemma 7.5. There exist a finite Fk-orbit (Qj) := (z′j , w
′
j)0≤j≤M intersecting the ball B(0, 1

k+1 ) and a
small enough θk+1 > 0 such that the three disks

D(znk , θk), D(w′0/a, θk+1), D(z′M , θk+1)

are pairwise disjoint, and disjoint from the polynomially convex set

K := D(0, Rk) ∪
⋃

0≤i<M

D(z′i, θk+1).

Proof. Let (ϕs, ψs) : C→W s
Fk

(0, 0) be linearizing coordinates for the stable manifold of the map Fk. Let
ζ ∈ C be a point with minimal absolute value such that

|ψs(ζ)| = a(|znk | − 4θk).

It is easy to see that

|ψs(η)| < |ψs(ζ)|, ∀η : |η| < |ζ|. (19)

Setting (u0, v0) := (ϕs(ζ), ψs(ζ)), by definition we have

|v0|
a

= |znk | − 4θk.

Moreover, the forward orbit (ui, vi) satisfies

|vi| = |ψs(λis · ζ)| < |v0|, ∀i ≥ 1,

and since |ui| = |vi+1|
a it follows that

|ui| < |znk | − 4θk, ∀i ≥ 0.

Similarly, we find a point (s0, t0) in the unstable manifold Wu
Fk

(0, 0) whose backwards orbit (s−i, t−i)
satisfies |s−i| < |s0| and for which

|s0| = |znk | − 2θk.

By taking an arbitrarily small perturbation of (s0, t0), we can make sure that the discrete sequence (si)
avoids the value v0

a .
Consider arbitrarily small disks D1 centered at (u0, v0) and D2 centered at (s0, t0) transverse to the

stable respectively the unstable manifold. It follows from the Lambda Lemma 7.3 that there exists a
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finite Fk-orbit (Qj) := (z′j , w
′
j)0≤j≤M which intersects the ball B(0, 1

k+1 ) with Q0 ∈ D1 and QM ∈ D2.

If all the perturbations are chosen small enough, then the sequence (z′j)0≤j≤M avoids the disk D(znk , θk)

and the point
w′0
a . Setting θk+1 > 0 small enough completes the proof. �

7.2. Connecting the orbits via the contracting detour. By continuity of Fk there exist constants

0 < β̃j ≤ θk+1

2 for all 0 ≤ j ≤M such that

Fk(B(Qj , β̃j)) ⊂⊂ Fk(B(Qj+1, β̃j+1)), 0 ≤ j < M.

To control the contraction we will need the following Lemma, a direct consequence of the formula of
transcendental Hénon maps.

Lemma 7.6. Let f ∈ O(C) and let F (z, w) := (f(z) + aw, az). Choose a′, a′′ such that

0 < a′′ < a < a′ < 1,

and let D1 ⊂⊂ D2 ⊂ C two open disks. Then there exists α > 0 such that if we have ‖f − s‖D2
≤ α, for

some constant s ∈ C, then

a′′‖(z, w)− (z′, w′)‖ ≤ ‖F (z, w)− F (z′, w′)‖ ≤ a′‖(z, w)− (z′, w′)‖, ∀z, z′ ∈ D1.

Fix 0 < a′′ < a < a′ < c < 1 and let N > 0 be such that

cN · βnk < β̃0. (20)

We now construct the contracting detour, starting at Pnk and ending at Q0, obtaining a contraction
by at least the factor cN . Choose a family of points {z′′j }0≤j≤N ⊂ C such that

(1) z′′0 = znk , z
′′
N =

w′0
a ,

(2) |z′′j | > |znk |+ 2 for all 1 ≤ j ≤ N − 1,
(3) |z′′j − z′′i | > 2, for all 0 ≤ i 6= j ≤ N − 1.

Let Rk+1 > 0 be such that

Rk+1 > |z′′j |+ θk, ∀0 ≤ j ≤ N, and Rk+1 > |z′j |+ θk+1, ∀0 ≤ j ≤M. (21)

Define w′′0 := wnk and w′′j := az′′j−1 for all 1 ≤ j ≤ N , and consider the points {Tj}1≤j≤N ⊂ C2 defined
as

Tj := (z′′j , w
′′
j ).

By the choice of the points (z′′j ) and by Lemma 7.5 it follows that the disks

(D(z′′j , θk))0≤j<N , D(w′0/a, θk+1), D(z′M , θk+1)

are pairwise disjoint, and disjoint from the polynomially convex set K. Let H denote the union of such
disks.

We define a holomorphic function on the polynomially convex set K ∪H in the following way:

(1) h coincides with fk on K,
(2) h|D(z′′j ,θk) is constantly equal to z′′j+1 − aw′′j for all 0 ≤ j < N ,

(3) h|D(w′0/a,θk+1) is constantly equal to z′0 − aw′′N ,
(4) h|D(z′M ,θk+1) is constantly equal to some value A > Rk+1 + 5θk+1.

By the Runge approximation Lemma 7.4 there exists a function fk+1 ∈ O(C) such that

(1) fk+1(0) = h(0) = 0, f ′k+1(0) = h′(0) = b,
(2) fk+1(zj) = h(zj) for all 0 ≤ j < nk,
(3) fk+1(z′j) = h(z′j) for all 0 ≤ j ≤M ,
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(4) fk+1(z′′j ) = h(z′′j ) for all 0 ≤ j ≤ N ,
(5) ‖fk+1 − h‖K∪H < εk+1.

where εk+1 ≤ 1
2k+1 , and εk+1 is also smaller than the minimum of the constants α given by Lemma 7.6

for the following pairs of disks:

(1) D(z′′j ,
θk
2 ) ⊂⊂ D(z′′j , θk) for all 0 ≤ j < N ,

(2) D(w′0/a,
θk+1

2 ) ⊂⊂ D(w′0/a, θk+1),

(3) D(z′M ,
θk+1

2 ) ⊂⊂ D(z′M , θk+1).

Define Fk+1(z, w) := (fk+1(z) + aw, az). It is easy to see that the sequences of points

(Pn)0≤n≤nk , (Tj)1≤j≤N , (Qj)0≤j≤M

form an Fk+1-orbit, that is, the contracting detour (Tj)1≤j≤N connects the old and new pieces of orbit.
Set

n′k := nk +N + 1, nk+1 := n′k +M + 1,

so that Pn′k := Q0, and Pnk+1
:= Fk+1(QM ). Define

βnk+` := βnk · c`, ∀ 0 ≤ ` ≤ N,

βn′k+` := β̃`, ∀ 0 ≤ ` ≤M.

It is easy to see that, up to taking a smaller εk+1, the map Fk+1 satisfies property (iii). Property (iv)
follows from (21) and from A > Rk+1 +5θk+1. Since by construction the new piece of orbit (Qj) intersects
the ball B(0, 1

k+1 ), property (v) is satisfied. Thus Proposition 7.1 is proved, completing the proof of the
existence of an oscillating wandering domain.

7.3. Complex structure. We will now prove that, by making the contracting detours sufficiently long,
the oscillating wandering domains can be guaranteed to be biholomorphically equivalent to C2. We
denote the Fatou component containing P0 by Ω.

We have constructed an orbit (Pn) and a sequence of radii (βn) such that

F (B(Pn, βn)) ⊂⊂ B(Pn+1, βn+1).

Define the calibrated basin
Ω(Pn),(βn) :=

⋃
n∈N

F−n(B(Pn, βn)),

and notice that it is contained in Ω.

Lemma 7.7. We can guarantee that the calibrated basin Ω(Pn),(βn) is biholomorphic to C2.

Proof. For all n ≥ 0, let Hn ∈ Aut(C2) be defined by Hn(z) := Pn + βn · z. For all m ≥ n ≥ 0, define

F̃m,n := H−1
m ◦ Fm−n ◦Hn.

Then for all n ≥ 0, we have that F̃n+1,n(B2) ⊂ B2 and F̃n+1,n(0) = 0. It is easy to see that the calibrated

basin Ω(Pn),(βn) is biholomorphic to the set Ω̃ :=
⋃
n∈N F̃

−1
n,0(B2).

If n ∈ N belongs to a contracting detour, then

a′′

c
‖x‖ ≤ ‖F̃n+1,n(x)‖ ≤ a′

c
‖x‖, ∀x ∈ B2, (22)

where we can assume that a′2 < a′′. If this was the case for every n then it would follow immediately
that the maps

Φn := (d0F̃0,n)−1 ◦ F̃0,n

converge to a biholomorphism from the calibrated basin to C2, see for example [Wo05].
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While we cannot guarantee that equation (22) with a′2 < a′′ holds outside of the contracting detours,
by making the contracting detours sufficiently long we can still ensure that Φn converges uniformly on
compact subsets to a biholomorphism Φ: Ω̃→ C2, compare for example Theorem 1.3 of [PW05].

�

We will now show, again by using the plurisubharmonic method, that the wandering Fatou component
Ω can be forced to be equal to the calibrated basin. Consider the sequence of plurisubharmonic functions
gn on C2 given by

gn(z, w) :=
log ‖Fn(z, w)− Pn‖

n
.

Lemma 7.8. We can guarantee that the functions gn converge to log a on Ω(Pn),(βn) \ {P0}.

Proof. Take sufficiently many contractions that are sufficiently close to multiplication by a. �

Recall from induction hypothesis (v) in Proposition 7.1 that for every k there exists an integer j = jk ∈
(nk−1, nk) with ‖Pj‖ < 1

k . In particular the subsequence (Pjk) is bounded. Since every limit function of
(Fn) on the Fatou component Ω is constant, it follows that for all (z, w) ∈ Ω we have

‖F jk(z, w)− Pjk‖ → 0

As a consequence, we have that (gjk) is locally uniformly bounded from above and that for all (z, w) ∈
Ω,

lim sup
k→∞

gjk(z, w) ≤ 0.

Lemma 7.9. We can guarantee that gjk → 0 on Ω \ Ω(Pn),(βn), uniformly on compact subsets.

Proof. Recall that in the construction of the wandering Fatou component the radius θjk is determined
before the length of the contracting detour. By making the contracting detour sufficiently long, we can
guarantee that jk is as large as we want. For points (z0, w0) ∈ Ω \ Ω(Pn),(θn) we have that

‖(zjk , wjk)− Pjk‖ ≥ θjk .

Thus, by making the contracting detours sufficiently long, we can guarantee that gjk > −εk on Ω \
Ω(Pn),(θn) for any εk ↘ 0. The conclusion follows. �

Proposition 7.10. With the previous choices, the wandering Fatou component Ω equals the calibrated
basin Ω(Pn),(θn), and is thus biholomorphically equivalent to C2.

Proof. Suppose by contradiction that Ω 6= Ω(Pn),(θn). Let h be the upper-semicontinuous regularization
of limk→∞ gnk . Clearly h ≡ log a on Ω(Pn),(θn) and h ≡ 0 on Ω \ Ω(Pn),(θn). Then by [Klimek, Prop
2.9.17] the function h is plurisubharmonic, and the submean value property at any ζ ∈ ∂Ω(Pn),(θn) gives
a contradiction. �
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