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Muon spin rotation experiments involve muons that experience zero-point vibration at their implantation sites.
Quantum-mechanical calculations of the host material usually treat the muon as a point impurity, ignoring its
zero-point vibrational energy that, however, plays a role in determining the stability of calculated implantation
sites and estimating physical observables. As a first-order correction, the muon zero-point motion is usually
described within the harmonic approximation, despite the anharmonicity of the crystal potential. Here we
apply the stochastic self-consistent harmonic approximation, a quantum variational method devised to include
anharmonic effects in total energy and vibrational frequency calculations, in order to overcome these limitations
and provide an accurate ab initio description of the quantum nature of the muon. We applied this full quantum
treatment to the calculation of the muon contact hyperfine field in textbook-case metallic systems, such as Fe,
Ni, Co including MnSi and MnGe, improving agreement with experiments. Our results show that there are
anharmonic contributions to the muon vibrational frequencies with the muon zero-point energies above 0.5 eV.
Finally, in contrast to the harmonic approximation, we show that including quantum anharmonic fluctuations,
the muon stabilizes at the octahedral site in bcc Fe.

DOI: 10.1103/PhysRevMaterials.3.073804

I. INTRODUCTION

In muon spin rotation (μSR) experiments, spin-polarized
positive (anti)muons are used to probe the microscopic field
distribution at the interstitial site(s) where the μ+ stop inside
the sample under investigation. The extreme sensitivity of
the muon to small magnetic fields as well as the absence of
quadrupolar coupling makes this technique very effective in
probing magnetic orders, offering a valuable alternative to
neutron scattering. This approach, which shares many simi-
larities with nuclear magnetic resonance, has the advantage
of being applicable to virtually any material, but it has the
drawback that the interstitial sites where the muon stops and
the nature of muon interaction with the host are generally
unknown. Here we discuss an improved method to tackle this
problem based on computational chemistry methods.

An accurate, ab initio, description of the electron-muon
interaction in periodic solids has been out of reach until a
few years ago. The dramatic increase of both the computa-
tional power and the accuracy of first-principles calculations
make this goal possible. Self-consistent electronic structure

*ifeanyijohn.onuorah@unipr.it
†roberto.derenzi@unipr.it

calculations, in particular those based on density functional
theory (DFT), are already employed to study the muon im-
plantation site, muon interaction parameters, and for under-
standing the muon-induced distortion in the lattice [1–7]. This
turns out to be a very valuable tool for analyzing experimental
data and interpreting the results [8]. The knowledge of the
muon implantation site(s) and of the hyperfine field allows
very important quantitative information, including the mag-
netic structure and the moment size, to be obtained from μSR
experiments. Moreover, a reliable quantum calculation of the
muon embedded in the system under investigation provides an
estimate for its induced perturbation; the probe is an impurity
and it may in principle alter the local electronic properties.
Fortunately this is a very rare case, and yet assessing these
rare cases [9,10] is very important.

However, self-consistent DFT calculations often treat the
muon as just another atom in the lattice, within the Born-
Oppenheimer (BO) approximation [11], without taking into
consideration the quantum effect of the muon zero-point
vibrations, which is sizable relative to those of heavier nu-
clei. The embedded muon, by virtue of its very light mass
(∼1/9th the proton mass), is characterized by zero-point
vibration with amplitude typically of the order of 1 Bohr
radius [1]. The neglect of this effect may have two major
consequences: inaccurate estimation of the contact hyperfine
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field, and/or incorrect identification of muon implantation
sites. The former is due to neglect of the space extent of
the muon wave function, whereas the latter happens when
the quantum zero-point vibration energy is comparable with
the energy difference between the various implantation sites
[2,3,5,12].

Earlier approaches toward a quantum-mechanical descrip-
tion of the muon zero-point vibration include calculations
within the harmonic approximation [3,13]. However, the
muon potential has been discussed and shown to be anhar-
monic, for instance by total energy calculations with site ex-
ploration algorithms [1,12,14,15]. Furthermore, a breakdown
of the harmonic approximation takes place when within the
range of the muon vibrations the potential is not dominated
by the second-order term in its Taylor expansion.

Alternative methods do take into account the anharmonic
nature of the crystalline potential. One of them consists in
the potential exploration approach [12]. The non-BO meth-
ods represent another computationally demanding alternative,
employing a linear combination of Gaussian basis functions
to realize both the nuclear and the electronic degrees of
freedom [16–19], and optimized local potentials to represent
the nuclear-electron correlation [20]. One of the most ad-
vanced approaches relies on ab initio path integral molecular
dynamics, which allows for contextual quantization of both
the muon and the electrons in the calculation of the electronic
structure and of the interatomic forces [15,21,22]. However,
computational resources required by this method grow ex-
ceedingly with the size of the cell.

In this paper, we describe a stochastic self-consistent har-
monic approximation (SSCHA) that allows us to include the
effects of anharmonicity in the muon vibrations [23–26]. The
SSCHA is a quantum variational method that efficiently cal-
culates anharmonic free energies and phonon frequencies in a
nonperturbative way. This approach has been very successful
for calculating phonon frequencies and superconducting prop-
erties in hydrogen-rich materials, as well as in systems under-
going charge density wave (CDW) transitions, ferroelectrics,
and thermoelectrics [23,27–32]. For the muon, the SSCHA is
variational in the muon (free) energy, with this energy eval-
uated stochastically from forces and energies calculated at a
sufficient number of random muon configurations. The muon
energy is minimized using trial harmonic wave functions that
are Gaussian, while the minimization parameter is the width
of the Gaussian. From the output of the minimization, muon
frequencies including anharmonic contributions and the muon
ground-state energy can be extracted.

With this approach, we demonstrate that there are anhar-
monic contributions to the harmonic muon vibrational modes,
as expected for the muon due to its light mass. We further
use the SSCHA muon wave function to refine the contact
hyperfine field in a series of metals: Fe, Ni, Co, MnSi and
MnGe, where the SSCHA improves the agreement of the
calculated value with the experimental results with respect
to recent point impurity calculations [6]. Finally, the SSCHA
together with energy curvature considerations [25] allows the
stable occupation of the muon at the octahedral site in bcc Fe,
which is unstable within the harmonic regime.

The paper has the following structure: Sec. II discusses
the double Born-Oppenheimer approximation, which allows

us to separate the muon degrees of freedom from those of
the host nuclei and electrons. In Sec. III, we describe the
working principles of the SSCHA, including the stochastic
implementation. In Sec. IV, we discuss the muon zero-point
energy calculation results using the SSCHA together with
the stability of the muon at octahedral and tetrahedral sites
in Fe(bcc). Finally, in Sec. VI we present the results of the
quantum corrections in the calculation of the contact hyperfine
field, and then conclusions are given in Sec. VII.

II. DOUBLE BORN-OPPENHEIMER APPROXIMATION

The BO approximation considers the nuclei frozen on the
time scale of electron dynamics in view of their sufficiently
large mass ratio [11]. Hydrogen is already sufficiently lighter
than most other atoms to allow a further separation of time
scales, and this holds a fortiori true for a positive muon.
This allows for the quantum treatment of a single muon
impurity in the crystal by employing the so-called double
Born-Oppenheimer approximation (DBO) [12,14,33]. The
muon dynamics (mμ ∼ 200me) is much slower than that of
electrons, thus justifying an electron structure obtained by
DFT with frozen muon and nuclei. The same muon dynamics
is still much faster than that of other nuclei, since transition
metals are typically 400 times heavier than a muon (care must
be taken when considering, e.g., hydrogen, which is only nine
times heavier than a muon). Therefore, it is justified to use
total DFT energy versus the muon configuration coordinates
as a frozen potential energy landscape in which the muon
dynamics takes place on its characteristic time scale. This
allows us to consider the zero-point vibration of only the muon
within the potential energy surface, drastically reducing the
computational load requirements for the calculations.

The total Hamiltonian Htot describing the many-body inter-
action including explicitly the muon coordinates is written as

Htot = Te + Tμ + TN + V (re, rμ, RN ), (1)

with subscript μ describing the muon-related quantities while
e and N describe those of the electrons and host nuclei,
respectively. T and V are the kinetic and potential energy,
respectively. The Schrödinger equation is then written as

Htot|�tot〉 = Etot|�tot〉. (2)

This further allows us to write the DBO wave function as a
product wave function of the electrons, the muon, and the
nuclei in the form

|�tot〉 = |ψe〉|φμ〉|�N 〉. (3)

The Hamiltonian for the electronic problem can be rewritten
to specifically point out the presence of the muon position
operator as

He = Te + V (re; rμ, RN ). (4)

Similar to the BO approximation, only the position operators
of the muon and the nuclei enter in the eigenvalue problem
of the electrons. The solution of the electronic problem gives
the BO potential energy surface, V (rμ, RN ), dependent on the
muon and the nuclei position operators.
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Hence, the ground-state Hamiltonian Hμ for the muon can
be written as

Hμ = Tμ + V (rμ; RN ), (5)

where the muon kinetic energy Tμ is defined as

Tμ =
3∑

λ=1

p2
λ

2mμ

,

with p the momentum operator along the Cartesian compo-
nent indexes λ while mμ is the muon mass.

The acquisition of the DBO potential energy surface
V (rμ; RN ) for the solution of the Schrödinger equation (5) is
still a long and difficult task. However, the DBO approxima-
tion is advantageous since it allows us to consider separately
only the degrees of freedom of the muon. For this reason,
in the next section we revisit the SSCHA theory originally
presented in Refs. [23,24], specializing its application to
muon dynamics.

III. STOCHASTIC SELF-CONSISTENT HARMONIC
APPROXIMATION FOR MUONS

To begin with the formal description of the stochastic self-
consistent harmonic approximation (SSCHA) restricted only
to the muon modes, let us write the muon Hamiltonian Hμ,
the muon wave function φμ, and the DBO potential energy
surface V (rμ; RN ), appearing in the previous section, simply
as H, φ, and V (rμ), respectively.

The muon zero-point energy from the Hamiltonian H is
given as

E = 〈φ|H |φ〉, (6)

where |φ〉 is the muon ground-state wave function. Calculat-
ing E is far from trivial since the form of the muon potential
[Eq. (5)] is not known. However, it is possible to establish
a quantum variational principle for the muon ground-state
energy E by replacing the exact muon wave function |φ〉
with the wave function |φ̃〉 of a trial muon Hamiltonian H̃ =
Tμ + Ṽ (rμ) with energy

Ẽ = 〈φ̃|H̃ |φ̃〉. (7)

This is such that one can define an energy functional of the
trial Hamiltonian as

ẼH [H̃ ] = 〈φ̃|H |φ̃〉. (8)

The variational form of the muon ground-state energy can be
written as

E � ẼH [H̃] (9)

such that the equality holds when the true and trial potentials
are the same.

By adding and subtracting Eq. (7) to and from Eq. (8),
ẼH [H̃ ] is written in the form

ẼH [H̃ ] = Ẽ + 〈φ̃|(V − Ṽ )|φ̃〉. (10)

The above definitions allow us to formulate a variational prin-
ciple following the Gibbs-Bogoliubov inequality theorem [34]
at zero temperature, similar to the Rayleigh-Ritz inequality
[35].

According to the trial wave function, the probability of
finding the muon in the position rμ is

ρ̃(rμ) = 〈rμ|φ̃〉〈φ̃|rμ〉 = |φ̃(rμ)|2. (11)

Thus, an observable A dependent only on rμ can be averaged
statistically within the form of the corresponding Hamiltonian
H̃ as

〈A〉H̃ =
∫

drμA(rμ )̃ρ(rμ), (12)

and the muon energy in Eq. (10) can be evaluated as

ẼH [H̃ ] = Ẽ +
∫

drμρ̃(rμ)[V (rμ) − Ṽ (rμ)]. (13)

With the above form of ẼH [H̃ ], the muon energy can be
evaluated at each step during the variational minimization.
One can directly see that the equality in the form of the
variation in Eq. (9) holds if V = Ṽ . Hence, with the variational
principle, the ground state of the muon is determined if the
potential Ṽ (rμ) that minimizes ẼH [H̃] is found.

To proceed with the minimization of ẼH , in the SSCHA
implementation we restrict the muon wave functions only to
the Gaussian form. The term harmonic in the technique refers
to the fact that each Gaussian is the ground state of a trial
harmonic Hamiltonian, with known analytic solutions (see
Appendix A) where the trial potential is expressed in terms of
a force-constant matrix. Moreover, using Gaussian functions
has the advantage of allowing us to sample the wave function
by extracting randomly distributed configurations without any
METROPOLIS algorithm that requires long equilibration time
and also provides an analytic expression for the kinetic energy.

Finally, the actual minimization is obtained using the
conjugate gradient (CG) algorithm [36], which requires an
evaluation of the energy gradient, whose analytic form is
given in Ref. [24] and in Appendix B for the muon case,
and depends on the forces acting on the muon when displaced
from the equilibrium position.

The evaluation of the quantities of interest at each min-
imization step, namely ẼH and its gradient, is performed
stochastically. One of the advantages of the stochastic sam-
pling resides in the gradual optimization of the potential felt
by the muon during the iterative process. This ensures that the
entire BO landscape, beyond the harmonic component around
the minimum, is sampled, hence capturing the anharmonic
effects.

The stochastic sampling of the BO energy and of the
forces acting on the muon and entering the energy gradi-
ent (see Appendix B) can be calculated with any ab initio
method including DFT [37] and Hartree-Fock [38–40] based
approaches.

The evaluation of the forces and energies for the random
muon configurations in the stochastic sampling represents
the most computationally demanding task in the SSCHA
minimization cycle. This effort can be partially alleviated with
a reweighting procedure based on importance sampling. The
reader is referred to Ref. [24] for a detailed description of this
additional detail.

When the energy gradient vanishes numerically, the Ẽ that
minimizes ẼH [H̃] is the zero-point energy of the muon, and
the anharmonic vibrational frequencies ω̃i of the auxiliary
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TABLE I. Harmonic muon frequencies ωh
i along the mode i and harmonic zero-point energy Eh = ∑3

i=1 h̄ωh
i /2, together with the SSCHA

muon frequencies ω̃i and energy Ẽ at the minimum that includes the anharmonic contribution.

Host ωh
x (cm−1) ωh

y (cm−1) ωh
z (cm−1) Eh (eV) ω̃x (cm−1) ω̃y (cm−1) ω̃z (cm−1) Ẽ (eV)

Fe-bcca 4364.01 2913.01 4364.62 0.72 4769.08 2572.58 5088.37 0.74
Fe-bccb 1965.08i 1958.72i 6828.00 c 2005.24 2005.24 6364.81 0.53
Co-hcp 2930.41 2929.85 2752.25 0.53 3741.10 3741.10 3476.24 0.61
Co-fcc 2607.29 2607.02 2606.66 0.49 3424.16 3424.16 3424.16 0.56
Ni-fcc 2377.62 2377.60 2377.61 0.44 3317.78 3317.78 3317.78 0.53
MnGe 3123.70 3123.67 3123.66 0.58 3470.29 3470.29 3470.29 0.64
MnSi 3296.27 3296.32 3296.11 0.61 3685.25 3685.25 3685.25 0.67

aMuon at the tetrahedral site.
bMuon at the octahedral site.
cThe muon is not stable at the octahedral site (imaginary frequencies) within the harmonic regime.

Hamiltonian whose SSCHA wave function is the ground state
are obtained, so that

3∑
i=1

1

2
h̄ω̃i = Ẽ . (14)

A formal description of the trial Hamiltonian and the trial
wave function is given in Appendix A.

IV. MUON ZERO-POINT ENERGY

Let us first describe the zero-point energy of the muon
obtained in the harmonic approximation, which is later used
in comparisons with the anharmonic one.

The harmonic muon frequencies ωh
i and the corresponding

energies Eh = ∑3
i=1 h̄ωh

i /2 were calculated by the finite-
difference method [41,42], which allows only the muon fre-
quencies to be singled out, for all the materials under investi-
gation, namely Fe, Co, Ni, MnSi, and MnGe. These were also
used to generate the starting wave functions for the SSCHA
minimization except for the stability discussion in Sec. V
with the muon at the octahedral and tetrahedral site in bcc
Fe. Here, the density functional perturbation theory (DFPT)
within the QUANTUM ESPRESSO suite of code [43,44] was used
to calculate the frequencies of the whole system, including
those of the host Fe nuclei. The resulting harmonic muon
frequencies from both methods in the two Fe systems are in
good agreement.

For the SSCHA minimization and stochastic averaging [see
Eq. (17)], hundreds (100–400) of random configurations were
generated for the muon while keeping the host atoms fixed to
ensure that the muon energy gradient vanishes. Their energies
and Hellmann-Feynman forces [45] were calculated by DFT
as implemented in the QUANTUM ESPRESSO suite of code [44].
The details of the muon site in these systems and DFT input
parameters are contained in Ref. [6]. For all the systems, a 2 ×
2 × 2 supercell constructed starting from the conventional
unit cell was used for the harmonic frequency calculations,
the SSCHA frequency minimization, and the force calculation
within DFT. Other DFT computational details are identical to
those reported in Ref. [6]. To accommodate the muon impurity
in the supercell, the forces introduced by the muon in the
system were relaxed by DFT and the relaxed structures were
used for the SSCHA calculations. Relaxations were converged

with force and energy thresholds of 10−3 a.u. and 10−4 Ry,
respectively.

Figure 1 shows the evolution of the SSCHA muon fre-
quencies and energy during the minimization procedure. Sig-
nificant anharmonic contributions to the resulting SSCHA
frequencies can be deduced from the difference between the
initial values, i.e., the starting harmonic guess, and the final
converged results (the comparison with the anharmonic cor-
rection obtained for host atoms is presented in Appendix C).
The anharmonic correction to the harmonic frequencies is
found to be in the range of 330–820 cm−1 except for the muon
at the octahedral site in Fe.

The stochastic implementation ensures that the effect of
the muon vibrations, the effect of the chemical environment
around the muon, and anharmonic contributions to the forces
acting on the muon are all incorporated in the muon ground-
state minimum.

Table I contains the harmonic frequencies ωh
i and energies

Eh, obtained with the finite-difference method and used as the
starting point of the SSCHA iterative process, and the SSCHA
frequencies ω̃i and energies Ẽ at the end of the minimization.
The error estimates of the reported muon energies are within
the range of 0.1 meV. The results show the anharmonic effects
in the muon vibrational frequencies. Notice that the muon at
octahedral implantation site in Fe is unstable in the harmonic
regime. For all other cases with positive harmonic frequencies
for which Eh can be defined, the difference between the
SSCHA muon vibrational energies and the harmonic ones is
in the range of 0.02–0.09 eV.

V. TETRAHEDRAL AND OCTAHEDRAL MUON SITE IN Fe

Conflicting experimental and theoretical studies report the
muon site in Fe to be either at the tetrahedral (T) or the
octahedral (O) interstitial sites [46–51]. From the point of
view of the DFT total energy, the T site is 0.184 eV lower
that the O site. This would indicate that the T site is the stable
one. However, since the calculated muon zero-point energies
(above 0.5 eV) are large relative to the DFT energy difference,
the possible population of both sites cannot be excluded.

DFPT calculations of the muon frequencies provide further
insight into the stability of the two candidate sites. Unphysical
negative frequencies, generally a signal of instability, are
obtained for the muon at the O site, as opposed to those of the
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FIG. 1. (a) Evolution of the SSCHA muon frequency during the
minimization steps. (b) Evolution of SSCHA muon energy as in
Eq. (13) during the minimization steps. In both figures, the starting
point for the minimization step number = 0 is that of the harmonic
Hamiltonian except for the muon in octahedral site of Fe [Fe (oct)]
when the starting potential is arbitrary.

T site, which are always positive. The harmonic approxima-
tion then appears to indicate an instability of the muon at the
O site.

However, the anharmonic effects, fully captured by the
SSCHA, yield positive frequencies also for the O site

indicating that the instability is an artifact of the harmonic
approximation. As the ω̃i frequencies are positive-definite by
definition, this is not proof that the O site occupation is stable.
Obtaining the frequencies from the energy curvature [25],
which can correctly describe an instability, confirms, however,
that the O site interstitial site is in fact stable. The SSCHA
frequencies for the muon in the O site are larger than the
frequencies resulting from those obtained from the curvature
by only 0.53% along the x, y axis and 0.14% along the z axis.

The quantum correction with the SSCHA shows that both
T and O are stable local minima. The vibrational contribution
to the energy is 0.21 eV less for the O site than for the T site
(see Table I). Adding this to the static DFT contribution makes
the O site energetically favored by approximately 0.03 eV
over the T site, thus indicating that the two sites are basically
degenerate, and possibly both occupied.

VI. QUANTUM CORRECTION ON THE MUON
CONTACT HYPERFINE FIELD

The contact hyperfine field Bc(rμ) at the muon position rμ

is computed ab initio by considering the imbalance in the spin
density at the muon site [6] given as

Bc(rμ) = 2
3μ0μB[n↑(rμ) − n↓(rμ)], (15)

where μ0 is the vacuum permeability, μB is the Bohr magne-
ton, and n↑ − n↓ represents the spin polarization at the muon
site rμ calculated here by DFT. Bc(req

μ ) has been calculated in
this way for metals within a point impurity treatment of the
muon [6]. We now calculate the effect of the muon quantum
delocalization on its contact hyperfine field, using the muon
SSCHA wave functions φ that already contain the anharmonic
contributions.

The quantum expectation value 〈Bc〉 is given by

〈Bc〉 =
∫

drμBc(rμ)|φ(rμ)|2, (16)

where the probability density |φ(rμ)|2 has been defined in
Eq. (11) and is obtained from the SSCHA muon frequencies
ω̃i according to Eq. (A3).

The above integral can be evaluated in a post-DFT calcu-
lation by a statistical average performed stochastically, i.e.,
according to

∫
drμBc(rμ )̃ρ(rμ) � 1

Nc

Nc∑
n=1

Bc
(
rn
μ

) ≡ 〈Bc〉H̃ , (17)

where the sum extends over a number of muon random
configurations Nc displaced from the equilibrium position req

μ

and generated with the probability distribution of the muon
wave function [see Eq. (B1)]. The number of muon random
configurations used is the same as in the SSCHA minimization
of the muon wave function. However, the new muon random
positions are generated considering the anharmonic corrected
SSCHA muon wave function. Figure 2 shows the distribution
of the 100 configurations used for fcc Co in the unit cell.
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FIG. 2. 100 random position generated using Eq. (B1) for the
muon at the octahedral site in the Co-fcc unit cell. The equilibrium
octahedral center is depicted by the pink sphere, while the small dark
spheres represent the different random muon positions where the
muon contact hyperfine field within point impurity treatment Bc(rμ)
was also calculated for the purpose of including the quantum effects
of the muon.

Bc(rμ) was calculated by DFT for each of these random
configurations within a 3 × 3 × 3 supercell for Fe, Co, and Ni
and a 2 × 2 × 2 supercell for MnGe and MnSi, while other
computational details are the same as reported in Ref. [6].

Table II and Fig. 3 show the calculated contact field Bc(req
μ )

for a pointlike muon [6] and its stochastically averaged 〈Bc〉
values together with the experimental values. For all the
systems, the statistical error for the stochastic sampling of
〈Bc〉 is in the range of ≈1 mT. The contact hyperfine field
including quantum correction within the SSCHA, 〈Bc〉, im-
proves the agreement with the experiments, thus underlining
the importance of considering the finite muon wave function
when computing muon hyperfine interactions. Admittedly, the
correction to the contact hyperfine field appears to be less
relevant than the outcome obtained on the stability of the
muon at the octahedral site in Fe, still |〈Bc〉| introduces a
correction that ranges between 1% and 18%.

VII. CONCLUSION

In conclusion, we have presented a general, effective, and
robust approach, based on the DBO approximation, to obtain

TABLE II. Calculated contact hyperfine field for the point muon
at the equilibrium position Bc(req

μ ), the calculated contact hyperfine
field averaged over the spread of the muon wave function, 〈Bc〉, and
experimentally observed values (Expt).

Host metals Bc(req
μ ) (T)a 〈Bc〉 (T) Expt.

Fe-bccb −1.25 −1.07 −1.11 [52]
Fe-bccc −1.22 −1.13 −1.11 [52]
Co-hcp −0.79 −0.64 −0.61 [53]
Co-fcc −0.73 −0.68 −0.58 [48]
Ni-fcc −0.15 −0.14 −0.071 [54]
MnGe −1.14 −1.07 −1.08 [55]
MnSi −0.22 −0.21 −0.207 [56]

aReference [6].
bMuon at the tetrahedral site.
cMuon at the octahedral site.

FIG. 3. Contact hyperfine field Bc(req
μ ) at the equilibrium muon

implantation position req
μ , the muon contact field averaged over

the muon wave-function spread, 〈Bc〉, and experimentally observed
values.

the ground-state wave function and zero-point energy of a
positive muon embedded in a crystal from first principles.
The adaptation of the SSCHA to the muon case allows us
to evaluate the delocalized muon wave function including
anharmonic contributions that correct harmonic ones.

Moreover, the SSCHA circumvents the problem of directly
reconstructing the potential energy surface by replacing this
task with a variational problem, and more importantly, it
provides a computationally tractable method to describe the
zero-point energy of the muon. This leads to a number of
important insights concerning the stability of the muon sites
and its coupling with the surrounding electrons.

The first point has been discussed by considering the case
of the muon site in Fe, where anharmonicity plays a crucial
role in establishing the stability of the muon in the tetrahedral
and octahedral sites.

We reformulated the calculation of the muon contact hy-
perfine field by including the effects of its anharmonic zero-
point vibration, improving the agreement with experiments
with respect to previous estimates based on the point impurity
treatment of the muon. Even though the correction is small,
in numerous cases the contact field is of the order of tenths
of a Tesla, thus making the absolute value of the correction
presented here quite relevant.

Finally, the clean iterative procedure of the SSCHA makes
it rather straightforward to define standardized work flows
to automate the computational procedure. This represents
another step toward routinely supporting experimental data
analysis with computational simulation results.
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APPENDIX A: THE TRIAL MUON HARMONIC
HAMILTONIAN

The trial muon harmonic Hamiltonian is of the form

H̃ =
3∑

λ=1

p2
λ

2mμ

+ 1

2

3∑
λν

Kλν
(
rμ − req

μ

)λ(
rμ − req

μ

)ν
, (A1)

where λ and ν are Cartesian component indexes, req
μ is the

muon equilibrium position, mμ is the mass of the muon,
and Kλν is the muon 3 × 3 force-constant matrix. The force-
constant matrix Kλν/mμ can be constructed and diagonalized
as

3∑
ν=1

Kλν

mμ

ε̃ν
i = ω̃2

i ε̃
λ
i , (A2)

where i is the index of each of the orthogonal modes, ε̃ν
i

is the polarization vector, and ω̃i is the muon frequency
corresponding to the trial Hamiltonian H̃ for each mode.

Assuming a trial harmonic potential, the probability of
finding the muon at rμ can be written simply as

ρ̃(rμ) = 1∏3
i=1

√
2πσ̃ 2

i

exp

(
−

3∑
λνi

ε̃λ
i ε̃ν

i

2σ̃ 2
i

(
rμ−req

μ

)λ(
rμ−req

μ

)ν

)
,

(A3)

where σ̃i, the normal length for each of the modes i, is given
as

σ̃i =
√

h̄

2mμω̃i
. (A4)

Using the quantum statistical averaging defined in Eq. (12),
the energy of the trial harmonic Hamiltonian can be calculated
as

Ẽ =
3∑

i=1

1

2
h̄ω̃i. (A5)

APPENDIX B: RANDOM CONFIGURATION SAMPLING
AND MINIMIZATION DETAILS

The distribution for the generation of the random muon
position configurations is realized using random numbers
{ξin}n=1,...,Nc generated with the Gaussian distribution ρ̃(rμ)
and rescaled by the corresponding normal length modes σ̃i

and polarization vector ε̃λ
i . The generated positions are thus

obtained as (
rn
μ

)λ = (
req
μ

)λ +
3∑

i=1

ε̃λ
i σ̃iξin. (B1)

This constitutes the set of points used in the stochastic
evaluation of Ẽ and of the gradient of the energy functional,

FIG. 4. Evolution of the SSCHA muon frequency (ω̃ in the upper
panel) and those of Fe (nearly static low-frequency lines in the lower
panel) during minimization for the muon in the tetrahedral site of
bcc Fe. The figure depicts the expected anharmonicity effects on
the SSCHA muon frequencies and nearly nonexistent anharmonicity
effects on those of Fe, due to the large mass difference of the muon
and Fe nuclei. The muon is ≈490 times lighter.

namely ∇K ẼH [H̃ ], with respect to the force constant K . The
analytic form of this last term is written as (see also Ref. [24])

∇K ẼH [H̃ ] = −
∑
iλν

(̃
ελ

i ∇K ln σ̃i + ∇K ε̃λ
i

)̃
εν

i

×
∫

drμ[ f λ(rμ) − f̃ λ(rμ)]
(
rμ − req

μ

)ν
ρ̃(rμ),

(B2)

where f λ(rμ) is the muon force component in the λ Carte-
sian direction for all muon positions rμ, and f̃ λ(rμ) are
the forces obtained with the Ṽ potential. The SSCHA mini-
mization is performed with respect to the symmetries of the
crystal [24].

We also add that with the SSCHA, it is possible to mini-
mize the energy both with respect to the muon position rμ and
also the force-constant matrix Kλν . However, for the materials
considered in this paper, there is sufficient knowledge of the
equilibrium muon position req

μ . Hence, the muon energy is
only minimized with respect to the force-constant matrix K .
For the muon in a high symmetry position, the force-constant
matrix is a 3 × 3 matrix, with the diagonal elements of the
matrix accounting for the dominant contribution.

Finally, it is important to note that, in order to obtain
physical phonons from the ground-state minimized quantities
provided by the SSCHA, the second derivative (curvature)
of SSCHA energy at the minimum with respect to rμ has
to be calculated [25], which includes a correction term to
the force-constant matrix Kλν/mμ in Eq. (A2). We verified
that for the cases under study here the muon frequencies are
affected less than 1% by this extra correction. Thus, we can
treat the ω̃i frequencies as the physical vibrational energies of
the muons.
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APPENDIX C: EVOLUTION OF MUON AND HOST Fe
SSCHA FREQUENCIES

The evolution of the frequencies in the SSCHA calculation
including anharmonic effects both for the Fe host nuclei and
the muon at the tetrahedral site in a 2 × 2 × 2 supercell is
shown in Fig. 4. The figure indicates that there is a significant

anharmonic contribution to the muon eigenfrequencies after
several iterations (upper panel), whereas the lower frequency
modes of the heavier Fe nuclei (lower panel) remain neg-
ligibly changed. This consideration together with the DBO
approximation discussed in Sec. II also supports separating
and concentrating only on the muon degrees of freedom.
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