Identification and first characterization of DinJ-YafQ toxin-antitoxin systems in *Lactobacillus* species of biotechnological interest

Alberto Ferrari, Stefano Maggi, Barbara Montanini, Alessia Levante, Camilla Lazzi, Yoshihiro Yamaguchi, Claudio Rivetti and Claudia Folli

Species	Strain	Chromosome Entry
L. casei	12A	NZ_CP006690.1/CP006690.1
L. casei	ATCC 393	NZ_AP012544.1/AP012544.1
L. casei	BL23	NC_010999.1/FM177140.1
L. casei	CECT 9104	NZ_LS991421.1/LS991421.1
L. casei	LC5	NZ_CP017065.1/CP017065.1
L. casei	W56	NC_018641.1/HE970764.1
L. paracasei	8700:2	NC_022112.1/CP002391.1
L. paracasei	ATCC 334	NC_008526.1/CP000423.1
L. paracasei	BD-II	NC_017474.1/CP002618.1
L. paracasei	CAUH35	NZ_CP012187.1/CP012187.1
L. paracasei	EG9	NZ_CP029546.1/CP029546.1
L. paracasei	FAM18149	NZ_CP017261.1/CP017261.1
L. paracasei	HD1.7	NZ_CP025582.1/CP025582.1
L. paracasei	HDS-01	NZ_CP026097.1/CP026097.1
L. paracasei	IIA	NZ_CP014985.1/CP014985.1
L. paracasei	JCM 8130	NZ_AP012541.1/AP012541.1
L. paracasei	KL1	NZ_CP013921.1/CP013921.1
L. paracasei	L9	NZ_CP012148.1/CP012148.1
L. paracasei	LC2W	NC_017473.1/CP002616.1
L. paracasei	LC355	NZ_CP029536.1/CP029536.1
L. paracasei	LOCK919	NC_021721.1/CP005486.1
L. paracasei	Lpc10	NZ_CP029686.1/CP029686.1
L. paracasei	N1115	NZ_CP007122.1/CP007122.1
L. paracasei	TK1501	NZ_CP017716.1/CP017716.1
L. paracasei	TMW 1.1434	NZ_CP016355.1/CP016355.1
L. paracasei	ZFM54	CP032637.1
L. paracasei	Zhang	NC_014334.2/CP001084.2
L. rhamnosus	4B15	NZ_CP021426.1/CP021426.1
L. rhamnosus	ATCC 11443	NZ_CP022109.1/CP022109.1
L. rhamnosus	ATCC 53103	NC_017482.1/AP011548.1
L. rhamnosus	ATCC 8530	NC_017491.1/CP003094.1
L. rhamnosus	BFE5264	NZ_CP014201.1/CP014201.1
L. rhamnosus	BPL5	NZ_LT220504.1/LT220504.1
L. rhamnosus	DSM 14870	NZ_CP006804.1/CP006804.1
L. rhamnosus	GG	NZ_CP031290.1/CP031290.1
L. rhamnosus	GG (ATCC 53103)	NC_013198.1/FM179322.1
L. rhamnosus	Lc 705	NC_013199.1/FM179323.1
L. rhamnosus	LOCK900	NC_021723.1/CP005484.1
L. rhamnosus	LOCK908	NC_021725.1/CP005485.1
L. rhamnosus	LR5	NZ_CP017063.1/CP017063.1
L. rhamnosus	LRB	CP016823.1
L. rhamnosus	Pen	NZ_CP020464.1/CP020464.1
L. rhamnosus	SCT-10-10-60	NZ CP019305.1/CP019305.1

Supplementary Table S1. Subset of Lactobacillus strains used for BRIG software analysis

Lactobacillus species	Strain	Source
L. rhamnosus	1019, 1473, 2360	Parmigiano Reggiano cheese
L. casei	2046, 2094, 2057	Grana Padano cheese
L. casei	2306, 2240	Parmigiano Reggiano cheese
L. casei	2203, 4340	Milk
L. paracasei	2133, 2187	Grana Padano cheese
L. paracasei	4341, 4360, 4366, 4186	Milk
L. paracasei	2333	Parmigiano Reggiano cheese

Supplementary Table S2. Lactobacillus strains used in this work

Supplementary Table S3. E. coli strains and plasmids used in this work

E. coli strain	Description	Source
XL1-Blue	Cloning and plasmid purification, Tet ^R	Stratagene
C41(DE3) pLysS	Toxic activity assay, Cam ^R	Lucigen
Plasmid	Description	Source
pGEM-T easy	Cloning vector	Promega
pET11b	Expression vector, IPTG inducible, Amp ^R	Novagen
pET28b	Expression vector, IPTG inducible, Kan ^R	Novagen
pET11b-yafQ_pa4366	YafQ CDS from L. paracasei 4366 cloned in pET11b	This work
pET11b-yafQ_pa2333	YafQ CDS from <i>L. paracasei</i> 2333 cloned in pET11b	This work
pET28-dinJ_pa4366	DinJ CDS from <i>L. paracasei</i> 4366 cloned in pET28b	This work
pET11b-yafQ_rh2360	YafQ CDS from <i>L</i> .rhamnosus 2360 cloned in pET11b	This work
pET11b-yafQ_rh1473	YafQ CDS from <i>L</i> .rhamnosus 1473 cloned in pET11b	This work
pET28-dinJ_rh2360	DinJ CDS from <i>L. rhamnosus</i> 2360 cloned in pET28b	This work

Supplementary Table S4. Oligonucleotides used in this work

Primer	Sequence	Target strains			
dinJ-yafQ identification					
dinj-yafQ_ca4_pa3 plus	AAGTGCTGCTCAAATCGTAGC	L. casei, L. paracasei			
dinj-yafQ_ca4_pa3 minus	AAGGTTATGATGAGATCCGGTTC	L. casei, L. paracasei			
dinj-yafQ_rh6 plus	CCATGTTCTTAATAGCATGGG	L. rhamnosus			
dinj-yafQ_rh6 minus	TTACTCAATGTTCAATGTATCGCG	L. rhamnosus			
YafQ and DinJ cloning					
yafQ_pa plus	CATATGTATAGTCTGGTTCCGACG	L. paracasei 4366, 2333			
YafQ_pa minus	GGATCCTATTTACCCAGAAGGTTATGA	L. paracasei 4366, 2333			
dinJ_pa4366 plus	CATATGGCAGCCACAAAGAAAGAA	L. paracasei 4366			
dinJ_pa4366 minus	GGATCCCTATACATTCAAGTCTCTCCAC	L. paracasei 4366			
yafQ_rh2360 plus	CATATGTTGACGATTAATCGCACG	L. rhamnosus 2360			
yafQ_rh1473 plus	CATATGCAGCGTCAAGGTCATGTA	L. rhamnosus 1473			
yafQ_rh minus	GGATCCTTACTCAATGTTCAATGTATCGC	L. rhamnosus 2360, 1473			
dinJ_rh2360 minus	GGATCCTTAATCGTCAACATCATTGTATAA	L. rhamnosus 2360			
dinJ_rh2360 plus	CATATGGAAACAAAATCCCGTATCA	L. rhamnosus 2360			

Supplementary Figure S1. Sequence identities of YafQ and YoeB toxins identified in *Lactobacillus* genus. a) Percentages of identity among YafQ aminoacid sequences retrived from PSI-BLAST and compared with *E. coli* YafQ (UniProt Q47149). b) Percentages of identity among YoeB aminoacid sequences retrived from PSI-BLAST and compared with *E. coli* YoeB (UniProt P69348).

	*	20	*	40	*	60	*	80	*	
dinJ-yafQ ca2306 dinJ-yafQ ca4340 dinJ-yafQ ca2203 dinJ-yafQ pa4186 dinJ-yafQ pa2333 dinJ-yafQ pa4366 dinJ-yafQ pa4366 dinJ-yafQ rh2360 dinJ-yafQ rh2360 dinJ-yafQ rh1473 dinJ-yafQ rh1019	: ATGGCAGCCACA ATGGCAGCCACAA ATGGCAGCCACAA ATGGCAGCCACAA ATGGCAGCCACAA ATGGCAGCCACAA ATGGCAGCCACAA ATGGCAGCCACAA - ATGGCAGCCACAA - ATGGCAGCCACAA - ATGGCAGCCACAA - ATGGCAGCCACAA - ATGGCAGCCACAA - ATGGCAGCACACAA - ATGG	A GAAAAAACTCC A GAAACAAACTCC A GAAACAAACTCC A GAAACAAACTCC A GAAACAAACTCC A GAAACAAACTCC A GAAACAAACTCC A GAAACAAACTCCC A AAAACAAACTCCCC CAAAAACAATCCCCC	CTIGATATOC TTGATATOC CTIGATATOC CTIGATATOC TTGATATOC TTGATATOC TTGATATOC TACAGCGIG TACCGCATA CACCGCATA	TGTTGAI-CC TGTTGAI-CC TGTTGAI-CC TGTTGAI-CC TGTTGAI-CC TGTTGAI-CC TGTTGAI-CC AATTGAIACG GATTAACACA GATTGAIACC	Т GAATTAAAA GGAATTAAAA GGAATTAAAA GGAATTAAAA GGAATTAAAA GGAATTAAAA GGAATTAAAA AAAACTAAAA AAAACTAAAG	AGTGCTGCTC AGTGCTGCTC AGTGCTGCTC AGTGCTGCTC AGTGCTGCTC AGTGCTGCTC AGTGCTGCTC AACGG-GCTC AACGA-GCTC AACGA-GCTC	AAATCGTAGC AAATCGTAGC AAATCGTAGC AAATCGTAGC AAATCGTAGC AAATCGTAGC TCCATGTCCT TCCATGTCT TCCATGTTCT	AAATGATATG AAATGATATG AAATGATATG AAATGATATG AAATGATATG AAATGATATG AAATGATATG AAATGATATG CAATGATATG TAATCGTCTG TAATAGCATG	GCATCG GCATCG GCATCG GCATCG GCATCG GCATCG GCATCG GCATCG GGACTAG GGATTAG	: 94 94 94 94 94 94 94 94 85 85 85
dinJ-yafQ_ca2306 dinJ-yafQ_ca4340 dinJ-yafQ_pa4186 dinJ-yafQ_pa4186 dinJ-yafQ_pa4366 dinJ-yafQ_pa4366 dinJ-yafQ_rh2360 dinJ-yafQ_rh2360 dinJ-yafQ_rh1473 dinJ-yafQ_rh1019	100 ACTTCACCCACC ACTTCACCCACC ACTTCACCCACC ACTTCACCCCACC ACTTCACCCCACC ACTTCACCCCACC ACTTCACCCCACC ACTTCACCCACC	* 120 TGTTACCATGTTC TGTTACTATGTTC TGTTACGATGTTC TGTTACGATGTTC TGTTACGATGTTC TGTTACGATGTTC TGTTACGATGTA TATTAACATGTAT TATTAACATGTAT	* AIGACGAAAATG AIGACGAAAATG AIGACGAAAATG AIGACGAAAATG AIGACGAAAATG AIGACGAAAATG IIGAGAAACGCATT IIGAAACGGATT IIGAAACGGATT	140 GTGAPAGAT GTGAPAGAT GTGAPAGAT GTGAPAGAT GTGAPAGAT GTGAPAGAT GTGAPAGAT GGTGACACC GTGACACCC GTGACACCC	* ACGCCCTCCC ACGCCCTCCC ACGCCCTCCC ACGCCCTCCC ACGCCCTCCC GTGAGTTGCC GTGCATTGCC GTGCATTGCC	160 GTTTACCC A GTTTACCC A GTTTACCC A GTTTACCC A GTTTACCC A GTTTACCC A GTTTACCC A ATTTACAC T ATTTACAC T	* ACAAGTCTAC ACAAGTCTAC ACAAGTCTAC ACAAGTCTAC ACAAGTCTAC ACAAGTCTAC GAAATGTCGT GAAATGTCAT CCAATGTCAT	180 CAGTTGAAAC(CAGTTGAAAC(CAGTTGAAAC(CAGTTGAAAC(CAGTTGAAAC(CAGTTGAAAC(CAGTTGAAAC(TCGCCGATCA(TTGTTGATCA(* CTTACAG CTTACAG CTTACAG CTTACAG CTTACAG CTTACAG CTTACAG SCTTCAA SCTTCAA	: 189 : 189 : 189 : 189 : 189 : 189 : 189 : 180 : 180 : 180
dinJ-yafQ_ca2306 dinJ-yafQ_ca4340 dinJ-yafQ_ca2203 dinJ-yafQ_pa4186 dinJ-yafQ_pa4366 dinJ-yafQ_pa4366 dinJ-yafQ_pa4341 dinJ-yafQ_rh2360 dinJ-yafQ_rh1473 dinJ-yafQ_rh1019	200 CGCGCTGAAAGAAG CCGCTGAAAGAAG CCGCTGAAAGAAG CCGCTGAAAGAAG CCGCTGAAAGAAG CCGCTGAAAGAAG CCGCTGAAAGAAG CCGCTGAAAGAAG CCTGCAGAAGCTG TTTGCAGAAGCTG	* CAAAGCACCAAGA CAAAGCACCAAGA CAAAGCACCCAGA CAAAGCACCCAGA CAAAGCACCCAGA CAAAGCACCCAGA ATGTTAAAGCGGG ATGTTAAAGCGGG ATGTTAAAGCGGG	220 CTGCTCAAAAA CTGCTCAAAAA CTGCTCAAAAA CTGCTCAAAAA CTGCTCAAAAA CTGCTCAAAAA ACGAACTAAGA CGAATAAAAAA CGAATAAAAAA CGAATAAAAAA	* 2 AATACAGCACG AATACAGCACG AATACAGCACG AATACAGCACG AATACAGCACG AATACAGCACG CATACAGCACG GOTTCAAGACG GOTTCAAGACT GOTTCAAGACT	40 CCTGATGACA CCTGATGACA CCTGATGACA CCTGATGACA CCTGATGACA CCTGATGACA CCTGATGACA GTTGATGCCC GTTGGTGCTT GTC <u>GATG</u> CTT	* 2 TGTCGAGAGA TGTCGAGAGA TGTCGAGAGA TGTCGAGAGA TGTCGAGAGA TGTCGAGAGA TGTCGAGAGA TGATGAAGGA TGATGAAGGA	60 CTTGAATGTA CTTGAATGTA CTTGAATGTA CTTGAATGTA CTTGAATGTA CTTGAATGTA TTTA TTTA	* 2 TAGTCTGGTT TAGTCTGGTT TAGTCTGGTT TAGTCTGGTT TAGTCTGGTT TAGTCTGGTT TAGTCTGGTT TACAATGATG TACAATGATG TACAATGATG	30 CCGACGC CCGACGC CCGACGC CCGACGC CCGACGC CCGACGC CCGACGC TTGACGA TTGACGA	: 284 : 284 : 284 : 284 : 284 : 284 : 284 : 284 : 269 : 269 : 269
dinJ-yafQ ca2306 dinJ-yafQ ca4340 dinJ-yafQ ca2203 dinJ-yafQ pa4186 dinJ-yafQ pa2333 dinJ-yafQ pa4366 dinJ-yafQ pa4341 dinJ-yafQ rh2360 dinJ-yafQ rh1019	* 3 CTACATTTAAGCC CTACATTTAAGCC CTACATTTAAGCC CTACATTTAAGCC CTACATTTAAGCC CTACATTTAAGCC CTACATTAAGCC TTAATCGCACGCC TTAATCGCACGCC TTGACTGCATGCA	00 * CARCTANACCA CARTTANAACCA CARTTANAACCA CARTTANAACCA CARTCANAACCA CARTCANAACCA CARTCANAACCA CARTCANAACCA CACTTCANACCA CACTTCANACCA TTRACAGGCAN TATTGACAGGCAN	320 TCTCCAAGAAG TCTCCAAGAAG TCTCCAAGAAG TCTCCAAGAAG TCTCCAAGAAG TCTCCAAGAAG AATTTAACAT G	* ATTGGCC 2 AGTGGCC 2 ATTGGCC 2 ATTGGCC 2 ATTGGCC 2 ATTGGCC 2 ATTGGCC 2 ATTGGCC 2 ATTGGCC 2	340 TGGACGAACT. TGAACGAACT. TGGACGAACT. TGGACGAACT. TGGACGAACT. TGGACGAACT. AAGGTAAAGA	* AAAGACCGCT AAAGACCGCT AAAGACCGCT AAAGACCGCT AAAGACCGCT TATGACCGCT TATGACCAAA	360 GTTAATCTCC GTTAATCTCC GTTAATCTCC GTTAATCTCC GTTAATCTCC GTTAATCTCC CTTGCAACTG TGCA	* TAGCCCCTGG TAGCCCCTGG TAGCCCCTGG TAGCCCCTGG TAGCCCCTGG CAATTGATAC	380 TACAAA TACAAA TACAAA TACAAA TACAAA TACAAA TACAAA TACAAA TACAAA TTACAAA TTACAAA TTACAAA	: 378 : 378 : 378 : 378 : 378 : 378 : 378 : 378 : 364 : 306 : 306
dinJ-yafQ_ca2306 dinJ-yafQ_ca4340 dinJ-yafQ_ca2203 dinJ-yafQ_pa4186 dinJ-yafQ_pa2333 dinJ-yafQ_pa4366 dinJ-yafQ_pa4341 dinJ-yafQ_rh2360 dinJ-yafQ_rh1473 dinJ-yafQ_rh1019	* TGCTGRACTATTA TGCTGRACTATTA TGCTGRACTATTA TGCTGRACTATTA TGCTGRACTATTA TGCTGRACTATTA TGCTGRACTATTA CGTCARGATCGTG CGTCARGCTCATG CGTCARGCTCATG	400 ACCAAAAGTATG ACCAAAAGTATG ACCAAAAGTATG ACCAAAAGTATG ACCAAAAGTATG ACCAAAAGTATG ACCAAAAGTATG TGAAATTAGCTTC TAAAATTAGCTTC TAAAATTAGCTTC	* 4 CAGATCATCCT CAGATCATCCT CAGATCATCCT CAGATCATCCT CAGATCATCCT CAGATCATCCT TTTA-CACGAC TTTA-CACGAC TTTA-CACGAC TTA-CATCACCC	120 TTGTCTCAAG TTGTCCTCAAG TTGTCCTCAAG TTGTCCTCAAG TTGTCTTCAAG TTGTCTTCAAG TTGTCCTCAAG CATGCTTTAAP CATGCTTTAAP CATGCTTTAAP	* 4 CAGCCAGTGG CAGCCAGTGG CAGCCAGTGG CAGCCAGTGG CAGCCAGTGG CAGCCAGTGG CAGCGAGTGG CGGTGCTCAC GGGTGCTCAC GGGTGCTCAC	40 AAAGGATATC AAAGGATATC AAAGGATATC AAAGGATATC AAAGGATATC AAAGGATATC AGCGGCGAAC AGCGGCGAAC AGCGGCGAAC	* 4 GTGAACTATA GTGAACTACA GTGAACTACA GTGAACTACA GTGAACTACA GTGAACTACA GTGAACTACA GAGCATTGCA GAGCATTGCA GAGCATTGCG	60 TCTTGACGGCC TCTTGACGGCC TCTTGACGGCC TCTTGACGGCC TCTTGACGGCC TCTTGACGGCC TCTTGACGGCC TCTTG TATTG TGTTG	* CTCGTG CTCGTG CTCGTG CTCGTG CTCGTG CTCGTG CTCGTG CTCCTG CTCCTG CTCCTG CTCCTG	: 473 : 473 : 473 : 473 : 473 : 473 : 473 : 473 : 452 : 394 : 394
dinJ-yafQ ca2306 dinJ-yafQ ca2306 dinJ-yafQ ca2203 dinJ-yafQ pa2133 dinJ-yafQ pa2333 dinJ-yafQ pa4366 dinJ-yafQ rh2341 dinJ-yafQ rh2341 dinJ-yafQ rh1473 dinJ-yafQ rh1019	480 GCGACTGGTTGCT GCGACTGGTTGCT GCGACTGGTTGCT GCGACTGGTTGCT GCGACTGGTTGCT GCGACTGGTTGCT ATTGGCTTCT ATTGGCTTCT	* 500 AATCTATAAAATT AATCTATAAATT AATCTATAAATT AATCTATAAAATT AATCTATAAAATT AATCTATAAAATT AATCTATAAAATT CGTTTATAAAGTC CGTTTATAAAGTC CGTTTATAAAGTC	* ABGCAGCAAGAT ABGCAGCAAGAT SAGCAGCAAGAT ABGCAGCAAGAT ABGCAGCAAGAT SAGCAGCAAGAT SAGCAGCAAGAT SAGCAGCAAGAT SATGCTGAAGCG SATGCTGAAGCG	520 TCTTATTTA TCTCATTTTA TCTTATTTA TCTTATTTA TCTTATTTA TCTTATTTA TTATTTA TTATTTA TTATTTA	* CCCTAGTTAG CCCTAGTTAG CCCTAGTTAG CCCTAGTTAG CCCTGGTTAG CCCTAGTTAG TGCTTCTTGC AGCTTCTTGC TGCTTCTTGC	540 AACCGGATCT AACCGGATCT AACCGGATCT AACCGGATCT AACCGGATCT AACCGGATCT AACAGGCACA AACAGGCACA AACAGGCACA	* CATCATAACC CATCATAACC CATCATAACC CATCATAACC CATCATAACC CATCATAACC CATCATAACC CACCGCGATA CACCGCGATA	560 TTCTGGGTAA TTCTGGGTAA TTCTGGGTAA TTCTGGGTAA TTTTGGGTAA TTTTGGGTAA CATTGAACAT CATTGAACAT CATTGAACAT	* ATAG ATAG ATAG ATAG ATAG IGAGTAA IGAGTAA IGAGTAA	: 565 : 565 : 565 : 565 : 565 : 565 : 544 : 486 : 486

Operon	GenBank ID
dinJ-yafQ_ca2306	MK544939
dinJ-yafQ_ca4340	MK544940
dinJ-yafQ_ca2203	MK544941
dinJ-yafQ_pa4186	MK544942
dinJ-yafQ_pa2333	MK544943
dinJ-yafQ_pa4366	MK544944
dinJ-yafQ_pa4341	MK544945
dinJ-yafQ_rh2360	MK544946
dinJ-yafQ_rh1473	MK544947
dinJ-yafQ_rh1019	MK544948

Supplementary Figure S2. Nucleotide sequence alignment and GenBank ID of the identified *dinJ-yafQ* operons shown in Figure 2a.

vato	Leansho Vato	1. ca2203 Vato	1. pa4186 VafC	LP22333 V210	1. pa4366 Vato	1. pa4341 VafC	1, th2360 vafC	L man 3 vaf	L miol9 var	o teoli
98%	97%	99%	97%	98%	99%	33%	21%	22%	36%	YafQ_ca2306
	97%	99%	99%	100%	99%	34%	22%	22%	37%	YafQ_ca4340
		98%	96%	97%	98%	34%	22%	22%	37%	YafQ_ca2203
			98%	99%	100%	34%	22%	22%	37%	YafQ_pa4186
				99%	98%	33%	21%	21%	36%	YafQ_pa2333
					99%	34%	22%	22%	37%	YafQ_pa4366
						34%	22%	22%	37%	YafQ_pa4341
							59%	60%	29%	YafQ_rh2360
								95%	20%	YafQ_rh1473
									20%	YafQ_rh1019

Supplementary Figure S3. Sequence identities of YafQ and DinJ proteins found in *L. casei, L. paracasei* and *L. rhamnosus*. a) Percentages of identity among the identified YafQ aminoacid sequences and with *E. coli* YafQ (UniProt Q47149). b) Percentages of identity among the identified DinJ aminoacid sequences and with *E. coli* DinJ (UniProt Q47150).

			20		40		6	50	*	8	* C	100		
CP017261.1	:	MYSLVPTPTFKR	DLKRLSKK	HWPMDELKTA	VNLLAAGTNA	AELLSKRYAD	ALSSSSEWF	GYRELH	VDGPRG	WLLIYKI	CODLILTLVR	GSHHNLIGK	:	100
CP012187.1	:	MYSLVPTPTFKR	DIKRISKK	HWPMDELKTA	VNLLAAGTNA	AELLSKKYADE	ALSSSSEWF	GYRELH	VDGPRG	WLLIYKI	CODLILTLVR	GSHHNLIGK*	:	100
AP018392.1	:	MYSLVPTPTFKR	DLKRLSKK	HWPMDELKTA	VNLLAAGTNA	AELLSKKYADE	ALSSSSEWF	GYRELY	VDGPRG	WLLIYKI	CODLILTLVR	GSHHNLLVK*	:	100
CP029536.1	:	MYSLVPTPTFKR	DIKRISKK	HWPMDELKTA	VNLLAAGTNA	AELLSKKYAD	ALSSSSEWF	GYRELY	VDGPRG	WLLIYKI	CODLILTLVR	GSHHNLIVE	:	100
CP026097.1	:	MYSLVPTPTFKR	DLKRLSKK	HWPMDELKTA	VNLLAAGTNA	AELLSKKYADI	ALSSSSEWE	GYRELY	VDGPRG	WLLIYKI	CCDLILTLVR	GSHHNLLVK*	:	100
CP025582.1	:	MYSLVPTPTFKR	DIKRISKK	HWPMDELKTA	VNLLAAGTNA	AELLSKKYADI	ALSSSSEWF	GYRELY	VDGPRG	WLLIYKI	CODLILTLVR	GSHHNLLVK*	:	100
CP014985.1	:	MYSLVPTPTFKR	DIKRISKK	HWPMDELKTZ	VNLLAAGTNA	AELLSKKYAD	ALSSSSEWF	GYRELY	VDGPRG	WLLIYKI	CCDLILTLVR	GSHHNLLVR*	:	100
CP012148.1	:	MYSLVPTPTFKR	DLKRLSKK	HWPMDELKTZ	VNLLAAGTNA	AELLSKKYADI	ALSSSSEWF	GYRELY	VDGPRG	WLLIYKI	CODLILTLVR	GSHHNLI VK*	:	100
CP017716.1	:	MYSLVPTPTFKR	DIKRISKK	HWPMDELKTA	VNLLAAGTNA	AEILSKKYAD	ALSSSSEWF	GYRELY	VDGPRG	WLLIYKI	CODLILTLVR	GSHHNLL VK*	:	100
CP013921.1	:	MYSLVPTPTFKR	DLKRLSKK	HWPMDELKTA	VNLLAAGTNA	AELLSKKYAD	ALSSSSEWF	GYRELH	VDGPRG	WLLIYKI	CCDLILTLVR	GSHHNLLGK*	:	100
CP007122.1	:	MYSLVPTPTFKR	DLKRLSKK	HWPMDELKTA	VNLLAAGTNA	AELLSKKYADI	ALSSSSEWF	GYRELH	VDGPRG	WLLIYKI	CODLILTLVR	GSHHNLIGK*	:	100
AP012541.1	:	MYSLVPTPTFKR	DIKRISKK	HWPMDELKTA	VNLLAAGTNA	AELLSKKYAD	ALSSSSEWF	GYRELH	VDGPRG	WLLIYKI	CODLILTLVR	GSHHNLI GK*	:	100
CP025499.1	:	MYSLVPTPTFKR	DLKRLSKK	HWPMDELKTZ	VNLLAAGTNA	AELLSKKYAD	ALSSSSEWF	GYRELH	VDGPRG	WLLIYKI	CODLILTLVR	GSHHNLLGK*	:	100
CP002618.1	:	MYSLVPTPTFKR	DLKRLSKK	HWPMDELKTZ	VNLLAAGTNA	AELLSKKYAD	ALSSSSEWF	GYRELH	VDGPRG	WLLIYKI	CODLILTLVR	GSHHNLLGK*	:	100
CP002616.1	:	MYSLVPTPTFKP	DLKRLSKK	HWPMDELKTA	VNLLAAGTNA	AELLSKKYADH	ALSSSSEWF	GYRELE	VDGPRG	WLLIYKI	CODLILTLVR	GSHHNLIGK*	:	100

Supplementary Figure S4. Sequence alignment of YafQ_pa3 of *L. paracasei* strains retrieved from the databank.

Supplementary Figure S5. Membrane integrity assay. Fluorescence microscopy of *E. coli* C41(DE3) pLysS cells expressing *Lactobacillus* YafQ and stained with DAPI/EtBr dyes. (a) Cells producing YafQ_pa4366 toxin grown in LB/IPTG medium for 3, 6 or 9 hours. (b) Cells producing YafQ_rh2360R toxin grown in LB/IPTG medium for 3, 6 or 9 hours. Absence of the red EtBr fluorescence indicates membrane integrity.