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ISOMETRIC IMMERSIONS OF LOCALLY CONFORMALLY KÄHLER
MANIFOLDS

DANIELE ANGELLA AND MICHELA ZEDDA

Abstract. We investigate isometric immersions of locally conformally Kähler metrics into
Hopf manifolds. In particular, we study Hopf-induced metrics on compact complex surfaces.

1. Introduction

The celebrated Kodaira Embedding Theorem gives geometric and cohomological conditions
under which analytic geometry reduces to algebraic geometry. In fact, it gives a holomorphic
embedding for Hodge manifolds (namely, Kähler manifolds whose Kähler class is rational or,
equivalently, admitting a holomorphic line bundle with positive curvature) into some projective
space; and then the Serre GAGA applies. In general, such an embedding is not isometric: e.g.
there are no complex curves of constant negative curvature in CPn. This latter issue occurs also in
Cn, where moreover the maximum principle does not allow to embed compact complex manifolds.
When the Kodaira canonical maps are isometric embeddings, or more in general when we have
a holomorphic isometric immersion into CPn endowed with the Fubini-Study metric, then the
metric is called projectively-induced. In [Tia90] Tian proved that projectively-induced Kähler
metrics are dense in the space of polarized Kähler metrics in the C2-topology, later generalized
by [Rua98] to the C∞-topology. This means that Kähler metrics on Hodge manifolds can be
approximated by projectively-induced metrics.

The problem of which (real analytic) Kähler manifolds admit an isometric immersion into
CPn, or more in general into complex space forms (that is, finite or infinite dimensional Kähler
manifolds of constant holomorphic sectional curvature) has been studied by E. Calabi [Cal53].
Here, the complete simply connected complex space forms, according to the sign of the holomor-
phic sectional curvature, are the complex Euclidean space CN endowed with its canonical flat
metric, the complex projective space CPN with the Fubini-Study metric, and the complex hy-
perbolic space CHN with the hyperbolic metric, where N ∈ N∪ {∞}. More precisely, E. Calabi
introduces the diastasis function (as a symmetrization of a polarization of a local real analytic
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2 DANIELE ANGELLA AND MICHELA ZEDDA

Kähler potential) and gives an algebraic criterion for the immersion in terms of the coefficients of
the power series expansion of (some function of) it. We refer to [LZ17] for an updated panorama
on the subject.

Inspired by E. Calabi’s work, we would like to study isometric immersions in the locally
conformally Kähler (lcK from now on) setting, see e.g. [DO98, Orn05]. We recall that an lcK
structure on a complex manifold M is given by a Hermitian (1, 1)-form ω and a closed 1-form,
called Lee form, such that dω = θ ∧ ω. On some covering M̃ , the Lee form becomes exact, i.e.
there exists a potential h such that it yields θ̃ = dh, and then ω̃ := e−hω is a Kähler metric on M̃ ,
and the deck transformation group acts by homotheties. So, lcK geometry can be interpreted
as an "equivariant (homothetic) Kähler geometry" or a first specific non-Kähler setting (see
Gray-Hervella classification). LcK metrics play a role on compact complex surfaces (see e.g.
[Vai87, Bel00, Bru11, Pon14] and references therein): with the exception of Inoue surfaces, every
known compact complex surfaces admit lcK metrics; and in any case, a covering admitting a
Kähler metric exists.

In the lcK context, the analogue of the projective space is played by Hopf manifolds Hn,
that is, manifolds whose universal covering is Cn \ {0} and whose fundamental group equals
the infinite cyclic group Z, see [Bel00, GO98]. An analogue of the Kodaira embedding in this
setting has been proven by L. Ornea and M. Verbitsky [OV07, OV10a, OV16]. More precisely,
they proved the folowing: let (M,ω, θ) be an lcK manifold of dimCM ≥ 3. If it has a proper
positive lcK potential, then there exists a holomorphic embedding into a linear Hopf manifold
(Hn, ωH , θ0). Here, by lcK potential they mean that a Kähler covering has a potential on which
the deck transformations act with the same homothety factors as on the metric; the potential is
assumed to be proper, compare with [OV16]. Vaisman manifolds correspond to an action of the
Hopf deck transformations generated by a semisimple element.

For our purpose, we consider an N -dimensional classical Hopf manifold
(
HN
λ , ωH , θ0

)
, with

HN
λ = (CN \ {0})/Z, ωH = ‖z‖−2ω0, and θ0 = d log ‖z‖−2, where Z is generated by λ · id for

λ ∈ C\{0} with |λ| 6= 1 and we denote by ω0 the (1, 1)-form associated to the flat metric on CN .
Notice that N is allowed to be infinite and, when it is, we mean that the universal covering is
l2(C). We say that an lcK manifold (M,ω, θ) admits a (global) lcK immersion into (HN

λ , ωH , θ0)

if there exists a holomorphic map f : M → HN
λ such that f∗ωH = ω. In this case, we say that

ω is Hopf-induced. As a consequence of the Calabi local rigidity (see [Cal53] or next section),
when an lcK immersion exists it is unique up to unitary transformations of the ambient space,
see Prop. 3.5.

A straightforward obstruction to the existence of an lcK immersion is that Hopf-induced
metrics are with proper potential and so they have the diffeomorphism type of Vaisman manifolds,
(see Prop. 3.6 and Rem. 3.7). On the other hand, an lcK manifold (M,ω) is Hopf-induced
if and only if a Kähler covering is induced by an immersion into l2(C) that preserves both the
metric and the Lee form (see Prop. 3.4). Applying Calabi’s techniques, we are able to write
such conditions in terms of the diastasis function (see [Cal53] or next section for definitions and
details). More precisely we have:
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Theorem 1.1 (see Prop. 3.9). Let (M,ω) be an lcK manifold with proper potential. Then (M,ω)

is Hopf-induced if the following conditions are fulfilled:

(1) a Kähler covering (M̃, ω̃) of (M,ω) is induced by an immersion into l2(C);
(2) the continuous extension of the diastasis function to the one–point completion of (M̃, ω̃)

is an automorphic potential.

Notice that in complex dimension two, one actually has to assume the Spherical Shell conjec-
ture to hold true (see Sect. 3.1 for notation and details).

We further observe that in the lcK context a straightforward analogue of Tian’s Approximation
Theorem recalled above does not hold true, as we show in Prop. 3.10.

In the second part of this note, we focus on non-Kähler compact complex surfaces. The only
ones admitting Vaisman metrics are either with non-negative Kodaira dimension or diagonal Hopf
surfaces, as proven by F. Belgun [Bel00]. As for existence of lcK metrics, assuming the Spherical
Shell conjecture to hold true, the situation is known thanks to [Bel00, Bru11] and references
therein. As observed by [Bru11, Pon14], any compact complex surface admits a covering which
is Kähler. In Sect. 4, we study lcK immersions for the Hermitian compact complex surfaces
appearing in the literature [GO98, Par03, Bel00, Tri82, CFdL86, Vai87, Tri82], we apply Theorem
1.1 to the Vaisman ones and we also study the existence of a Kähler immersion of the covering
when they are not Hopf-induced. In particular, linear Hopf surfaces with the Gauduchon-Ornea
metric provides the only examples of lcK immersion we have, and only when the eigenvalues of
the generator of the action group coincide. Properly elliptic surfaces with the Vaisman metric
by Belgun do not admit an lcK immersion, but they do at the level of the Kähler covering.
Similarly, also both the Vaisman metric on the Kodaira surfaces, and the (non-Vaisman) lcK
metric by Tricerri on the Inoue-Bombieri surfaces are induced by Kähler metric immersed into
l2(C), but they are not Hopf-induced.

The paper is organized as follows. In the next section we recall the definition of diastasis
function and summarize what we need about Calabi’s work on Kähler immersions of Kähler
manifolds into the complex Euclidean space. In Sect. 3 we state equivalent definitions of lcK
immersions, and study their properties in relation with the diastasis function and the Lee form.
We also investigate approximation of Vaisman manifolds by Hopf-induced metrics. Finally, Sect.
4 is devoted to the case of lcK surfaces described above.

Acknowledgments. The authors are very grateful to Andrea Loi and Liviu Ornea for the interest
in their work and for all the stimulating conversations. We would also like to thank the
anonymous referees for having pointed out some mistakes in a previous version and for their very
useful suggestions.

2. Kähler immersions of Kähler manifolds into the complex Euclidean space

In the groundbreaking work [Cal53], E. Calabi states an algebraic criterion to test the existence
of a Kähler immersion of a real analytic Kähler manifold into a finite or infinite dimensional
complex space form, i.e. a simply connected Kähler manifold with constant holomorphic sectional
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curvature. We summarize in this section his criterion in the case when the ambient space is the
complex Euclidean space endowed with the flat metric g0, that will be the case we consider in
the next sections. Recall that, when the dimension is infinite, one takes l2(C) as ambient space.
For details about Kähler immersions of Kähler manifolds into complex space forms and related
issues, we refer the reader to [LZ17] and references therein.

Consider a Kähler manifold (M, g) and let Φ: U → R be a Kähler potential for g, i.e. if
we denote by ω the Kähler form associated to g, then ω|U =

√
−1
2 ∂∂̄Φ. Fix local coordinates

z on U . Since the pull-back of the flat metric g0 through a holomorphic map must be a real
analytic Kähler metric, we take g to be real analytic. Then, we can duplicate the variables z
and z̄ and consider the analytic continuation Φ̃(z, z̄′) of Φ(z, z̄) = Φ(z) in a neighbourhood W
of the diagonal ∆ ⊂ U × Ū . The diastasis function for g on W is given by:

D(z, z′) = Φ̃(z, z̄) + Φ̃(z′, z̄′)− Φ̃(z, z̄′)− Φ̃(z′, z̄).

Example 2.1. The diastasis of the flat metric g0 on CN , N ≤ +∞, reads:

D0(z, z′) = ‖z − z′‖2.

Once one of its two entries is fixed, the diastasis is a Kähler potential for g with the following
key property:

Proposition 2.2 (Hereditary property [Cal53, Prop. 6]). Let (M, g) be a real analytic Kähler
manifold and let f : U → CN , N ≤ +∞, be a Kähler map, i.e. f∗g0 = g. Then, if we denote by
D0 the diastasis function of g0 and by D that of g, we have:

D(z, z′) = D0(f(z), f(z′)).

Let us denote by D0(z) = D(z, 0) the diastasis for g centered at the origin of the chosen
coordinate system and let (ajk) be the matrix of coefficients in the power series expansion:

(1) D0(z) =
∞∑

j,k=1

ajkz
mj z̄mk .

where the mjs are n-uples of integers, n being the dimension of M , arranged in lexicographic
order.

Remark 2.3. In general two Kähler potentials differ by the addition of the real part of a
holomorphic function, i.e. if ϕ is a Kähler potential and h is a holomorphic function, then
ϕ′ = ϕ + h + h̄ is a Kähler potential as well. Among the other Kähler potentials, the diastasis
function is characterized by presenting in each coordinates system a power expansion (1) with
a0k = aj0 = 0, or in other words, it does not have terms in z or z̄ alone.

Definition 2.4. A Kähler manifold (M, g) is resolvable of rank N at p ∈M if, in a coordinates
system z centered at p, the matrix (ajk) is semipositive definite of rank N .

Calabi proved that if a Kähler manifold is resolvable of rank N at p then it also is of the same
rank at any other point [Cal53, Th. 4]. The resolvability of a real analytic Kähler manifold
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(M, g) is actually equivalent to the existence of a local Kähler immersion. Calabi’s criterion can
be stated as follows:

Theorem 2.5 (Calabi’s local criterion [Cal53, Th. 3]). A Kähler manifold (M, g) admits a local
Kähler immersion of a neighborhood U of a point p into CN , N ≤ +∞, if and only if (M, g) is
resolvable of rank at most N at p. Further, if the rank is exactly N , then the immerson is full,
i.e. the image of U is not contained in any totally geodesic complex submanifold of CN .

Further, when a Kähler immersion exists, it is unique up to unitary transformation of the
ambient space:

Theorem 2.6 (Calabi’s rigidity [Cal53, Th. 2]). Let f1, f2 : (M, g)→ CN , N ≤ +∞, be two full
Kähler immersions. Then there exists a unitary transformation U of CN such that f2 = U ◦ f1.

When the manifold is simply connected, one can glue together all the local immersions to get
a global one. WhenM is not simply connected, the existence of a local Kähler immersion implies
the existence of a global one f : M̃ → CN for its universal covering M̃ . This map f descends to
M when, for any p ∈M , the analytic extension of the diastasis Dp centered at p is single valued.
The global Calabi’s criterion can be stated as follows:

Theorem 2.7 (Calabi’s global criterion [Cal53, Th. 6]). A real analytic Kähler manifold (M, g)

admits a Kähler immersion into CN , N ≤ +∞, if and only if the following conditions are fulfilled:

(1) (M, g) is resolvable of rank at most N ;
(2) for any p ∈M , the analytic extension of the diastasis Dp is single valued.

3. Isometric immersions of lcK manifolds in Hopf manifolds

3.1. Notation on lcK structures. Let M be a compact complex manifold, of complex dimen-
sion n. We recall that a locally conformally Kähler (shortly, lcK) structure on M is given by a
Hermitian metric g with associated (1, 1)-form ω such that dω − θ ∧ ω = 0 with dθ = 0; here,
the 1-form θ is called the Lee form. Equivalently, an lcK structure corresponds to a covering
M̃ →M where M̃ is endowed with a Kähler metric ω̃, globally conformal to the pull-back of ω
itself, such that the deck transformation group Γ acts by holomorphic homoteties, with factors
given by the character χ : Γ→ R>0.

An lcK structure (ω, θ) is said to be with potential if there exists a Kähler covering (M̃, ω̃)

admitting a positive automorphic global potential, namely, ω̃ = ddcψ where ψ > 0 is a positive
function such that γ∗ψ = χ(γ)ψ for any γ ∈ Γ. Up to small deformations of (ω, θ) in the
C∞-topology, we can assume that the potential ψ is also proper, see [OV16, page 93]. This last
condition is the same as asking that the lcK rank, namely, the rank of imχ, is 1, see [OV16,
Claim 2.8].

An lcK structure is called Vaisman if the associated Lee form is parallel with respect to the
Levi Civita connection of g itself. Equivalently, up to small deformations, they admit a Kähler
covering being a Riemannian cone over a Sasaki manifold (see [OV16] and references therein for
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dimension greater than two and [Bel00] for Vaisman compact complex surfaces). Observe that
Vaisman manifolds are with potential, given by ‖ϑ]g̃‖2g̃, where g̃ is the metric associated to ω̃.

We recall that primary Hopf manifolds are quotient of Cn \ {0} by a free action of the cyclic
group Γ = 〈γ〉 ' Z, where γ acts by holomorphic contractions preserving 0 (that is, its lineariza-
tion in 0 is invertible with eigenvalues of norm less than 1). If γ is linear, we say that the Hopf
manifold is linear; the special case γ = λ · id for λ ∈ C, |λ| < 1 will be referred as classical (or
simple elliptic following the notation for surfaces). Linear Hopf manifolds are lcK with proper
potential. Diagonal Hopf manifolds, namely, linear Hopf manifolds whose fundamental group is
generated by a semisimple matrix, are in fact Vaisman.

In particular, primary Hopf surfaces [KodSurf] are obtained by γ(z, w) = (αz + λwm, βw)

where α, β ∈ C \ {0}, λ ∈ C, m ∈ N \ {0}, with |α| < 1, |β| < 1, λ(α − βm) = 0. They are
Vaisman if and only if λ = 0 (known as class 1) [Bel00, Theorem 1]; also in case λ 6= 0 (known
as class 0), they admit a lcK metric [GO98, Theorem 1].

In [OV10a, OV17], L. Ornea and M. Verbitsky prove the following embedding theorem:

Theorem 3.1 ([OV10a, Theorem 3.4], [OV17, Theorem 5.6]). Any compact lcK manifold with
potential of complex dimension at least 3 can be holomorphically embedded into a Hopf manifold.
A compact Vaisman manifold of complex dimension at least 3 can be holomorphically embed-
ded into a diagonal Hopf manifold. If the Spherical Shell conjecture holds true, then the same
conclusion holds for complex dimension 2.

Here, the Spherical Shell conjecture refers to the statement that any class VII0 surface with
b2 > 0 is a Kato surface.

3.2. Infinite dimensional Hopf manifold. In view of the Ornea and Verbitsky embedding
theorem in lcK geometry, [OV10a, Theorem 3.4], we consider as ambient space theN -dimensional
classical Hopf manifold of dimension N ∈ N defined as

HN
λ := (CN \ {0})/Z,

where Z is generated by λ · id where λ ∈ C \ {0} and |λ| 6= 1. We endow it with the lcK metric

gH :=
1

‖z‖2
g0,

where g0 is the flat metric on CN ; we denote by ωH = ‖z‖−2ddc‖z‖2 and ω0 = ddc‖z‖2 the
associated (1, 1)-forms. Its Lee form is

θ0
loc
= d log ‖z‖−2.

The lcK metric is in fact Vaisman with proper automorphic potential ‖z‖2 = DC
N

0 (z) equals to
the diastasis centered in the origin. Following Calabi’s picture, we allow N to be infinite: in
this case,

H∞λ := (l2(C) \ {0})/Z,
where l2(C) is the space of sequences z = (zj)j ⊂ C with finite l2-norm, namely ‖z‖ :=

(
∑

j |zj |2)
1
2 < +∞, and g0 is the flat metric on l2(C), which has associated (1, 1)-form ω0 =
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ddc‖z‖2. Moreover, the homothety character χ0 : Z → R>0 has image 〈λ〉 of rank 1. In this
sense, we consider H∞λ as an lcK manifold with "proper" potential.

3.3. Equivalent definitions of lcK immersion. Let (M,ω) be an lcK manifold, of complex
dimension dimCM ≥ 2, with Lee form θ, and denote by (M̃, ω̃) a Kähler covering, i.e. ω̃ =

exp(−h)ω is a Kähler metric, with the pull-back θ̃ = dh on M̃ .

Definition 3.2. An lcK manifold (M,ω) admits a local lcK immersion into the classical Hopf
manifold (HN

λ , ωH), where N ≤ +∞, if, for any point x ∈M , there exist a neighbourhood U 3 x
and a holomorphic map F : U → HN

λ such that F ∗ωH = ω. We call an lcK immersion full if the
dimension of the ambient space can not be lowered.

Note that the lcK metric determines the Lee form, and that the following objects are essentially
equivalent: the Lee form, its local potential, the monodromy group of the covering. Then the
existence of lcK immersions can be stated in equivalent ways:

Proposition 3.3. Let (M,ω) be an lcK manifold, of complex dimension dimM ≥ 2, with Lee
form θ. If (M,ω) admits a local lcK immersion into (HN

λ , ωH), where N ≤ +∞, then F is a
holomorphic immersion such that F ∗θ0 = θ.

Proof. We notice that, F being an isometry, it is also an immersion. Moreover, the condition
F ∗ωH = ω assures also F ∗θ0 = θ. Indeed, we have:

dω = dF ∗ωH = F ∗dωH = F ∗(θ0 ∧ ωH) = F ∗θ0 ∧ ω,

and on the other hand:
dω = θ ∧ ω.

By comparing the two expressions, we get:

(F ∗θ0 − θ) ∧ ω = 0,

and the claim follows since ω ∧_ : ∧1 M → ∧3M is injective when the complex dimension of M
is at least 2. �

Proposition 3.4. An lcK manifold (M,ω) with proper potential, of complex dimension dimM ≥
2 and with Lee form θ, admits a local lcK immersion into (HN

λ , ωH), where N ≤ +∞, if and only
if a minimal Kähler covering (M̃, ω̃) of (M,ω) admits a local Kähler immersion F̃ into (CN , ω0)

and F̃ ∗θ̃0 = θ̃, where θ̃0 and θ̃ are the pull-back of the Lee forms on the coverings. Moreover, if
such an F̃ : M̃ → CN is a global Kähler immersion, then F : M → HN

λ is a global lcK immersion,
too.

Proof. We prove that a local lcK immersion of (M,ω) into (HN
λ , ωH) induces a local Kähler

immersion of a minimal Kähler covering (M̃, ω̃) into (CN , ω0), which in fact is equivariant with
respect to the actions of the deck transformation group on M̃ and of Z = 〈λ · id〉 on CN . Indeed,
take F1 : M ⊇ U → CN any lift of the map F : M ⊇ U → HN

λ = CN/Z; observe that two lifts
differ by the action of Z = 〈λ · id〉. We notice that, on M̃ , one has θ̃ = dh. Then the condition
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F ∗θ0 = θ can be rewritten as d(F̃ ∗ log ‖z‖−2 − h) = 0, or equivalently, F̃ ∗‖z‖−2 = exph up to
multiplicative constants. Then:

F̃ ∗ω0 = F̃ ∗(‖z‖2ωH) = F̃ ∗‖z‖2 · F ∗ωH = exp(−h)ω = ω̃,

up to multiplicative constants. We notice that, if F is a local Kähler immersion of (M̃, ω̃)

into (CN , ω0), then
√
cF , for c ∈ R>0 constant, is a local Kähler immersion of (M̃, c−1ω̃) into

(CN , ω0). Then F induces a local Kähler immersion F̃ of the Kähler covering into CN with the
flat metric ω0.

Conversely, we prove that, if a minimal Kähler covering (M̃, ω̃) of (M,ω) admits a local
(respectively, global) Kähler immersion F̃ into (CN , ω0) such that F̃ ∗θ̃0 = θ̃, then we can make
F̃ equivariant with respect to a suitable action on CN , which is in fact a multiple of the identity,
and then it induces a local (respectively, global) lcK immersion of (M,ω) into (HN

λ , ωH), for some
λ. Indeed, consider the homothety characters χM : π1(M) ⊇ AutMM̃ → R>0, where AutMM̃ is
the deck transformations group of the covering M̃ →M . The homothety character is determined
by the Lee form, see e.g. [PV12, Theorem 3.1], or by its lift: indeed, χM (γ) = exp

∫
γ θ = exp

∫
γ̃ θ̃

where γ̃ is a lift of γ ∈ AutMM̃ ⊆ π1(M) to M̃ . Take γ ∈ π1(M) a generator of AutMM̃ . We have
λ−2 := χM (γ) = exp

∫
γ̃ F̃
∗θ̃0 = exp

∫
F̃◦γ̃ θ̃0 and also λ−2 = exp

∫ λ·z
z d log ‖z‖−2 = exp

∫ λ·z
z θ̃0 that

we expect to be a generator for χ0(HN
λ ) the image of the homothety character of HN

λ . Both F̃
and λF̃ ◦ γ̃ are isometric immersions into (CN , g0), then they differ by a unitary transformation
of CN thanks to Calabi’s rigidity Th. 2.6. Then, up to unitary transformations, we have that
(λF̃ ) ◦ γ̃ = F̃ . Then we get that F̃ ◦ γ̃ = ζ ◦ F̃ for the trasformation ζ = λ−1 · id of the whole
CN .

We conclude by showing that F ∗ωH = ω. Indeed, we have θ̃0 = d log ‖z‖−2 and, say, θ̃ = dh;
then the condition F̃ θ̃0 = θ̃ rewrites as F ∗‖z‖−2 = exph up to multiplicative constants. Finally,
we compute

F ∗ωH = F ∗(‖z‖−2ω0) = F ∗‖z‖−2 · F ∗ω0 = F ∗‖z‖−2 · ω̃ = exp(logF ∗‖z‖−2 − h)ω = ω,

concluding the proof. �

In the sight of Prop. 3.4, an lcK immersion is full in HN
λ if and only if the Kähler immersion

of the Kähler covering is full in CN .

3.4. Properties of lcK immersions. If an lcK immersion exists, then it is essentially unique.
More precisely we have:

Proposition 3.5. Local lcK immersions are determined up to unitary transformations of CN ,
N ≤ +∞.

Proof. Let F1 and F2 be two local lcK immersions ofM into HN
λ . We can lift and interpret them

as local Kähler immersions F̃1 and F̃2 for a minimal Kähler covering M̃ into CN . Thanks to
the Calabi’s rigidity Th. 2.6, Kähler immersions are defined up to unitary transformations and
translations. In this case, F̃1 and F̃2 being equivariant, we just have a unitary transformation Ũ
of CN such that F̃2 = Ũ ◦ F̃1. If πM : M̃ → M and π0 : CN → HN

λ denote the coverings, then
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F2 ◦ πM = π0 ◦ F̃2 = π0 ◦ Ũ ◦ F̃1 = U ◦ π0 ◦ F̃1 = U ◦ F1 ◦ πM , whence F2 = U ◦ F1 where U is
induced by Ũ on the quotient. �

A first straightforward obstruction for the existence of lcK immersions is the following:

Proposition 3.6. An lcK manifold (M,ω) admitting a global lcK immersion into an infinite
dimensional classical Hopf manifold admits a proper potential.

Proof. We have ω = F ∗ωH = F ∗(‖z‖−2ddc‖z‖2) = F ∗‖z‖−2ddcF ∗‖z‖2 = ψ−1ddcψ where ψ :=

F ∗‖z‖2 = ‖F‖2 is a positive automorphic global potential.
Moreover, the potential is proper. More precisely, we prove that (M,ω) has lcK rank 1, that

is, the image of its homothety character has rank 1. This is equivalent to the potential being
proper thanks to [OV16, Claim 2.4]. By Prop. 3.4, F induces a local Kähler immersion F̃ of
the Kähler covering M̃ into CN which is equivariant. Thus, for any γ ∈ AutMM̃ , we can choose
ζ ∈ AutHC

N such that ζ ◦ F̃ = F̃ ◦ γ. Since ζ∗ω0 = λk · ω0 for some k ∈ N where λ ∈ imχ0 is a
generator of the image of the character of H, we have:

ω̃ = F̃ ∗ω0 = λ−kF̃ ∗(ζ∗ω0) = λ−k(ζ ◦ F̃ )∗ω0 = λ−kγ∗F̃ ∗(ω0) = λ−kγ∗ω̃,

whence
χM (γ) =

γ∗ω̃

ω̃
= λk.

This proves that the image of χM is a subgroup of the image of χ0, whence the lcK rank of M
is 1. �

Remark 3.7. In general, we cannot use the immersion F to conclude that a Hopf-induced lcK
metric is Vaisman too, unless the immersion is totally-geodesic. On the other hand, by [OV10b,
Theorem 2.1] (and [OV16, Proposition 2.13]), compact complex manifolds endowed with lcK
metrics with (proper) potential can be smally deformed to Vaisman manifolds. In particular,
compact manifolds admitting Hopf-induced metrics are diffeomorphic to Vaisman manifolds.

Remark 3.8. We thank the anonymous referee for having drawn our attention to the result in
[Ver04, Proposition 6.5]. It states that a compact complex submanifold of a Vaisman manifold
is itself Vaisman. The argument in [Ver04] shows that the restriction of the Lee vector field
θ] (namely, the metric dual of the Lee form) to the submanifold is actually tangent to the
submanifold, as a consequence of the formula dcθ = −ω + θ ∧ Jθ, which holds more in general
for lcK structures with potential, [OV09, Lemma 5.1].

For an lcK manifold (M,ω) with proper potential and of dimension n ≥ 3, L. Ornea and
M. Verbitsky [OV07] show that the metric completion M̃c of a minimal Kähler covering M̃ is
Stein, and M̃c \M̃ is just one point, that in the sequel we will denote by p. For compact complex
surfaces, the same result holds under the assumption of the Spherical Shell conjecture (see [OV17,
Th. 5.6]). The following result provides necessary and sufficient conditions to the existence of an
lcK immersion in terms of the function DM̃c

p defined as the continuous extension of the diastasis
function DM̃

q to the one point completion M̃c of M̃ . More precisely if F̃ : M̃ → CN \ {0} is a
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Kähler immersion (and we denote in the same way also its continuous extension to the metric
completions) then we define:

(2) lim
q→p

DM̃
q = lim

q→p
F ∗||z − F (q)||2 = F ∗ lim

q→p
||z − F (q)||2 = F ∗||z||2 =: DM̃c

p ,

where we used the definition of the diastasis of CN Ex. 2.1 and the Hereditary property Prop.
2.2. Note that if the metric completion is smooth, DM̃c

p is exactly the diastasis function centered
at p; but in general M̃c is not smooth, unless M is a Hopf manifold.

Proposition 3.9. Let (M,ω) be an lcK manifold with proper potential, of complex dimension
dimCM ≥ 2, and let θ be the Lee form. In case dimCM = 2, assume also the Spherical Shell
conjecture to hold true. Let (M̃, ω̃) be a minimal Kähler covering and (M̃c, ω̃c) be its metric
completion, obtained by adding the point p.

The following are equivalent:

(1) (M,ω) admits a local lcK immersion into an N -dimensional classical Hopf manifold;
(2) (M̃, ω̃) is resolvable of rank at most N and the function DM̃c

p given by (2), satisfies

θ
loc
= −d logDM̃c

p ;
(3) (M̃, ω̃) is resolvable of rank at most N and the function DM̃c

p , given by (2), yields a local
automorphic potential for ω̃.

Moreover, if for any q ∈ M̃ , the analytic extension of the diastasis DM̃
q is single valued, (for

example, if M̃ is simply-connected,) then (M,ω) is Hopf-induced, that is, it admits a global lcK
immersion into an N -dimensional classical Hopf manifold.

Proof. In Prop. 3.4, we have seen that the existence of a local lcK immersion of M into HN
λ ,

N ≤ +∞, is equivalent to the existence of a local Kähler immersion of M̃ into CN that preserves
the pull-backs of the Lee forms, that is, F ∗θ̃0 = θ̃.

The condition on the resolvability is equivalent to the existence of a local Kähler immersion
F̃ of M̃ into CN \ {0} thanks to Calabi’s criterion Th. 2.5. Since θ̃0 = d log ‖z‖−2, by (2) the
condition F̃ ∗θ̃0 = θ̃ is then equivalent to θ̃ = −d logDM̃c

p .
Finally, we prove the equivalence of the third statement. Clearly, if ω̃ = ddcΦ has automorphic

potential Φ = DM̃c
p , then θ̃ = −d logDM̃c

p , and we are back to the second statement. Conversely,
since ωH = ‖z‖−2ddc‖z‖2 and again by (2), the condition F ∗ωH = ω is equivalent to ω =

(DM̃c
p )−1ddcDM̃c

p .
Moreover, if for any q ∈ M̃ , the analytic extension of the diastasis DM̃

q is single valued, then
Calabi’s global criterion in Th. 2.7 applies for M̃ , that is, F̃ : M̃ → CN is a global Kähler
immersion. Then it induces a global lcK immersion F : M → HN

λ thanks to the observation in
Prop. 3.4. �

Finally, we show that, as expected, an analogue of the Tian approximation Theorem [Tia90]
does not hold in the lcK context. We wonder whether a finer statement can be proven.

Proposition 3.10. In general, it is not true that Vaisman metrics can be approximated by
Hopf-induced metrics.
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Proof. We consider the following counterexample. Consider the Vaisman metrics on diagonal
Hopf surfaces with eigenvalues α 6= β such that |α| = |β| described in Sect. 4. We will prove
in Prop. 4.1 and Cor. 4.2 that a Kähler covering (M̃, ω̃) admits a Kähler immersion into
l2(C) \ {0}, but such immersion does not descend to the quotient. Observe that in this case the
metric completion is actually smooth. We show now that such a metric can not be approximated
by Hopf-induced metrics.

Due to Prop. 3.9, the fact that the immersion does not descend to the quotient means that
the automorphic potential of ω̃ differs from the diastasis function Dω̃c

p of the metric completion
(M̃ c, ω̃c) by the (non-vanishing) real part of a holomorphic function, p being the completing-one-
point.

Assume by contradiction that ωm → ω where ωm are Hopf-induced metrics, i.e. ωm =

F ∗mωH for some Fm : M → H∞λ holomorphic immersions. Then we have F̃m : M̃ → l2(C) \ {0}
holomorphic immersions such that F̃ ∗ω0 = ω̃m = ddcF̃ ∗m‖z‖2. On one hand, we have F ∗mθ0 → θ,
where θ is the Lee form of ω; on the other hand, on the Kähler coverings, the pull-backs of the Lee
forms satisfy θ̃m = −d log F̃ ∗m‖z‖2 and θ̃ = −d log Φ, where Φ is the automorphic potential of ω̃.
So we have F ∗m‖z‖2 → Φ, up to additive constants. Now we notice that, since Fm are holomorphic
maps, the projections of F ∗m‖z‖2 onto the space of real parts of holomorphic function is zero.
But the same does not hold true for Φ, because, by assumption, the automorphic potential is
not the diastasis of the one-point metric completion of (M̃, ω̃) (see Rem. 2.3). �

4. Hopf-induced Vaisman surfaces

4.1. The Vaisman question. In [Bel00, Th. 1], extending [Vai87, Tri82, GO98], F. Belgun
proves that a compact complex non-Kähler surface X is Vaisman if and only if it is an elliptic
surface (i.e. a properly elliptic surface, a primary or secondary Kodaira surface, or an elliptic
Hopf surface), or it is a Hopf surface of class 1. Except for some Inoue surfaces (those of type
S+
n;p,q,r;u corresponding to a parameter u 6∈ R), he constructs lcK metrics on any other compact

complex surfaces with first Betti number b1 odd (namely, non-Kähler) and Euler characteristic
χ = 0 (which is the obstruction to be Vaisman). The missing case of class VII+0 surfaces reduces
to Kato surfaces under the Spherical Shell conjecture. In [Bru11, Th. 1], extending previous
works by C. LeBrun, and A. Fujiki and M. Pontecorvo, M. Brunella proves that any Kato surface
admits an lcK metric. So, under the Spherical Shell conjecture, this provides a complete answer
to the Vaisman question [Vai87, p. 122] on the existence of lcK metrics on compact complex
surfaces. In fact, notice that even the non-lcK Inoue surfaces do admit a covering being Kähler,
see [Bru11, p. 77] and [Pon14, Rem. 4.5]. We refer to [Pon14] for a review on the Vaisman
question.

4.2. Hopf-induced lcK metrics. Of course, any diagonal Hopf surface and any compact com-
plex surface with non-negative Kodaira dimension admits an lcK metric and an lcK immersion
into a classical Hopf manifold: indeed, they are Vaisman by [Bel00], and [OV10a, OV17] provides
such a metric as pull-back of a holomorphic embedding.
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In this section, we explicitly study lcK immersions for the known Vaisman metrics in literature,
paying also attention to whether a Kähler immersion of the Kähler covering exists or not. What
we prove is the following:

Diagonal Hopf surfaces: diagonal Hopf surfaces are Vaisman [Bel00], and Vaisman struc-
tures are provided by P. Gauduchon and L. Ornea in [GO98]; for classical Hopf surfaces,
in particular, more metrics are provided by M. Parton in [Par03]. The Gauduchon-Ornea
metric turns out to be induced by an lcK immersion into a classical Hopf manifold if and
only if the eigenvalues of the generator of the fundamental group are equal, α = β; the
condition that their norms are equal |α| = |β| is necessary for the existence of a Kähler
immersion of the Kähler covering. On classical Hopf manifolds, also the Parton metrics
are induced by an immersion, at the level both of the lcK manifold and of the Kähler
covering.

Properly elliptic surfaces: properly elliptic surfaces are Vaisman [Bel00]. We consider
the Vaisman structure constructed in [Bel00, Sect. 3]. We show that, the Kähler immer-
sion into l2(C) exists at the level of the Kähler covering, but it is not equivariant. Thus
the Belgun metric on properly elliptic surfaces is not Hopf-induced.

Kodaira surfaces: Kodaira surfaces are Vaisman [Bel00]. We consider the Vaisman struc-
tures constructed in [CFdL86, Vai87]. At the level of the Kähler covering, they are in-
duced by the flat metric on l2(C), through a full Kähler immersion. But the explicit
immersion fixes the origin, up to translation, so it does not descend to the quotient.

Inoue surfaces: Inoue surfaces are not Vaisman [Bel00]. We consider Inoue-Bombieri sur-
faces of type SM endowed with the lcK metric by F. Tricerri [Tri82]. Its Kähler covering
has a local full immersion into l2(C)\{0} with the flat metric, but the manifold itself does
not admit an lcK immersion into the Hopf manifold, since they are not diffeomorphic to
Vaisman manifolds by [Bel00].

Summarizing, among these examples, Hopf surfaces are the only ones with Hopf-induced lcK
metrics, and we notice that the dimension of the ambient space is finite, but not a priori bounded.

Observe that the existence of a Kähler immersion of the Kähler covering into l2(C) is intersting
in its own sake. For example, due to the maximum principle, a complete Kähler submanifold
of a complex Eucidean space must be noncompact and the only known homogeneous Kähler
manifolds admitting such an immersion are the complex flat space, the complex hyperbolic
space, and products of them (see [DSIL12]).

4.3. Diagonal Hopf surfaces. We study when linear Hopf surfaces endowed with the Gauduchon-
Ornea metric admit an isometric immersion into an infinite dimensional classical Hopf manifold,
and also when their Kähler coverings do into l2(C).

More precisely, we consider the compact complex surfaces Hα,β = C2 \ {0}/Z where Z is
generated by γ(z, w) = (αz, βw) where α, β ∈ C \ {0} with |α| ≥ |β| > 1, and endowed with the
lcK metric constructed in [GO98]. The Kähler covering C2 \ {0} has (automorphic) potential
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Φα,β that satisfies the equation [GO98, Prop. 1, Eq. (10)]:

(3) |z1|2Φ
− 2 log |α|

log |α|+log |β|
α,β (z1, z2) + |z2|2Φ

− 2 log |β|
log |α|+log |β|

α,β (z1, z2) = 1,

that is, see e.g. [Orn05, page 126],

Φα,β(z1, z2) = exp

(
(log |α|+ log |β|)τ

2π

)
where τ is the unique solution of the equation:

|z1|2

exp(τ log |α|π)
+

|z2|2

exp(τ log |β|π)
= 1.

Note that the above equation is rotation invariant and thus its solution τ also is. It follows that
Φ is rotation invariant as well, namely Φ(z1, z2) = Φ(|z1|2, |z2|2).

We prove that Hα,β is Hopf-induced if and only if |α| = |β|, which in particular includes the
classical case α = β.

We begin with the following lemma.

Proposition 4.1. Consider on C2 \{0} the Kähler metric ωα,β induced by the rotation invariant
potential Φ which satisfies (3). Then (C2 \{0}, ωα,β) admits a local Kähler immersion into l2(C)

if and only if |α| = |β|. Moreover, the immersion is full in C2.

Proof. If |α| = |β|, then (3) gives:
Φ = |z1|2 + |z2|2,

and ωα,β is the flat metric on C2 \ {0}, which trivially admits a Kähler immersion into C2.
In order to deal with the "only if" part, let us write:

a =
2 log |α|

log |α|+ log |β|
, b =

2 log |β|
log |α|+ log |β|

.

By computing:

∂2j

∂zj1∂z̄
j
1

(
|z1|2Φ(|z1|2, |z2|2)−a + |z2|2Φ(|z1|2, |z2|2)−b

)∣∣∣∣∣
z1=0,z2=s

= 0,

for s ∈ C \ {0}, one gets:

∂2

∂z1∂z̄1
Φ(|z1|2, |z2|2)

∣∣∣∣
z1=0,z2=s

=
Φ(0, |s|2)b−a+1

|s|2b
,

and:
∂2j

∂zj1∂z̄
j
1

Φ(|z1|2, |z2|2)

∣∣∣∣∣
z1=0,z2=s

=
Φ(0, |s|2)j(b−a)+1

|s|2jbj
j−1∏
k=1

(kb+ 1− ja),

for j ≥ 2. We claim that for any value of a and b such that a 6= b, there exists j big enough

such that ∂2j

∂zj1∂z̄
j
1

Φ(|z1|2, |z2|2)

∣∣∣∣
z1=0,z2=s

< 0. If the claim holds true, then for any |α| 6= |β|,

by Calabi’s criterion, (C2 \ {0}, ωα,β), does not admit a local Kähler immersion into l2(C). In
fact, since Φ depends only on the modules of the variables, the matrix (ajk) given by (1) is
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diagonal and ∂2j

∂zj1∂z̄
j
1

Φ(|z1|2, |z2|2)

∣∣∣∣
z1=0,z2=s

are eigenvalues. In order to prove the claim, observe

that ∂2j

∂zj1∂z̄
j
1

Φ(|z1|2, |z2|2)

∣∣∣∣
z1=0,z2=s

< 0 if and only if
∏j−1
k=1(kb + 1 − ja) < 0. Without loss of

generality, we can assume, by symmetry, that a > 1 > b. The claim holds for any positive even
integer j, by noting that the sequence of factors is increasing in k and that the last term is
(j − 1)b+ 1− ja = −j(a− b) + (1− b). �

When the Kähler immersion exists, then it is the identity on the image up to rotations. Then
it is equivariant with respect to (z, w)

γ7→ (αz, βw) and (z, w) 7→ (λz, λw) if and only if α = β

and |α| = |β| = λ:

Corollary 4.2. Let Hα,β = C \ {0}/Z be a linear Hopf manifold, where Z is generated by
γ(z, w) = (αz, βw). Then Hα,β admits a local lcK immersion into H∞λ if and only if α = β, and
in this case λ = |α| = |β|. Moreover, the immersion is full in H2

λ.

As second example, we consider classical Hopf surfaces endowed with the following metrics
constructed by M. Parton in [Par03].

For k ∈ R+, consider the family of Vaisman metrics on C2 \ {0} given by:

ωk =
1

(|z1|2 + |z2|2)2
[(k|z1|2 + |z2|2)dz1 ∧ dz̄1 + (k − 1)z2z̄1dz1 ∧ dz̄2

+(k − 1)z1z̄2dz2 ∧ dz̄1 + (|z1|2 + k|z2|2)dz2 ∧ dz̄2

]
.

They descend to the quotient Hα,β as soon as α = β, generalizing the metrics ωα,α. The metric:

ω̃k = (|z1|2 + |z2|2)kωk,

is Kähler on C2 \ {0} with Kähler potential Φk = 1
k (|z1|2 + |z2|2)k. When k is a positive integer,

ω̃k is defined on the whole C2 and the potential Φk is actually the diastasis function centered
at the origin for ω̃k. It follows that the diastasis is an automorphic potential for ωk. Further,
it is not hard to see that, for any positive integer value of k, then (C2, ω̃k) is resolvable of rank
k+ 1 and thus it admits a full Kähler immersion into (Ck+1, ω0). By Prop. 3.4, (C2 \ {0}/Z, ωk)
admits a full lcK immersion into Hk+1

λ with λ = kk. (It is not hard to prove that, for k 6∈ N,
(C2 \ {0}, ω̃k) is not resolvable.)

Further, the Kähler map can be written explicitely by:

F̃ : C2 → Ck+1, F̃ = (F̃0, . . . , F̃k), F̃j =

√
1

k

(
k

j

)
zk−j1 zj2.

Remark 4.3. We notice that the dimension of the ambient space for lcK immersions does not
depend just on the holomorphic structure of the lcK manifold. In fact, (Hα,α, ωk) admits an lcK
immersion into a Hopf manifold of dimension k + 1.
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4.4. Properly elliptic surfaces. Let D := {(x, y) ∈ C2 : Im (xȳ) > 0}. By [Bel00, Prop. 2]
any minimal properly elliptic surface X is diffeomorphic as a complex manifold to the quotient
of D by the free and proper action of a discrete subgroup Γ of G := C∗ · SL(2,R) ⊂ GL(2,C).
We consider the lcK form ω on X given by ω = 1

2 Im (xȳ)ddc(Im (xȳ)−1) and its Kähler covering
is (D, ω̃), where ω̃ is described by the (globally) defined Kähler potential Φ := Im (xȳ)−1. We
have the following:

Proposition 4.4. The Kähler manifold (D, ω̃) admits a Kähler immersion into l2(C).

Proof. A local Kähler immersion ϕ : D \ {z1 =
√
−1z2} → l2(C) of (D, ω̃) into l2(C) is given by:

ϕ(z1, z2) =
1

z1 −
√
−1z2

(
. . . ,

(
z1 +

√
−1z2

z1 −
√
−1z2

)j
, . . .

)
,

for j ∈ N. Indeed:

ϕ∗(ω0) =

√
−1

2
∂∂̄

 1

|z1 −
√
−1z2|2

∞∑
j=0

|z1 +
√
−1z2

z1 −
√
−1z2

|2j


=

√
−1

2
∂∂̄

 1∣∣z1 −
√
−1z2

∣∣2 · 1

1−
∣∣∣ z1+

√
−1z2

z1−
√
−1z2

∣∣∣2


=

√
−1

2
∂∂̄

[
1∣∣z1 −

√
−1z2

∣∣2 − ∣∣z1 +
√
−1z2

∣∣2
]

=

√
−1

2
∂∂̄
[
Im (z1z̄2)−1

]
.

Observe that, since D is simply connected, the local Kähler immersion can be extended to a
global one. �

Then we have:

Corollary 4.5. X does not admit an lcK embedding into a classical Hopf manifold.

Proof. By Calabi’s rigidity Theorem (Th. 2.6 above) a global Kähler immersion ψ : D → l2(C)

is given in D \ {z1 =
√
−1z2} by U ◦ ϕ where ϕ is the map given in Prop. 4.4 and U is a

unitary transformation of l2(C). It follows that each entry ψj of ψ is a linear combination of(
z1+
√
−1z2

z1−
√
−1z2

)j
, j ∈ N, multiplied by 1

z1−
√
−1z2

. Conclusion follows by noticing that
(
z1+
√
−1z2

z1−
√
−1z2

)j
(and thus any linear combination of it) is invariant by the action of Z∗ · Id ⊂ Γ while 1

z1−
√
−1z2

is not. �

4.5. Kodaira surfaces. It is an open problem to determine which nilmanifolds (namely, com-
pact quotients of connected simply connected nilpotent Lie group by cocompact discrete sub-
grous) admit lcK metrics. L. Ugarte [Uga07] conjectured that necessarily the group is isomorphic
to the product of the Heisenberg group times R; G. Bazzoni [Baz16] proved that the conjecture
is true under the further assumption of Vaisman. The lowest dimensional case, that is, when
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the group is Heis(3;R) × R, the corresponding manifolds are the (primary) Kodaira surfaces
[KodSurf]. They are characterized by Kodaira dimension 0, odd first Betti number, trivial
canonical bundle.

Vaisman metrics on (primary) Kodaira surfaces are explicitly studied in [CFdL86, Vai87] and
are defined as follows. With respect to coordinates:

(x, y, t, u) =


1 x t

1 y

1

 , u

 ∈ Heis(3;R)×R,

consider the holomorphic coordinates on the universal cover:

z =
1√
2

(x+
√
−1y), w = t− 1

2
xy −

√
−1

4
(x2 + y2) +

√
−1u.

The Vaisman lcK metric reads:

ω = 2dz ∧ dz̄ +
1

2
(dw +

√
−1z̄dz) ∧ (dw̄ −

√
−1zdz̄),

while on the Kähler covering one has the Kähler metric:

ω̃ = eu/2
(

2dz ∧ dz̄ +
1

2
(dw +

√
−1z̄dz) ∧ (dw̄ −

√
−1zdz̄)

)
.

A Kähler potential for ω̃ is given by Φ(z, w) = 8eu/2, as can be easily seen by noticing that:

u =
1

2
|z|2 −

√
−1

2
(w − w̄),

and thus:
∂2

∂z∂z̄
eu/2 =

1

16
eu/2(|z|2 + 4),

∂2

∂w∂w̄
eu/2 =

1

16
eu/2,

∂2

∂z∂w̄
eu/2 =

√
−1

16
eu/2z̄,

∂2

∂w∂z̄
eu/2 = −

√
−1

16
eu/2z.

Note that the lcK metric has automorphic potential: ω loc
= 4e−u/2ddc(eu/2).

Proposition 4.6. Let ω̃ be the Kähler metric on C2 defined by the Kähler potential Φ(z, w) =

exp(1
4 |z|

2 −
√
−1
4 (w − w̄)). Then (C2, ω) admits a global full Kähler immersion into l2(C).

Proof. It is easy to see that the map F : C2 → l2(C) given by:

(4) F (z, w) =

(
. . . ,

zj

2j
√
j!

exp

(
−
√
−1

4
w

)
, . . .

)
,

satisfies F ∗ω0 = ω̃. In fact, one has:

||Fj ||2 = exp

(
−
√
−1

4
w

)
exp

(√
−1

4
w̄

)
1

4

∞∑
j=0

|z|2j

4jj!

= exp

(
−
√
−1

4
(w − w̄)

)
exp

(
|z|2

4

)
=Φ(z, w),

as wished. �
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Corollary 4.7. A Kähler map F : C2 → l2(C), F ∗ω0 = ω̃, does not induce any lcK map
f : Heis(3;R)×R→ l2(C).

Proof. By Calabi’s rigidity Theorem (see Th. 2.6 above), the Kähler map F given by (4), is
unique up to unitary transformations and translations of l2(C). It follows that a translation T
such that T ◦ F descends to the quotient does not exist. �

4.6. The Inoue-Bombieri surface. We show an example of an lcK manifold whose Kähler
covering has a local full immersion into l2(C)\{0}, but not admitting an lcK immersion into the
Hopf manifold, since the diffeomorphism type is different from Vaisman manifolds.

It is given by the Inoue-Bombieri surface [Ino74]. Inoue surfaces are surfaces of class VII (i.e.
Kodaira dimension −∞ and first Betti number 1), with second Betti number equal to zero and
with no holomorphic curves. Their universal covering is C×H, where H denotes the hyperbolic
plane. They are divided into three families: SM , S+

N,p,q,r;t, and S
−
N,p,q,r.

We consider here the case SM . More precisely, consider coordinates (z = x1 +
√
−1y1, w =

x2 +
√
−1y2) ∈ C×H with y2 > 0. Fix a matrix M = (Mjk)j,k ∈ SL(3;Z) with a real eigenvalue

λ > 1 and complex non-real eigenvalues µ and µ̄; denote by (`1, `2, `3) an eigenvector for λ, and
by (m1,m2,m3) an eigenvector for µ. Define

SM := (C×H)/Γ ,

where Γ = 〈f0, f1, f2, f3〉 is the group generated by

f0(z, w) := (µz, λw) ,

fj(z, w) := (z +mj , w + `j) ,

varying j ∈ {1, 2, 3}. The action of Γ on C×H is fixed-point free and properly discontinuos with
compact quotient, so SM is a compact complex manifold, which has a structure of torus-bundle
over S1.

We endow SM with the Tricerri metric [Tri82]:

ωT :=
√
−1y2dz ∧ dz̄ +

√
−1

4y2
2

dw ∧ dw̄,

which is an lcK metric on SM with Lee form θ = dy2
y2

:

dωT =
dy2

y2
∧ ωT .

We lift to the covering S̃M of SM where log y2 is defined, so the Lee form θ becomes globally
exact. That is, we consider

S̃M := (C×H)/〈f1, f2, f3〉 .

The deck transformation group of the covering S̃M → SM is then identified with the cyclic group
〈f0〉.
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Then, on S̃M , we have the Kähler metric

ω̃T := exp(− log y2)ωT

=
√
−1dz ∧ dz̄ +

√
−1

4y3
2

dw ∧ dw̄.

The deck transformation group 〈f0〉 acts on ω̃T by homotheties:

f∗0 ω̃T =
√
−1|µ|2dz ∧ dz̄ +

√
−1

4y3
2

1

λ
dw ∧ dw̄

= |µ|2ω̃T ;

more precisely, the group of homothety factors is the cyclic group Z ' 〈|µ|2〉.
For simplicity, to write down the diastasis function for ω̃T , we move to the disc model B instead

of half-plane modelH for the hyperbolic plane, by the transformation B 3 w 7→ ŵ = w+
√
−1√

−1w+1
∈ H

and its inverse H 3 ŵ 7→ w = ŵ−
√
−1

−
√
−1ŵ+1

∈ B. In these coordinates ŵ ∈ H, we have:

ω̃T =
√
−1dz ∧ dz̄ + 4

√
−1
|1 +
√
−1ŵ|2

(1− |ŵ|2)3
dŵ ∧ d ¯̂w.

A Kähler potential for ω̃T , which is also the diastasis function centered at the origin, is given by:

D0(z, ŵ) = |z|2 +
2(2 +

√
−1(ŵ − ¯̂w))|ŵ|2

1− |ŵ|2
.

The map F : C×B→ l2(C) defined by:

(5) F (z, ŵ) =
(
z,
√

2ŵ,
√

2(ŵ2 −
√
−1ŵ), . . . ,

√
2(ŵj+1 −

√
−1ŵj), . . . ,

)
,

is a full Kähler immersion, as it follows by:

||Fj ||2 =|z|2 + 2|ŵ|2 + 2
∞∑
j=1

|ŵj+1 −
√
−1ŵj |2

=|z|2 + 2|ŵ|2 +
2|ŵ|2|

√
−1− ŵ|2

1− |ŵ|2

=|z|2 +
2(2 +

√
−1(ŵ − ¯̂w))|ŵ|2

1− |ŵ|2
.

Up to translate the image, we get a local Kähler immersion into l2(C) \ {0}.
We turn now at the problem of the existence of an lcK immersion of SM itself into some

Hopf manifold. We notice that this is impossible by Prop. 3.6, since the Inoue-Bombieri
surface do not admit a proper potential since they are not diffeomorphic to Vaisman manifolds
[Ino74, Bel00]. It follows also by looking at the explicit form of the immersion: the condition
F ∗θ0 = θ (where θ0 is the Lee form of the Hopf manifold) yields F ∗‖z‖−2 = y2 up to additive
constants; but F is the identity on the first factor C ⊂ C×H.

Remark 4.8. We ask whether the Inoue-Bombieri surfaces admit an lcK immersion into some
other (possibly infinite dimensional) lcK non-Vaisman Hopf manifold. For example, we ask
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whether there is any contraction ϕ on l2(C) that makes F in (5) equivariant and for which
l2(C)/〈ϕ〉 is an lcK manifold with flat Kähler covering.

References

[Baz16] G. Bazzoni, Vaisman nilmanifolds, Bull. Lond. Math. Soc. 49 (2017), no. 5, 824–830. (Cited on p. 15.)
[Bel00] F. A. Belgun, On the metric structure of non-Kähler complex surfaces, Math. Ann. 317 (2000), no. 1,

1–40. (Cited on p. 2, 3, 6, 11, 12, 15, 18.)
[Bru11] M. Brunella, Locally conformally Kähler metrics on Kato surfaces, Nagoya Math. J. 202 (2011), 77–81.

(Cited on p. 2, 3, 11.)
[Cal53] E. Calabi, Isometric imbedding of complex manifolds, Ann. of Math. (2) 58, (1953). 1–23. (Cited on

p. 1, 2, 3, 4, 5.)
[CFdL86] L. A. Cordero, M. Fernández, M. de León, Compact locally conformal Kähler nilmanifolds, Geom.

Dedicata 21 (1986), no. 2, 187–192. (Cited on p. 3, 12, 16.)
[DSIL12] A. J. Di Scala, H. Ishi, A. Loi, Kähler immersions of homogeneous Kähler manifolds into complex space

forms, Asian J. Math. 16 (2012), no. 3, 479–487. (Cited on p. 12.)
[DO98] S. Dragomir, L. Ornea, Locally conformal Kähler geometry, Progress in Mathematics, 155, Birkhäuser

Boston, Inc., Boston, MA, 1998. (Cited on p. 2.)
[GO98] P. Gauduchon, L. Ornea, Locally conformally Kähler metrics on Hopf surfaces, Ann. Inst. Fourier

(Grenoble) 48 (1998), no. 4, 1107–1127. (Cited on p. 2, 3, 6, 11, 12, 13.)
[Ino74] M. Inoue, On surfaces of Class V II0, Invent. Math. 24 (1974), 269–310. (Cited on p. 17, 18.)
[KodSurf] K. Kodaira, On the structure of compact complex analytic surfaces. I, II, III, IV Amer. J. Math. 86

(1964), 751–798; ibid. 88 (1966), 682–721; ibid. 90 (1968), 55–83; ibid. 90 (1968), 1048–1066. (Cited on
p. 6, 16.)

[LZ17] A. Loi, M. Zedda, Kähler immersions of Kähler manifolds into complex space forms, arXiv:1712.04298
[math.DG]. (Cited on p. 2, 4.)

[Orn05] L. Ornea, Locally conformally Kähler manifolds. A selection of results, Lecture notes of Seminario
Interdisciplinare di Matematica, Vol. IV, 121–152, Lect. Notes Semin. Interdiscip. Mat., 4, Semin.
Interdiscip. Mat. (S.I.M.), Potenza, 2005. (Cited on p. 2, 13.)

[OV07] L. Ornea, M. Verbitsky, An immersion theorem for Vaisman manifolds, Math. Ann. 332 (2005), no. 1,
121–143. (Cited on p. 2, 9.)

[OV09] L. Ornea, M. Verbitsky, Morse-Novikov cohomology of locally conformally Kähler manifolds, J. Geom.
Phys. 59 (2009), no. 3, 295–305. (Cited on p. 9.)

[OV10a] L. Ornea, M. Verbitsky, Locally conformal Kähler manifolds with potential, Math. Ann. 348 (2010),
25–33. (Cited on p. 2, 6, 11.)

[OV10b] L. Ornea, M. Verbitsky, Topology of locally conformally Kähler manifolds with potential, Int. Math.
Res. Not. IMRN 2010 (2010), no. 4, 717–726. (Cited on p. 9.)

[OV16] L. Ornea, M. Verbitsky, LCK rank of locally conformally Kähler manifolds with potential, J. Geom.
Phys. 107 (2016), 92–98. (Cited on p. 2, 5, 9.)

[OV17] L. Ornea, M. Verbitsky, Embedding of LCK manifolds with potential into Hopf manifolds using
Riesz-Schauder theorem, in Complex and Symplectic Geometry, 137–148, Springer INdAM Series, 21,
Springer, 2017. (Cited on p. 6, 9, 11.)

[Par03] M. Parton, Hopf surfaces: locally conformal Kähler metrics and foliations, Ann. Mat. Pura Appl. (4)
182 (2003), no. 3, 287–306, arXiv version at arXiv:math/9907105v1 [math.DG]. (Cited on p. 3, 12,
14.)

[PV12] M. Parton, V. Vuletescu, Examples of non-trivial rank in locally conformal Kähler geometry, Math. Z.
270 (2012), no. 1-2, 179–187. (Cited on p. 8.)



20 DANIELE ANGELLA AND MICHELA ZEDDA

[Pon14] M. Pontecorvo, On a question of Vaisman concerning complex surfaces, Ann. Mat. Pura Appl. (4) 193
(2014), no. 5, 1283–1293. (Cited on p. 2, 3, 11.)

[Rua98] W.-D. Ruan, Canonical coordinates and Bergmann metrics, Comm. Anal. Geom. 6 (1998), no. 3, 589–
631. (Cited on p. 1.)

[Tia90] G. Tian, On a set of polarized Kähler metrics on algebraic manifolds, J. Differential Geom. 32 (1990),
no. 1, 99–130. (Cited on p. 1, 10.)

[Tri82] F. Tricerri, Some examples of locally conformal Kähler manifolds, Rend. Sem. Mat. Univ. Politec.
Torino 40 (1982), no. 1, 81–92. (Cited on p. 3, 11, 12, 17.)

[Uga07] L. Ugarte, Hermitian structures on six-dimensional nilmanifolds, Transform. Groups 12 (2007), no. 1,
175–202. (Cited on p. 15.)

[Vai87] I. Vaisman, Non-Kähler metrics on geometric complex surfaces, Rend. Sem. Mat. Univ. Politec. Torino
45 (1987), no. 3, 117–123. (Cited on p. 2, 3, 11, 12, 16.)

[Ver04] M. Verbitsky, Vanishing theorems for locally conformal hyperkaehler manifolds, Tr. Mat. Inst. Steklova
246 (2004), in Algebr. Geom. Metody, Svyazi i Prilozh., 64–91; translation in Proc. Steklov Inst. Math.
246 (2004), no. 3, 54–78. (Cited on p. 9.)

(Daniele Angella) Dipartimento di Matematica e Informatica “Ulisse Dini”, Università degli Studi
di Firenze, viale Morgagni 67/a, 50134 Firenze, Italy

Email address: daniele.angella@gmail.com
Email address: daniele.angella@unifi.it

(Michela Zedda) Dipartimento di Scienze Matematiche, Fisiche ed Informatiche, Plesso Matem-
atico e Informatico, Università di Parma, Parco Area delle Scienze 53/A, 43124 Parma, Italy

Email address: michela.zedda@unipr.it
Email address: michela.zedda@gmail.com


	1. Introduction
	2. Kähler immersions of Kähler manifolds into the complex Euclidean space
	3. Isometric immersions of lcK manifolds in Hopf manifolds
	3.1. Notation on lcK structures
	3.2. Infinite dimensional Hopf manifold
	3.3. Equivalent definitions of lcK immersion
	3.4. Properties of lcK immersions

	4. Hopf-induced Vaisman surfaces
	4.1. The Vaisman question
	4.2. Hopf-induced lcK metrics
	4.3. Diagonal Hopf surfaces
	4.4. Properly elliptic surfaces
	4.5. Kodaira surfaces
	4.6. The Inoue-Bombieri surface

	References

