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Abstract: In this study, a revision of the previously published data on hydrogen (2H/1H) and oxygen 

(18O/16O) stable isotope ratio of precipitation in northern Chile is presented. Using the amount-

weighted mean data and the combined standard deviation (related to both the weighted mean 

calculation and the spectrometric measurement), the equation of the local meteoric line calculated 

by error-in-variables regression is as follows: Northern Chile EIV-LMWL: δ2H = [(7.93 ± 0.15) δ18O] 

+ [12.3 ± 2.1]. The slope is similar to that obtained by ordinary least square regression or other types 

of regression methods, whether weighted or not (e.g., reduced major axis or major axis) by the 

amount of precipitation. However, the error-in-variables regression is more accurate and suitable 

than ordinary least square regression (and other types of regression models) where statistical 

assumptions (i.e., no measurement errors in the x-axis) are violated. A generalized interval of δ2H = 

±13.1‰ is also proposed to be used with the local meteoric line. This combines the confidence and 

prediction intervals around the regression line and appears to be a valid tool for distinguishing 

outliers or water samples with an isotope composition significantly different from local 

precipitation. The applicative examples for the Pampa del Tamarugal aquifer system, snow samples 

and the local geothermal waters are discussed. 

Keywords: precipitation; stable isotope ratios; local meteoric water line; amount-weighted mean; 

linear regression; confidence; prediction and generalized intervals 

 

1. Introduction 

To fit a model to data pairs, the linear least squares regression is by far the most widely used 

modeling method (e.g., [1]). The ordinary least squares regression (OLSR) minimizes the sum of the 

squared vertical distances between the y data values and the corresponding y values on the fitted line 

(the predictions). The OLSR design assumes that there is no variation in the independent variable (x) 

because it is controlled by the researcher. This is also known as ‘Model I’ regression [2]. In contrast, 

in ‘Model II’ regression, both the response and the explanatory variables of the model are random 

(i.e., not controlled by the researcher), and there are errors associated with the measurements of both 

x and y [2]. Among the ‘Model II’ regression, major axis regression (MA) assumes equal variance on 

both variables and minimizes the orthogonal (perpendicular) distances from the data points to the 

fitted line. To the best of our knowledge, one of the first suggestions for applying orthogonal 
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regression to the precipitation amount weighted stable isotope ratios of the oxygen (δ18O, the 

independent variable x) and hydrogen (δ2H, the dependent variable y) of water molecules in order to 

determine a better global meteoric water line (GMWL) dates back to the 1980s [3]. Ten years later, the 

International Atomic Energy Agency (IAEA) proposed the use of the reduced major axis (RMA) 

regression for calculation of the local meteoric water lines (LMWL) [4]. However, in this latter 

publication, RMA was wrongly defined as an orthogonal regression. In fact, RMA minimizes the sum 

of the areas (thus using both vertical and horizontal distances of the data points from the resulting 

line) rather than the least squares sum of the squared vertical distances, as in OLSR [5]. Meanwhile, 

the local meteoric water lines in the GNIP dataset of IAEA are calculated through precipitation 

amount-weighted least squares regression (PWLSR) [6,7]. This regression approach is considered to 

be the most suitable for representing the isotope composition of groundwater because these are 

recharged by important rainfall events [6,7]. Alternatively, the precipitation weighted RMA 

(PWRMA) appears to be most suitable for coastal, island, and Mediterranean sites [6]. Another 

proposed approach for the calculation of LMWL was the generalized least squares regression model 

(GENLS), an error-in-variables regression (EIV) that considers the combined standard deviation of 

the δ18O and δ2H values [8]. Within the statistical literature, synonyms of this approach are “Deming” 

[9] or “error-in-variables” [10] regression, the former often distinguished as simple (when the data 

errors are constant among all measurements for each of the two variables) and general (different data 

error at each observation) [11]. It should be noted that in the case where the variance ratio is equal to 

1, Deming regression is equivalent to orthogonal regression. From a general statistical and 

chemometrics point of view, comparisons between the different approaches can be found in the 

existing literature [12]. In contrast, in the specific case of water isotope geochemistry and the related 

meteoric water line, a comparison between error-in-variables and other regression methods has never 

been presented or discussed. Moreover, despite the advantages identified by previous publications 

of the alternative regression methods [4,6,7,13], most of the studies on the stable isotope ratio of the 

waters still use OLSR to calculate the LMWLs. While this does not necessarily mean that the use of 

OLSR is wrong [7], it has been shown, especially in the hydrology study of arid regions, that the 

differences between the OLSR approach and other regression approaches can be significant, 

particularly in terms of the slope of the LMWL [7]. 

In this manuscript, we compare the regression lines obtained from OLSR, RMA, MA, PWLSR, 

PWRMA, and PWMA with that from the error-in-variables (EIV) approach, which is very similar to 

the method followed for GENLS [8]. Here, the existing data on δ18O and δ2H values of precipitation 

in northern Chile were chosen. This brief study does not attempt to be mathematically or statistically 

exhaustive and the reader is advised to refer to the referenced literature for more details. In fact, the 

main purpose here is to provide the results of alternative regression methods applied to stable isotope 

ratios of precipitation and to provide guidance and advice when the obtained local meteoric water 

lines are employed for the interpretation of the isotope data of groundwater. 

2. Materials and Methods 

Northern Chile extends southwards from approximately 18° S to 30° S and includes the two 

macro-regions of Norte Grande (Regions XV, I and II; Figure 1B) and part of Norte Chico (Regions III 

and IV; Figure 1B) [14–16]. 
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Figure 1. (A) Localization of the area of this study. (B) Morphostructural domains (shades of brown) 

and administrative regions (modified from [17]). In blue: Pampa de Tamarugal aquifer. (C) Morpho-

tectonic units of the central Andes (modified from [18]). SBS: Santa Barbara System; SP: Sierras 

Pampeanas. The “Modern Forearc” coincides with the Precordillera and the Coastal Cordillera [19]. 

This presents a narrow strip of land (~300 km) between the Andean ridge and the Pacific coast 

[17]. The latitudinal range of this northern part of Chile aligns with a major extension of the arid 

desert climate (BW climate zone [20,21]), followed by a tundra climate (ET climate zone [20,21]), and 

a semi-arid climate in a minor extension [14,21,22]. The Atacama Desert, the driest place on earth 

with mean precipitation as low as 10 mm per decade, and the higher elevations in the Andes are 

striking examples of the BW and the ET climates, respectively. The Amazonian influence in the South 

American monsoon system, with concentrated summer rainfall or dry winters, affects the climate in 

this area from the north boundary to Nevado Ojos del Salado [22], a stratovolcano with an altitude 

of 6,893 m, the highest point in Chile and the second highest outside of Asia. 

The previous studies on isotope composition of meteoric water revealed a general increase in 

δ18O on the Andean plateau (the “Altiplano”, Figure 1C) from north to south, concomitant with an 

increase in aridity and decrease in convective moistening (amount effect; [23]). Stable isotope and 

seasonal precipitation patterns suggest an eastern provenance of the vast majority of moisture that 

falls as precipitation across the Andean Plateau and Western Cordillera (Figure 1C), with Pacific-

derived moisture contributing a minor amount at low elevations near the coast ([23,24]). However, 

over most regions, the δ18O signal of precipitation is influenced by a combination of factors ([24]). The 

δ18O -depleted values observed in the high altitude area (i.e., the Andean plateau) were related to 

processes that affect the air masses that (i) originated over the Atlantic Ocean, (ii) cross the Amazon 

Basin (continental effect), (iii) ascended the Andes (altitude effect) and (iv) precipitated (convective 

effect) in the Andean plateau ([25]). In particular, over the eastern Andes, precipitation at low 

elevations has δ18O from −2 to −8‰, but δ18O becomes more depleted toward the west as vapor is 

lifted across the Eastern Cordillera of the Andes ([26–29]). The dominant Altiplano summer rain has 
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δ18O values from −8‰ to −15‰, with the expectation that precipitation in the driest places (e.g., 

Atamaca desert) should be moderately to strongly depleted at all elevations up to approximately 

−18‰ ([28,30]). 

During the last forty years, several meteoric water lines calculated through OLSR regression 

were proposed to describe the best fit for the oxygen and hydrogen stable isotope ratios of the 

precipitation in northern Chile (Table 1, [31–39]). 

Table 1. Slope and intercept values of the previously published northern Chile meteoric water lines 

[31–39]. All the shown data were calculated by OLSR. The IAEA/GNIP data pairs are referred to as 

the “La Serena” station (Figure 1B). For this station, other two equations are also proposed on the 

same database, δ2H = [(7.64 ± 0.39) δ18O] + [9.44 ± 2.32] and δ2H = [(8.04 ± 0.45) δ18O] + [9.98 ± 2.59] by 

PWLSR and RMA methods [6,7], respectively, both applied to all the available data (N = 40). 

 Slope ± s.e. Intercept ± s.e. N R2 Reference Year Ref. [#] 

 7.8  - 10.3  - 29 - Fritz et al. 1981 [35] 

 8.2 ± 0.17 16.6 ± 2.2 39 0.98 Chaffaut et al. 1998 [32,33] 

 7.8  - 9.7  - 129 - Aravena et al. 1999 [31] 

 7.9  - 14  - - - Herrera et al. 2006 [36] 

 7.7  - 9.6  - - 0.91 Squeo et al. 2006 [38] 

 7.95  - 14.9  - - 0.99 DGA 2015 [34] 

 8.07  - 13.5  - 23 0.98 Troncoso et al. 2012 [39] 

 7.52 ± 0.46 7.18 ± 2.64 40 0.87 IAEA/WHO 2015 [37] 

mean 7.87   11.97    

std.de. 0.21   3.22    

-: data not calculated or not declared; s.e.: standard error. 

However, not all the studies show the oxygen and hydrogen stable isotope ratios of the water 

molecule along with precipitation amount [31,32,35,40–42]. “La Serena” is the northern Chile station 

(Region IV, Figure 1B) monitored by the Global Network of Isotopes in Precipitation (GNIP dataset) 

from 1988 until 2015 [37]. 

For this study, a dataset of 32 stations has been constructed through collecting previously 

published data, considering only the isotope values of precipitation with the measured amount and 

recalculating the amount-weighted mean in order to have only one δ18O and δ2H data pair per station 

(Table 2; Supplementary File S1). 
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Table 2. Amount-weighted oxygen and hydrogen stable isotope ratios (δ18O and δ2H in permil versus the standard mean ocean water SMOW, respectively) of the 

previously published precipitation samples collected in northern Chile [31,32,35,37,40–43]. Calculations are described in the Supplementary File S1. Samples were 

mainly collected in Region I (from #1 to #27), Region II (from #28 to #31) and Region IV (#32) (Figure 1B). 

ID # Location 

Coordinates 

Elevation 

Meters 

δ18O (a.w.m. ± c.s.) δ2H (a.w.m. ± c.s.) 

Na.p. 

Precipitation 

Amount 

(Mean Value) 

Millimeters 

References Ref. [#] 
Latitude Longitude ‰ vs. SMOW ‰ vs. SMOW 

1 Apacheta Tapa −19.5891 −68.9940 4350 −17.48 ± 1.14 −122.3 ± 8.9 4 73.73 Fritz et al. 1981 [35] 

2 Chusmiza −19.7060 −69.1906 3360 −7.51 ± 0.22 −48.9 ± 1.0 3 103.93 Fritz et al. 1981 [35] 

3 Alto Mocha −19.8181 −69.2987 2590 −7.13 ± 0.31 −43.7 ± 1.5 2 33.90 Fritz et al. 1981 [35] 

4 Mocha −19.8436 −69.2840 2200 −4.91 ± 0.90 −29.2 ± 6.7 2 39.65 Fritz et al. 1981 [35] 

5 Collacagua −20.0703 −68.8259 3915 −15.00 ± 1.22 −108.1 ± 8.6 7 82.23 Fritz et al. 1981 [35] 

6 Huasco −20.3144 −68.8065 3800 −17.13 ± 0.65 −127.7 ± 9.3 3 34.63 Fritz et al. 1981 [35] 

7 Indio Muerto −20.3610 −68.9615 4135 −18.27 ± 0.35 −129.9 ± 3.4 4 53.05 Fritz et al. 1981 [35] 

8 Tambillos −20.4672 −69.1415 3300 −8.02 ± 0.27 −50.1 ± 2.1 3 77.13 Fritz et al. 1981 [35] 

9 Apacheta Mama * −20.4734 −69.1580 4115 −19.90 ± 0.15 −146.0 ± 1.0 1 77.00 Fritz et al. 1981 [35] 

10 Pumire −19.0955 −69.1108 4200 −2.25 ± 0.78 −11.5 ± 3.1 3 10.00 Salazar et al. 1998; Aravena et al. 1989 [41,42] 

11 Coposa −20.7089 −68.6942 3460 −16.66 ± 2.01 −119.8 ± 16.2 9 9.17 Salazar et al. 1998; Aravena et al. 1989 [41,42] 

12 Collaguasi −20.9833 −68.7000 4250 −16.96 ± 1.99 −122.3 ± 16.0 5 13.30 Aravena et al. 1999 [31] 

13 Ujina −20.9833 −68.6000 4200 −11.98 ± 1.57 −83.3 ± 12.0 8 18.79 Aravena et al. 1999 [31] 

14 Puchuldiza −19.4000 −68.9500 4150 −14.55 ± 0.93 −98.4 ± 11.0 15 11.88 Aravena et al. 1999 [31] 

15 Pampa Lirima −19.8200 −68.9000 4100 −16.97 ± 1.23 −121.6 ± 9.7 27 9.86 Aravena et al. 1999 [31] 

16 Colchane −19.7003 −68.8833 3965 −14.95 ± 2.28 −106.3 ± 18.2 4 51.90 Aravena et al. 1999 [31] 

17 Collacagua −20.0333 −68.8500 3990 −12.68 ± 1.34 −88.3 ± 10.5 14 15.04 Aravena et al. 1999 [31] 

18 Cancosa −19.8500 −68.6000 3800 −14.00 ± 2.45 −96.4 ± 20.7 5 28.50 Aravena et al. 1999 [31] 

19 Huaytane −19.5433 −68.6042 3720 −14.10 ± 1.48 −100.9 ± 12.1 5 32.20 Aravena et al. 1999 [31] 

20 Copaquire −20.9305 −68.8922 3490 −12.47 ± 0.98 −84.6 ± 7.8 16 5.75 Aravena et al. 1999 [31] 

21 Poroma −19.8667 −69.1833 2880 −5.00 ± 0.66 −28.1 ± 6.0 9 8.01 Aravena et al. 1999 [31] 

22 Parca −20.0167 −68.8500 2570 −6.64 ± 0.90 −40.9 ± 7.8 4 4.88 Aravena et al. 1999 [31] 

23 Huatacondo −20.9167 −69.0500 2460 −8.26 ± 1.26 −53.8 ± 9.8 12 6.21 Aravena et al. 1999 [31] 

24 Camina −19.3116 −69.4299 2380 −7.02 ± 1.00 −42.8 ± 8.1 4 11.50 Aravena et al. 1999 [31] 

25 Sillillica  −20.1738 −68.7377 4270 −15.96 ± 1.07 −110.9 ± 7.9 3 95.30 Uribe et al. 2015 [40] 

26 Altos del Huasco −20.3221 −68.9022 3784 −14.82 ± 1.57 −104.8 ± 12.3 3 51.80 Uribe et al. 2015 [40] 

27 Diablo Marca  −20.0505 −68.9962 4603 −18.43 ± 1.59 −128.8 ± 11.8 3 78.60 Uribe et al. 2015 [40] 

28 Quisquiro −23.2100 −67.2500 4260 −13.40 ± 2.12 −91.1 ± 13.3 36 14.30 Chaffaut 1998 [32] 

29 Tuyajto −23.9435 −67.5921 4040 −6.23 ± 0.50 −32.4 ± 3.1 2 13.30 Herrera et al. 2016 [43] 

30 Pampa Colorada −23.8588 −67.4774 4426 −8.80 ± 0.86 −51.3 ± 7.6 3 28.50 Herrera et al. 2016 [43] 

31 Aguas Calientes-3 −23.9171 −67.6971 3900 −6.00 ± 0.51 −31.9 ± 4.5 3 21.67 Herrera et al. 2016 [43] 

32 La Serena −29.8981 −71.2425 142 −5.78 ± 1.32 −35.9 ± 9.9 34 43.10 IAEA/WHO 2015 [37] 
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a.w.m. ± c.s.: amount-weighted mean ± combined sigma (see methods paragraph for details); Na.p.: Number of accumulation periods of precipitation. This value 

coincides with the total number of the available isotope data pairs per station (Supplementary File S1); * sample with only one accumulation period (Na.p. = 1). In 

this case, the combined sigma (c.s.) contain only the standard deviation related to spectrometric measurement (Supplementary File S1). The regression has been 

calculated both including (Table 3) and excluding (Supplementary File S2) this sample. 
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Assuming ix  to be the measurement of the stable isotope ratios expressed as δ18O and δ2H in 

‰ versus SMOW (standard mean ocean water)—determined on a specific precipitation amount ip  

(mm) collected over a specific time period—the standard deviation related to the amount weighted 

mean wx  [4] of the meteoric stations with more than one accumulation periods of precipitation (

. .Na p  > 1) was calculated as follows [44]: 
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(1) 

It should be noted that the accumulation periods, which coincides with the total number of the 

isotope data pairs and precipitation amounts available per each station, are not uniformly distributed 

through the year and not equally long for most of the stations considered (Supplementary File S1). 

In the existing literature, there are several definitions of ‘combined standard deviation’ or 

‘combined uncertainty.’ Here, we deal with two different ‘uncertainty’ sources [8,45], that is, a 

standard deviation related to the amount-weighted mean calculation wσ , as described above, and a 

standard deviation related to the mass spectrometric measurements msσ , which differs depending 

on the publication (Supplementary File S1). One of the easiest ways to calculate the combined 

standard deviation csdσ  involves foreseeing the combination of wσ and msσ  following the law of 

propagation of uncertainty, that is, the square root of the sum-of-the-squares [45–47]: 

   
2 2

csd w msσ σ σ   (2) 

The combined standard deviations, associated with the δ18O and δ2H amount-weighted mean 

data in 30 of the total 32 stations, were used to calculate the local meteoric water line through EIV 

regression. In two stations, Quisquiro [32] and La Serena [37], the calculation of the standard 

deviation of the weighted mean wσ  was performed differently for two reasons. In the case of 

Quisquiro, the complete dataset is unavailable; therefore, the standard deviation was calculated 

among the amount-weighted data corresponding to the extreme seasons (winter and summer, [32]). 

Meanwhile, in the case of La Serena, the wσ  was calculated among the years in which more than 

70% of precipitation was analyzed for a given isotope composition [4]. Following this, the csdσ  was 

calculated through using the msσ  declared in the analytical section of the publication dataset [32] 

or elsewhere [25]. With this, the csdσ  on δ18O and δ2H is within the mean of the other stations. 

The calculation of the EIV regression through different codes employ similar methods based on 

York and Williamson’s works [48–51]. Generally speaking, the process of searching for best straight-

line parameters requires an iterative procedure in which each new slope estimate is used to modify 

a weight term, which combines the reciprocal variance of the x and y variables, in a series of 

convergent fitting cycles [11,52–55]. The results of this method are compared with those obtained by 

OLSR, RMA, MA, PWLSR, PWRMA, and PWMA [6]. In accordance with Crawford et al. [6], the 

Student’s t-test was used to check the difference between the two regression slopes. Furthermore, the 

obtained EIV meteoric water line was also compared with previously published isotope data on 

precipitation without amount data [28,30,36,56–60], snow [43,58,59,61–68], groundwater [69], and 

geothermal water [70] samples collected up to this point in northern Chile. 
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3. Results 

The parameters of the northern Chile meteoric water lines obtained through the different 

software and regression methods are listed in Table 3. 

Table 3. Regression results obtained by different methods applied to the data of Table 2. (a) Crawford 

et al.’s non-weighted (OLSR, MA, RMA) and amount weighted (PWLSR, PWRMA, PWMA) 

regressions [6,7]. (b) Ordinary Least Squares Regression (OLSR) and error-in-variables regression 

(EIV) results by different codes [52,53,55,71]. (c) Comparison between regression’s slopes obtained 

by EIV and PWLR, PWRMA, and PWRMA. 

(a) regression results according to Crawford et al. 2014 

Models N 
Slope Intercept 

rmSSEav t-Value p 
Value s.e. Value s.e. 

OLSR 32 7.78 0.10 11.3 1.2 1.0009 - - 

RMA 32 7.80 0.09 11.5 1.2 1.0004 0.1318 0.896 

MA 32 7.82 0.10 11.7 1.2 1.0009 0.2593 0.797 

PWLSR 32 7.74 0.09 10.7 1.3 1.0054 0.3047 0.763 

PWRMA 32 7.76 0.09 10.9 1.3 1.0021 0.1810 0.858 

PWMA 32 7.78 0.09 11.1 1.3 1.0000 0.0608 0.952 

Local Meteoric Water Line Freeware©—Australian Nuclear Science and Technology Organisation. 

OLSR: Ordinary Least Square Regression; RMA: Reduced Major Axis; MA: Major Axis; PWLSR: 

Precipitation Weighted Least Square Regression; PWRMA: Precipitation Weighted Reduced Major 

Axis. PWMA: Precipitation Weighted Major Axis. s.e.: standard error; rmSSEav: root mean sum of 

squared error average; Comparison between OLSR and the other regression models listed in (a): t-

value: Student’s t-test value; p: probability distribution by Microsoft®Office Excel (d.f. = N-2). 

(b) EIV regression results compared with OLSR 

Models N 

Slope Intercept 
95% C.I. 

Slope 

95% C.I. 

Intercept 
r GOF rmSSE 

t-

Value 
p 

Value s.e. Value s.e. Upper 
Low

er 
Upper 

Low

er 

OLSR 32 7.79 0.10 11.3 1.2 7.98 7.59 13.8 8.7 0.9977 7.1740 2.6784 - - 

EIV-a 32 7.93 0.15 12.3 2.1 8.24 7.63 16.7 8.0 0.9977 0.1457 0.3817 0.8292 0.414 

EIV-b 32 7.93 0.15 12.3 2.1 8.24 7.62 16.6 7.9 0.9977 0.1457 0.3817 0.8119 0.423 

EIV-c 32 7.93 0.15 12.3 2.1 - - - - - 0.1457 0.3817 0.8289 0.414 

EIV-d 32 7.93 0.06 12.3 0.8 - - - - - 0.1457 0.3817 1.3185 0.197 

EIV-e 32 7.81 0.12 11.5 1.6 8.05 7.56 14.8 8.2 -   - 0.1256 0.901 

OLSR: here calculated by Microsoft®Office Excel—2013 (GOF parameter from Origin®Pro). EIV-a: 

Origin®Pro; EIV-b: SigmaPlot©; EIV-c: BFSL; EIV-d: Cantrell 2008; EIV-e: Real Statistics Using Excel© 

with a mean variances ratio of λ = Xvar/Yvar = 0.01913. C.I.: Confidence Intervals; r : Pearson’s 

correlation coefficient; GOF: Goodness of Fit; rmSSE: root mean sum of squared error (this parameter 

is called “standard error” of regression in Microsoft®Excel’s OLSR; in other regression codes, it could 

be easily calculated by the square root of the GOF parameter). 

(c) EIV regression results compared with PWLSR, PWRMA, and PWMA 

Models t-Value p Models t-Value p Models t-Value p 

PWLSR - - PWRMA - - PWMA - - 

EIV-a 1.0843 0.287 EIV-a 0.9883 0.331 EIV-a 0.8946 0.378 

EIV-b 1.0662 0.295 EIV-b 0.9705 0.340 EIV-b 0.8770 0.387 

EIV-c 1.0840 0.287 EIV-c 0.9881 0.331 EIV-c 0.8944 0.378 

EIV-d 1.7481 0.091 EIV-d 1.5934 0.122 EIV-d 1.4410 0.160 

EIV-e 0.4141 0.682 EIV-e 0.3029 0.764 EIV-e 0.1949 0.847 

The values of slope and intercept through EIV appear to be slightly higher than those obtained 

by other methods that do not take into account the combined standard deviation of the oxygen and 

hydrogen measurements. However, there is no difference with other regression methods, aside from 

the results from Cantrell’s bivariate worksheet (EIV-d, Table 3b), which was tested on atmospheric 
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chemical data [54]. The regression results of EIV-d method include: (i) a lower standard error in 

comparison with those from other codes used for EIV calculation; and (ii) a higher slope when 

compared to PWLSR, but not significantly different (p > 0.05). The difference between the slopes are 

further smoothed when the sample #9 is removed (Na.p. = 1; Supplementary File S2). It should be noted 

that lower standard errors on slope and intercept similar to those of Cantrell’s bivariate worksheet 

are obtained in the other EIV models introducing a scale factor in the maximum likelihood method, 

which is estimated by the square root of the reduced chi-square statistic that results from the fit 

analysis [11,53]. Lower than half standard error are also obtained by “Deming regression” with a 

constant variance ratio of λ = δ18Ovar/δ2Hvar = 0.019 (EIV-e, Table 3b), that is the mean ratio of the 

squared combined sigma (Table 2). Therefore, we consider as most representative of the samples the 

regression results with the standard errors on slope and intercept calculated without scale factor and 

with combined sigma for each station (EIV results from “a” to “c” in Table 3b): 

Northern Chile EIV-LMWL: δ2H = [(7.93 ± 0.15) δ18O] + [12.3 ± 2.1] (3) 

The upper and lower confidence intervals at 95% probability of the slope and intercept in the 

EIV regressions (results from “a” to “c” in Table 3b) include all the previous published values 

obtained by OLSR (Table 1) and all the other slopes and intercepts of the meteoric water lines 

calculated by different regression methods (Table 3a). This is clear and straightforward, in particular 

looking to the standard errors of slope and intercept, which are higher in EIV regression results. 

4. Discussion 

In isotope hydrology applications, it is often desirable to know whether a water sample from the 

surface (river, lake, or lagoon) or from an aquifer is shifted in a statistically significant way in relation 

to the local meteoric water line. This is particularly true in the following: (i) arid zones, where 

fractionation due to evaporation produces isotopically enriched residual waters; and (ii) geothermal 

areas, where hot water samples could be isotopically enriched due to water-rock interaction. 

Northern Chile offers an ideal location for this kind of study because both of these conditions exist 

here [65,72]. 

The calculated confidence intervals obtained through EIV regression represent the scatter of the 

weighted mean data around the fitted line, disregarding the combined standard deviation (Table 3). 

In OLSR, prediction intervals for y at a specific x value estimate the bands around the fitted line in 

which the future observation will fall, with a certain probability (usually 95% as confidence interval), 

given what has already been observed with the sample dataset employed for the regression (t-

distribution multiplied by the standard error of the fit). The OLSR prediction interval can be quickly 

calculated by using commercial or free codes (e.g., [71,73]). However, OLSR does not take into 

account the measurement error in x when predicting y, either in the combined standard deviations 

of the data in the fittings or the prediction interval calculations. Moreover, an officially recognized 

method for the calculation of prediction intervals related to EIV regression still does not exist. 

An approximate prediction area around the EIV local meteoric water line could be traced 

through using an empirical-graphical method, joining the outer limits of the bars representing the 

combined standard deviations around the mean of the isotope data of precipitation. However, its 

irregular shape, related to the non-homogeneous values of the combined standard deviations of the 

regressed stations, necessitates an ad-hoc correction. Specifically speaking, the lower sector of the line 

(approximately, δ18O < −12‰ and δ2H < −80‰) shows numerous monitored stations with wider 

standard deviations—especially in terms of hydrogen composition δ2H—in comparison with the 

higher sector of the line (Figure 2A). 
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Figure 2. (A) δ2H and δ18O amount-weighted mean of the samples (open circles; Table 2) along with 

the combined standard deviation on hydrogen and oxygen isotope composition (y and x bars, 

respectively); error-in-variables local meteoric water line (EIV-LMWL solid line) and the generalized 

interval (dashed lines; δ2H = ±13.1‰ up and down the fitted values on the line). (B) Pampa de 

Tamarugal aquifer (thick-orange line, [69]), snow and penitentes (dark and light blue diamonds, 

respectively [41,43,59,61,63–68]) and hydrothermal groundwater (red triangles, [70]; PL: Pampa 

Lirima, TT: Torta de Tocorpuri) samples compared with the lines described in ‘A’. Arrows explain 

the isotope effects in hydrothermal groundwater [70,74]. y and x bars in snow and penitentes depict 

the combined sigma related to the volume weighted mean (samples from Cerro Tapado [67], 

Supplementary File S5). Light-blue diamonds without error bars are single samples of the penitentes 

from Parinacota volcano ([64], Supplementary File S5). 
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The wider combined standard deviation of the samples that fall within the lower sector is mainly 

due to the irregular/inhomogeneous frequency of the sampling and to the different accumulation 

periods of precipitation in the same station (mixing of monthly and seasonal data). In contrast, the 

stations on the higher sector of the line, which are not depleted by the “altitudinal effect” (lower 

isotope values at a higher elevation, [74,75]), show a minor combined standard deviation. This is 

probably due to the fact that only four stations for rainwater are located at an altitude of lower than 

2500 m, and monitored by a more regular frequency of sampling (e.g., La Serena station). 

An innovative method has recently been proposed for the calculation of a “generalized interval,” 

which combines the confidence and predictive concepts in EIV [76–78]. Using this approach, the 

obtained interval forcing a mean on 12 values per station (qx = qy = 12; i.e., as supposing a sampling 

of precipitation extended to 12 months) is 8.9 ± 4.2‰ up and down the fitted line, which is fairly 

similar to the mean combined standard deviation of δ2H (9.1 ± 4.8‰, excluding the station #9 with 

Na.p. = 1, Table 2; Supplementary File S3). In contrast, the prediction intervals calculated through the 

jackknife method [71]—a statistical approach which simulate the resampling of the collected data 

taking into account their variance—and through Deming regression [71]—which necessitate a 

constant variance ratio (constant λ [71], calculated on the variances ratio of the 32 samples)—give a 

prediction interval of ±1.53‰, which is narrower than the combined standard deviation 

(Supplementary File S3). 

Considering that the OLSR and EIV meteoric water lines of northern Chile are not different in 

terms of slope, the stable isotope ratio data on 115 precipitation samples available from the existing 

literature (Supplementary File S4; [28,30,36,56–60,68,79]) could help with checking the effectiveness 

of prediction and generalized intervals. While all these isotope data do not report the amount of 

precipitation and are therefore not included in the EIV regression calculation, most of them are 

clustered between or extended over the enriched and depleted sector of the meteoric water line, thus 

completing the station's gap. The upper and lower 95% prediction intervals on the δ2H values related 

to the OLSR regression of this latter dataset are shifted ±13.4‰ up and down respectively on the 

regressed line (Supplementary File S4). This latter value is not significantly different, neither from 

the upper/lower δ2H combined standard deviation values of the weighted-amount dataset (±13.8‰), 

nor from the upper/lower extremes of the generalized interval (±13.1‰). This is particularly true if 

we take into account that the unweighted rainfall dataset pertains to single rain events, meaning it is 

quite normal that their predicted δ2H values are shifted towards the higher value of the combined 

standard deviation of the weighted rainfall dataset. 

To verify the effectiveness of this approach, we compared the EIV regression and the above 

described generalized interval with the isotope composition of the following samples from northern 

Chile: (i) the groundwater from Pampa del Tamarugal [69] (Figure 1B); (ii) the snow samples 

(Supplementary File S5; [43,58,59,61–68]); and (iii) the geothermal waters samples [70]. 

In terms of the first groundwater sample type (i), in previous studies, the clustering of the δ18O 

and δ2H values of the groundwater from Pampa del Tamarugal falling on the right side of the 

meteoric water line has led several authors to consider this aquifer system as isotopically different 

from local precipitation [35,80]. This has been attributed to the following: (i) a recharge in climatic 

conditions different from the current ones [35]; and (ii) to the evaporation that affects the precipitation 

in the unsaturated zone of the recharge area [80]. A recent re-evaluation of the isotope data published 

up to that point shows that the isotope composition of the groundwater from that area is effectively 

parallel to the meteoric water line, while it was noted that the previous hypothesis on climate 

variation must be reconsidered [69]. However, the “uncertainty wings” around the meteoric water 

line have not been traced in any of the above-described cases. 

In Figure 2B it is shown how the recent calculated regression line (in orange) representing the 

groundwater in Pampa del Tamarugal [69] falls within the generalized intervals of the EIV meteoric 

water line. This demonstrates that the mean composition of the groundwater from this area is not 

significantly different from the precipitation. This does not exclude the fact that some groundwater 

samples could be significantly affected by evaporation during recharge. Indeed, the right side of the 

generalized interval of the EIV regression is the location of the enriched precipitation samples 
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associated with the evaporation during rainfall. Furthermore, the regression line of the groundwater 

samples should have a proper prediction interval, which certainly does not cover exactly that of the 

rainwater on that side. However, it is beyond the scope of this study to show also the prediction 

interval related to groundwater regression. 

In terms of the snow samples, all but two of the 61 snow samples from northern Chile fall within 

the area between the generalized intervals determined in this study, confirming that this area could 

be approximated as an uncertainty ribbon around the EIV regression (Figure 2B). It should be noted 

that this dataset includes both samples from precipitation samplers and the Andean snow cover. The 

two samples out of this area are one outlier (left side of the meteoric water line, Figure 2B) and one 

isotopically enriched sample from the so-called “penitents” of the Parinacota volcano ([64], Figure 

1B—Region I, Supplementary File S5). The penitentes are an annual phenomenon of snow 

sublimation related to solar radiation and arid climates; consequently, the isotope composition of 

these samples could be enriched, in particular, if sampled from surface layers [64,67,81]. The volume 

weighted mean and the related combined standard deviation calculated on the isotope composition 

of the snow samples from the Cerro Tapado glacier ([67], Figure 1B—Region IV, Supplementary File 

S5) fall exactly on the EIV-LMWL’s extension beyond the most negative value and within the 

generalized interval (Figure 2B). As expected, the penitentes from the same area are enriched in 

comparison with the mean isotope composition of the local snow due to sublimation (Figure 2B, [67]). 

Moreover, although their mean values fall close to EIV-LMWL, the combined sigma of the penitentes 

can be higher than the generalized interval (up to ±16‰; Figure 2B, Supplementary File S5). 

Finally, geothermal water samples from a recent study were plotted with the EIV regression line 

and the generalized interval, showing more clearly the distinction between the meteoric waters and 

the hydrothermal water samples that can be isotopically enriched as a result of high-temperature 

isotopic fractionations between water–rock, mixing with andesitic water or water–gas interactions 

[70,74] (Figure 2B). Specifically speaking, the Torta de Tocorpuri (TT in Figure 2B) and Pampa Lirima 

(PL in Figure 2B) samples are not different from meteoric waters. According to the Tassi et al. [70], 

the limited temperature and involvement of the so-called “andesitic water” does not produce a 

relevant shift from the meteoric composition in these two sample groups (Figure 2B). In particular, 

the PL sample group lies precisely between Pampa del Tamarugal line and the EIV local meteoric 

water line (Figure 2B). 

5. Conclusions 

The regression analysis based on the error-in-variables approach (EIV) produces a meteoric 

water line with a slope similar to those obtained with ordinary least squares regression or other 

regression approaches. 

This most likely occurs because the variance ratio (i.e., the square of the combined standard 

deviations) is high (δ2Hvar/δ18Ovar >> 3; [2]). 

Further studies that focus on other areas and which use a greater number of amount-weighted 

data pairs (for example, the GNIP/WMO dataset [37]) could be useful in terms of verifying this. 

The present study offers an EIV local meteoric water line that summarizes all the previously 

published isotope data of precipitation from northern Chile. Moreover, the use of the innovative 

generalized interval (locally, δ2H = ±13.1‰ up and down the fitted values on the line), which is a 

good compromise between the confidence and the prediction intervals, appears to be a useful tool 

for distinguishing significantly different data from precipitation. 

The case of the groundwater system of Pampa del Tamarugal, snow samples and the local 

geothermal waters is emblematic. An efficient application of the generalized interval or prediction 

band could be extended to waters that have been subjected to evaporative fractionation (surface 

water or precipitation samples from desert climate areas), while it could be used to distinguish the 

outliers. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1: Supplementary File 

S1—Table 2 raw data. Dark blue-highlighted bold values are the data shown in Table 2. Light blue-highlighted 

values are the results of partial calculations or additional parameters. Other colors depict parameters from the 
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previously published tables (e.g., yellow-highlighted annual weighted mean in stations 1–9, 10–11, and 12–24) 

or warnings (grey-highlighted discharged data in stations 29–31 and 32; orange-highlighted measurement error 

in all the sheets). Supplementary File S2—Regression results as in Table 3 but excluding the sample #9 (Na.p. = 1) 

from Table 2 dataset. Supplementary File S3—Intervals of the meteoric water line calculated using Table 2 

dataset by BivRegBLS [77] and Real Statistics Using Excel© [71]. In the former, code admits only Na.p. > 1 stations, 

whereas the latter use constant variance ratio (λ = δ18Ovar/δ2Hvar = 0.019). Supplementary File S4—δ18O and δ2H 

of single precipitation without amount data [28,30,36,56–60,68,79]; OLSR results and prediction band calculated 

on the isotope composition of the single precipitation dataset. Supplementary File S5—Sheet 1: δ18O and δ2H of 

single snow samples (collected from snow cover or by precipitation sampler; [43,58,59,61–66,68]). Sheet 2: 

volume weighted mean and combined standard deviation on snow and penitentes [67]. 
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