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Abstract Numerical Stochastic Perturbation Theory
(NSPT) allows for perturbative computations in quantum
field theory. We present an implementation of NSPT that
yields results for high orders in the perturbative expansion
of lattice gauge theories coupled to fermions. The zero-
momentum mode is removed by imposing twisted boundary
conditions; in turn, twisted boundary conditions require us
to introduce a smell degree of freedom in order to include
fermions in the fundamental representation. As a first appli-
cation, we compute the critical mass of two flavours of Wil-
son fermions up to order O(β−7) in a SU(3) gauge theory.
We also implement, for the first time, staggered fermions in
NSPT. The residual chiral symmetry of staggered fermions
protects the theory from an additive mass renormalisation.
We compute the perturbative expansion of the plaquette with
two flavours of massless staggered fermions up to order
O(β−35) in a SU(3) gauge theory, and investigate the renor-
malon behaviour of such series. We are able to subtract the
power divergence in the Operator Product Expansion (OPE)
for the plaquette and estimate the gluon condensate in mass-
less QCD. Our results confirm that NSPT provides a viable
way to probe systematically the asymptotic behaviour of per-
turbative series in QCD and, eventually, gauge theories with
fermions in higher representations.
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1 Introduction

The success of perturbation theory in High Energy Physics
(HEP) can hardly be denied. In particular, in asymptotically
free theories, field correlators at short distances are reliably
approximated by perturbative expansions in the running cou-
pling at a large momentum scale. At the same time, even in
these (lucky) cases, it is mandatory to have some control on
nonperturbative effects, i.e. contributions that scale like pow-
ers of the QCD scale �QCD. We will often refer to these as
power corrections. A tool to take the latter into account was
suggested back in the late seventies. This goes under the name
of QCD sum rules, or Shifman-Vainshtein-Zakharov (SVZ)
sum rules [1,2]. One of the authors defined the method as
“an expansion of the correlation functions in the vacuum con-
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densates” [3]. These condensates are the vacuum expectation
value of the operators that emerge in the Operator Product
Expansion (OPE) for the relevant correlation function. In the
OPE formalism the condensates are fundamental quantities,
which are in principle supposed to parametrise power correc-
tions in a universal way. By determining the value of a con-
densate in one context, one gains insight into different phys-
ical processes; this has in turn motivated several approaches
to the determination of condensates. Having said all this, the
sad news is that not all the condensates have actually the same
status. In particular not all the condensates can be defined in a
neat way, which ultimately means disentangled from pertur-
bation theory. While this is the case for the chiral condensate,
the same cannot be said for the gluon condensate, which is
the one we will be concerned with in this work.

Based on a separation of scales, the OPE makes pretty
clear what can/must be computed in perturbation theory,
i.e. the Wilson coefficients. Still, this does not automatically
imply that perturbative and nonperturbative contributions are
separated in a clear-cut way. The key issue is that perturba-
tive expansions in HEP are expected to be asymptotic ones
on very general grounds. In particular, the series in asymp-
totically free theories are plagued by ambiguities which are
due to so-called infrared renormalons [4,5]. From a techni-
cal point of view, renormalons show up as singularities which
are encountered if one tries to Borel resum the perturbative
series. All in all, there is a power-like ambiguity in any pro-
cedure one can devise in order to sum the series, and this
ambiguity unavoidably reshuffles perturbative and nonper-
turbative contributions in the structure of the OPE. Being the
Wilson coefficients affected by ambiguities that are power
corrections, the general strategy is to reabsorb the latter in
the definition of the condensates. This amounts to a prescrip-
tion to give a precise meaning both to the perturbative series
and to the condensates that appear in the OPE.

The idea of determining the gluon condensate from non-
perturbative (Monte Carlo) measurements in lattice gauge
theories dates back to the eighties and early nineties [6–9].
Based on symmetry grounds and dimensional counting, the
two leading contributions in the OPE for the basic plaquette
are given by the identity operator and the gluon condensate.
Both operators appear multiplied by Wilson coefficients that
can be computed in perturbation theory, and in particular
the coefficient that multiplies the identity operator is simply
the perturbative expansion of the plaquette. Other operators
that appear in the OPE are of higher dimension, and their
contributions are therefore suppressed by powers of a�QCD.
Subtracting from a nonperturbative (Monte Carlo) measure-
ment of the plaquette the sum of the perturbative series, and
repeating the procedure at different values of the coupling, the
signature of asymptotic scaling, i.e. the signature of a quan-
tity of (mass) dimension four, should become visible. With
renormalons attracting more and more attention, it eventually

became clear that such a procedure must be deeply affected
by the ambiguities we discussed above, suggesting that a
precise definition of the resummed perturbative expansion is
necessary.

In the meantime Numerical Stochastic Perturbation The-
ory (NSPT) [10] was developed as a new tool for comput-
ing high orders in lattice perturbation theory. NSPT paved
the way to the evaluation of many more terms in the per-
turbative expansion of the plaquette, and in turn made it at
least conceivable that the behaviour of the series could be
understood at the level of pinning down the correct order of
magnitude of the ambiguity involved. Results of early inves-
tigations [11] were interesting: for the first time, it was clear
that very high order contributions can be computed in per-
turbative series for lattice gauge theories. Unfortunately the
pioneering NSPT studies of that time were far away from
computing the series up to the orders at which the renormalon
growth actually shows up in its full glory. With limited com-
puting power available, a way out was sought in the form
of a change of scheme (i.e. a scheme in which the renor-
malon behaviour is best recognised, possibly at lower orders
than in the lattice scheme). Still, the numerical results were in
the end puzzling as for consequences, since trying to sum the
series from the information available even suggested the idea
that an unexpected contribution from a dimension-2 opera-
tor was present [12]. Other attempts were made [13], but it
eventually took roughly twenty years before the renormalon
behaviour was actually captured [14–17], needless to say, via
NSPT.1 In SU(3) Yang–Mills theory the IR renormalon was
indeed directly inspected, and the finite-size effects that are
unavoidable on finite lattices assessed. The bottom line is that
the victory is twofold. On one side, the renormalon growth
is indeed proved to be present as conjectured (ironically, in
a scheme – the lattice – which one would have regarded as
the very worst to perform the computations). Given this, one
has a prescription to sum the series and perform the subtrac-
tion (if sufficiently high orders are available, one can look for
the inversion point in the series, where contributions start to
grow and a minimum indetermination in summing the series
can be attained).

The present work is a first attempt at performing the deter-
mination of the gluon condensate from the plaquette in full
QCD, i.e. with fermionic contributions taken into account.
The main focus here is in developing the NSPT technology,
and present a first set of results, which allow a definition of
the gluon condensate. In particular for the first exploration,
we use existing Monte Carlo simulations for the plaquette in
full QCD, as detailed below. Having ascertained that the pro-

1 One should note that one of the reason why the renormalon growth
was correctly reproduced and the OPE correctly reconstructed is the
adoption of twisted boundary conditions: in this way zero modes are
absent and the theoretical picture is clear.
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cedure is viable, a precise determination of the condensate
in full QCD will require a dedicated Monte Carlo simula-
tion, with a careful choice of the fermionic action. On top
of being interesting per se, the methodology presented here
opens the way to other applications, in which different colour
groups and different matter contents can be investigated. The
final goal would be to inspect whether in a theory that has
an IR fixed point, the renormalon growth is tamed, as one
would expect in theories where the condensates vanish. We
defer these questions to future investigations, hoping to gain
extra insight into the task of identifying the boundaries of the
conformal window.

The paper is organised as follows. In Sect. 2 we review
briefly how NSPT can be applied to lattice gauge theories.
In Sect. 3 twisted boundary conditions for fermions in the
fundamental representation are introduced. In Sect. 4 we dis-
cuss how to take into account fermions with smell in NSPT.
We present our results for the expansion of the critical mass
of Wilson fermions in Sect. 5, and for the expansion of the
plaquette with staggered fermions in Sect. 6. In Sect. 7 we
investigate the asymptotic behaviour of the expansion of the
plaquette and extract the gluon condensate in massless QCD.
In Sect. 8 we draw our conclusions and present some possible
future steps.

2 Lattice gauge theories in NSPT

Let us here summarise the main steps in defining NSPT for
lattice gauge theories. Rather than trying to give a compre-
hensive review of the method, we aim here to introduce a con-
sistent notation that will allow us to discuss the new develop-
ments in the rest of the paper. For a more detailed discussion
of the NSPT formulation, the interested reader can consult
e.g. Ref. [18], whose notation we shall try to follow consis-
tently.2 In particular, we assume to work with a hypercubic
lattice with volume L4 = a4N 4 and assume the lattice spac-
ing a to be 1, unless where stated otherwise. We use x, y, z
for position indices, μ, ν, ρ = 1, . . . , 4 for Lorentz indices
and α, β, γ = 1, . . . , 4 for Dirac indices.

The original formulation of NSPT is based on the Stochas-
tic Quantization formulation of lattice field theories, in the
case at hand lattice gauge theories. For the purposes of this
study, we focus on gauge theories that are defined by the
Euclidean Wilson action for the gauge group SU(Nc):

SG [U ] = − β

2Nc

∑

�
Tr

(
U� +U�†

)
, (1)

whereU� is the product of the link variables, denotedUμ(x),
around the 1 × 1 plaquette �, and the sum extends over all

2 For convenience, we summarise our group theory conventions in
Appendix A.

the plaquettes in the lattice. Introducing a stochastic time t ,
a field Uμ(x; t) can be defined that satisfies the Langevin
equation

∂

∂t
Uμ(x; t)= i

[
− ∇xμSG [Uμ(x; t)] − ημ(x; t)

]
Uμ(x; t) .

(2)

As detailed in Appendix A, we have denoted by ∇xμ the left
derivative in the group; η is a stochastic variable defined in
the algebra of the group,

ημ(x; t) =
∑

a

T aηaμ(x; t) , (3)

where T a are the generators of the group, and ηaμ(x; t) are
Gaussian variables such that

〈ηaμ(x; t)〉 = 0,

〈ηaμ(x; t) ηbν(y; t ′)〉 = 2δabδμνδxyδ(t − t ′) . (4)

The key point of Stochastic Quantization is that the large-
t distribution of observables built from the solution of the
Langevin equation above corresponds to the distribution that
defines the path integral of the quantum theory [19,20]:

lim
t→∞〈O[U (t)]〉 = 1

Z

∫
DU e−SG [U ]O[U ] . (5)

In order to develop NSPT, the dynamical variables Uμ(x; t)
can be expanded in powers of the coupling constant g, which
is given in the lattice formulation by β−1/2:

Uμ(x; t) �→ 1 +
∑

k=1

β−k/2U (k)
μ (x; t) . (6)

Solving the Langevin equation, Eq. (2), order by order in
β−1/2 yields a system of coupled equations for the perturba-
tive components of the link variables U (k)

μ (x; t).
Expanding the solution of Langevin equation in powers

of the coupling is a standard approach to proving the equiv-
alence of stochastic and canonical quantisation, i.e. Eq. (5)
[21], and was the starting point for stochastic perturbation
theory: with this respect NSPT is just the numerical imple-
mentation of the latter on a computer. The idea of studying the
convergence properties of a stochastic process order by order
after an expansion in the coupling is actually quite general. In
this spirit different NSPT schemes can be set up, also based
on stochastic differential equations different from Langevin
[22,23].

Euler integrator Discretising the stochastic time in steps of
size ε allows a numerical integration of the Langevin equa-
tion,

Uμ(x; t + ε) = e−Fμ(x;t) Uμ(x; t) , (7)
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where the force driving the evolution is

Fμ(x; t) = i
[
ε∇xμSG[U (t)] + √

ε ημ(x; t)]

= ε
β

2Nc

∑

U�⊃Uμ(x)

�g(U�) + √
ε ημ(x; t) (8)

and the operator�g projects on the algebra (see Appendix A).
Note that Eq. (8) does not lend itself to a perturbative solution
in powers of β−1/2, since there is a mismatch between the
deterministic drift term, which starts at order β1/2, and the
stochastic noise, which is of order β0. This is easily resolved
by rescaling the integration step by a factor of β, so that both
contributions start at order β−1/2. Denoting the new time step
τ = εβ, the force term becomes

Fμ(x; t) = τ

β
∇xμSG[U (t)] +

√
τ

β
ημ(x; t) . (9)

Expanding F in powers of β−1/2,

Fμ(x; t) =
∑

k=1

β−k/2F (k)
μ (x; t) , (10)

leads to a system of coupled equations for the evolution of
the coefficients of the perturbative expansion of U . Omitting
Lorentz and position indices, we get

U (1)(t + τ) = U (1)(t) − F (1)(t) (11a)

U (2)(t + τ) = U (2)(t) − F (2)(t) + 1

2
F (1)(t)2

− F (1)(t)U (1)(t)

. . . (11b)

where η only contributes to the F (1) term.

Stochastic gauge fixing The zero modes of the gauge action
do not generate a deterministic drift term in the Langevin
equation, and therefore their evolution in stochastic time is
entirely driven by the stochastic noise, which gives rise to
diverging fluctuations. This phenomenon is well known since
the early days of NSPT, see e.g. Ref. [24], and is cured by
the so-called stochastic gauge fixing procedure [25] applied
to the theory formulated on the lattice. The procedure imple-
mented in this work alternates an integration step as described
above with a gauge transformation:

Uμ(x) �→ ew(x)Uμ(x)e−w(x+μ̂) , (12)

where the field w(x) is defined in the algebra of the group,

w(x) = −α �g

(
∑

μ

∇∗
μUμ(x)

)
. (13)

α is a free parameter, which we choose equal to 0.1 and ∇∗
μ

is the backward derivative in direction μ. Note that there
is nothing compelling in the choice for w(x). In this work

we make the same choice as in Ref. [24], which is slightly
different from the one adopted in Ref. [18]: the corresponding
gauge transformation does not lead, if iterated, to the Landau
gauge. In NSPT the gauge transformation is expanded in
powers of the coupling,

w(x) =
∑

k=1

β−k/2w(k)(x) , (14)

and the transformation in Eq. (12) is implemented order by
order in perturbation theory.

The combined step for the integrator adopted in this work
can be summarised as

Uμ(x)′ = e−Fμ(x;t) Uμ(x; t) , (15a)

Uμ(x; t + τ) = ew[U ′](x)Uμ(x)′e−w[U ′](x+μ̂) , (15b)

where all the terms are expanded in powers of β−1/2, and the
perturbative components are updated.

Runge–Kutta integrator Higher order integrators, in par-
ticular Runge–Kutta schemes, have been used for the lat-
tice version of the Langevin equation since the early days
[20]. A new, very effective second-order integration scheme
for NSPT in lattice gauge theories has been introduced in
Ref. [15]. While we have tested Runge–Kutta schemes our-
selves for pure gauge NSPT simulations, in this work we
adhere to the simpler Euler scheme: when making use of the
(standard) stochastic evaluation of the fermionic equations
of motion (see Sect. 4), Runge–Kutta schemes are actually
more demanding (extra terms are needed [26,27]).

3 Twisted boundary conditions and smell

When a theory is defined in finite volume, the fields can be
required to satisfy any boundary conditions that are com-
patible with the symmetries of the action. We adopt twisted
boundary conditions (TBC) [28] in order to remove the zero-
mode of the gauge field, and have an unambiguous perturba-
tive expansion, which is not plagued by toron vacua [29]. The
gauge fields undergo a constant gauge transformation when
translated by a multiple of the lattice size; therefore twisted
boundary conditions in direction ν̂ are

Uμ(x + L ν̂) = �νUμ(x)�†
ν , (16)

where �μ ∈ SU(Nc) are a set of constant matrices satisfying

�ν�μ = zμν�μ�ν , zμν ∈ ZNc . (17)

Fermions in the adjoint representation can be introduced
in a straightforward manner; the boundary conditions with
the fermionic field in the matrix representation read

ψ(x + L ν̂) = �νψ(x)�†
ν . (18)
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The inclusion of fermions in the fundamental representa-
tion is not straightforward; indeed, the gauge transformation
for the fermions when translated by a multiple of the lattice
size reads

ψ(x + L ν̂) = �νψ(x) , (19)

leading to an ambiguous definition of ψ(x + Lμ̂ + L ν̂).
An idea to overcome this problem, proposed in Ref. [30]
and implemented e.g. in Ref. [31], is to introduce a new
quantum number so that fermions exist in different copies,
or smells, which transform into each other according to the
antifundamental representation of SU(Nc). The theory has a
new global symmetry, but physical observables are singlets
under the smell group. Thus, configurations related by a smell
transformations are equivalent, and in finite volume we are
free to substitute Eq. (19) with

ψ(x + L ν̂)ir =
∑

j,s

(
�ν

)
i jψ(x) js

(
�†

ν

)
sr , (20)

where �ν ∈ SU(Nc). It is useful to think of the fermion field
as a matrix in colour-smell space. If the transformation matri-
ces in smell space satisfy the same relations as in Eq. (17)
(in particular we choose them to be equal to the �s), then
twisted boundary conditions are well-defined.

It is worth pointing out that, through a change of variable in
the path integral [32,33], twisted boundary conditions could
be equivalently implemented by multiplying particular sets
of plaquettes in the action by suitable elements of ZNc and
considering the fields to be periodic. This change of variable
works only in the pure gauge or fermions in the adjoint repre-
sentation cases. Thus, the explicit transformation of Eq. (20)
is required when fermions in the fundamental representation
with smell are considered.

4 Fermions in NSPT

If SF = ∑
x,y ψ̄(x)M[U ]ψ(y) is the action of a single

fermion, then dynamical fermions in NSPT can be included
thanks to a new term in the drift, as shown in Refs. [20,34]:
the determinant arising from N f degenerate fermions can be
rewritten as

det(M)N f = exp
(
N f Tr ln M

)
(21)

and can be taken into account by adding −N f Tr ln M to the
gauge action. From the Lie derivative of the additional term
and recalling that a rescaled time step τ = ε/β is used in the
Euler update, we obtain the new contribution

F f
μ (x) = −i

τN f

β

∑

a

T a Tr(∇a
xμM)M−1 (22)

to be added to the pure gauge drift. It is important to note that
the coefficient of iT a is purely real because the Wilson oper-

ator is γ5-Hermitian and the staggered operator is antihermi-
tian: this is consistent with the drift being an element of the
algebra. The trace can be evaluated stochastically: Eq. (22)
is replaced by

F f
μ (x) = −i

τN f

β

∑

a

T a Re ξ∗(∇a
xμM)M−1ξ (23)

thanks to the introduction of a new complex Gaussian noise
ξ satisfying3

〈ξ∗(y)βir ξ(z)γ js〉 = δyzδβγ δi jδrs . (24)

The real part must be enforced, otherwise the dynamics
would lead the links out of the group since the drift would
be guaranteed to be in the algebra only on average. In NSPT,
the Dirac operator inherits a formal perturbative expan-
sion from the links, M = ∑∞

n=0 β−nM (n), so the inverse
ψ = M−1ξ can be computed efficiently from the knowledge
of the inverse free operator via the recursive formula

ψ(0) = M (0)−1
ξ (25a)

ψ(n) = −M (0)−1
n−1∑

j=0

M (n− j)ψ( j) . (25b)

The inverse of the free operator is conveniently applied in
Fourier space.

If fermions have smell, then the rescaling N f → N f /Nc

is required in order to have N f flavours in the infinite-volume
limit. In other words, this is the same as considering the
Ncth root of the determinant of the fermion operator. In prin-
ciple such rooted determinant could come from a nonlocal
action, because twisted boundary conditions break the invari-
ance under smell transformations. Nevertheless, this rooting
procedure is sound since we know in advance that in the
infinite-volume limit all the dependence on boundary con-
ditions will be lost and the determinant will factorise as the
fermion determinant of a single smell times the identity in
smell space. It is also possible to show with arguments simi-
lar to those presented in Ref. [35] that, if the theory without
smell is renormalisable, this operation leads to a perturba-
tively renormalisable theory as well. Below we describe in
detail Wilson and staggered fermions in the fundamental rep-
resentation, so we explicitly rescale N f → N f /Nc. It is also
important to remember that the fermion field, seen as a matrix
in colour-smell space, is not required to be traceless, thus its
Fourier zero-mode does not vanish: we require antiperiodic
boundary conditions in time direction not to hit the pole of
the free propagator in the massless case. We avoid twisted

3 Obviously ξ does not have any Dirac structure in the staggered case.
The noise can be built from the independent generation of real and
imaginary part with zero mean and variance 1/2.
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boundary conditions in time direction because in the mass-
less case it might happen for the free fermion propagator to
develop a pole at some particular momenta.

4.1 Wilson fermions

The Wilson Dirac operator and its Lie derivative are

Myβir,zγ js = (m + 4)δrsδyzδβγ δi j

+
∑

μ

[
D(μ) + γ5D(μ)†γ5

]

yβir,zγ js

(26a)

∇a
x,μMyβir,zγ js = iδxy[T aD(μ)]yβir,zγ js

− iδxz[γ5D(μ)†γ5T
a]yβir,zγ js , (26b)

where the non-diagonal term has been expressed through

D(μ)yβir,zγ js = −1

2
δrsδy,z−μ̂(1 − γμ)βγUμ(y)i j . (27)

We must give a perturbative structure to the mass m =∑∞
n=0 β−nm(n) to account for an additive mass renormal-

isation, see Sect. 5. The stochastic evaluation of the trace
leads to

ξ∗(∇a
xμM)M−1ξ = i Tr T a

∑

β

(
ϕ(μ)(x)β ξ(x)†

β

−ψ(x)β ϕ̃(μ)(x)†
β

)
, (28)

where ϕ(μ) = D(μ)ψ , ϕ̃(μ) = γ5D(μ)γ5ξ and the fermion
fields have been represented as matrices in colour-smell
space. After taking the real part, the fermion drift can be
finally written as

F f
μ (x)i j =1

2

N f

Nc

τ

β

∑

a

T a
i j Tr T a

∑

β

[(
ϕ(μ)(x)β ξ(x)†

β

−ψ(x)β ϕ̃(μ)(x)†
β

)
− h.c.

]

=1

2

N f

Nc

τ

β
�g

⎡

⎣
∑

β

(
ϕ(μ)(x)β ξ(x)†

β

+ϕ̃(μ)(x)β ψ(x)†
β

)
⎤

⎦

i j

. (29)

In Appendix B the actual implementation of the fermion drift
is described (only one of the two terms in Eq. (29) is actually
needed).

With the Fourier transform described in Appendix C, the
inverse free Wilson operator with twisted boundary condi-
tions is diagonal in momentum space and can be expressed
as

M (0)−1
k,p = δk‖ p‖δk⊥ p⊥

2
∑

μ sin2 kμ

2 + m(0) − i
∑

μ γμ sin kμ

(
2
∑

μ sin2 kμ

2 + m(0)
)2 + ∑

μ sin2 kμ

.

(30)

4.2 Staggered fermions

We implemented for the first time staggered fermions in
NSPT. The staggered field has no Dirac structure and
describes four physical fermions in the continuum limit.
Therefore, we rescale N f → N f /4 and the staggered oper-
ator is understood to be rooted when the number of flavour
is not a multiple of four. The staggered Dirac operator and
its Lie derivative are

Myir,z js =mδrsδyzδi j +
∑

μ

[
D(μ) − D(μ)†

]

yir,z js

(31a)

∇a
x,μMyir,z js = iδxy[T aD(μ)]yir,z js

+ iδxz[D(μ)†T a]yir,z js , (31b)

where the non-diagonal term has been expressed through

D(μ)yir,z js = 1

2
αμ(y)δrsδy,z−μ̂Uμ(y)i j (32)

and αμ(x) = (−1)
∑μ−1

ν=1 xν is the staggered phase. The
stochastic evaluation of the trace is analogous to the Wilson
fermion case and Eq. (28) becomes

ξ∗(∇a
xμM)M−1ξ = i Tr T a

(
ϕ(μ)(x) ξ(x)†

−ψ(x) ϕ̃(μ)(x)†
)

, (33)

with ϕ(μ) = D(μ)ψ and ϕ̃(μ) = −D(μ)ξ , leading to the
final expression

F f
μ (x)i j = 1

2

N f

4Nc

τ

β
�g

(
ϕ(μ)(x) ξ(x)†

+ ϕ̃(μ)(x) ψ(x)†
)

i j
. (34)

Again, the actual implementation of the staggered drift is
shown in Appendix B.

With the Fourier transform described in Appendix C, the
inverse free staggered operator with twisted boundary con-
ditions is found to be

M(0)−1
k,p = δk⊥ p⊥

mδk‖ p‖ − i
∑

μ sin kμ δ̄(k‖ + πμ̄ − p‖)
∑

μ sin2 kμ + m2
, (35)

where 1̄ = 0, μ + 1 = μ̄+μ̂ and δ̄ is the periodic Kronecker
delta, with support in 0 mod 2π . The propagator is not diag-
onal in momentum space because the action depends explic-
itly on the position through αμ(x), but it is simple enough to

123



Eur. Phys. J. C           (2018) 78:974 Page 7 of 27   974 

avoid a complete matrix multiplication over all the degrees

of freedom. If we aim to compute M (0)−1
v for some field

v in momentum space, it is useful to represent v(p‖)p⊥ as
matrices Nc × Nc with indices ñ1, ñ2 defined at each p‖
site (n1, n2, n3, n4) (see again Appendix C). Then the non-
diagonal terms become diagonal when shifting iteratively v

by L/2 in the p‖ space. Incidentally, we must consider L to
be even so that at the same time L/2 is well defined and (in
the massless case) no spurious pole is hit when Eq. (35) is
evaluated in finite volume: this stems from the fact that the
staggered action is only invariant under translation of two lat-
tice spacings, therefore twisted boundary conditions would
be inconsistent for L odd.

5 The critical mass of Wilson fermions

The inverse of the Wilson fermion propagator in momentum
space can be expressed as

a�(ap, am, β−1) = aS(ap, am, β−1)−1

= i
∑

μ

γμ(apμ) + 1

2
̂(ap)

2

+ am − a�(ap, am, β−1) , (36)

where v̄μ = sin vμ, v̂μ = 2 sin(
vμ

2 ) and �(ap, am, β−1) is
the self energy. In this section the lattice spacing a is written
explicitly. Wilson fermions are not equipped with chiral sym-
metry when the bare mass m vanishes: the self energy at zero
momentum is affected by a power divergence a−1, which
has to be cured by an additive renormalisation. In an on-shell
renormalisation scheme, the critical value of the bare mass,
mc, for which the lattice theory describes massless fermions,
is given by the solution of

amc − a�(ap = 0, amc, β
−1) = 0 . (37)

As observed in Ref. [36], this prescription matches the one
obtained by requiring the chiral Ward identity to hold in the
continuum limit. Expanding Eq. (37) defines the critical mass
order by order in perturbation theory. The perturbative expan-
sion of the inverse propagator is

a�(ap, am, β−1) =
∑

n=0

�(n) (ap, am) β−n , (38)

where we have indicated explicitly the dependence of the
coefficients on the bare massam. The functions�(n)(ap, am)

are matrices in Dirac space; since we are interested in the
small momentum region and �(n)(0, am) is proportional to
the identity, we consider �(n)(ap, am) as scalar functions:
when ap �= 0 a projection onto the identity is understood.

Plugging the perturbative expansion of the critical mass

amc =
∑

n=1

m(n)
c β−n (39)

into Eq. (38) results in

a�(ap, amc, β
−1) =

∑

n=0

γ (n) (ap) β−n

=
∑

n=0

[
m(n)

c + χ(n) (ap)
]
β−n , (40)

where the dependence of γ (n) onm(n)
c has been made explicit

and χ(n) depends only on m(0)
c , . . . ,m(n−1)

c . Therefore, the
renormalisation condition in Eq. (37) becomes order by order

γ (n)(0) = 0 or m(n)
c = −χ(n)(0) . (41)

For illustration, we can compute the recursive solution of
Eq. (37) at first- and second-order in the expansion in powers
of β−1, which yields

γ (1)(0) = �(1)(0, 0) + m(1)
c = 0 , (42a)

γ (2)(0) = m(1)
c

∂�(1)

∂(am)

∣∣∣∣
ap=0,am=0

+ �(2)(0, 0) + m(2)
c = 0 .

(42b)

Both results are familiar from analytical calculations of
the critical mass. The first equation encodes the fact that
the mass counterterm at first order in perturbation theory is
given by the one-loop diagrams computed at zero bare mass.
The second equation states that the second-order correction is
given by summing two-loop diagrams evaluated at vanishing
bare mass, and one-loop diagrams with the insertion of the
O
(
β−1

)
counterterm, see e.g. Ref. [37].

It should also be noted that, when working in finite volume,
momenta are quantised. Unless periodic boundary conditions
are used, p = 0 is not an allowed value for the momentum
of the states in a box. Therefore, condition (37) can only
be imposed after extrapolating the value of � to vanishing
momentum. The detailed implementation is discussed below
in Sect. 5.1.

Critical masses have been computed analytically up to
two loops [37,38], and in NSPT at three and four loops
[39,40]. High-order perturbation theory with massless Wil-
son fermions requires the tuning of the critical mass at the
same order in β−1, and it is possible to determine this renor-
malisation using NSPT. Let us illustrate the strategy in detail.
We begin by collecting configurations for different time steps
τ of the stochastic process; for each configuration the gauge is
fixed to the Landau gauge [41,42]. The propagator at momen-
tum p is computed by applying the inverse Dirac operator to
a point source in momentum space,
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S(p)αβ =
〈
∑

qγ

M [U ]−1
pq,αγ δqpδγβ

〉

MC

. (43)

For each simulation at a given value of τ , the error bars
are computed as detailed in Appendix D. The propagator
with periodic boundary conditions is a (diagonal) matrix in
colour and momentum space and has a Dirac structure; it is
important to stress again that with TBC there is not a colour
structure any more and the momentum has a finer quantisa-
tion. The average over all the configurations gives the Monte
Carlo estimate of S(p). We can now extrapolate the stochastic
time step to zero and invert the propagator to obtain S(p)−1.
Finally, the inverse propagator is projected onto the iden-
tity in Dirac space. All these operations are performed order
by order in perturbation theory keeping in mind that, after
the measure of the propagator, all perturbative orders β−k/2

with an odd k are discarded, since the expansion in powers
of β−1/2 is an artefact of NSPT. The errors can be estimated
by bootstrapping the whole procedure.

The legacy of this process is the measure of the functions
γ (n)(ap), as it is clear from Eq. (40). The renormalisation
condition in Eq. (41) must then be imposed: this can be done
iteratively one order after the other. When all the coefficients
up to some m(n)

c are included in the simulation, all the γ

functions up to γ (n)(ap) extrapolate to zero; on the other
hand, from γ (n+1)(0) we can read −m(n+1)

c . In order to move
on and compute the following coefficient of the critical mass,
a new set of configurations wherem(n+1)

c is taken into account
must be generated.

The procedure we described is well defined and even the-
oretically clean, since it enlightens the status of our mc as a
perturbative additive renormalisation: once it is plugged in at
a given order, the renormalised mass turns out to be zero at
the prescribed order. On the other side, it is not at all the only
possible procedure. The prescription of the authors of Ref.
[23] is to expand the solution of the stochastic process both
in the coupling and in the mass counterterm. This is in the
same spirit of Ref. [43]: the solution of the stochastic pro-
cess can be expanded in more than one parameter and once a
precise power counting is in place, the resulting hierarchy of
equations can be exactly truncated at any given order. There
are pros and contras for both approaches, i.e. the one we
followed and the double expansion. The latter can provide
a better handle on estimating errors due to the critical mass
value; on the other side, it is expected to be numerical more
demanding. All in all, we did not push Wilson fermions to
very high orders: moving to the staggered formulation was
by far the most natural option for the purpose of this work.

5.1 Zero-momentum extrapolation and valence twist

Since in finite volume it is possible to measure �(ap) only for
discretised non-zero momenta, the data need to be extrapo-

lated to zero momentum using a suitable functional form. The
strategy adopted in the literature – see for example Eqs. (13)
and (14) in Ref. [40] – is based on expanding the quanti-
ties of interest in powers of ap. In the infinite-volume limit,
such an expansion leads to a hypercubic symmetric Taylor
expansion composed of invariants in ap, logarithms of ap
and ratios of invariants; an explicit one-loop computation to
order a2 is shown e.g. in Eq. (24) of Ref. [44]. The ratios
and the logarithms arise because we are expanding a non-
analytic function of the lattice spacing: infrared divergences
appear when expanding the integrands in ap. On the other
hand, working consistently in finite volume does not cause
any infrared divergence: expressions for γ (n)(ap) will be
just sums of ratios of trigonometric functions, which we can
expand in ap obtaining simply a combination of polynomial
lattice invariants.4

Still, this is not enough for a reliable extrapolation to
vanishing momenta. In order to understand better the range
of momenta that allow a reliable extrapolation, we com-
puted γ (1)(ap) in twisted lattice perturbation theory (see
Appendix E). As a cross-check of our calculation we ver-
ified that γ (1)(0) is gauge-invariant (this result must be true
at all orders because of the gauge-invariance of the pole mass
[45]). It can be seen from the analytic expansion of γ (1)(ap)
that even the lowest momentum allowed on our finite-size lat-
tices, ap1,2,3 = 0, ap4 = π/L , is far from the convergence
region of this series. This happens even for reasonably big
lattices, L � 32. In order to increase the range of available
momenta, we use θ -boundary conditions [46] for the valence
fermions,

ψ(x + L 4̂) = eiθψ(x) , (44)

thereby reaching momenta p4 = θ/L which are within the
convergence radius of the ap-expansion. The hypercubic
series becomes just a polynomial in (ap4)

2 by setting all
the other components to zero.

The agreement between data and the analytic finite-
volume calculations can be seen in Fig. 1. It is worthwhile
to emphasise that measuring such low momenta requires a
careful analysis of the thermalisation. At the lowest order we
can check directly when the measures agree with the theo-
retical predictions. At higher orders, it is necessary to wait
until the statistical average has clearly stabilised, as shown in
Fig. 2. This kind of analysis is computationally intensive: in
the case at hand, we performed up to 5 · 106 lattice sweeps,
saving one propagator every 103 sweeps. The first 2 · 103

configurations have been discarded in the analysis.

4 Expanding in ap and sending the lattice size to infinity are operations
that do not commute; in particular this gives rise to different series in
the finite- and infinite-volume cases.
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Fig. 1 Measure of γ (1)(ap) (left panel) and γ (2)(ap) (right panel) for
a 124 lattice with twisted boundary conditions on a plane, Nc = 2
and N f = 2 Wilson fermions. The analytic finite-volume critical mass

m(1)
c is included in the simulation. A second-order polynomial in (ap)2

is used for fitting. Most analytic finite-volume predictions have been
drawn as lines to help the eye in the comparison. The difference with
the prediction in the right panel is to be ascribed to the fact that we are
able to resolve finite volume effects

Fig. 2 Same as Fig. 1 with data drawn as a function of the number of configurations included in the analysis. Each colour corresponds to a different
momentum. Horizontal lines are the analytical predictions

5.2 A first attempt for high-order critical mass for SU(3),
N f = 2

We determined the first 7 coefficients of the critical mass for
Nc = 3 and N f = 2 on a 164 lattice with twisted boundary
conditions on a plane. The twist matrices are

�1 =
⎛

⎜⎝
e−i 2π

3 0 0
0 1 0

0 0 ei
2π
3

⎞

⎟⎠ �2 =
⎛

⎝
0 1 0
0 0 1
1 0 0

⎞

⎠ , (45)

corresponding to z12 = exp
(
i 2π

3

)
. Configurations are col-

lected at three different time steps, τ = 0.005, 0.008, 0.01.
Because the volume and the number of colours are large
compared to the former test in Fig. 1, it is computationally
too expensive to replicate the same statistics at all orders:
we settled for 5 · 105 sweeps at the smallest τ , measuring
the propagator every r = 103 sweeps. At larger time steps,
we rescale these numbers to keep the product r · τ constant.
The propagator is measured at the smallest available momen-
tum, which has θ/L in the time component and vanishes
elsewhere; we choose three different values for the phase of

the valence twist, θ = π/2, 2π/3, 4π/5. Extrapolations to
zero momentum are performed using a linear fit in (ap)2.
The analysis is performed on different subsets of the data5

to estimate systematic errors. The total error is the sum in
quadrature of half the spread around the central value among
the different fits and the largest error from the fits.

The procedure described in Sect. 5.1, even though well-
defined, is found to be numerically unstable at high orders.
The number of propagators required to reach a clear plateau,
like the ones shown in Fig. 2, is beyond what it can be rea-
sonably collected with the current NSPT implementations.
Therefore, we decided to proceed with a smaller statistics
and to add a new systematic uncertainty for the extrapolated
coefficients, as explained below. It has to be emphasised that
once a coefficient of the critical mass is determined, only the
central value is used as input for the following runs: even
if we could collect enough statistics and manage to reduce
the error, that is not included in the simulations. This makes

5 The different subsets are built by varying the number of initial con-
figurations that are excluded in the analysis and by rejecting data at
different rates.
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Fig. 3 Determination of the coefficient m(4)
c . Although γ (1)(ap) does not extrapolate to zero, the extrapolation of γ (4)(ap) is compatible with the

value known from Ref. [40]. Notation as in Fig. 1

Fig. 4 Determination of the coefficient m(8)
c . The errors overshadow the value of the critical mass, which is compatible with zero. Notation as in

Fig. 1

the impact of the uncertainty of m(n)
c on m(n+1)

c and higher
hard to assess; also, performing simulations for several val-
ues of each coefficient is not feasible. To be conservative, we
adopted the following strategy. Once a critical mass m(n)

c is
determined and put in the next-order simulation, the corre-
sponding γ (n)(ap) should extrapolate to zero. If it extrapo-
lates to εn , we take |εn/m(n)

c | as an estimate of the relative
systematic error to be added in quadrature to the determina-
tion of all the higher-order critical masses.

Despite these instabilities, the lower-order results are close
to the known coefficients (keeping in mind that we might
resolve finite-volume effects), as it can be seen for example
in Fig. 3. We stopped the procedure at m(8)

c , when the errors
started dominating over the central value of the coefficient,
see Fig. 4. Our results are summarised in Table 1.

6 Perturbative expansion of the plaquette

Following Ref. [16], we define the average plaquette

P = 1

6NcL4

∑

�
Re Tr (1 −U�) , (46)

Table 1 Critical masses for Nc = 3, N f = 2 Wilson fermions deter-
mined with NSPT on a 164 lattice with twisted boundary condition on
a plane, compared with the known values in infinite volume. The n = 1
coefficient has been determined analytically in twisted lattice perturba-
tion theory; many digits have been used in the actual simulation

n −m(n)
c on 164 −m(n)

c in infinite volume

1 2.61083 . . . 2.60571 . . .

2 4.32(3) 4.293(1) [37,38]

3 1.21(1) · 101 1.178(5) · 101 [39,40]

4 3.9(2) · 101 3.96(4) · 101 [40]

5 1.7(2) · 102 –

6 5(1) · 102 –

7 2(1) · 103 –

so that the value of P ranges between 0, when all link vari-
ables are equal to the identity, and 1. The plaquette expecta-
tion value has the perturbative expansion

〈P〉pert =
∞∑

n=0

pn β−(n+1) ; (47)

the coefficients pn are obtained from the Langevin process.
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Table 2 Summary of the ensembles for Nc = 3 and N f = 2 staggered
fermions. The order nmax is the highest order at which the plaquette pn
has been measured

L τ nmax

24 0.005 35

0.0075 35

0.01 35

28 0.005 29

0.008 35

0.01 35

32 0.005 33

0.008 35

0.01 35

48 0.005 35

0.008 35

0.01 35

6.1 Simulation details

We run NSPT simulations of an SU(3) gauge theory with
N f = 2 massless staggered fermions in the fundamental
representation, measuring the average plaquette after each
Langevin update. Twisted boundary conditions are imposed
on a plane, with twist matrices chosen as in Eq. (45). These
simulations have been mostly run with the GridNSPT code
on KNL and Skylake nodes provided by the Cambridge Ser-
vice for Data Driven Discovery (CSD3); simulations on the
smallest lattice have been run on the Skylake nodes on the
Marconi system provided by CINECA in Bologna. The main
features of our code are described in Appendix F. We simulate
244, 284, 324, 484 volumes up to order β−40 in the expansion
of the links. We gradually switch on higher orders when the
plaquette at lower orders is thermalised. Because of the insta-
bilities discussed in Sect. 6.2, results are presented only up
to the order shown in Table 2. All simulations are run inde-
pendently at three different time steps, and we have at least
5·103 measures for the largest order at the smallest time step.
The length of the runs at larger time steps is rescaled to have
approximately the same Langevin time history for all τ .

6.2 Numerical instabilities

The study of the NSPT hierarchy of stochastic processes is
not trivial. While there are general results for the conver-
gence of the generic correlation function of a finite number
of perturbative components of the fields [18,47], the study of
variances is more involved, and many results can only come
from direct inspection of the outcome of numerical simu-
lations. In particular, one should keep in mind that in the
context of (any formulation of) NSPT, variances are not an
intrinsic property of the theory under study; in other words,

they are not obtained as field correlators of the underlying
theory. Big fluctuations and correspondingly huge variances
were observed at (terrifically) high orders in toy models [47]:
signals are plagued by several spikes and it is found by
inspection that a fluctuation at a given order is reflected and
amplified at higher orders. All in all, variances increase with
the perturbative order (not surprisingly, given the recursive
nature of the equations of motion). Moving to more realistic
theories, a robust rule of thumb is that, as expected on gen-
eral grounds, the larger the number of degrees of freedom,
the less severe the problems with fluctuations are. In particu-
lar, we have not yet found (nor has anyone else reported) big
problems with fluctuations in the computation of high orders
in pure Yang–Mills theory.

We now found that the introduction of fermions indeed
causes instabilities at orders as high as the ones we are con-
sidering in this work. Once again, this effect can be tamed
by working on increasingly large volumes. Once a fluctua-
tion takes place, the restoring force would eventually take the
signal back around its average value but in practice this mech-
anism is not always effective. At high orders the instabilities
can be so frequent and large that the signal is actually lost, and
the average value of the plaquette becomes negligible com-
pared to its standard deviation, as it is illustrated in Fig. 5.
The order at which the signal is lost is pushed to higher values
by increasing the volume, but eventually uncontrolled fluc-
tuations will dominate. Moreover, we find that spikes tend to
happen more frequently at smaller τ . Roughly speaking, this
does not come as a surprise, since at smaller time steps one
has to live with a larger number of sweeps, thereby increasing
the chances of generating large fluctuations when computing
the force fields. In Table 2 the orders available at each volume
and time step are shown in detail.

6.3 Determination of the pn

The lowest coefficients have already been computed analyt-
ically. In particular, in twisted lattice perturbation theory we
have that

p0 = 1

6

∑

μ>ν

Nc

2
�
�
�

∑

p

(1 − δp⊥,0)
p̂2
μ + p̂2

ν

p̂2 = N 2
c − 1

4
(48)

is volume independent [48]. The infinite-volume value of p1

can be obtained adding to the pure gauge contribution [49],

p1,g = 4N 2
c (N 2

c − 1)

(
0.0051069297 − 1

128N 2
c

)
, (49)

the contribution due to staggered fermions [50],

p1, f = −1.2258(7) · 10−3 (N 2
c − 1)2NcN f . (50)

For the specific case Nc = 3, N f = 2, we find p1 =
1.10312(7). We also computed the fermion contribution to
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Fig. 5 In the left panel, signal samples of the coefficient p39 taken
from a 84 lattice with TBC in three directions. The simulation with
Wilson fermions has been performed for illustrative reasons and the
bare mass has been set to zero. In the right panel, signal samples of the
coefficient p36 with TBC on a plane and staggered fermions. In both
panels τ = 0.005 and the origin of t is set arbitrarily. It is evident that in

the quenched case we could extract the plaquette coefficient even from
a small volume, while fermions introduce instabilities that can be mit-
igated by considering bigger lattices. While we have chosen these two
particular examples for illustration purposes, the appearance of spikes is
a general phenomenon that we observe for orders approximately ≥ 30
on the volumes under study

Fig. 6 Determination of p0, p1 at L = 48. Dedicated simulations
for these two coefficients have been performed at τ = 0.004 and
τ = 0.0065. We extrapolate to zero time step with a second order

polynomial in τ . The extrapolated values are p0 = 1.9999(1) and
p1 = 1.1031(4) with reduced χ2 respectively equal to 1.710 and 1.477

p1 in twisted lattice perturbation theory.6 The finite-volume
result is p1 = 1.10317022 . . . at L = 8, therefore we
expect finite volume effects to be negligible in the lattices
we are employing. In particular, we improved the determina-
tion of p1, f in Eq. (50) using the finite volume calculations
at L = 16 as the central value, and the variation between
L = 16 and L = 14 as an estimate of its uncertainty, lead-
ing to p1, f = −0.0587909(3)N f for Nc = 3, and hence
p1 = 1.1032139(6) for N f = 2. Trying to extract p0 and p1

from our data at L = 48, we realise that even τ 2 effects in
the extrapolation must be considered because of the very high
precision of the measurements. For these two coefficients, a
dedicated study at has been performed, which required new
simulations at time steps τ = 0.004 and τ = 0.0065; the
agreement with the analytic calculations is found to be excel-
lent, see Fig. 6.

6 We are grateful to M. García Pérez and A. González-Arroyo for pro-
viding us the gluon contribution in finite volume.

Therefore, p0 and p1 are set to their infinite-volume val-
ues and excluded from the analysis of the numerical simu-
lations. The remaining orders are obtained from NSPT. The
value pn,τ for the plaquette at order n and time step τ is
computed from the average of the fields generated by the
stochastic process, after discarding a number of thermalisa-
tion steps. The moving averages result to be stable, as can
be seen in the two examples of Fig. 7. In order to exploit
all the available data, the thermalisation is set differently at
different orders. The covariance Cov(n,m)τ between pn,τ

and pm,τ is computed taking into account autocorrelations
and cross-correlations, as explained in detail in Appendix D.
Clearly there is no correlation between different τ . In order
to estimate the covariance when two orders have different
thermalisations, we take into account only the largest set of
common values where both are thermalised. This pairwise
estimation of the covariance matrix does not guarantee pos-
itive definiteness, therefore we rely on Higham’s algorithm,
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Fig. 7 Average of two plaquette coefficients at L = 48 as a function of the number of configurations. The error band corresponds to the standard
deviation of the sample

which we describe in Appendix G, to find the nearest positive
definite covariance matrix; the procedure introduces some
dependence on a tolerance δ. The extrapolation to vanishing
time step is performed by minimising

χ2 =
nmax∑

n,m

∑

τ

(pn,τ − anτ − pn) Cov−1(n,m)τ

×(pm,τ − amτ − pm) , (51)

where the coefficientsan are the slopes of the combined linear
fits. The interesting fit results are the values of the extrapo-
lated plaquettes pn and their covariance matrix Cov(n,m).
In general, because of the available statistics and the intrin-
sic fluctuations of the observable, the lower-order values
are measured more accurately compared to the higher-order
ones; the same holds for the estimate of the entries the covari-
ance matrix. Since, in principle, the plaquette at a certain
order could be extracted without any knowledge about its
higher-order values, we can get the best estimate for a pn
by implementing the fit iteratively, increasing nmax from 0
to the maximum available order. At each iteration, we deter-
mine the order with the minimum number of measures Nmin

and rescale the entries of the covariance matrix so that there
is a common normalisation (N = Nmin in Eq. (83)) for all
the matrix elements. In this way, all the data are exploited
for the determination of the covariance of the process, and
the non-positive definiteness of the covariance of the aver-
ages arises only from the presence of autocorrelations and
cross-correlations. Higham’s algorithm is then applied to
Cov(n,m)τ restricted to nmax orders. At this stage, minimis-
ing the χ2 allows us to extract pnmax with Cov(nmax ,m) for
m ≤ nmax . The tolerance of Higham’s algorithm is tuned so
that the covariance matrix is able to represent our data, i.e.
so that the reduced chi-squared is close to 1. The combined
fit determines also the plaquettes at orders lower than nmax ,
which are always checked and found to be in agreement,
within errors, with their previous determination at smaller

nmax . An example of a correlation matrix extracted with this
procedure is in Fig. 8, where clear structures of correlated
and anticorrelated coefficients are visible. The results of the
combined extrapolations are summarised in Table 3.

7 Gluon condensate

In this section we restore the lattice spacing a and follow the
notation of Refs. [16,17]: the gluon condensate is defined as
the vacuum expectation value of the operator

OG = − 2

β0

β(α)

α

∑

a,μ,ν

Ga
μνG

a
μν , (52)

where the coupling α is related to the Wilson action coupling
by α = Nc

2πβ
and the beta function is

β(α) = dα

d ln μ
= −2α

[
β0

α

4π
+ β1

( α

4π

)2 + . . .

]
, (53)

with the scheme-independent coefficients

β0 = 11

3
Nc − 2

3
N f (54a)

β1 = 34

3
N 2
c − N f

(
13

3
Nc − 1

Nc

)
. (54b)

It is useful to remember that, in the massless limit, OG is
renormalisation group invariant and depends on the scheme
only through the renormalisation condition used to define the
composite operator.

It is easy to relate the gluon condensate and the plaquette
in the naive continuum limit:

a−4P
a→0−−−→ π2

12Nc
OG = π2

12Nc

(α

π
G2

)
, (55a)

OG = α

π
G2 [1 + O(α)] . (55b)
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Fig. 8 In the left panel, correlation matrix between the coefficients p2, . . . , p35 at L = 48 extracted from the combined fit procedure. The entrances
can be bigger than 1 because the matrix is not positive definite. In the right panel, the nearest correlation matrix obtained with Higham’s algorithm
(δ = 10−10)

Table 3 Plaquette coefficients from the combined fit for L = 24, 28, 32, 48. The tolerance δ is given only when the covariance matrix is found not
to be positive definite

L = 24 L = 28

n pn χ2/dof δ n pn χ2/dof δ

2 2.536(1) 2.178 − 2 2.537(1) 0.032 −
3 7.622(6) 1.079 0.1 3 7.639(7) 1.136 0.625

4 2.626(3) · 101 0.735 0.1 4 2.636(3) · 101 0.648 0.5

5 9.84(1) · 101 0.615 0.1 5 9.89(2) · 101 0.853 0.1

6 3.906(6) · 102 0.828 0.01 6 3.934(7) · 102 0.593 0.1

7 1.615(3) · 103 0.529 0.01 7 1.630(4) · 103 0.480 0.1

8 6.89(2) · 103 0.581 0.01 8 6.97(2) · 103 0.707 0.1

9 3.021(9) · 104 0.421 0.01 9 3.05(1) · 104 0.927 0.1

10 1.357(5) · 105 0.861 0.01 10 1.366(5) · 105 0.753 0.1

11 6.09(3) · 105 0.940 0.01 11 6.21(3) · 105 0.599 0.1

12 2.80(2) · 106 0.753 0.01 12 2.87(1) · 106 0.512 0.1

13 1.302(9) · 107 0.690 0.01 13 1.338(7) · 107 0.443 0.1

14 6.14(4) · 107 0.570 0.01 14 6.31(4) · 107 0.401 0.1

15 2.94(2) · 108 0.652 0.01 15 3.01(2) · 108 0.360 0.1

16 1.41(1) · 109 0.797 0.01 16 1.44(1) · 109 1.012 0.01

17 6.79(6) · 109 0.758 0.01 17 6.96(7) · 109 0.998 0.01

18 3.31(3) · 1010 0.730 0.01 18 3.36(3) · 1010 0.972 0.01

19 1.65(2) · 1011 0.678 0.01 19 1.63(2) · 1011 0.953 0.01

20 8.3(1) · 1011 0.732 0.01 20 8.0(1) · 1011 0.884 0.01

21 4.15(7) · 1012 0.755 0.01 21 3.89(6) · 1012 0.829 0.01

22 2.08(5) · 1013 0.590 0.1 22 1.91(3) · 1013 0.821 0.01

23 10.0(4) · 1013 0.569 0.1 23 9.5(2) · 1013 0.873 0.01

24 5.0(2) · 1014 0.543 0.1 24 4.7(1) · 1014 0.851 0.01

25 2.5(1) · 1015 0.485 0.1 25 2.34(6) · 1015 0.764 0.01

26 1.34(4) · 1016 1.140 0.01 26 1.14(3) · 1016 0.695 0.01

27 6.6(2) · 1016 1.054 0.01 27 5.7(2) · 1016 0.687 0.01
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Table 3 continued

L = 24 L = 28

n pn χ2/dof δ n pn χ2/dof δ

28 3.2(2) · 1017 0.479 0.1 28 2.8(1) · 1017 0.671 0.01

29 1.6(1) · 1018 1.124 0.01 29 1.5(1) · 1018 0.462 0.01

30 7.6(7) · 1018 0.836 0.01 30 7.1(7) · 1018 0.855 0.001

31 3.6(6) · 1019 0.456 0.01 31 4.2(7) · 1019 0.663 0.001

32 1.8(4) · 1020 0.443 0.01 32 2.0(4) · 1020 0.661 0.001

33 9(3) · 1020 0.445 0.01 33 10(3) · 1020 0.651 0.001

34 5(2) · 1021 0.432 0.01 34 4(2) · 1021 0.516 0.001

35 3(1) · 1022 0.425 0.01 35 2(1) · 1022 0.519 0.001

L = 32 L = 48

n pn χ2/dof δ n pn χ2/dof δ

2 2.5370(8) 0.249 − 2 2.5354(7) 2.745 −
3 7.627(4) 1.182 − 3 7.615(3) 1.454 0.01

4 2.633(2) · 101 2.412 − 4 2.623(1) · 101 1.428 0.1

5 9.882(9) · 101 1.378 0.5 5 9.826(6) · 101 1.673 0.1

6 3.926(5) · 102 1.015 0.1 6 3.897(3) · 102 1.653 0.1

7 1.626(2) · 103 0.730 0.1 7 1.613(2) · 103 1.338 0.1

8 6.96(1) · 103 0.929 0.01 8 6.88(1) · 103 1.194 0.1

9 3.050(6) · 104 0.772 0.01 9 3.007(6) · 104 1.079 0.1

10 1.367(4) · 105 0.638 0.01 10 1.341(3) · 105 0.998 0.1

11 6.22(2) · 105 0.963 0.01 11 6.08(1) · 105 0.925 0.1

12 2.86(1) · 106 0.645 0.1 12 2.793(6) · 106 1.108 0.01

13 1.337(6) · 107 0.771 0.1 13 1.297(3) · 107 0.978 0.01

14 6.29(3) · 107 0.861 0.1 14 6.08(2) · 107 0.883 0.01

15 3.00(2) · 108 0.952 0.1 15 2.87(1) · 108 1.067 0.01

16 1.438(9) · 109 1.012 0.1 16 1.370(5) · 109 1.013 0.01

17 6.94(5) · 109 0.996 0.1 17 6.57(3) · 109 0.951 0.01

18 3.34(3) · 1010 1.000 0.1 18 3.16(1) · 1010 0.930 0.01

19 1.63(2) · 1011 0.965 0.1 19 1.530(6) · 1011 0.938 0.01

20 7.90(8) · 1011 1.053 0.01 20 7.45(3) · 1011 0.890 0.01

21 3.86(4) · 1012 0.995 0.01 21 3.65(1) · 1012 0.824 0.01

22 1.90(2) · 1013 0.957 0.01 22 1.796(9) · 1013 0.748 0.01

23 9.4(1) · 1013 0.949 0.01 23 8.88(5) · 1013 0.691 0.01

24 4.74(9) · 1014 0.979 0.01 24 4.41(3) · 1014 0.636 0.01

25 2.39(5) · 1015 0.967 0.01 25 2.19(2) · 1015 0.575 0.01

26 1.22(3) · 1016 0.921 0.01 26 1.09(1) · 1016 0.548 0.01

27 6.3(2) · 1016 0.871 0.01 27 5.46(9) · 1016 0.538 0.01

28 3.2(1) · 1017 0.849 0.01 28 2.74(6) · 1017 0.523 0.01

29 1.63(9) · 1018 0.812 0.01 29 1.38(4) · 1018 0.511 0.01

30 8.6(7) · 1018 0.779 0.01 30 7.0(3) · 1018 0.492 0.01

31 4.5(9) · 1019 0.743 0.01 31 3.5(2) · 1019 0.494 0.01

32 1.9(3) · 1020 0.723 0.01 32 1.7(1) · 1020 0.503 0.01

33 9(2) · 1020 0.723 0.01 33 8.3(7) · 1020 1.062 0.001

34 5(1) · 1021 0.702 0.01 34 5.2(6) · 1021 1.090 0.001

35 1(1) · 1022 0.663 0.01 35 2.3(6) · 1022 0.486 0.01
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In the interacting theory mixing with operators of lower or
equal dimension occurs. For the case of the plaquette, the
mixing with the identity needs to be considered, yielding

a−4P = a−4Z(β)1 + π2

12Nc
CG(β)OG + O(a2�6

QCD) , (56)

which shows explicitly the subtraction of the quartic power
divergence.7

As a consequence

〈P〉MC = Z(β) + π2

12Nc
CG(β)a4 〈OG〉 + O(a6�6

QCD) ,

(57)

where 〈P〉MC is the plaquette expectation value obtained
from a nonperturbative Monte Carlo simulation. As such,
〈P〉MC is expected to depend on the cut-off scale a, and
�QCD. In the limit a−1 � �QCD, Eq. (57) can be seen
as an Operator Product Expansion (OPE) [1,2,53], which
factorises the dependence on the small scale a. In this
framework,8 condensates like 〈OG〉 are process-independent
parameters that encode the nonperturbative dynamics, while
the Wilson coefficients are defined in perturbation theory,

Z(β) =
∑

n=0

pnβ
−(n+1) , CG(β) = 1 +

∑

n=0

cnβ
−(n+1) .

(58)

Note that both Z and CG depend only on the bare cou-
pling β−1, and do not depend on the renormalisation scale
μ, as expected for both coefficients [55,56]. Nonperturba-
tive contributions to Z , or CG , originating for example from
instantons, would correspond to subleading terms in �QCD.
This procedure defines a renormalisation scheme to subtract
power divergences: condensates are chosen to vanish in per-
tubation theory or, in other words, they are normal ordered in
the perturbative vacuum. This definition matches the one that
is natural in dimensional regularisation, where power diver-
gences do not arise. Nevertheless, it is well known that such
a definition of the condensates might lead to ambiguities,
since the separation of scales in the OPE does not necessar-
ily correspond to a separation between perturbative and non-
perturbative physics (see the interesting discussions in Refs.
[3,57]). For example, the fermion condensate in a massless
theory is well-defined since, being the order parameter of

7 We mention that, in a theory with fermions, the operator OG must be
combined withmψ̄ψ to give a renormalisation group invariant quantity;
moreover mixing with the operators mψ̄ψ and ψ̄(i /D − m)ψ should
also be considered [51,52]. Clearly such complications are not present
in the massless case and the operator iψ̄ /Dψ can be neglected in the
following discussions since it vanishes when the equation of motion are
used.
8 It is useful to keep in mind that other definitions of the gluon con-
densate are possible, see e.g. Ref. [54].

chiral symmetry breaking, it must vanish in perturbation the-
ory. The same cannot be said for the gluon condensate [58],
and indeed the ambiguity in its definition is reflected in the
divergence of the perturbative expansion of the plaquette. For
this picture to be consistent, it must be possible to absorb in
the definition of the condensate the ambiguity in resumming
the perturbative series.

In the following, we are going to study the asymptotic
behaviour of the coefficients pn determined in the previous
section and discuss the implications for the definition of the
gluon condensate in massless QCD.

7.1 Growth of the coefficients

From the analysis in Refs. [11,16], it is possible to predict
the asymptotic behaviour of the ratio

pn
npn−1

= 3β0

16π2

[
1 + 2β1

β2
0

1

n
+ O

(
1

n2

)]
, (59)

where the use of the Wilson action with Nc = 3 is assumed.
This relation can be derived under the hypothesis that the
plaquette series has a fixed-sign factorial divergence and the
corresponding singularity in the Borel plane is the source of
an ambiguity that can be absorbed by redefining the conden-
sate. It is not possible to go further in the 1/n expansion since
the β2 coefficient is scheme-dependent and it is not known
for staggered fermions. In Figs. 9 and 10, the comparison
between Eq. (59) and our data at different volumes is shown.

How finite-volume effects influence the values of the coef-
ficients pn has already been studied in the literature [16,59].
From a standard renormalon-based analysis, the value of the
loop momenta that contribute the most to pn decreases expo-
nentially with n. Since the finite size of the lattice provides
a natural infrared cutoff, we expect finite-volume effects to
be larger at larger perturbative orders. The dependence of pn
on the lattice size N can be modelled with a finite-volume
OPE, exploiting the separation of scales a−1 � (Na)−1: the
leading correction is [16]
∑

n=0

pn(N )β−(n+1) =
∑

n=0

pnβ
−(n+1)

− 1

N 4 CG(β)
∑

n=0

fnα((Na)−1)n+1

+O

(
1

N 6

)
, (60)

where α((Na)−1) must be expressed in terms of the cou-
pling β at the scale a−1 using Eq. (53). We do not attempt
to take into account 1/N 4 effects, as our data do not allow
to perform a reliable combined fit. Apparently no signifi-
cant finite-volume effects are visible where they would be
expected the most, i.e. at larger n. This is shown in the two
examples of Fig. 11. A similar behaviour has been observed
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Fig. 9 Ratio pn/(npn−1) extracted from our data at L = 24, 28, 32, 48. In order to be visible, points referring to different volumes are placed side
by side. The leading order (LO) prediction refers to the n → ∞ limit, while the next-to-leading order (NLO) one includes the first 1/n correction

Fig. 10 Same as Fig. 9, but the region at large n is enlarged

in Ref. [16], where the data points computed on comparable
volumes show little dependence on the lattice size. In that
study, a detailed analysis with a large number of volumes
was needed in order to be able to fit the finite-volume cor-
rections. The overall effect is found to be an increase of the
ratio pn/(npn−1), see e.g. Fig. 6 in Ref. [16]. In our case,
data in finite volume do cross the theoretical expectation;

still, considering the spread between points at different vol-
umes in Fig. 10 as a source of systematic error, we could con-
sider our measurements to be compatible with the asymptotic
behaviour of Eq. (59). We also ascertain the existence of an
inversion point when resumming the perturbative series, as
explained in Sect. 7.3. Despite this encouraging behaviour,
any definite conclusion about the existence of the expected
renormalon can only be drawn after performing an appropri-
ate infinite-volume study. We emphasise that in this work the
discrepancies in the determination of the pn from different
volumes must be interpreted as part of our systematic uncer-
tainty, being this an exploratory study. A precise assessment
of the finite-volume effects will be sought for a precise deter-
mination of the gluon condensate; we are currently planning
a set of dedicated simulations in the near future to settle this
issue.

7.2 Monte Carlo plaquette

Nonperturbative values for the SU(3) plaquette with N f = 2
(rooted) staggered fermions can be found in Ref. [50], where
data are collected from Refs. [60,61]. For each value of the

Fig. 11 Coefficients p31 and p35 drawn as a function of the volume. No significant finite-volume effects are observed at our level of precision
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Fig. 12 Chiral extrapolation of the nonperturbative plaquette (left
panel) and the ratio r0/a (right panel) at five different values of β.
The grey points are available from Ref. [50] but are excluded because

of our fit procedure. In most cases the error bar is smaller than the
symbol. The orders of the polynomials used in the fits are in Table 4

bare coupling, the physical scale is provided via the Sommer
parameter r0 [62]. The data are given for several values of the
fermion bare mass, and need to be extrapolated to the chiral
limit for our purposes. A reasonable assumption (for exam-
ple adopted and verified also in Ref. [63] for the ratio r0/a)
is that the plaquette and the ratio r0/a have a polynomial
behaviour at small masses. We performed fits with linear to
cubic polynomials and varied the fit ranges to exclude points
at larger values of the masses, but in many cases the fits did
not return a satisfactory description of the data with sensible
values of χ2/dof. Because we are using results from past sim-
ulations, it is difficult to track accurately the systematic errors
in the data. For this reason, we decided to choose the fit with
smaller χ2/dof among those we tried and if χ2/dof > 1 the
errors in the data were rescaled by a common factor in order
to have a reduced chi-squared equal to 1. The fits resulting
from this approach are shown in Fig. 12; the extrapolated val-
ues for plaquettes and r0/a are in Table 4. Another approach
consists in considering the average between the largest and
smallest extrapolated values among all the different fits we
tried (without rescaled errors and with reduced chi-squared
smaller than some reasonable threshold) and assigning an
error equal to the sum in quadrature between the largest error
from the fits and half the difference between the largest and
smallest extrapolated values. In this way we obtain results
compatible (both for central values and errors) with those in
Table 4, confirming that the chiral extrapolation is sound and
the error bars conservative enough. Note that in this paper
we do not aim at a precise determination of the condensate,
and therefore we can be satisfied with an inflated error on the
Monte Carlo data points.

7.3 Determination of the minimal term

The perturbative contribution to the plaquette can be defined
by the sum of the series up to the minimal term. The determi-
nation of the minimal term, and the summation of the series

Table 4 Results of the chiral extrapolation for the plaquette and the
scale. The order of the polynomials used in the fits is indicated

β 〈1 − P〉MC Pol. ord. r0/a Pol. ord.

5.3 0.4951 (4) 2 2.11 (7) 3

5.35 0.5152 (9) 3 2.47 (3) 1

5.415 0.5350 (3) 3 3.30 (3) 3

5.5 0.55128 (3) 1 4.17 (2) 1

5.6 0.56526 (5) 1 5.14 (1) 1

Table 5 Summation up to the minimal term of the perturbative series
of the plaquette

β L SP (β) n̄ pn̄β−(n̄+1)

5.3 24 0.47515 (9) 25 3.70 · 10−4

28 0.4767 (1) 30 2.52 · 10−4

32 0.4775 (4) 35 5.23 · 10−5

48 0.47665 (7) 33 1.97 · 10−4

5.35 24 0.46718 (8) 25 2.90 · 10−4

28 0.46843 (9) 30 1.88 · 10−4

32 0.4690 (3) 35 3.73 · 10−5

48 0.46826 (5) 33 1.43 · 10−4

5.415 24 0.4587 (1) 33 1.06 · 10−4

28 0.45844 (7) 30 1.29 · 10−4

32 0.4588 (2) 35 2.42 · 10−5

48 0.45822 (4) 33 9.51 · 10−5

5.5 24 0.44663 (9) 33 6.22 · 10−5

28 0.44651 (6) 30 7.98 · 10−5

32 0.4466 (1) 35 1.38 · 10−5

48 0.44627 (4) 33 5.60 · 10−5

5.6 24 0.43384 (6) 34 3.32 · 10−5

28 0.43380 (5) 30 4.57 · 10−5

32 0.43383 (6) 35 7.21 · 10−6

48 0.43357 (3) 33 3.03 · 10−5
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Fig. 13 Normalised distributions, over 105 bootstrap samples, of n̄ (left panel) and SP (β) (right panel) for L = 48, β = 5.3

Fig. 14 In the left panel, determination of the gluon condensate from
Eq. (62). The line corresponds to the weighted average of the three
largest values of β. In the right panel, scaling of the condensate with a4

(solid red line, grey points are excluded), with possibly a a6 correction
(dashed blue line, grey points are included). Both panels refer to L = 48

are performed separately for each volume. We choose the
prescription adopted in Ref. [17], i.e. we define the minimal
term to be the value n̄ that minimises the product pnβ−(n+1)

and resum the series,

S(β)P =
n̄∑

n=0

pnβ
−(n+1) . (61)

Our results for all combinations of L and β are summarised
in Table 5. The order n̄ at which the series starts to diverge
depends only on the central value of the coefficients pn and
not on their errors: in order to check that the inversion point
determined by our procedure is stable, we bootstrapped the
procedure by generating an ensemble of sets of coefficients
{pn}. For each set, the coefficients pn are drawn from a Gaus-
sian probability, whose mean and covariance are taken from
the fit procedure described in Sect. 6. We then determine n̄
for each of these sets. The inversion point turns out to be sta-
ble, as shown in Fig. 13 for a the case L = 48, and β = 5.3.
This particular case is shown for illustration purposes, and
the same features are seen in all other combinations of L and
β.

The gluon condensate is then determined from

〈OG〉 = 36

π2 C−1
G (β) a−4 [〈P〉MC (β) − SP (β)] (62)

with

C−1
G (β) = 1 + 3

8π2

β1

β0

1

β
+ O

(
1

β2

)
. (63)

The coefficient β2 is not universal, and is actually unknown
for the discretisation used in this work. Not knowing β2 pre-
vents us from going further in the expansion of CG ; since
the correction due to the Wilson coefficient falls between
5% and 6% for the values of β considered, a 6% systematic
uncertainty is added in quadrature after the subtraction.

The result of the subtraction is shown in the left panel of
Fig. 14, for the largest volume. Since only a few values of β

is available, it is hard to assess unambiguously the presence
of a plateau. We decided to discard from the analysis the two
values of the coupling corresponding to the coarser lattices,
and define our best estimate of the condensate as the weighted
average of the values obtained at the remaining βs. Our final
results are summarised in the first column of Table 6.
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Table 6 Determination of the gluon condensate at different volumes.
The determination labelled with 1 is obtained from the weighted average
of the values at the three largest values of β. The determinations labelled
with 2 and 3 are obtained by studying the scaling of a4 〈OG〉 with a4,
as in the right panel of Fig. 14; they correspond respectively to the fit
without and with a6 correction (see text for the details)

L r4
0 〈OG〉1 r4

0 〈OG〉2 r4
0 〈OG〉3

24 2.6 (1) 2.9 (2) 3.1 (4)

28 2.8 (1) 3.1 (2) 3.4 (4)

32 2.4 (1) 2.9 (2) 3.2 (4)

48 3.1 (1) 3.1 (2) 3.4 (4)

Table 7 Ambiguity of the gluon condensate determined from Eq. (64)
at the three largest values of β

L r4
0 δ 〈OG〉

β = 5.415 β = 5.5 β = 5.6

24 0.4 (2) 0.5 (4) 0.7 (5)

28 0.4 (3) 0.7 (4) 0.9 (5)

32 0.3 (2) 0.5 (3) 0.3 (3)

48 0.3 (2) 0.5 (3) 0.6 (4)

In order to put the choice of fit range on more solid ground,
we studied the scaling of a4 〈OG〉 as a function of a4, as
shown in Fig. 14. The slope of a linear fit of the three finest
lattice spacings should give a determination of the conden-
sate compatible with the value extracted from the weighted
average. The spread between these two determinations and
among the different volumes gives an idea of the magni-
tude of the systematic uncertainties involved. We also tried
to include in the analysis all the available values of β and
add a a6 correction, in the attempt to model the deviations
at large values of the coupling; this procedure gives again
consistent results (despite a larger χ2).

Truncating the sum up to the minimal term is one of the
possible prescriptions to define the sum of a divergent series.
The intrinsic ambiguity associated to SP (β) can be defined
as the imaginary part of the Borel integral, which at leading
order in 1/n is

√
π n̄/2 pn̄ β−n̄−1 [5]. In Table 7, the ambi-

guity associated to the gluon condensate

δ 〈OG〉 = 36

π2 C−1
G (β) a−4

√
π n̄

2
pn̄β

−n̄−1 (64)

is summarised.9

9 Our definition of the ambiguity differs from the one in Ref. [16] by
a factor

√
π/2.

8 Conclusions

We used NSPT to perform for the first time large-order
computations in lattice gauge theories coupled to massless
fermions. We adopted twisted boundary conditions for the
gauge fields to remove the zero-momentum mode. Since our
fermions are in the fundamental representation, we consis-
tently provided them with a smell degree of freedom. Both
Wilson and (for the first time in NSPT) staggered fermions
have been implemented. While for the former we performed
an exploratory study of the critical mass up to order O(β−7),
the latter are ultimately the best choice to reach very high
orders, due to their residual chiral symmetry that bypasses
the need of an additive mass renormalisation.

Numerical instabilities were noticed in the study of simple
models in NSPT since the early days of the method, but gauge
theories have always been reported to stay on a safe side in
this respect, even at orders as high as the ones we investigated
in this work. With fermions in place, we now found that
numerical instabilities arise for lattice gauge theories at high
orders. While we plan to investigate the causes and develop a
solution to this, the problem did not prevent us to reach order
O(β−35) in the expansion of the basic plaquette for Nc = 3
and N f = 2.

The plaquette has been for a long time the stage for the
determination of the gluon condensate, to which is connected
in the continuum limit. The perturbative expansion of the
plaquette, which corresponds to the power divergent con-
tribution associated to the identity operator in the relevant
OPE, must be subtracted from nonperturbative Monte Carlo
lattice computations. This long-standing and tough problem
was eventually solved a few years ago in pure gauge [16,17],
thanks to NSPT. Equipped with our high-orders expansions,
we tackled once again the problem in the lattice regularisa-
tion of full QCD. We computed the perturbative expansion
of the plaquette, and subtracted it from Monte Carlo mea-
surements. In this context, NSPT is crucial: it is actually
the only tool enabling this procedure, which asks for having
the asymptotic behaviour of such series under control. This
happens since the perturbative expansion of the plaquette is
expected to be plagued by renormalon ambiguities. Under the
assumption of considering finite-volume effects as a source
of systematic errors, the observed growth of the coefficients
in the expansion could be compatible with the leading IR
renormalon; nevertheless, the large uncertainties and the lack
of a study of finite-volume effects prevent us from drawing
any definite conclusion. The IR renormalon forces to absorb
the ambiguities attached to the perturbative series into the
definition of the condensate itself. All in all, this implies that
we needed a prescription to perform the computation. The
one we chose amounts to summing the perturbative series up
to its minimal term (which means computing the series up to
orders that only NSPT can aim at).
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We regard this project as a first exploratory study. We
could confirm both that the IR renormalon can be directly
inspected, and that the series can be computed up to orders
where the inversion point beyond which the expansion starts
to diverge (at values of the coupling which are the typical
ones in lattice simulations) is clearly visible. We performed
our simulations at different lattice extents, in order to have
a first estimate of finite-size effects (again, in both the study
of renormalon behaviour and in the truncation of the series).
This is the point which has to be better investigated in a fol-
lowing study. At the moment, finite-size effects are still to be
considered as a systematic source of errors in our procedure.

On top of the follow-ups we have already discussed, we
plan to extend our study to different number of colours, num-
ber of flavours and fermionic representations. It would be of
the utmost importance to assess the high-order behaviour
of perturbative coefficients in gauge theories different from
QCD, to probe regions in the space of theories in which a
(quasi-)conformal window can be present. This could be a
powerful, alternative method to look for candidate theories
for physics beyond the Standard Model.
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A Group theory conventions

The conventions used for group theoretical manipulations are
summarised here. We consider the gauge group SU(Nc).

The generators of the group are denoted by T a ; the indices
a, b, c = 1, . . . , N 2

c − 1 are assumed to be indices in the
adjoint representation. The generators are defined to be Her-
mitian, and satisfy the commutation relations
[
T a, T b

]
=
∑

c

i f abcT c , (65)

where f abc are the group structure constants. The normali-
sation of the generators is chosen to be such that

Tr
(
T aT b

)
= 1

2
δab . (66)

The left derivative on the group is defined as ∇xμ =∑
a T

a∇a
Uμ(x), where the Lie derivative is given by

∇a
V f (V ) = lim

α→0

1

α

[
f
(
eiαT

a
V
)

− f (V )
]

. (67)

We define an operator, �g, that projects on the algebra g of
the group:

�g(X) = 1

2

(
X − X† − 1

Nc
Tr

(
X − X†

))
. (68)

The indices i, j = 1, . . . , Nc will be used as indices in the
fundamental representation, r, s = 1, . . . , Nc as indices in
the antifundamental representation.

B Optimisation of the fermion drift

A useful optimisation consists in improving on Eqs. (29)
and (33) so that it becomes numerically cheaper to evaluate
the fermion drift. Considering for example Wilson fermions,
we notice that it is possible to simplify the trace

Tr(∇a
xμM)M−1 = i T̃r

[(
T aD(μ)M−1

)

x,x

−
(
γ5D(μ)†γ5T

aM−1
)

x,x

]

= i
∑

y,β,i,r

(
δx,y[T aD(μ)M−1]yβir,yβir

−h.c.) , (69)

where T̃r is tracing all indices but the position one, and
we used the fact that the inverse Wilson operator is γ5-
Hermitian. For staggered fermions the simplification is anal-
ogous because the inverse staggered operator is antihermi-
tian. The step must be done before the stochastic evaluation
of the trace: once the random sources are introduced, cyclic
invariance gets broken and will be restored only on average.
Using Eq. (69) as a starting point, we obtain a drift which is
already in the algebra (no need of taking the real part) and
reads

F f
μ (x)i j = N f

Nc

τ

β
�g

⎛

⎝
∑

β

ϕ(μ)(x)β ξ(x)†
β

⎞

⎠

i j

(Wilson fermions)

(70a)

F f
μ (x)i j = N f

4Nc

τ

β
�g

(
ϕ(μ)(x) ξ(x)†

)

i j
(staggered fermions) .

(70b)
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In a similar fashion, it could be possible to show that also

F f
μ (x)i j = N f

Nc

τ

β
�g

⎛

⎝
∑

β

ϕ̃(μ)(x)β ψ(x)†
β

⎞

⎠

i j

(Wilson fermions)

(71a)

F f
μ (x)i j = N f

4Nc

τ

β
�g

(
ϕ̃(μ)(x) ψ(x)†

)

i j
(staggered fermions)

(71b)

are legitimate expressions for the drift. All these new formu-
lae are numerically different from those in Eqs. (29) and (33)
but lead to the same results on average; clearly the advantage
is that only half of the Lie derivative has to be computed.

C Fourier transforms with twisted boundary conditions

If f (x) is a periodic function defined on the L4 lattice, its
Fourier transform and inverse are

f (x) = 1

L4

∑

p‖
eip‖x f̃ (p‖) , f̃ (p‖) =

∑

x
e−i p‖x f (x) , (72)

where p‖ is the quantised vector p‖ = 2π
L (n1, n2, n3, n4) and

the sum is to be read
∑

p‖ = ∑L−1
n1,n2,n3,n4=0. Antiperiodicity

in the direction ν̂ would lead again to Eq. (72) but with a
quantised momentum (p‖)μ = 2π

L nμ + π
L δμν .

Twisted boundary conditions on a plane Let us consider
some Nc × Nc matrix M(x) (which for example can be a
gauge link or the vector potential seen as matrices in colour
space, or a fundamental fermion field seen as a matrix in
colour-smell). We impose twisted boundary condition in the
1̂, 2̂ plane so that

M(x + L 1̂) = �1M(x)�†
1 ,

M(x + L 2̂) = �2M(x)�†
2 , (73)

with �2�1 = z�1�2, z = z12 ∈ ZN . If we had just
(anti)periodic boundary conditions, we would treat the matrix
as N 2

c independent scalar functions; twisted boundary con-
ditions actually couple the different components, therefore
in order to expand M(x) in plane waves we need to find a
good basis for the matrix space: it can be proved (see Refs.
[32,33]) that the Fourier transform and its inverse are

M(x) = 1

NcL4

∑

p‖,p⊥
eipx �p⊥ M̃(p‖)p⊥ ,

M̃(p‖)p⊥ =
∑

x

e−i px Tr �†
p⊥M(x) , (74)

where p = p‖ + p⊥, p⊥ is the quantised vector p⊥ =
2π
NcL

(ñ1, ñ2, 0, 0) and the sum is to be read
∑

p⊥ =
∑Nc−1

ñ1,ñ2=0. The matrices �p⊥ form the sought basis in the

matrix space: assuming a twist with z = exp(2π i/Nc), we
can choose for example

�p⊥ = �
ñ2
1 �

−ñ1
2 . (75)

A different choice for z would have somehow reshuffled
the exponents in Eq. (75). We see that the Fourier trans-
form of M(x) is a scalar function M̃(p‖)p⊥ , but momen-
tum has a finer resolution compared to (anti)periodic bound-
ary conditions: spatial and colour degrees of freedom mix
in momentum space. Moreover, traceless matrices natu-
rally do not have a zero momentum component, because
M̃(p‖)0 = ∑

x e
−i p‖x Tr M(x).

Twisted boundary conditions in three directions The con-
ditions in Eq. (73) are supplemented by

M(x + L 3̂) = �3M(x)�†
3 , (76)

with �3 = �
ρ
1�σ

2 and ρ, σ span all the possible twist
choices. It can be shown that Eq. (74) still holds but with
a fine momentum p⊥ = 2π

NcL
(ñ1, ñ2, ñ3, 0). The component

ñ3 is not a new degree of freedom but depends on the values
of ñ1, ñ2. For example, in the case z = exp(2π i/Nc), ρ =
σ = 1, then ñ3 = (ñ1 + ñ2) mod Nc. Other choices of
z, ρ, σ just give a new relation between ñ3 and z, ñ1, ñ2.

Numerical implementation The Fast Fourier Transform
(FFT) algorithm encodes Eq. (72), FFT[ f (x)] = f̃ (p). We
cannot apply directly the FFT to each matrix element of
M(x), because the Fourier expansion has a dependence on
p⊥x . First, we need to project onto one of the p⊥,

M̂(x)p⊥ = e−i p⊥x Tr �
†
p⊥M(x) = 1

L4

∑

p‖
eip‖x M̃(p‖)p⊥ , (77)

and then to each of these we apply the FFT,

M̃(p‖)p⊥ = FFT[M̂(x)p⊥] . (78)

At the end, N 2
c projections and N 2

c FFTs have been per-
formed. The inverse transform will be simply

M̂(x)p⊥ = FFT−1[M̃(p‖)p⊥] (79)

followed by

M(x) = 1

Nc

∑

p⊥
eip⊥x �p⊥ M̂(x)p⊥ . (80)

Note that M̃(p‖)p⊥ is a scalar function but the dependence
on p⊥ is through ñ1, ñ2, where each integer runs from 0 to
Nc − 1: this allows a representation of the Fourier transform
again with a Nc × Nc matrix field,

(
M(p‖)

)
ñ1ñ2

. Of course
this has to be understood only as a useful representation of
the momentum degrees of freedom, not as a matrix in colour
space.
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D Autocorrelations and cross-correlations

We consider a sample {ai , bi }Ni=1 of measures of two observ-
ables A, B taken from the stochastic process at equilibrium.
Let 〈A〉 = a, 〈B〉 = b be the expectation values respec-
tively of the observables A, B.The cross-correlation function
is defined as

�AB(t) = 〈(ai − a)(bi+t − a)〉 = 〈aibi+t 〉 − ab , (81)

where we used the fact that the expectation value is not
dependent on i because the equilibrium distribution is time-
independent. The cross-correlation function is not an even
function, �AB(−t) = �BA(t). In particular, �AB(0) =
Cov(A,B) is the covariance between A and B. The average
ā = 1

N

∑N
i=1 ai is a stochastic variable that satisfies 〈ā〉 = a.

The covariance between the estimators ā and b̄ is

Cov(ā, b̄) = 〈(ā − a)(b̄ − b)〉 = 1

N 2

N∑

i, j=1

�AB(i − j)

=Cov(A,B)

N

[
1 +

N−1∑

r=1

(
1 − r

N

) �AB(r)

�AB(0)

+
N−1∑

r=1

(
1 − r

N

) �AB(−r)

�AB(0)

]
(82)

but since the cross-correlation function is expected to drop
exponentially at large times, it is possible to approximate

Cov(ā, b̄) � Cov(A,B)

N
(τ int

AB + τ int
BA) (83)

with the integrated cross-correlation time

τ int
AB = 1

2
+

∞∑

r=1

�AB(r)

�AB(0)
. (84)

We expect τ int
AB �= 1

2 when the observable B has some
dependence on A. If B is independent of A, we can assume
τ int
AB = 1

2 . An estimator for the cross-correlation function is

�̄AB(t) = 1

N − t

N−t∑

i=1

(ai − ā)(bi+t − b̄) . (85)

and the integrated cross-correlation time can be extracted in
the Madras-Sokal approximation [64,65]. Note that when
A = B then �AA(t) is the autocorrelation function and
Eq. (83) becomes Var(ā) = 2τ int

AAVar(ā)/N , where τ int
AA is

the integrated autocorrelation time.

E Twisted lattice perturbation theory

Twisted lattice perturbation theory for the a pure gauge the-
ory was introduced in Ref. [32] (see also Ref. [66]). Recently,
the computation of Wilson loops has been treated in detail in

Ref. [48]. Here we focus on two vertices, introducing Wil-
son and staggered fermions with smell in the fundamental
representation. Feynman rules are fairly similar to those of
lattice perturbation theory, apart from phases in propagators
and vertices; all phases cancel in the first-order computations
we considered. We recall also that the sum over momenta is
inherited from the Fourier transform in Appendix C,

�
�
�

∑

k

= 1

NcL4

∑

k‖,k⊥
, (86)

and each fermion loop has to be divided by Nc, i.e. by
the numbers of smells running in the loop. The function
f (p⊥, p′⊥) = z−ñ1ñ′

2 is introduced for convenience. The
gluon propagator is

〈 Ãμ(p) Ãν(q)〉 = δp,q
(1 − δp⊥,0)

2
f (p⊥, p⊥)

1

4
∑

ρ sin2
(
pρ

2

)

×
⎡

⎣δμν − (1 − ξ)
sin

(
pμ

2

)
sin

( pν
2

)

∑
σ sin2 ( pσ

2

)

⎤

⎦ ,

(87)

where ξ is the gauge fixing parameter; note that the trace-
less property of the gauge field forces the propagator to
vanish for p⊥ = 0. The Wilson and staggered propaga-
tors are defined respectively in Eqs. (30) and (35). Below
we write the fermion-fermion-gluon and fermion-fermion-
gluon-gluon vertices in the Wilson and staggered case; p1, p2

are respectively the incoming and outgoing momenta of the
fermions, k1, k2 are the outgoing momenta of the gluons.

Wilson fermions

V f f g(p1, p2, k⊥)μ

= −g f (k⊥, p2⊥)

[
iγμ cos

1

2

(
pA

1 + pA
2

)

μ

+ sin
1

2

(
pA

1 + pA
2

)

μ

]
(88a)

V f f gg(p1, p2, k1⊥, k2⊥)μν

= −g2δμν f (k1⊥ + k2⊥, p2⊥)
1

2
[ f (k1⊥, k2⊥)

+ f (k2⊥, k1⊥)]
×

[
cos

1

2

(
pA

1 + pA
2

)

μ
− iγμ sin

1

2

(
pA

1 + pA
2

)

μ

]

(88b)

Staggered fermions Here momentum conservation is made
explicit, because the vertices are not diagonal in momentum
space.

V f f g(p1, p2, k1)μ

= −ig f (k1⊥, p2⊥) cos

(
p2 + k1

2

)

μ
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Fig. 15 Sketch of the PRlgt auxiliary links in a plane of a 2 × 2 lat-
tice. Physical links are in black and sites identified by the same symbol
represent the same physical site. Dashed lines highlight links that are
allocated but do not participate in the update. In the left panel direction
1̂ is twisted, 2̂ is not: in red there are the auxiliary sites (two forward,
three backward) and the red links beginning there correspond to phys-

ical links twisted according to the matrix �1. In the right panel both
1̂ and 2̂ are twisted directions: in blue there are auxiliary sites whose
links are twisted according to the matrix �2. In the latter case there are
sites which pass the boundary in two twisted directions: the green links
undergo both the �1 and the �2 twist (the two operations commute by
definition)

× δ̄(−p1‖ + k1‖ + p2‖ + πμ̄)δ−p1⊥+k1⊥+p2⊥,0 (89a)

V f f gg(p1, p2, k1, k2)μν

= ig2 f (k1⊥ + k2⊥, p2⊥)
1

2
[ f (k1⊥, k2⊥) + f (k2⊥, k1⊥)]

× sin

(
p2 + k1

2
+ k2

2

)

μ

× δμν δ̄(4)(−p1 + k1 + k2+ p2 + πμ̄)δk1⊥−p1⊥+k2⊥+p2⊥,0
(89b)

F Code development for NSPT

We developed two independent NSPT codes in order to cross-
check and improve our implementation.

PRlgt10 stems from the first NSPT codes developed by the
Parma lattice gauge theory group, allowing for SU(3) simula-
tions with Wilson fermions. We implemented twisted bound-
ary conditions, smell for Wilson fermions and added support
for SU(2) simulations. The code is tailored for perturbation
theory. The underlying idea is to have base classes ptSU2
and ptSU3 that describe perturbative matrices. The operator
* is overloaded with the Cauchy product, so that it is possible
to write the product of two series in a natural way. This is
one of the operations that, especially at high orders, becomes
very time-consuming: thus, having perturbative matrices as
base classes allows to keep the perturbative orders close in
memory and to speed up the multiplication of series. In par-

10 For recent developments on the code see Ref. [67].

ticular, the perturbative expansion is hardcoded to start from
1 for an element of the group and from 0 for an element of
the algebra, in order to avoid multiplying by the identity or
zero matrix; this choice also improves numerical stability in
keeping the series within the group or algebra. All the other
structures are built from the base classes by adding Lorentz,
Dirac or lattice degrees of freedom. The fermion field too is
described by matrices in colour-smell space. The update of
the configuration is done one link at a time: this is possible,
faster and less memory consuming for the first order integra-
tor we are using; indeed the staples around a link can be com-
puted also if the neighbour links have already been updated,
since the effect of doing so gives higher-order effects in the
time step. Twisted boundary conditions are implemented ad
hoc for the Wilson action, as shown in Fig. 15: a system of
twisted copies of the links on the boundary is updated at each
Langevin step. The code makes heavy use of multithreading
in all loops over lattice sites. Even though the performance of
PRlgt is extremely good for small lattices, it is hard to scale
to large volumes due to the scalar nature of the code.

We have also developed the GridNSPT code,11 based on
the Grid library [68]. GridNSPT has been debugged against
PRlgt, and we are able to obtain the very same outputs
from these two completely different implementations (but
staggered fermions have been implemented in GridNSPT
only). The Grid library provides an environment where mes-

11 Available at https://github.com/gfilaci/GridNSPT.
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sage passing, multithreading and vector parallelism are fully
exploited: the lattice is geometrically decomposed into MPI
domain, each one mapped to a set of processors; it is also
overdecomposed over virtual nodes in order to fill a SIMD
vector, assuring very high vectorisation efficiency. For exam-
ple, on KNL and Skylake machines we can exploit the AVX-
512 instruction set and a SIMD vector has room for 4 complex
numbers in double precision; the virtual node decomposition
results in the layout 1.1.2.2, where we are referring respec-
tively to the coordinates x .y.z.t . Within the MPI task, mul-
tithreading is automatic because it is included in the closure
of Grid lattice object expression templates. Grid incorporates
C++11 internal template classes representing scalars, vector
or matrices. We introduced a new template class representing
a perturbative series, that embeds the overloading of the *
operator.

template<class vtype, int Np> class iPert
{
vtype _internal[Np];
};

All the structures are tensors built from these templates: for
example, the gauge field isLattice<iVector<iScalar
<iPert<iMatrix<vComplexD,Nc>,Np>>,Nd>>,
where (starting from the outer template) we have the lattice,
Lorentz, spin, perturbative, colour structure and the base type
is a vectorised complex number in double precision. With this
in place, every operation in Grid is performed consistently
with almost no modification. We rely on the Grid library
for the optimal implementation of the gauge action and for
the Wilson and staggered fermion kernel. Twisted boundary
conditions have been implemented modifying the covariant
circular shifts. Even though GridNSPT lacks of many optimi-
sations compared to PRlgt (for example the Langevin update
is not performed one link at a time, but all operations and
shifts are performed on the lattice as whole), it allows to
have a more flexible environment and to scale easily end
very efficiently to large volumes.

G The nearest covariance matrix

If C is a covariance matrix, the corresponding correlation
matrix is defined as

Ĉ = S−1/2 C S−1/2 , (90)

where S is the matrix which is equal to C on the diago-
nal and vanishes everywhere else. Ĉ has 1 on the diago-
nal by construction; it might have some negative or zero
eigenvalue if the estimator used in the determination of the
covariance does not guarantee positive definiteness. Given
Ĉ , Higham’s algorithm [69] allows to find the nearest (in a

weighted Frobenius norm) positive semidefinite matrix with
unit diagonal. The core of the procedure is alternating a pro-
jection PS onto the space of positive semidefinite matrices
and a projection PU onto the matrices with unit diagonal.
The projection PS(X) = Y consists in

• diagonalising X = UT �U , where U is an orthogonal
matrix and � is a diagonal matrix with the eigenvalues
of X on the diagonal

• setting to zero all the negative elements in �, obtaining
�̃

• returning Y = UT �̃U .

The projection PU (X) consists simply in putting 1 on the
diagonal of X . We refer to the original work for the pre-
sentation and proof of the complete algorithm: after some
iterations, the algorithm converges and returns a matrix ĈH

which is positive semidefinite and has 1 on the diagonal.
However, the algorithm allows ĈH to have some zero

(within machine precision) eigenvalue, preventing the inver-
sion of the covariance matrix. If this is the case, we addition-
ally project ĈH onto the space of positive definite matrices.
This projection consists in

• diagonalising ĈH = V T � V , where V is an orthogonal
matrix and � is a diagonal matrix with the eigenvalues
of ĈH on the diagonal

• identifying ε = δλmax , where λmax is the maximum
eigenvalue and δ is the tolerance of the projection

• setting to ε all the diagonal elements of � whose absolute
value is smaller than ε, obtaining �̃

• returning ĈP = V T �̃ V .

In conclusion, the nearest covariance matrix is

CP = S1/2 ĈP S1/2 . (91)
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