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COMPACT SURFACES WITH NO BONNET MATE

GARY R. JENSEN, EMILIO MUSSO, AND LORENZO NICOLODI

Abstract. This note gives sufficient conditions (isothermic or totally non-

isothermic) for an immersion of a compact surface to have no Bonnet mate.

1. Introduction

Consider a smooth immersion x : M → R3 of a connected, orientable surface M ,
with unit normal vector field e3. Its induced metric I = dx ·dx and the orientation
of M induced by e3 from the standard orientation of R3 induce a complex structure
on M , which provides a decomposition into bidegrees of the second fundamental
form II of x relative to e3,

−de3 · dx = II = II2,0 +HI + II0,2.

Here H is the mean curvature of x relative to e3 and II2,0 = II0,2 is the Hopf
quadratic differential of x. Relative to a complex chart (U, z) in M ,

(1) I = e2udzdz̄, II2,0 =
1

2
he2udzdz,

where the conformal factor eu, the Hopf invariant h, and the mean curvature H
satisfy the structure equations on U relative to z,

−4e−2uuzz̄ = H2 − |h|2 Gauss equation

(e2uh)z̄ = e2uHz Codazzi equation

and the Gauss curvature is K = H2 − |h|2. See [JMN16, page 212].
In 1867 Bonnet [Bon67] began an investigation into the problem of whether there

exist noncongruent immersions x, x̃ : M → R3 with the same induced metric, I = Ĩ,
and the same mean curvature, H = H̃. This Bonnet Problem has been studied
by Bianchi [Bia09], Graustein [Gra24], Cartan [Car42], Lawson–Tribuzy [LT81],
Chern [Che85], Kamberov–Pedit–Pinkall [KPP98], Bobenko–Eitner [BE98, BE00],
Roussos–Hernandez [RH90], Sabitov [Sab12], the present authors [JMN16], and
many others cited in these references.

Definition 1. An immersion x : M → R3 is Bonnet if there is a noncongruent
immersion x̃ : M → R3 such that Ĩ = I and H̃ = H. Then x̃ is called a Bonnet
mate of x and (x, x̃) form a Bonnet pair.

A constant mean curvature (CMC) immersion x : M → R3, for which M is
simply connected and x is not totally umbilic, admits a 1-parameter family of
Bonnet mates, which are known as the associates of x [JMN16, Example 10.11, page
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302]. The local problem is thus to determine if an immersion x with nonconstant
mean curvature has a Bonnet mate. By nonconstant mean curvature H we mean
that dH ̸= 0 on a dense, open subset of M .

Definition 2. A Bonnet immersion x : M → R3 is proper if its mean curvature
is nonconstant and there exist at least two noncongruent Bonnet mates.

It is known [JMN16, page 211] that the umbilics of x are precisely the zeros of
its Hopf quadratic differential II2,0. For the following definitions we assume that
x has no umbilics in the domain U . If (U, z) is a complex coordinate chart in M ,
then the local coefficient e2uh of 2II2,0 in U has the polar representation

e2uh = eG+ig,

for a smooth function G : U → R and a smooth map eig : U → S1. The function
g : U → R is defined only locally, up to an additive integral multiple of 2π. If
w = w(z) is another complex coordinate in U , and if the invariants relative to it

are denoted by û and ĥ, then

e2uh = e2ûĥ(w′)2,

where w′ = dw
dz is a nowhere zero holomorphic function of z. Setting e2ûĥ = eĜ+iĝ

on U , we find by an elementary calculation

(2) gz̄z = ĝz̄z

on U . The Laplace-Beltrami operator of (M, I) is given in the local chart (U, z) by

∆ = 4e−2u ∂2

∂z∂z̄ . We conclude from (2) that ∆g = ∆ĝ on U , and therefore that ∆g
is a globally defined smooth function on M away from the umbilic points of x.

Definition 3. A surface immersion x : M → R3 is called isothermic if it has
an atlas of charts (U, (x, y)) each of which satisfies I = e2u(dx2 + dy2) and II =
eu(adx2 + cdy2) [JMN16, Definition 9.5, page 277].

Definition 3 is equivalent to the following definition if there are no umbilics
[JMN16, Corollary 9.14, page 280].

Definition 4. An umbilic free immersion x : M → R3 of an oriented connected
surface is isothermic if ∆g = 0 identically on M . It is totally nonisothermic if
∆g ̸= 0 on a connected, open, dense subset of M .

The following is known about umbilic free immersions x : M → R3 for which
M is simply connected. Cartan [Car42] proved that if x is proper Bonnet, then
it has a 1-parameter family of distinct mates [JMN16, Theorem 10.42, pages 340-
342]. Graustein [Gra24] proved that if x is isothermic and Bonnet, then it is proper
Bonnet. The present authors [JMN16, Theorem 10.13, pages 303-304] proved that
if x is totally nonisothermic, then it has a unique Bonnet mate.

What is the global situation? In particular, if M is compact, can an immersion
x : M → R3 have a Bonnet mate? It is known, and proved in the next section,
that a necessary condition that x be Bonnet is that its set of umbilics is a discrete
subset of M . Lawson–Tribuzy [LT81] proved that x cannot be proper Bonnet
if M is compact. Roussos–Hernandez [RH90] proved that x : M → R3 has no
Bonnet mate if M is compact and x is a surface of revolution with nonconstant
mean curvature. Sabitov [Sab12, Theorem 13, page 144] gives a sufficient condition
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preventing the existence of a Bonnet mate when the mean curvature is nonconstant
and M is compact. He gives no geometric interpretation of his condition.

The goal of this paper is to prove the following result. It generalizes the Roussos–
Hernandez result, since a surface of revolution is isothermic [JMN16, Example 9.7,
page 277]. It also gives a geometrical clarification of the Sabitov result.

Theorem. Let x : M → R3 be a smooth immersion with nonconstant mean cur-
vature H of a compact, connected surface, and suppose that D, the set of umbilics
of x, is a discrete subset of M .

(1) If x : M \ D → R3 is isothermic, then x : M → R3 has no Bonnet mate.
(2) If x : M \ D → R3 is totally nonisothermic, then x : M → R3 has no

Bonnet mate.

2. The deformation quadratic differential

From the Gauss equation above, the Hopf invariants h and h̃ relative to a complex
coordinate z of two immersions with the same induced metric and the same mean
curvatures must satisfy

|h̃| = |h|,
since ũ = u. Hence, the only possible difference in the invariants of two such
immersions must be in the arguments of the complex valued functions h and h̃.
Moreover, taking the difference of their Codazzi equations, we get

(e2uh̃− e2uh)z̄ = e2u(Hz −Hz) = 0,

at every point of the domain U of the complex coordinate z. This means that the
function

F = e2u(h̃− h) : U → C

is holomorphic.

Definition 5. If x, x̃ : M → R3 are immersions that induce the same complex
structure on M , then their deformation quadratic differential is

Q = ĨI
2,0

− II2,0.

If x and x̃ have the same induced metric and mean curvature, then the expression
for Q relative to a complex coordinate z is

(3) Q =
1

2
e2u(h̃− h)dzdz =

1

2
Fdzdz,

which shows that Q is a holomorphic quadratic differential on M , and

(4) |F + e2uh| = |e2uh̃| = |e2uh|

on U , since |h̃| = |h|. Q is identically zero on M if and only if h̃ = h in any
complex coordinate system. Therefore, by Bonnet’s Congruence Theorem, Q = 0
if and only if the immersions x and x̃ are congruent in the sense that there exists a
rigid motion (y, A) ∈ E(3) such that x̃ = y + Ax : M → R3. Thus, an immersion
x̃ : M → R3 is a Bonnet mate of x : M → R3 if it induces the same metric and
mean curvature and the deformation quadratic differential is not identically zero.

Proposition 6. If an immersion x : M → R3 possesses a Bonnet mate x̃ : M →
R3, then the umbilics of x must be isolated and coincide with those of x̃.
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Proof. Under the given assumptions, the holomorphic quadratic differential Q is
not identically zero. Therefore, in any complex coordinate chart (U, z), we have
Q = 1

2Fdzdz, where F is a nonzero holomorphic function of z. Its zeros must be
isolated. A point m ∈ U is an umbilic of x if and only if h(m) = 0 if and only if

h̃(m) = 0, by (4). In either case F (m) = 0 by (4). Therefore, the set of umbilic
points is a subset of the set of zeros of Q, which is a discrete subset of M . �

Let x : M → R3 be an immersion with a Bonnet mate x̃ : M → R3. Let (U, z)

be a complex coordinate chart in M and let h and h̃ be the Hopf invariants of x
and x̃, respectively, relative to z on U . Let D be the set of umbilics of x, necessarily
a discrete subset of M . On U \ D we have h never zero and

h̃ = hA,

for a smooth function A : U \ D → S1, where S1 ⊂ C is the unit circle. On
U \ D then, the difference of the Hopf differentials is the holomorphic quadratic
differential

Q = ĨI2,0 − II2,0 = II2,0(A− 1).

This shows that A : M \ D → S1 is a well-defined smooth map on all of M \ D.

Remark 7. Under our assumption of nonconstant H, the map A cannot be con-
stant, for otherwise II2,0 would then be holomorphic and thus H would be constant
by the Codazzi equation.

Proposition 8 (Sabitov[Sab12]). If an immersion x : M → R3 possesses a Bonnet
mate x̃ : M → R3, then the deformation quadratic differential Q of x is zero only
at the umbilics of x. Therefore, A : M \ D → S1 never takes the value 1 ∈ S1.

Proof. This is Theorem 1, pages 113ff of [Sab12]. He says the result is stated in
[Bob08], but he believes the proof there is inadequate. Sabitov’s proof uses results
from the Hilbert boundary-value problem. The following proof is essentially the
same as Sabitov’s, but avoids use of the Hilbert boundary-value problem.

Seeking a contradiction, suppose Q(m0) = 0 for some point m0 ∈ M \ D. Since
Q is holomorphic, and not identically zero, its zeros are isolated. Let (U, z) be a
complex coordinate chart of M \D centered at m0, containing no other zeros of Q,
and such that z(U) is an open disk of C. Now A(m0) = 1 and A is continuous,
so we may assume U chosen small enough that A never takes the value −1 on U .
Then there exists a smooth map v : U → R such that −π < v < π and A = eiv on
U . Since A = 1 on U only at m0, it follows that

(5) v(U \ {m0}) ⊂ (−π, 0) or v(U \ {m0}) ⊂ (0, π).

Let e2u and h be the conformal factor and Hopf invariant of x relative to z. Then
h never zero on U implies it has a polar representation h = ef+ig, for some smooth
functions f, g : U → R. Now Q = 1

2Fdzdz, where

F = e2uef+ig(eiv − 1) = e2u+f (ei(g+v) − eig) : U → C

is holomorphic. Using the identity

ei(g+v) − eig = ei(2g+v)/2(eiv/2 − e−iv/2) = 2iei(g+v/2) sin(v/2),

we get

F = 2ie2u+f+i(g+v/2) sin(v/2)
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on U . The contour integral of d logF about any circle in U centered at m0 is 2πi
times the number of zeros of F inside the circle. By assumption, this integral is
not zero. But,

d logF = d(2u+ f + i(g + v/2)) + d log(| sin(v/2)|),

and the contour integral of the right hand side is zero, since these are exact differ-
entials on U \ {m0}. In fact, the values of v/2 on U \ {m0} lie entirely in (0, π/2)
or entirely in (−π/2, 0), so sin(v/2) is never zero. This is the desired contradiction
to our assumption that Q has a zero in M \ D. �

As a consequence of this Proposition, the smooth map A : M \ D → S1 never
takes the value 1 ∈ S1, so there exists a smooth map

r : M \ D → (0, 2π) ⊂ R,

such that A = eir on M \ D.

3. Proof of the Theorem

Proof. Seeking a contradiction, we suppose that x possesses a Bonnet mate x̃ :

M → R3. Let II2,0 and ĨI2,0 be the Hopf quadratic differentials of x and x̃,

respectively. By the preceding propositions, the quadratic differential ĨI2,0 − II2,0

is holomorphic on M , and on M \ D

ĨI2,0 − II2,0 = II2,0(eir − 1),

where the function r : M\D → (0, 2π) is smooth. Let (U, z) be a complex coordinate
chart inM \D. Let h and eu be the Hopf invariant and conformal factor of x relative
to z. Then h = ef+ig on U , for some smooth functions f : U → R and eig : U → S1.

1). If x is isothermic, then gz̄z = 0 identically on U . Let G = f + 2u : U → R.
Then (eG+ig(eir − 1))z̄ = 0 implies

(6) rz̄ = i(G+ ig)z̄(1− e−ir)

on U . Applying ∂z to this, and using that rz is the complex conjugate of rz̄, we
find

(7) rz̄z = 0

on U . Hence, r : M \D → (0, 2π) is a bounded harmonic function. Since the points
of D are isolated and r is bounded, we know that r extends to a harmonic function
on all of M . But then r must be constant, since M is compact. This contradicts
our assumption of nonconstant H, by Remark 7.

2). If x is totally nonisothermic, we have either ∆g ≤ 0 or ∆g ≥ 0 on M \ D.
To be specific, let us suppose that ∆g ≤ 0 on M \ D. Now (6) holds and by the
proof of Theorem 10.13 on pages 303-304 of [JMN16], we have

(8) eir = 1 +
−2gz̄z
D

(gz̄z + iL),

on U , where L = |Gz̄ + igz̄|2−Gz̄z and D = g2z̄z +L2. Applying ∂z to (6) and using
(8), we find

(9) rz̄z = −2gz̄z,

on U . Therefore, ∆r = −2∆g ≥ 0 on M \ D.
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Recall [HK76, Def. §2.1, pages 40-41] that a function v : V → R ∪ {−∞} on a
domain V ⊂ C is subharmonic if

(1) −∞ ≤ v(z) < +∞ in V .
(2) v is upper semi-continuous in V . (This means that for any c ∈ R, the set

{z ∈ U : v(z) < c} is open in V.)
(3) If z0 is any point of V then there exist arbitrarily small positive values of

R such that

v(z0) ≤
1

2πR

∫ 2π

0

v(z0 +Reit)dt.

If v is of class C2 in V , then v is subharmonic in V if and only if vz̄z ≥ 0 in V
[HK76, Example 3, page 41].

If M is a connected Riemann surface, we define a function v : M → R ∪ {−∞}
to be subharmonic if for any complex coordinate chart (U, z) of M , the local repre-
sentative v ◦ z−1 : z(U) → R is subharmonic. This is well-defined by the Corollary
to Theorem 2.8 on page 53 of [HK76].

We conclude from (9) that r is subharmonic on M \D. In the event that ∆g ≥ 0
on M \ D, we conclude that −r is subharmonic and continue as below with −r.

Suppose (U, z) is a complex coordinate chart centered at a point m0 ∈ D, and
small enough that no other point of D lies in it. Then r ◦ z−1 is subharmonic on
the open set z(U) \ {0}, so it extends uniquely to a subharmonic function on z(U),
by Theorem 5.8 on page 237 of [HK76]. It follows that r extends uniquely to a
subharmonic function on M .

By Theorem 1.2 on page 4 of [HK76], if v : V → R ∪ {−∞} is upper semi-
continuous on a nonempty compact domain V ⊂ C, then v attains its maximum
on V ; i.e., there exists z0 ∈ V such that v(z) ≤ v(z0) for all z ∈ V . The same
proof shows that this is true for an upper semi-continuous function on a compact
Riemann surface. Thus, the subharmonic function r : M → R ∪ {−∞} attains
its maximum at some point m0 ∈ M . Let (U, z) be a complex coordinate chart
centered at m0. Choose R > 0 such that the disk D(0, R) = {z ∈ C : |z| ≤ R} is
contained in z(U). By the maximum principle for subharmonic functions [HK76,
Theorem 2.3, page 47], r ◦ z−1 must be constantly equal to r(m0) on D(0, R). It
follows that

E = {m ∈ M : r(m) = r(m0)}

is an open subset of M . But

E = M \ {m ∈ M : r(m) < r(m0)}

is closed, since r is upper semi-continuous. We conclude that r is constant on M ,
which is our sought for contradiction, by Remark 7.

�
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of surfaces, volume 1753 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2000.
[Bia09] Luigi Bianchi. Lezioni di geometria differenziale, volume 1-3. E. Spoerri, Pisa, 1903-

1909. Seconda edizione riveduta e considerevolmente aumentata.



COMPACT SURFACES WITH NO BONNET MATE 7

[Bob08] Alexander I. Bobenko. Exploring surfaces through methods from the theory of integrable
systems: the Bonnet problem. In Surveys on geometry and integrable systems, volume 51

of Adv. Stud. Pure Math., pages 1–53. Math. Soc. Japan, Tokyo, 2008.
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