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STABILITY WITH RESPECT TO ACTIONS OF REAL REDUCTIVE LIE

GROUPS

LEONARDO BILIOTTI AND MICHELA ZEDDA

Abstract. We give a systematic treatment of the stability theory for action of a real reductive

Lie group G on a topological space. More precisely, we introduce an abstract setting for actions

of non-compact real reductive Lie groups on topological spaces that admit functions similar to

the Kempf-Ness function. The point of this construction is that one can characterize stability,

semi-stability and polystability of a point by numerical criteria, that is in terms of a function

called maximal weight. We apply this setting to the actions of a real non-compact reductive

Lie group G on a real compact submanifold M of a Kähler manifold Z and to the action of G

on measures of M .
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1. Introduction

Stability theory in Kähler geometry has been intensively studied by many authors and from

several points of view, see e.g. [16, 18, 19, 21, 22, 31, 32, 37, 42, 43]. This paper is inspired by

the works of I. Mundet i Riera [39] and A. Teleman [44] where a systematical presentation of the

stability theory in the non-algebraic Kählerian geometry of complex reductive Lie groups is given,

and by the recent paper [8] where the first author jointly with A. Ghigi develops a geometrical
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2 LEONARDO BILIOTTI AND MICHELA ZEDDA

invariant theory on topological spaces, without assuming the existence of a symplectic structure.

In particular, they apply the main results to the action of UC on measures on a compact Kähler

manifold Z, where U is a compact connected Lie group acting in Hamiltonian fashion on Z. This

was also motivated by an application to upper bounds for the first eigenvalue of the Laplacian

on functions [2, 3, 4, 11, 29].

In this paper we identify an abstract setting to develop the geometrical invariant theory for

actions of real reductive Lie groups. More precisely, given a Hausdorff topological space M

with a continuous action of a non-compact real reductive Lie group G = K exp(p) and a set

of functions formally similar to the classical Kempf-Ness function we define an analogue of the

gradient map F : M −→ p and the usual concepts of stability.

The gradient map has been intensively studied in [23, 24, 25, 27] and many other papers. The

main idea is to investigate a class of actions of real reductive Lie groups on complex spaces and

on real submanifolds using momentum map techniques. This means that we consider a Kähler

manifold (Z, ω) acted on by a complex reductive Lie group UC of holomorphic maps. The Kähler

form ω is U -invariant, where U is a compact form of UC, and there exists a momentum map

µ : Z −→ u∗. We recall that a momentum map µ is U -equivariant and for any ξ ∈ u, the

gradient of the function µξ(x) = µ(x)(ξ) is given by J(ξZ), where ξZ(p) = d
dt |t=0 exp(tξ)p is the

vector field corresponding to ξ ∈ u and J is the complex structure of Z (see [20, 35] for more

details about momentum map). Since U is compact we may identify u ∼= u∗ by means of an

Ad(U)-invariant scalar product on u. Hence we may think the momentum map as a u-valued

map, i.e., µ : Z −→ u.

Let G ⊂ UC be compatible (see Definition 2 below). Then G is closed and the Cartan

decomposition UC = U exp(iu) induces a Cartan decomposition G = K exp(p), where K = G∩U
and p = g∩iu. Identifying iu ∼= u the inclusion p ↪→ iu induces a K-equivariant map µp : Z −→ p.

Finally if M is a G-invariant real submanifold of Z, we may restrict µp to M and so considering

µp : M −→ p. The map µp : M −→ p is called gradient map. In Section 7 we extend the

construction given in [38] for the gradient map, defining a Kempf-Ness function of (M,G,K).

The G-action on M induces in a natural way a continuous action on measures of M , that

we denote by P(M), with respect to the weak-∗ topology. In Section 8 we prove there exists a

Kempf-Ness function for (P(M), G,K) and the map

F(ν) =

∫
M
µp(x)dν(x),

is the analogue of the gradient map in this setting. These are our basic examples and the main

motivations to develop a geometrical invariant theory for actions of real reductive Lie groups.

Stability and semi-stability are checked using the position of the G-orbit with respect to

the vanishing locus of the gradient map. The main point of our construction is that one can

characterize stability, semi-stability and polystability of a point by numerical criteria, that is

in terms of a function called maximal weight, which is defined on the Tits boundary of the

symmetric space of non-compact type G/K. Roughly speaking we extend criteria for stability,

semi-stability and polystability due to Teleman [44], Mundet I Riera [38, 39], Kapovich, Leeb
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and Milson [30], Biliotti and Ghigi [8] and probably many others, for a large class of actions

of complex reductive Lie groups, to actions of non-compact real reductive Lie groups. Our

criterion for polystability is weaker than those proved by Mundet i Riera [39] and by the first

author and Ghigi in [8] for complex reductive Lie gropus. However if G = KC = K exp(ik) is

complex reductive then condition (P3) in Section 3, i.e., d2

dt2

∣∣∣∣
t=0

Ψ(x, exp(tv)) = 0 if and only if

exp(Rv) ⊂ Gx, does not imply exp(Cv) ⊂ Gx as required by (P3) in [8, p. 6]. This condition is

crucial in Mundet’s proof [39] and in the proof given in [8] for polystability. Indeed, thanks to

the K-equivariance of F, if exp(Cv) ⊂ Gx, then F(x) ∈ kv = {u ∈ k : [u, v] = 0} and thus a sort

of a reduction principle applied.

In the abstract setting introduced in this paper, the above condition is equivalent to the

following: if exp(Rv) ⊂ Gx then F(x) ∈ pv = {u ∈ p : [u, v] = 0}. This does not hold for

a general gradient map F since it is only K-equivariant. On the other hand this condition

holds for the gradient map [25] and the gradient map defined by the Kempf-Ness function with

respect to the G action on measure (Proposition 45). The authors believe that the polystability

criterion due to Mundet [39] holds under the above condition. We leave this problem for future

investigation.

What is satisfactory of Theorem 33 is that the reductivity of the stabilizer is obtained as a

consequence of conditions involving only the maximal weight and the set on which the maximal

weight is zero. We also prove a version of the Hilbert-Munford criterion and the arguments in

[8, Corollary 3.10] apply verbatim to the present context and imply that the set of stable points

is open. Finally we completely characterize stable, semi-stable and polystable measures on real

projective spaces.

The paper is organized as follows.

In Section 2 we review basic facts on real reductive Lie groups and Tits boundary of a

Hadamard manifold.

In Section 3 we define the abstract setting and the general gradient map with respect to a

Kempf-Ness function of (M , G,K).

In Section 4 we define the maximal weight on the Tits boundary of X = G/K. Since the

Kempf-Ness function is K-invariant, for any x ∈ M the Kempf-Ness function descends to a

function ψx : X −→ R which is geodesically convex. If ψx is Lipchitz then Lemma 9 defines

what is called maximal weight on the Tits boundary of X. We also point out that the maximal

weight is G-equivariant.

In Section 5 we define stable, semi-stable and polystable points giving a numerical criterion

for an element x ∈ M to be stable (Theorem 23). We give a version of the Hilbert-Munford

criterion (Corollary 28) and we prove the openness of the set of stable points (Corollary 29).

In Section 6 we give numerical criteria for semi-stability (Theorem 35) and polystability

(Theorem 33) and a Hilbert-Munford criterion for semi-stable points (Corollary 36).

In Section 7 we discuss the basic example, i.e., the classical gradient map, and in Section 8

we apply our setting on the G action on measures. Using the Morse-Bott theory of the gradient
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map on M we compute rather explicitly the maximal weight. Moreover, under a condition on

the gradient map which holds for any real flag manifold, if 0 ∈ E(µp), where E(µp) is the convex

hull of the image of the gradient map µp, then any smooth measures is semi-stable (Proposition

55). The condition 0 ∈ E(µp) is always satisfied up to shifting the gradient map with respect

to some Ad(K)-fixed point of p. We also prove that the set of semi-stable points is dense. If 0

lies in the interior of E(µp) then any smooth measures is stable and the set of stable points is

open and dense. This condition is always satisfied if M is an adjoint orbit of K in p and K acts

irreducibly on p. In a recent paper ([9, Appendix A]) the authors point out that the condition

0 lies in the interior of E(µp) is not restrictive. Indeed, such condition is always satisfied up to

replace G with a compatible group G′ = K ′ exp(p′) such that µp′(M) = µp(M) and up to shift

µp′ .

In Section 9 we completely describe stable, semi-stable and polystable measures on real pro-

jective spaces.

Acknowledgements. The authors are very grateful to Alessandro Ghigi for all the interest-

ing discussions and to Alberto Raffero for his comments. The second author wishes also to

thank Parma’s Mathematics Department for the wonderful hospitality during her stay as post-

doc student. Finally we wish to thank the anonymous referee for reading very carefully the

manuscript.

2. Tits boundary of G/K

Let G be a non-compact real reductive Lie group and denote by g its Lie algebra. Recall that

such G has a finite number of connected components and its algebra splits as g = [g, g] ⊕ z(g),

where [g, g] is semisimple and z(g) is the center of g. Further, maximal compact subgroups of G

always exist and meet every connected components, and any two of them are conjugate under

an element of the identity component Go of G. Assume that there exists a Cartan involution

θ : G −→ G with fixed points set K and let us denote also by θ : g −→ g its differential. Then

g = k ⊕ p and the map f : K × p → G, f(g, v) = g exp v is a diffeomorphism. This means

that G = K exp(p) and G/K is simply connected. Since θ|k = Id and θ|p = −Id, we have

[k, k] ⊂ k, [k, p] ⊂ p and [p, p] ⊂ k. Therefore if a ⊂ p is a Lie subalgebra, then it must be abelian.

Moreover, two maximal abelian subalgebras contained in p are conjugate with respect to the

identity component Ko. We refer the reader to [10, 28, 33] for more details on real reductive

Lie groups. Set

X := G/K.

Observe that G acts on X from the left by:

Lg : X → X, Lg(hK) := ghK, g ∈ G.

To simplify the notation, we will often write gx instead of Lg(x). The choice of an Ad(K)-

invariant scalar product on p induces a G-invariant Riemannian metric on X. It is well known

that X endowed with this metric is a symmetric space of non-compact type and thus a Hadamard

manifold [14, 28]. The Riemannian exponential map arises by the exponential map of Lie groups.
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Hence a geodesic on X is given by g exp(tv)K, where g ∈ G and v ∈ p. In the sequel we denote

by γv(t) = exp(tv)K.

Since X is a Hadamard manifold there is a natural notion of boundary at infinity ∂∞X which

can be described using geodesics.

Two unit speed geodesic rays γ, γ′ : (0,+∞) → X are equivalent, denoted by γ ∼ γ′, if

supt∈(0,+∞) d(γ(t), γ′(t)) < +∞. The Tits boundary of X, denoted by ∂∞X, is the set of

equivalence classes of unit speed geodesic ray in X.

Set o := K ∈ X. Mapping v to the tangent vector γ̇v(0) yields an isomorphism p ∼= ToX.

Any geodesic ray in X is equivalent to a unique ray starting from o, so the map:

e : S(p)→ ∂∞X, e(v) := [γv],(1)

where S(p) is the unit sphere in p, is a bijection. The sphere topology is the topology on ∂∞X

such that e is a homeomorphism. (For more details on the Tits boundary see for example [10,

§I.2] and [14].)

Since G acts by isometries on X, if γ is a unit speed geodesic in X, then for each g ∈ G also

gγ is. Further, since γ ∼ γ′ implies gγ ∼ gγ′, we get a G-action on the Tits boundary ∂∞X by:

g · [γ] = [gγ],

which also induces by (1) a G-action on S(p) given by:

g · v = e−1(g · e(v)).

This action is continuous with respect to the sphere topology on ∂∞X (see [10] p. 41), but it

is not smooth.

Definition 2. Let H ⊂ G be a closed subgroup. Set L := H ∩ K and p̃ := h ∩ p. Following

[25, 26], we say that H is compatible if H = L exp(p̃).

If H is a compatible subgroup of G, then it follows that it is a real reductive subgroup of G,

the Cartan involution of G induces a Cartan involution of H, L is a maximal compact subgroup

of H and finally h = l ⊕ p̃. Note that H has finitely many connected components. Moreover,

there are totally geodesic inclusions X ′ := H/L ↪→ X and ∂∞X
′ ⊂ ∂∞X.

3. Kempf-Ness functions

Let M be a Hausdorff topological space and let G be a non-compact real reductive group

which acts continuously on M . Observe that with these assumptions we can write G = K exp(p),

where K is a maximal compact subgroup of G. Starting with these data we consider a function

Ψ : M ×G→ R, subject to five conditions. The first four are the following ones:

(P1) For any x ∈M the function Ψ(x, ·) is smooth on G.

(P2) The function Ψ(x, ·) is left–invariant with respect to K, i.e.: Ψ(x, kg) = Ψ(x, g).

(P3) For any x ∈M , and any v ∈ p and t ∈ R:

d2

dt2
Ψ(x, exp(tv)) ≥ 0.
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Moreover:

d2

dt2

∣∣∣∣
t=0

Ψ(x, exp(tv)) = 0

if and only if exp(Rv) ⊂ Gx.

(P4) For any x ∈M , and any g, h ∈ G:

Ψ(x, g) + Ψ(gx, h) = Ψ(x, hg).

This equation is called the cocycle condition.

As in the previous section, let X = G/K. If Ψ is a function satisfying (P1)–(P4), then by (P2)

the function g 7→ Ψ(x, g−1) descends to a function on X:

ψx : X → R, ψx(gK) := Ψ(x, g−1),(3)

and the cocycle condition (P4) can be rewritten in terms of ψx as:

ψx(ghK) = ψx(gK) + ψg−1x(hK),(P4′)

which is also equivalent to the following identity between two functions and a constant:

L∗gψx = ψg−1x + ψx(gK),(4)

where Lg denotes the action of G on X (see previous section).

In order to state our fifth condition, let 〈·, ·〉 : p∗ × p→ R be the duality pairing. For x ∈M

define F(x) ∈ p∗ by requiring that:

Fv(x) = 〈F(x), v〉 = −(dψx)o(γ̇
v(0)) =

d

dt

∣∣∣∣
t=0

ψx(exp(−tv)K) =
d

dt

∣∣∣∣
t=0

Ψ(x, exp(tv)).

The following is the fifth and last condition imposed on the function Ψ:

(P5) The map F : M → p∗ is continuous.

We call F the gradient map of (M , G,K,Ψ). As immediate consequence of the definition of F

we have the following result.

Proposition 5. The map F : M → p∗ is K-equivariant.

Proof. It is an easy application of the cocycle condition and the left-invariance with respect to

K of Ψ(x, ·). Indeed,

〈F(kx), v〉 =
d

dt

∣∣∣∣
t=0

Ψ(x, exp(tv)k) =
d

dt

∣∣∣∣
t=0

Ψ(x, k−1 exp(tv)k)

=
d

dt

∣∣∣∣
t=0

Ψ
(
x, exp(tAd(k−1)(v))

)
= Ad∗(k)(F(x))(v).

�

The following definition summarizes the above discussion.
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Definition 6. Let G be a non-compact real reductive Lie group, K a maximal compact sub-

group of G and M a topological space with a continuous G–action. A Kempf-Ness function for

(M , G,K) is a function

Ψ : M ×G→ R,

that satisfies conditions (P1)–(P5).

Remark 7. Taking g = h = e in the cocycle condition (P4) we have Ψ(x, e) = 0. Hence

Ψ(x, k) = 0 for every k ∈ K, since Ψ(x, ·) is K-invariant on the second factor. Moreover, for

any x ∈M and for any g, h ∈ Gx we have:

(8) Ψ(x, hg) = Ψ(x, g) + Ψ(x, h),

which implies that Ψ(x, ·) : Gx −→ R is a homomorphism.

4. Maximal weights

Let X = G/K and let u : X → R be a smooth function. We say that u is geodesically convex

on X if u(γ(t)) is a convex function for any geodesic γ(t) in X. The following lemma is proven

in greater generality by Kapovich, Leeb and Millson in [30, §3.1] (see also [8, §2.3]).

Lemma 9. Let u : X → R be a smooth geodesically convex function on X. Assume that u is

globally Lipschitz continuous. Then the function u∞ : ∂∞X → R given by:

u∞([γ]) := lim
t→+∞

(u ◦ γ)′(t),(10)

is well–defined. Moreover u is an exhaustion if and only if u∞ > 0 on ∂∞X.

Recall that a continuous function f : X → R is an exhaustion if for any c ∈ R the set

f−1((−∞, c]) is compact, condition which is equivalent for f to be bounded below and proper.

As in [8], the following result holds.

Lemma 11. The function ψx is geodesically convex on X. More precisely, if v ∈ p and α(t) =

g exp(tv)K is a geodesic in X, then ψx ◦ α is either strictly convex or affine. The latter case

occurs if and only if g exp(Rv)g−1 ⊂ Gx. In the case g = e, the function ψx ◦ α is linear if

exp(Rv) ⊂ Gx and strictly convex otherwise.

Due to Lemma 11, in order to apply Lemma 9 to ψx, we need only to add this last assumption:

(P6) For any x ∈M , the function ψx : X → R is globally Lipschitz on X.

When property (P6) holds, for any x ∈M the function λx := (ψx)∞ given by:

λx : ∂∞X → R λx([γ]) := lim
t→+∞

d

dt
ψx(γ(t)),(12)

is well-defined and finite. We call λx maximal weight. Moreover for any x ∈M , any g ∈ G and

any p ∈ ∂∞X we have (see [8, Lemma 2.28] for a proof):

λg−1x(p) = λx(g · p).(13)
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The following function:

λ : M × ∂∞X −→ R, λ(x, p) := λx(p),(14)

is also well-defined and finite. Since we set the sphere topology on ∂∞X, i.e., the topology on

∂∞X such that e : S(p)→ ∂∞X is an homeomorphism (see Section 2), by [8, Lemma 4.9], λ is

lower semicontinuous and for v ∈ S(p) it follows:

λx(e(v)) = lim
t→+∞

d

dt
ψx(exp(tv)K) = lim

t→+∞

d

dt
Ψ(x, exp(−tv)).(15)

5. Stability

Let (M , G,K) be as above and let Ψ be a Kempf-Ness function. In particular, according to

Definition 6 we assume that Ψ satisfies conditions (P1)–(P5).

Definition 16. Let x ∈M . Then:

a) x is polystable if Gx ∩ F−1(0) 6= ∅.
b) x is stable if it is polystable and gx is conjugate to a subalgebra of k.

c) x is semi–stable if Gx ∩ F−1(0) 6= ∅.
d) x is unstable if it is not semi–stable.

Remark 17. The four conditions above are G-invariant in the sense that if a point x satisfies

one of them, then every point in the orbit of x satisfy the same condition. This follows directly

from the definition for polystability, semi–stability and unstability, while for stability it is enough

to recall that ggx = Ad(g)(gx).

The following result establishes a relation between the Kempf-Ness function and polystable

points.

Proposition 18. Let x ∈M . The following conditions are equivalent:

a) g ∈ G is a critical point of Ψ(x, ·);
b) F(gx) = 0;

c) g−1K is a critical point of ψx.

Proof. Let v ∈ p. Using the cocycle condition (P4), one gets:

Ψ(x, exp(tv)g) = Ψ(x, g) + Ψ(gx, exp(tv)).

Therefore,

d

dt

∣∣∣∣
t=0

Ψ(x, exp(tv)g) =
d

dt

∣∣∣∣
t=0

Ψ(gx, exp(tv)) = 〈F(gx), v〉.(19)

Since for any k ∈ K, Ψ(x, kg) = Ψ(x, g), then F(gx) = 0 if and only if g is a critical point of

Ψ(x, ·) if and only if g−1K is a critical point of ψx. �

Proposition 20. If F(x) = 0, then Gx is compatible.
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Proof. Let g ∈ Gx. Then g = k exp(v) for some k ∈ K and v ∈ p. By Proposition 5, we have

F(exp(v)x) = 0. Let f(t) := Fv(exp(tv)x) = 〈F(exp(tv)x), v〉. Then f(0) = f(1) = 0 and

d

dt
f(t) =

d

dt
Fv(exp(tv)x) =

d2

dt2
Ψ(x, exp(tv)) ≥ 0.

Therefore d2

dt2
Ψ(x, exp(tv)) = 0 for 0 ≤ t ≤ 1. It follows from (P3) that exp(tv)x = x for any

t ∈ R and thus Gx is compatible. �

Next we give a numerical criteria for an element x ∈ M to be stable. We begin with the

following lemma.

Lemma 21. If a ⊂ g is a subalgebra which is conjugate to a subalgebra of k, then a ∩ p = {0}.

Proof. It is enough to show that Ad(g)(k) ∩ p = {0} for any g ∈ G. Let X ∈ Ad(g)(k) ∩ p. By

the Cartan decomposition G = K exp(p), it follows Γ = exp(RX) is a closed abelian subgroup

of G isomorphic to R. On the other hand X = Ad(g)(Y ) for some Y ∈ k which implies

Γ = Ad(g)(exp(RY )) is a torus. Hence X = 0. �

Consider the function:

Λ : M × p→ [−∞,+∞],

Λ(x, ξ) := lim
t→+∞

d

dt
Ψ(x, exp(tξ)) = lim

t→+∞

d

dt
ψx(−tξK).

The following Lemma is proven in [44, Lemma 2.10].

Lemma 22. Let V be a subspace of p. For a point x ∈M the following conditions are equivalent:

a) The map Ψ(x, exp(ξ)) is linearly proper on V , i.e. there exist positive constants C1 and

C2 such that:

||ξ||2 ≤ C1Ψ(x, exp(ξ)) + C2, ∀ ξ ∈ V.

b) Λ(x, ξ) > 0 for any ξ ∈ V − {0}.

Theorem 23. Let x ∈M . Then x is stable if and only if Λ(x, ξ) > 0 for any ξ ∈ p− {0}.

Proof. Let first x ∈M be stable. Then F(gx) = 0 for some g ∈ G and by Proposition 18, g is

a critical point of Ψ(x, ·). Set y = gx. We start by proving Λ(y, ξ) > 0 for any ξ ∈ p− {0}. By

(P3) the function f(t) = Ψ(y, exp(tξ)) is a convex function. Hence:

Λ(y, ξ) ≥ f ′(0) =
d

dt

∣∣∣∣
t=0

Ψ(y, exp(tξ)) = 〈F(y), ξ〉 = 0.

Assume Λ(y, ξ) = 0. By assumption f is a convex function satisfying limt→+∞ f
′(t) = 0 and

f ′(0) = 0. Hence f ′(t) = 0 for t ≥ 0 and so d2

dt2
Ψ(x, exp(tξ)) = 0 for any t ≥ 0. By (P3) it

follows that exp(Rξ) ⊂ Gy, so ξ ∈ gy ∩ p. Since x is stable, gy = Ad(g)(gx) is conjugate to a

subalgebra of k, thus Lemma 21 implies that ξ = 0. By Lemma 22 the function Ψ(y, ·) is linearly

proper on p. By the cocycle condition we have

Ψ(x, exp(ξ)) = Ψ(g−1y, exp(ξ)) = Ψ(y, exp(ξ)g−1)−Ψ(y, g−1).
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Write exp(ξ)g−1 = k(ξ) exp(σ(ξ)), for k(ξ) ∈ K, σ(ξ) ∈ p. Then Ψ(x, exp(ξ)) = Ψ(y, exp(σ(ξ)))−
Ψ(y, g−1). Using the same arguments in [38, Prop. 3.7 and Lemma 3.8] (see also [44, p. 193]),

we get an estimate of the form

||ξ||2 ≤ A1||σ(ξ)||2 +A2,

where A1 and A2 are positive constants. Therefore the linearly properness of Ψ(y, ·) on p implies

the linearly properness of Ψ(x, ·) on p. Hence, by Lemma 22, Λ(x, ξ) > 0 for any ξ ∈ p− {0}.
Assume now that Λ(x, ξ) > 0 for any ξ ∈ p− {0}. Then Λ(x, ·) restricted on the unit sphere

S(p) of p has a minimum C > 0.

Let ξ ∈ S(p) and let f(t) = Ψ(x, exp(tξ)). The function f is a convex function and

limt→+∞ f
′(t) ≥ C, respectively limt→−∞ f

′(t) ≤ −C. Hence f has a global minimum and

limt→+∞ f(t) = +∞. Thus, for anyM > 0, there exists t(ξ) > 0 such that f(t) = Ψ(x, exp(tξ)) >

M for any t ≥ t(ξ).
We claim that there exists γo > 0 such that Ψ(x, exp(ξ)) > M

2 for ξ ∈ p with ||ξ|| ≥ γo. Indeed,

otherwise there exist sequences ξn ∈ S(p) and tn ∈ R with tn 7→ +∞ such that Ψ(x, exp(tnξn)) ≤
M
2 . We may assume ξn 7→ ξo. Since Ψ(x, exp(tξo)) ≥ M for t > t(ξo) and keeping in mind that

the function

R× S(p) −→ R, (t, ξ)→ Ψ(x, exp(tξ)),

is continuous, there exists a neighborhood U of ξo in S(p) and a neighborhood (t(ξo)−ε, t(ξo)+ε)

of t(ξo) in R, such that Ψ(x, exp(tξ)) > M
2 for any t ∈ (t(ξo) − ε, t(ξo) + ε) and for any ξ ∈ U .

Now, there exists ñ ∈ N such that ξn ∈ U and tn > t(ξo) for n ≥ ñ. Since the function

t 7→ Ψ(x, exp(tξ)) increases, it means Ψ(x, exp(tnξn)) > M
2 for n ≥ ñ which is a contradiction.

Now, keeping in mind that ψx ◦ exp(ξ) = Ψ(x, exp(−ξ)), we have proved that the function

ψx ◦ exp has a minimum and so a critical point. Since exp : p −→ G/K is a diffeomorphism, it

follows that ψx has a critical point. By Proposition 18 the point x is polystable. Let g ∈ G such

that F(gx) = 0. Set y = gx. Since

Λ(y, ξ) ≥ d

dt

∣∣∣∣
t=0

Ψ(y, exp(tξ)) = 〈F(y), ξ〉 = 0,

by the same arguments used before, we have Λ(y, ξ) > 0 for any ξ ∈ p − {0}. To conclude the

proof we prove gy ∩ p = {0}.
Let ξ ∈ gy ∩ p. By Remark 7 the function t 7→ Ψ(y, exp(tξ)) is linear. Since both Λ(y, ξ) and

Λ(y,−ξ) are positive it follows

lim
t7→+∞

d

dt
Ψ(y, exp(tξ)) = a ≥ 0, lim

t7→+∞

d

dt
Ψ(y, exp(−tξ)) = −a ≥ 0.

This implies a = 0, Λ(y, ξ) = 0 and so ξ = 0. By Proposition 20, gy is a compatible subalgebra

of g with gy ∩ p = {0}. Hence Ad(g)(gx) = gy ⊂ k proving x is stable. �

Remark 24. It is an immediate consequence of Lemma 22 and the definitions that the condition

Λ(x, ξ) > 0 for any ξ ∈ p− {0} is equivalent to ψx being an exhaustion.

Corollary 25. If x ∈M is stable, then Gx is compact.
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Proof. Let g ∈ G be such that F(gx) = 0 and set y = gx. By Proposition 20 the stabilizer of

y, i.e. Gy, is compatible and so has only finitely many connected components. Moreover G0
y is

compact since gy ⊂ k. It follows that Gy and Gx = g−1Gyg are both compact. �

If M ′ is a G-invariant subspace of M , the restriction of Ψ to G×M ′ is a Kempf-Ness function

for (M ′, G,K). The functions Λ and F for (M ′, G,K) are simply the restrictions of those for

M . If G′ ⊂ G is a compatible subgroup of G, i.e., G′ = K ′ exp(p′), then K ′ ⊂ K, p′ ⊂ p and

X ′ := G′/K ′ ↪→ X is a totally geodesic inclusion. If Ψ is a Kempf-Ness function for (G,K,M ),

then ΨK′ := Ψ|M×G′ is a Kempf-Ness function for (G′,K ′,M ). The related functions are

FK
′

: M → p′
∗
, FK

′
(x) := F(x)|p′ ,(26)

ψK
′

x := ψx|X′ , ΛK
′

= Λ|M×p′ .(27)

A subalgebra contained in p must be abelian since [p, p] ⊂ k. The following Corollary is analogous

to the stability part in the Hilbert-Mumford criterion.

Corollary 28. A point x ∈ M is G-stable if and only if it is A-stable for any abelian group

A = exp(a), where a is a subalgebra of g contained in p.

Proof. By Theorem 23 it is enough to prove that we have Λ(x, ξ) > 0 for any ξ ∈ p − {0} if

and only if for any abelian group A = exp(a), where a is a subalgebra of g contained in p we

have ΛA(x, ξ) > 0 for any ξ ∈ a − {0}. The necessary condition is trivial, being ΛA(x, ξ) the

restriction of Λ(x, ξ) to a. For the sufficient, observe that for any ξ ∈ S(p) we can set a = Rξ

and conclusion follows since with this choice we have Λ(x, ξ) = ΛA(x, ξ). �

We conclude this section with the following interesting result.

Corollary 29. The function Λ : M × S(p) −→ R is lower semincontinuos and the set of stable

points is open in M .

Proof. The proof of [8, Lemma 3.9] works also for Λ proving it is lower semicontinuos. The

openness of the stable points can be proved as in [8, Corollary 3.10]. �

6. Polystability and semi-stability

The aim of this section is to characterize polystability and semi-stability of x ∈M in terms

of the maximal weight λx. Throughout this section we assume that the Kempf-Ness function of

(M , G,K) satisfies not only (P1)–(P5) but also (P6). Further, for semi-stability we also assume

that M is compact. This will be enough for the case of measures on a compact manifold.

Let us denote by M ps the set of polystable points, i.e. according to Definition 16:

M ps = {x ∈M : Gx ∩ F−1(0) 6= ∅}.

It follows by an easy argument that if x ∈M is polystable then Gx ∩ F−1(0) contains exactly

one K-orbit. Indeed, let y ∈ Gx be such that F(y) = 0. We shall prove that Ky = Gy ∩F−1(0).

Assume that gy ∈ F−1(0). Set g = k exp(v). By the K-equivariance of F it follows F(exp(v)y) =
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0. As in the proof of Proposition 20, we get Rv ∈ gy and so Gy ∩ F−1(0) = Ky. Hence we have

proven the following result.

Proposition 30. The inclusion F−1(0) ↪→M ps induces a bijection

F−1(0)/K −→M ps/G.

Hence the set of polystable orbits, endowed with the quotient topology, is Hausdorff.

In this section we give a numerical criteria for an element x ∈ M to be a polystable point.

Let x ∈M . We define Z(x) = {p ∈ ∂∞X : λx(p) = 0}. We start with the following result.

Proposition 31. Let x ∈ F−1(0). Then λx ≥ 0, gx = kx ⊕ q ⊂ k ⊕ p is compatible and

Z(x) = e(S(q)) = ∂∞Gx/Kx.

Proof. By Proposition 20 the stabilizer Gx is compatible. Hence gx = kx ⊕ q with kx ⊂ k and

q ⊂ p. Further, observe that for ξ ∈ p, since Ψ(x, exp(tξ)) is a convex function, we get:

Λ(x, ξ) ≥ d

dt

∣∣∣∣
t=0

Ψ(y, exp(tξ)) = 〈F(y), ξ〉 = 0.

To conclude, we shall prove that v ∈ S(q) if and only if λx(e(−v)) = 0. Let first v ∈ S(q). By

Remark 7 the function:

f : R −→ R, t 7→ Ψ(x, exp(tv)),

is linear. Since λx ≥ 0, we have limt→+∞ f
′(t) = a ≥ 0 and limt→+∞ f

′(−t) = −a ≥ 0. Thus,

f(t) = Ψ(x, exp(tv)) = 0 and condition (P3) implies λx(e(−v)) = 0.

Vice-versa, assume λx(e(−v)) = 0 and consider again the function f(t) = Ψ(x, exp(tv)). Ob-

serve that f is convex and by assumptions limt→+∞ f
′(t) = 0 and f ′(0) =

d

dt

∣∣∣∣
t=0

Ψ(x, exp(tv)) =

〈F(x), v〉 = 0. Hence f ′(t) = 0 for t ≥ 0. Therefore f ′′(t) = d2

dt2
|t=0Ψ(x, exp(tv)) = 0. By prop-

erty (P3) we get Rv ∈ q concluding the proof. �

Note that the inclusion Gx/Kx ↪→ X is totally geodesic. We claim that the converse of

Proposition 31 holds as well. We start with the following Lemma.

Lemma 32. Let x ∈ M . Assume λx ≥ 0 and Z(x) = ∂∞X
′, where X ′ is a totally geodesic

submanifold of X. Then, there exists g ∈ G such that setting y = gx we have Z(y) = ∂∞G
′/K ′,

where G′ is compatible, G′ ∩K = K ′ and G′ ⊂ Gy.

Proof. Assume first o = [K] ∈ X ′. We shall prove that the statement holds for g = e. Since

X ′ is a totally geodesic submanifold of X there exists a subspace q ⊂ p, called Lie triple system

of p, such that X ′ = exp(q) and [[q, q], q] ⊂ q (see e.g. [28]). We claim q ⊂ gx. Indeed, let

v ∈ S(q). Since λx(e(−v)) = λx(e(v)) = 0, the convex function f(t) = Ψ(x, exp(tv)) satisfies

limt→±∞ f
′(t) = 0. Hence f ′ is constant and so

f ′′(0) =
d2

dt

∣∣∣∣
t=0

Ψ(x, exp(tv)) = 0.
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By properties (P3) we have v ∈ gx. Let g′ = [q, q] ⊕ q. Observe that g′ is a subalgebra of g

due to the fact that q is a Lie triple system of p (see e.g. [28]). Let G′ denote the connected

subgroup of G with lie algebra g′. Hence G′ = (G′ ∩ K) exp(q) and G′ ⊂ Gx. Therefore

G′ = G′′ = (G′′ ∩K) exp(q) is compatible, G′ ⊂ Gx and if we denote by K ′ = G′ ∩K we have

∂∞X
′ = ∂∞G

′/K ′.

In general, for any g ∈ G we can consider the totally geodesic submanifold defined by X ′′ =

gX ′. Since by (13) it follows Z(gx) = g(Z(x)), we have:

Z(gx) = g∂∞X
′ = ∂∞X

′′,

and we are done.

�

Theorem 33. An element x ∈M is a polystable point if and only if λx ≥ 0 and Z(x) = ∂∞X
′

for some totally geodesic submanifold X ′ ⊂ X = G/K.

Proof. One direction is proved in Proposition 31. Assume λx ≥ 0 and Z(x) = ∂∞X
′ for some

totally geodesic submanifold X ′ ⊂ X = G/K. By the above lemma and property (13), we

may assume Z(x) = ∂∞G
′/K ′ where G′ = K ′ exp(q) ⊂ Gx, g′ = k′ ⊕ q with k′ ⊂ k and q ⊂ p,

G′ = K ′ exp(q) and Z(x) = e(S(q)). Write p = q ⊕ q⊥. By a Mostow decomposition, see [24,

Th. 9.3 p. 211], any g ∈ G can be written as g = k exp(θ)h, where k ∈ K, h ∈ G′ and θ ∈ q⊥.

Therefore by the K-invariants and the cocycle condition of Ψ, keeping in mind that G′ ⊂ Gx,

we get:

Ψ(x, g) = Ψ(x, k exp(θ)h) = Ψ(x, exp(θ)) + Ψ(x, h).

We claim that Ψ(x, h) = 0. Indeed, h = k exp(v) with k ∈ K ′ and v ∈ q. Hence Ψ(x, h) =

Ψ(x, exp(v)). As in the above lemma, we consider the function f(t) = Ψ(x, exp(tv)) which is

linear due to Remark 7. Since λx(e(±v)) = 0, we have limt7→±∞ f
′(t) = 0, which implies f ≡ 0

and thus Ψ(x, h) = 0. Hence Ψ(x, g) = Ψ(x, exp(θ)). Since Λ(x, ·) > 0 on q⊥ − {0}, by Lemma

22 there exist positive constants C1 and C2 such that

||θ||2 ≤ C1Ψ(x, exp(θ)) + C2.

This means Ψ(x, ·)|
q⊥

is an exhaustion and so it has a minimum. Since Ψ(x, g) = Ψ(x, exp(θ))

with θ ∈ q⊥, this means that Ψ(x, ·) has a minimum and thus a critical point. By Proposition

18 the point x is polystable. �

Corollary 34. Let x ∈M be a polystable point. Let g ∈ G be such that F(gx) = 0. Then there

exists an abelian subalgebra a ⊂ p ∩ ggx such that:

(i) gx is Ga polystable, where Ga is the centralizer of a in G;

(ii) gx is G′ss stable, where G′ss denotes the semisimple part of Ga.

Proof. Let x ∈M be a polystable point and let g ∈ G be such that F(gx) = 0. Set y = gx. By

Proposition 31, Gy is compatible, and thus gy = ky ⊕ py ⊂ k ⊕ p, and Z(y) = e(S(py)). Let a

be a maximal abelian subalgebra of py. The centralizer of a in G, Ga = {g ∈ G : Ag(g)(ξ) = ξ
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for all ξ ∈ a} is a compatible subgroup of G (see [33]) and by (26) it follows F′(y) = 0 and

so y is polystable with respect to Ga. Let G′ss be the semisimple part of Ga. By 26 it follows

that y is G′ss polystable and so (g′ss)y is compatible. We claim (g′ss)y ∩ p = {0}. Indeed, if

v ∈ (g′ss)y ∩ p, then v ∈ py and [v, a] = 0. Since v /∈ a and a is a maximal abelian subalgebra

of py we get a contradiction. Since (g′ss)y is compatible it follows (g′ss)y ⊂ k and so (G′ss)y is

compact. Therefore y is G′ss stable concluding the proof. �

The following theorem, in analogy with [8, Th. 4.17], gives a numerical criteria for semi-stable

points in terms of maximal weights. The proof is the same of the proof of [44, Theorem 4.3] and

thus it follows by [30, Lemma 3.4] due to Kapovich, Leeb and Millson.

Theorem 35. If M is compact, then a point x ∈M is semi-stable if and only if λx ≥ 0.

The following result is a Hilbert-Mumford criterion for semi-stability. The proof is completely

similar to that of Corollary 28.

Corollary 36. A point x ∈M is G semi-stable if and only if it is A semi-stable for any abelian

group A = exp(a), where a is a subalgebra of g contained in p.

We conclude this section with the following corollaries.

Corollary 37. Let x ∈M be a semi-stable point. Then either x is stable or Gx∩F−1(0) ⊂M ps.

Proof. Let x ∈M be a semi-stable point which is not stable. Setting M ′ = Gx, the restriction of

Ψ to G×M ′ is a Kempf-Ness function for (M ′, G,K) and the functions Λ and F for (M ′, G,K)

are simply the restrictions of those for M . By Corollary 29 the set of stable points of M ′ is

open. By definition the set of stable points is G-invariant. Hence if a point z ∈M ′ were stable,

then x would also be stable contradicting our assumption. �

Corollary 38. If x ∈M is semi-stable then so is any y ∈ Gx.

Proof. Let gα ∈ G be a net such that gαx→ y and let v ∈ ∂∞X. By the G-equivariance of the

maximal weight (14) and the semicontinuity of λ, we get:

λy(v) = λg−1
α y(gαv) ≥ lim inf

α
λg−1

α x(gαv) ≥ 0,

concluding the proof. �

7. The integral of the gradient map

Let U be a compact connected Lie group and denote by u its Lie algebra and by UC its

complexification. Let (Z, ω) be a Kähler manifold on which UC acts holomorphically. Assume

that U acts in a Hamiltonian fashion with momentum map µ : Z −→ u∗. Consider a closed

connected subgroup G of UC compatible with respect to the Cartan decomposition of UC, i.e.

G = K exp(p), for K = U ∩ G and p = g ∩ iu (see [25, 26]). The inclusion ip ↪→ u induces

by restriction a K-equivariant map µip : Z −→ (ip)∗. There is a Ad (UC)–invariant and non-

degenerate bilinear form B : uC×uC −→ R which is positive definite on iu, negative definite on u
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and such that B(u, iu) = 0 (see [5, p. 585]). Therefore B is Ad (UC)–invariant, non-degenerate

and its restriction to g satisfies the following conditions: B is Ad(G)–invariant, B(k, p) = 0,

B restricted to k is negative definite and B restricted to p is positive definite. Using 〈·, ·〉, we

identify u ∼= u∗. For z ∈ Z, let µp(z) ∈ p denote −i times the component of µ(z) in the direction

of ip. In other words we require that 〈µp(z), β〉 = −〈µ(z), iβ〉, for any β ∈ p. Then, we view µp

as a map:

µp : Z → p,

which is called the G-gradient map or restricted momentum map associated to µ. We also set:

µβp := 〈µp, β〉 = µ−iβp .

By definition, it follows that gradµβp = βZ , where βZ(x) =
d

dt

∣∣∣∣
t=0

exp(tβ)x.

Throughout this section we fix a G-invariant subset M ⊂ Z and we consider the gradient

map µp : M −→ p restricted on M . Further, we denote by βM =
d

dt

∣∣∣∣
t=0

exp(tβ)x. Observe that

if M is a manifold, then βM is the gradient of µβp restricted to M with respect to the induced

Riemannian structure on M .

As Mundet pointed out in [40], the existence of the Kempf-Ness function for an action of a

complex reductive group on a Kähler manifold given in [38] also holds for the setting introduced

in [24, 25, 27].

Theorem 39. There exists a Kempf-Ness function for (M,G,K) satisfying the conditions

(P1) − (P5). Furthermore, if M is a G-invariant compact submanifold of Z, then (P6) holds

as well.

Proof. Fix x ∈ M . Let πp : g −→ p be the linear projection induced by the decomposition

g = k ⊕ p and identify TeG with g in the usual way. For g ∈ G and v ∈ TgG, one has

dRg−1(v) ∈ g. Thus, we can define a 1-form σ on G by setting:

σg(v) := 〈µp(gx), πp(dRg−1(v))〉.

Observe that σg ∈ TgG∗ and σ ∈ Λ1(G). When we need to stress the dependence on x we will

write σx. We claim that σ is closed. In order to prove it, fix g ∈ G, v, w ∈ TgG and let ξ, η ∈ g

be such that dRg(ξ) = v and dRg(η) = w. Further, let also X,Y ∈ X(G) be the fundamental

vector fields corresponding to ξ and η under the action of left multiplication. In other words X

is the right-invariant vector field such that X(e) = v, i.e. for h ∈ G,

X(h) := dRh(v) =
d

dt

∣∣∣∣
t=0

exp(tv)h.

For a left action the map that sends a vector in g to its fundamental vector field is an anti-

isomorphism of Lie algebras. Thus [X,Y ] is the fundamental vector field corresponding to
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−[ξ, η]. Hence:

[X,Y ](g) := dRg(−[ξ, η]),

σ([X,Y ])(g) = 〈µp(gx), πp([ξ, η])〉.

We can assume by linearity that ξ, η ∈ k ∪ p.

It is immediate from the definition that σ(X) = σ(Y ) = σ([X,Y ]) ≡ 0 if ξ, η ∈ k. Thus

recalling that:

(dσ)g(v, w) = X(g)σ(Y )− Y (g)σ(X)− σ([X,Y ])(g),

for ξ, η ∈ k the claim is proven.

Assume now that ξ ∈ k and η ∈ p. Then σ(X) ≡ 0 and for h ∈ G,

σ(Y )(h) = 〈µp(hx), η〉 = µηp(hx).

By the K-equivariance of the gradient map we have:

(Xσ(Y ))(g) =
d

dt

∣∣∣∣
t=0

σ(Y )(exp(tξ)g) =
d

dt

∣∣∣∣
t=0

µηp(exp(tξ)gx)

=
d

dt

∣∣∣∣
t=0

〈Ad(exp(tξ)(µp(gx)), η〉 = 〈[ξ, µp(gx)], η〉.

Thus:

dσ(v, w) = 〈[ξ, µp(gx)], η〉 − 〈µp(gx), πp([η, ξ])〉

= 〈[ξ, µp(gx)], η〉 − 〈µp(gx), [η, ξ]〉

= 〈[ξ, µp(gx)], η〉 − 〈[ξ, µp(gx)], η〉

= 0.

Finally, we consider the last possibility, ξ, η ∈ p. In this case [ξ, η] ∈ k and thus σ([X,Y ]) ≡ 0.

On the other hand:

(Xσ(Y ))(g) =
d

dt

∣∣∣∣
t=0

σ(Y )(exp(tξ) · g) = (dµηp)(gx)(ξM ) = 〈ηM , ξM 〉,

which is symmetric in ξ and η, implying dσ(v, w) = 0 also in this case.

This shows that σ is closed. Let γ ∈ Ω(G, e, e). Then there exists γ′ ∈ Ω(K, e, e) such that

γ ∼ i ◦ γ′, where i : K ↪→ G, and thus: ∫
γ
σ =

∫
γ′
i∗σ.

Since i∗σ = 0, it follows that σ is exact. Let Ψx ∈ C∞(G) be the unique function such that

Ψx(e) = 0 and dΨx = σx. Since σx|TK ≡ 0, then Ψx(h) = 0 for any h ∈ K. Moreover, for any

η ∈ p, we have:

(dΨx)(e)(η) = µηp(x).

Thus, the function:

Ψ : M ×G→ R Ψ(x, g) := Ψx(g),
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satisfies conditions (P1) and (P5). In order to prove (P3), compute:

d

dt
Ψx(exp(tη)) = (σx)exp(tη)

(
d

dt
exp(tη)

)
= (σx)exp(tη)(dRexp(tη)(η))

= 〈µp(exp(tη)x), η〉

= µηp(exp(tη)x).

Therefore,

d2

dt2
Ψx(exp(tη)) = dµη(ηM )(exp(tη)x) = ||ηM ||2(exp(tη)x),

and thus (P3) follows.

In order to prove (P4), let g ∈ G and x ∈M . We claim that R∗gσ
x = σgx. Indeed if v ∈ ThG

and w = dRh−1(v), then:

σgxh (v) = 〈µ(hgx), πp(w)〉,

(R∗gσ
x)h(v) = (σx)hg(dRg(v))〉 = 〈µ(hgx), πp(dR(hg)−1dRg(v))〉 = 〈µ(hgx), πp(w)〉.

Thus the claim is proven. Therefore Ψgx − R∗gΨx = c is a constant. Evaluating at h = e we

get:

c = 0−Ψx(g)

and thus:

Ψgx(h) + Ψx(g) = Ψx(hg),

as desired. Property (P2) follows by the cocycle condition together with the fact that for any

x ∈M , Ψx(h) = 0 for all h ∈ K.

Finally, if M is a compact G-invariant submanifold of Z, then the norm square of the gradient

map restricted to M is bounded. Hence ψx is Lipschitz since its differential is bounded and thus

(P6) holds. �

As direct consequence of Corollary 29 we get the following result.

Theorem 40. Let M ⊂ Z be a G-invariant subset of Z. Then the set of stable points for the

gradient map µp : M −→ p restricted to M is open. Moreover, if G = A = exp(a), where a ⊂ p

is an abelian subalgebra, and µa : M −→ a is the gradient map of A, then for any β ∈ a, the set

{p ∈M : Ap ∩ µ−1a (β) 6= ∅ and ap = {0}} is open.

When M is a compact G-invariant submanifold of Z, Theorems 33 and 35 also hold for the

gradient map µp : M −→ p restricted on M . More precisely we have:

Theorem 41. Let M ⊂ Z be a compact G-invariant submanifold of Z and let µp : M −→ p be

the gradient map restricted to M . Then x ∈M is semi-stable if and only if λx ≥ 0. Furthermore,

a point x ∈ M is polystable if and only if λx ≥ 0 and Z(x) = ∂∞X
′ for some totally geodesic

submanifold X ′ ⊂ X = G/K.
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8. Measures

Let M be a compact Hausdorff space. Denote by M (M) the vector space of finite signed Borel

measures on M . Observe that they are automatically Radon [15, Thm. 7.8, p. 217]. Denote by

C(M) the space of real continuous functions on M which is a Banach space with the sup–norm.

By the Riesz Representation Theorem (see e.g. [15, p.223]) M (M) is the topological dual of

C(M). We endow M (M) with the weak-∗ topology as dual of C(M) that it is usually called the

weak topology on measures. We use the symbol να ⇀ ν to denote the weak convergence of the

net {να} to the measure ν. Finally, we denote by P(M) ⊂M (M) the set of Borel probability

measures on M . It is well-known that P(M) is a compact convex subset of M (M). Indeed the

cone of positive measures is closed and P(M) is the intersection of this cone with the closed

affine hyperplane {ν ∈ M (M) : ν(M) = 1}. Therefore P(M) is closed and it is contained in

the closed unit ball in M (M), which is compact in the weak topology by the Banach-Alaoglu

Theorem [13, p. 425]. Since C(M) is separable, the weak topology on P(M) is metrizable (see

[13, p. 426]).

If f : M → N is a measurable map between measurable spaces and ν is a measure on M ,

the image measure f∗ν is the measure on Y such that f∗ν(A) := ν(f−1(A)). Observe that it

satisfies the change of variables formula∫
N
u(y)d(f∗ν)(y) =

∫
M
u(f(x))dν(x).(42)

If G acts on M , then we have an action on the probability measures on M as follows:

G×P(M)→P(M), (g, ν) 7→ g∗ν.(43)

Let U be a compact connected Lie group and UC its complexification. As in section 7 we assume

that G = K exp(p) is a compatible subgroup of UC and M is a G-stable compact subset of a

Kähler manifold (Z, ω). One can prove in a totally similar way as in the proof of [8, Lemma 5.5

p. 18] that the action (43) is continuous with respect to the weak topology.

Lemma 44. Let X be a vector field on Z whose flow {ϕt} preserves M . If ν ∈ M (M) and

X vanishes ν–almost everywhere, then ϕt∗ν = ν for any t. Hence, if v ∈ g and vM (x) = 0 for

every x outside a set of ν–measure zero, then exp(Rv) ⊂ Gν .

Proof. Set N := {p ∈ M : X(p) 6= 0}. Then ν(N) = 0 and for any t ∈ R and any x 6∈ N ,

ϕt(x) = x. In particular both N and M −N are ϕt-invariant. If A ⊂M is measurable, then

ϕ−t(A) = ϕ−t((A−N) t (N ∩A)) = (A−N) t ϕ−t(N ∩A).

Since ϕ−t(N ∩A) ⊂ N , ϕt∗ν(A) = ν(ϕ−t(A)) = ν(A−N) = ν(A). �

Proposition 45. Let M , G, K and µp be as in § 7 and let ΨM be the Kempf-Ness function of

(M,G,K). The function:

ΨP : P(M)×G→ R, ΨP(ν, g) :=

∫
M

ΨM (x, g)dν(x),(46)
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is a Kempf-Ness function for (P(M), G,K) satisfying conditions (P1) − (P5). If in addition

M is compact then Ψ also satisfies condition (P6). Moreover, if we denote by X = G/K, then

ψP
ν : X → R, ψP

ν (gK) := ΨP(ν, g−1) =

∫
M
ψMx (gK)dν(x),(47)

and if F denotes the gradient map, then:

F : P(M)→ p, F(ν) :=

∫
M
µp(x)dν(x).(48)

Finally, if exp(Rβ) ⊂ Gν , for some β ∈ p, then F(ν) ∈ pβ.

For a sake of completeness we sketch the proof which is totally similar to that of Proposition

5.12 in [8].

Proof. Since ΨM is left-invariant with respect to K, the same holds for ΨP .

Fix ν ∈ P(M). By differentiation under the integral sign ΨP(ν, ·) is a smooth function on

G and for v ∈ p we have:

d2

dt2
ΨP(ν, exp(tv)) =

∫
M

(
d2

dt2
ΨM (x, exp(tv))

)
dν(x) ≥ 0,

since the integrand is non-negative by (P3). If d2

dt2

∣∣∣∣
t=0

ΨP(ν, exp(tv)) = 0, then:

d2

dt2

∣∣∣∣
t=0

ΨM (ν, exp(tv)) = 0 ν-almost everywhere.

Again by (P3) this implies that vM = 0 ν-almost everywhere. By Lemma 44 it follows that

exp(Rv) ⊂ Gν . We have proven that ΨP satisfies (P1) − (P3). The cocycle condition for ΨP

follows immediately from the cocycle condition for ΨM . Fix ν ∈ P(M). It is immediate to

verify that the function ψP associated to ΨP as in (3) is the one given by (47). Therefore it is

clearly continuous on P(M). Finally, it is easy to check that ΨP
ν is Lipschitz whenever M is a

compact manifold.

Let β ∈ p. Since Xβ = {y ∈ M ; βM (x) = 0}, is the set of fixed points {y ∈ M : exp(tβ)y =

y, for all t ∈ R }, then Xβ is Gβ-stable and µp(X
β) ⊂ pβ (see [25]). If exp(Rβ) ∈ Gν , using the

same argument of the proof of Proposition 52, then ν is supported on Xβ and so F(ν) ∈ pβ. �

From now on we assume that M is a compact G-invariant submanifold of Z. We shall compute

the maximal weight using the geometry of the gradient map. We begin recalling the following

slice theorem proved in [24, 25].

Theorem 49 (Linearization Theorem). Let M , G, K and µp be as in § 7. If x is a fixed point

of G, then there exist an open subset S ⊂ TxM , stable under the isotropy representation of G,

an open G-stable neighborhood Ω of x in M and a G-equivariant diffeomorphism h : S → Ω.

One can further require that h(0) = x and dh0 = idTxM .
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Fix v ∈ p. The gradient flow of a function f ∈ C∞(M) is usually defined as the flow of the

vector field − grad f . Let {ϕt} denote the gradient flow of µv. Since gradµv = βM , we have

ϕt(x) = exp(tv)x. Then the function µvp is a Morse-Bott function [24, 25, 26]. If we denote by

c1 > · · · > cr the critical values of µv, then the corresponding level sets of µvp , Ci := (µv)−1(ci)

are submanifolds which are the components of Crit(µv). By Theorem 49 it follows that for any

x ∈M the limit:

α(x) := lim
t→−∞

ϕt(x) = lim
t→+∞

exp(tv)x,

exists. Let us denote by Wi the unstable manifold of the critical component Ci for the gradient

flow of µv:

Wi := {x ∈M : α(x) ∈ Ci}.(50)

Then:

M =
r⊔
i=1

Wi,(51)

and for any i the map:

α|Wi : Wi → Ci,

is a smooth fibration with fibres diffeomorphic to Rli where li is the index (of negativity) of the

critical submanifold Ci.

Proposition 52. Let ν be a polystable measure which is not stable. Hence there exist an abelian

subalgebra a ⊂ gν such that ν is supported on Ma = {x ∈M : ξM (x) = 0 for any ξ ∈ a}.

Proof. By Proposition 31, Lemma 32 and Theorem 33, gν = Ad(g)(k′ ⊕ q), i.e., it is conjugate

to a compatible subalgebra of g and ∂∞Gν/Kν = Z(ν) = g(e(S(q))).

Let a′ ⊂ q be a maximal abelian subalgebra of q. Then a = Ad(g)(a′) is an abelian subalgebra

of gν and S(a) ⊂ Z(ν). Let u ∈ a. Then exp(tu) ∈ Gν and thus:

lim
n 7→−∞

exp(nu)ν = ν.

Let A ⊂ M be a measurable subset. Then ν(A) = limn7→−∞ ν(exp(nu)(A)) = ν(α(A)), where

α is the gradient flow of µup . Hence ν is supported on the critical submanifolds of µup for any

u ∈ a. Hence ν is supported on Ma. �

Now, we explicitly compute the maximal weights.

Theorem 53. With the notation above we have

λν(e(−v)) =

r∑
i=1

ciν(Wi).

We give a sketch of the proof, which follows essentially that of [8, Th. 5.23].
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Proof. By definition of λν and by differentiating under the integral sign we get

λν(e(−v)) = lim
t→+∞

d

dt

∫
M

ΨM (x, exp(tv))dν(x)

= lim
t→+∞

∫
M

(
d

dt
ΨM (x, exp(tv))

)
dν(x).

Applying the dominated convergence theorem, since
d

dt

∣∣∣∣
t=to

ΨM (x, exp(tv)) = µvp(exp(t0v)x) and

µvp is bounded, we get

λν(e(−v)) = lim
t→+∞

∫
M
µvp(exp(tv)x)dν(x)

=

∫
M
µv(α(x))dν(x) =

r∑
i=1

∫
Wi

µvp(α(x))dν(x).

Since for x ∈Wi, α(x) ∈ Ci and so µvp(α(x)) = ci, we finally obtain:

λν(e(−v)) =
r∑
i=1

ciν(Wi).

�

Let E(µp) denote the convex hull of µp(M) ⊂ p, i.e. a K-invariant convex body in p. Let

a ⊂ p be a abelian subalgebra and let π : p −→ a be the orthogonal projection onto a. Then

µa = π ◦ µp is the gradient map associated to A = exp(a). Denote by P = µa(M). It is well-

known that P is a finite union of polytopes [27] and the convex bodies E(µp) and the convex

hull of P are strongly related [7]. Although, the convexity of µa(M) = P is not known. This

holds if G = UC and M is a complex connected submanifold by the Atiyah-Guillemin-Sternberg

convexity theorem [1, 17] or when M is an irreducible semi-algebraic subset of a Hodge manifold

Z [6, 27, 34].

In the sequel we always assume that for any v ∈ p, a local maxima of µvp is a global maxima.

This condition holds for any real flag manifold [5]. In our assumption, the Morse-Bott decom-

position of M with respect to µvp , i.e., M =
⊔r
i=0Wi, has a unique open and dense unstable

manifold W u
r and the others unstable manifolds are proper submanifolds. Therefore, if ν is a

smooth measure of M then W u
r has full measure and so λν(e(−v)) = cr = maxx∈Mµ

v
p . Summing

up we have proved the following result.

Corollary 54. If ν is a smooth measure on M , then for any v ∈ p:

λν(e(−v)) = maxx∈Mµ
v
p .

Since ν is a probability measures, it follows that F(ν) ∈ E(µp). Indeed, F(ν) is the barycenter

of the gradient map µp with respect to ν and so it lies in E(µp). If 0 /∈ E(µp), then there exists

v ∈ E(µp) realizing the minimum distance of E(µp) to the origin. Moreover v is a K fixed point

due to the fact that E(µp) is K-invariant. Hence up to shifting the gradient map we may assume

that 0 ∈ E(µp). Under this assumption we get the following result.
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Proposition 55. If 0 ∈ E(µp) then any smooth measure on M is semi-stable.

Proof. Let v ∈ p. By the above corollary, we have λν(e(−v)) = maxx∈Mµ
v
p . Since 0 ∈ E(µp), it

follows that λν(e(−v)) = maxx∈Mµ
v
p ≥ 0. By Theorem 35 ν is semi-stable. �

Corollary 56. If 0 ∈ E(µp), then the set Pss(M) := {ν ∈ P(M) : ν is semi-stable} is dense

in P(M). Moreover, if 0 lies in the interior of E(µp) then the set Ps(M) := {ν ∈ P(M) :

ν is stable} is open and dense.

Proof. By the above Proposition any smooth measure is semi-stable. Since smooth measures are

dense, then the set of semi-stable measures is dense. If 0 belongs to the interior of the E(µp),

then for any v ∈ p the function µvp change sign and so it has a strictly positive maxima. By

Corollary 54 λν(e(−v)) > 0 and by Theorem 23 we get that it is stable. Since by Corollary 29

the set of the stable points is also open, it means Ps(M) is open and dense. �

9. Measures on real projective spaces

In the recent paper [8] the authors completely describe stable, semi-stable and polystable

measures on complex projective spaces (see also [12, 36]). Here we consider the real projective

space:

Pn(R) =
Rn+1 − {0}

∼
=

Sn

{±Idn+1}
,

where we denote by Idn+1 the identity matrix of order n + 1. Consider on Pn(R) the action

of SL(n + 1,R) and recall that its Lie algebra sl(n + 1) decomposes as sl(n + 1) = k ⊕ p =

so(n+ 1)⊕ sym0(n+ 1). A gradient map for this action is given by:

µp : Pn(R)→ p, µp([x]) =
1

2

[
xxT

|x|2
− 1

n+ 1
Idn+1

]
.

Observe that sym0(n+1) admits the maximal abelian subalgebra a of traceless diagonal matrices,

which we identify with Rn ⊂ Rn+1. Given an element ξ ∈ sym0(n+ 1), let λ1 > · · · > λk be its

eigenvalues and denote by V1, . . . , Vk the corresponding eigenspaces. In view of the orthogonal

decompositions Rn+1 = V1 ⊕ · · · ⊕ Vk we can write x ∈ Rn+1 as x = x1 + · · ·+ xk with xj ∈ Vj ,
j = 1, . . . , k. With this notation we have:

µξa([x]) =
1

2

λ1|x1|2 + · · ·+ λk|xk|2

|x1|2 + · · ·+ |xk|2
,

where 〈·, ·〉 is the dual pairing. Consider the projection π : Rn+1 − {0} → Pn(R). Since

(dπ)x
(
ξRn+1−{0}(x)

)
= ξPn(R) and ξRn+1−{0}(x) = λ1x1 + · · · + λkxk, one has ξPn(R) ≡ 0 iff

ξRn+1−{0}(x) is parallel to x, i.e. iff x = xj for some j = 1, . . . , k. Thus, critical points of µξp are

given by Crit(µξp) = P(V1) ∪ · · · ∪ P(Vk) and critical values are cj = 1
2λj , j = 1, . . . , k.

In order to describe:

W ξ
j = {[x] ∈ Pn(R) : α([x]) ∈ Cj},

for j = 1, . . . , n+ 1, where by definition:

α([x]) = lim
t→+∞

exp(tξ)x,
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observe that:

exp(tξ)x = [exp(tλ1)x1 + · · ·+ exp(tλk)xk],

which implies:

α([x]) = lim
t→+∞

[exp(tλ1)x1 + · · ·+ exp(tλk)xk] =



[x1] if x1 6= 0;

[x2] if x1 = 0, x2 6= 0;
...

[xk] otherwise.

Thus, since [x] ∈W ξ
j iff α([x]) ∈ P(Vj) we have:

W ξ
1 = Pn(R)− P(V2 ⊕ · · · ⊕ Vk),

W ξ
2 = P(V2 ⊕ · · · ⊕ Vk)− P(V3 ⊕ · · · ⊕ Vk),

...

W ξ
k−1 = P(Vk−1 ⊕ Vk)− P(Vk).

W ξ
k = P(Vk).

By Theorem 53 it follows:

λν(e(−ξ)) =
1

2

 r∑
j=1

λjν(W ξ
j )


=

1

2
(λ1 − (λ1 − λ2)ν(P(V2 ⊕ · · · ⊕ Vk))− · · · − (λk−1 − λk)ν(P(Vk))) .

(57)

In the following two examples we develop in details the cases n = 1 and n = 2.

Example 58. Let n = 1. We have ξ = (λ1,−λ1) and R2 = V1 ⊕ V2. Denote pi = P(Vi) for

i = 1, 2. Then, Crit(µξ) = {p1, p2}. If we denote x = x1 + x2 as before, we have:

α(X) = lim
t→+∞

[exp(tλ1)x1 + exp(tλ2)x2] =

p1 if x1 6= 0;

p2 if x1 = 0,

which implies:

W ξ
1 = P1(R)− p2, W ξ

2 = p2.

It follows that:

λν(e(−ξ)) =
λ1
2

(1− 2ν(p2)).

Thus ν is stable iff for any p ∈ P1(R):

ν(p) <
1

2
,

semi-stable iff for any p ∈ P1(R):

ν(p) ≤ 1

2
,
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polystable but not stable iff ν is only supported by two points, i.e.:

ν =
1

2
δ1 +

1

2
δ2.

Indeed, If ν is polystable, by Corollary 34, there exists ξ ∈ p such that exp(tξ) ∈ SL(2,R)ν , ν is

supported by two points p1 and p2 and by:

0 = λν(e(−ξ)) =
λ1
2

(1− 2ν(p2))

it follows ν = 1
2δp1 + 1

2δp2 . Vice-versa, if ν = 1
2δp1 + 1

2δp2 with p1 6= p2, then there exists

g ∈ SL(2,R) such that gp1 = [1 : 0] and gp2 = [0 : 1]. It is easy to check that

F(gν) =
1

2
(µp([1 : 0])− µp([0 : 1]) = 0,

proving ν is polystable.

Example 59. Let n = 2. We have three cases:

(a) ξ = (λ1, λ2, λ3), with λ3 = −λ1 − λ2, R3 = V1 ⊕ V2 ⊕ V3, dim(Vj) = 1;

(b) ξ = (λ1,−1
2λ1,−

1
2λ1) and R3 = V1 ⊕ V2, where dim(V1) = 1, dim(V2) = 2;

(c) ξ = (λ1, λ1,−2λ1) and R3 = V1 ⊕ V2, where dim(V1) = 2, dim(V2) = 1.

Let us deal first with the case (a). Denote pi = P(Vi) ⊂ P2(R) for i = 1, 2, 3 and let ξ =

(λ1, λ2, λ3). Then Crit(µξp) = {p1, p2, p3} and:

α(x) = lim
t→+∞

[exp(tλ1)x1 + exp(tλ2)x2 + exp(tλ3)x3] =


p1 if x1 6= 0;

p2 if x1 = 0, y2 6= 0;

p3 if [x] = p3,

and

W ξ
1 = P2(R)− P(V2 ⊕ V3), W ξ

2 = P(V2 ⊕ V3)− p3, W ξ
3 = p3.

It follows that:

λν(e(−ξ)) =
λ1
2
− λ1 − λ2

2
ν(P(V2 ⊕ V3))−

2λ2 + λ1
2

ν(p3)

=
λ1
2

(
1−

(
1− λ2

λ1

)
ν(P(V2 ⊕ V3))−

(
2
λ2
λ1

+ 1

)
ν(p3)

)
.

Observe that from λ1 > λ2 > −λ1 − λ2 we get −1/2 < λ2/λ1 < 1.

For the case (b), namely for ξ = (λ1,−1
2λ1,−

1
2λ1), we have Crit(µξ) = {p1} ∪ P(V2),

α(x) = lim
t→+∞

[exp(tλ1)x1 + exp(tλ2)x2] =

p1 if x1 6= 0;

[0 : y2] if x1 = 0,

and

W ξ
1 = P2(R)− P(V2) = p1, W ξ

2 = P(V2) = P2(R)− {p1}.

It follows that:

λν(e(−ξ)) = λ1

(
1

4
− 3

4
ν(p1)

)
.
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Finally, when ξ = (λ1, λ1,−2λ1), Crit(µξ) = P(V1) ∪ {p3},

α(x) = lim
t→+∞

[exp(tλ1)x1 + exp(tλ2)x2] =

[x1] if x1 6= 0;

p3 if x1 = 0,

and

W ξ
1 = P2(R)− {p3}, W ξ

2 = P(V2) = {p3}.

It follows that:

λν(e(−ξ)) =
λ1
2

(1− 3 ν(p3)) .

Denote by Li ⊂ R3 a linear subspace of R3 of dimension 2 and let p ∈ P2(R). Then, ν is

stable iff for any choice of Li and p:

ν(P(Li)) <
2

3
, ν(p) <

1

3
,

ν is semi-stable iff for any choice of Li and p:

ν(P(Li)) ≤ 2

3
, ν(p) ≤ 1

3
,

and ν is polystable iff either it is stable or it is one of the following:

ν :=
2

3
δP(Li) +

1

3
δp, ν :=

1

3
δ1 +

1

3
δ2 +

1

3
δ3,

i.e. it is supported by some P(Li) and by a point p or by three points (see the proof of Prop.

60 below for details).

We conclude with the following proposition which states necessary and sufficients conditions

for stability and polystability in general dimension.

Proposition 60. The measure ν is stable iff for any choice of a linear subspace Li ⊂ Rn+1:

ν(P(Li)) <
dim(Li)

n+ 1
,

ν is semi-stable iff:

ν(P(Li)) ≤ dim(Li)

n+ 1
.

The measure ν is polystable iff there exists a splitting Rn+1 = Li1 ⊕ · · · ⊕ Lir such that ν is

supported on P(Li1) ∪ · · · ∪ P(Lir). Moreover

ν :=
r∑
j

dim(Lij)

n+ 1
δP(Lij),

where δP(Lij) is a stable measure of P(Lij) with respect to SL(Lij).

Proof. As before, let ξ ∈ a, λ1 > · · · > λk be its eigenvalues and V1, . . . , Vk be the corresponding

eigenspaces, with
∑k

j=1 dim(Vj)λj = 0. From (57) we have λν(e(−ξ)) > 0 iff:

(61) λ1 − (λ1 − λ2)ν(P(V2 ⊕ · · · ⊕ Vk))− · · · − (λk−1 − λk)ν(P(Vk)) > 0.
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Assume that ν(P(Li)) < dim(Li)
n+1 for any linear subspace Li ⊂ Rn+1. Then, since λj − λj+1 > 0:

λ1 − (λ1 − λ2)ν(P(V2 ⊕ · · · ⊕ Vk))− · · · − (λk−1 − λk)ν(P(Vk)) >

> λ1 − (λ1 − λ2)
dim(V2) + · · ·+ dim(Vk)

n+ 1
− · · · − (λk−1 − λk)

dim(Vk)

n+ 1
= 0,

where the last equality follows by applying
∑k

j=1 dim(Vj)λj = 0 several times. Viceversa, let Li

be a linear subspace of Rn+1 of dimension 0 < r < n + 1 such that ν(P(Li)) ≥ dim(Li)
n+1 . Then,

Rn+1 = Li⊕ Li⊥, where we denote by Li⊥ the orthogonal complement of Li, and we can choose

ξ is such a way that ξ = (λ1, λ2), rλ1 + (n + 1 − r)λ2 = 0, with corresponding eigenspaces Li

and Li⊥. We can assume without loss of generality that λ1 > 0. Conclusion follows since by

(57) we have:

λν(e(−ξ)) = λ1 − (λ1 − λ2)ν(P(Li⊥)) ≤ λ1 − λ1
n+ 1− r
n+ 1

− λ1
r

n+ 1
= 0,

where we use that rλ1 + (n+ 1− r)λ2 = 0.

In order to prove the polystability part, assume that ν is polystable. Then there exists

g ∈ SL(n + 1,R) such that F(gν) = 0. Set ν ′ = gν. By Lemma 32 and Proposition 52 there

exists an abelian subalgebra a ⊂ sym0(n + 1) such that ν ′ is supported on Pn(R)a. We can

diagonalize simultaneously any element of a. Hence there exists an orthogonal splitting:

Rn+1 = V1 ⊕ · · · ⊕ Vr,

such that for any ξ ∈ a, we have ξ|Vi
= λj(ξ)IdVj . Therefore Pn(R)a = P(V1) ∪ · · · ∪ P(Vr) and

so ν ′ is supported on P(V1) ∪ · · · ∪ P(Vr). This means that ν ′ =
∑r

j=1 λiδP(Vj), where δP(Vj) ∈
P(P(Vj)), λj ≥ 0 for j = 1, . . . , r and

∑r
j=1 λj = 1. Since SL(n+ 1,R)a = SL(V1⊕ · · · ⊕ Vr) its

semisimple part is given by SL(V1)× · · · × SL(Vr). By Corollary 34 ν ′ is SL(V1)× · · · × SL(Vr)

stable and so its stabilizer:

(SL(V1)× · · · × SL(Vr))ν′ = SL(V1)δP(V1) × · · · × SL(Vr)δP(Vr)

is compact. In particular SL(Vj)δP(Vj) is compact. If we decompose x = x1 + · · ·+ xr by means

of the above splitting, we have:

0 = F(ν ′) =

∫
Pn(R)

µp(x)dν ′(x) =

∫
Pn(R)

xxT

||x||2
dν ′(x)− 1

n+ 1
Idn+1

=
r∑
j=1

λj

∫
P(Vj)

(
xjx

T
j

||xj ||2
− 1

dimVj
IdVj

)
dδP(Vj)(xj) +

r∑
j=1

λj
1

dimVj
− 1

n+ 1
Idn+1

=

r∑
j=1

λjF
j(δP(Vj)) +

r∑
j=1

(
λj

dimVj
− 1

n+ 1

)
IdVj .

In the above formula Fj denotes the gradient map with respect to the SL(Vj) action on

P(P(Vj)). Therefore, keeping in mind that
∑r

j=1 λjF
j(δP(Vj)), which lies in sym0(n + 1), and∑r

j=1
λj

dimVj
IdVj − 1

n+1 IdVj are orthogonal in gl(n+ 1,R), we have Fj(δP(Vj)) = 0, and so by the

above discussion δP(Vj) is stable with respect to SL(Vj), and λj =
dimVj
n+1 . Set Lij = g−1Vj for any
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j = 1, . . . , r. By the above discussion ν =
∑r

j
dim(Lij)
n+1 δP(Lij), where δP(Lij) is a measure of P(Lij).

We claim δP(Lij) is a stable measure with respect to SL(Lij). Indeed, SL(Lij) = g−1SL(Vj)g and

it is easy to check that:

Ad(g−1) ◦ µSL(Vj)p = µ
SL(Lij)
p ◦ g−1.

Similarly Ad(g−1) ◦ F = F′ ◦ g−1 and so F−1(0) = g · F′−1(0) proving δP(Lij) is a stable measure

with respect to SL(Lij).

Vice-versa, assume ν =
∑r

j
dim(Lij)
n+1 δP(Lij) with respect to a splitting:

Rn+1 = Li1 ⊕ · · · ⊕ Lir,

where δP(Lij) is a stable measure of P(Lij) with respect to SL(Lij). Let g ∈ SL(n + 1,R) such

that if we denote by Vj = gLij for j = 1, . . . , r, then:

Rn+1 = V1 ⊕ · · · ⊕ Vr,

is an orthogonal splitting. By the above computation we get F(gν) =
∑r

j=1
dimVj
n+1 Fj(δP(Vj)),

where δP(Vj) = gδP(Lij) for j = 1, . . . , r. By the above discussion since δP(Lij) is stable with

respect to SL(Lij), then gδP(Vj) is stable with respect to SL(Vj). Hence there exists gj ∈ SL(Vj)

such that Fj(gjδP(Vj)) = 0. Let h = g1 × · · · × gr ∈ SL(V1)× · · · × SL(Vr) ⊂ SL(n+ 1,R). Then

F(hgν) =

r∑
j=1

dimVj
n+ 1

Fj(gjδP(Vj)) = 0,

concluding the proof. �
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Applications. Birkhäuser Boston Inc., Boston, MA, 2006.

[11] J.-P. Bourguignon, P. Li, and S.-T. Yau. Upper bound for the first eigenvalue of algebraic submanifolds.

Comment. Math. Helv., 69(2):199–207, 1994.

[12] S. K. Donaldson. Some numerical results in complex differential geometry. Pure Appl. Math. Q., 5(2, Special

Issue: In honor of Friedrich Hirzebruch. Part 1):571–618, 2009.



28 LEONARDO BILIOTTI AND MICHELA ZEDDA

[13] N. Dunford and J. T. Schwartz. Linear Operators. I. General Theory. With the assistance of W. G. Bade and

R. G. Bartle. Pure and Applied Mathematics, Vol. 7. Interscience Publishers, Inc., New York; Interscience

Publishers, Ltd., London, 1958.

[14] P. Eberlein, Geometry of nonpositively curved manifolds, Chicago Lectures in Mathematics.

[15] G. B. Folland. Real analysis. Pure and Applied Mathematics. John Wiley & Sons, New York, second edition,

1999.

[16] V. Georgulas, J. W. Robbin, and D. A. Salamon. The moment-weight inequality and the Hilbert-Mumford

criterion. Preprint. arXiv:1311.0410, 2013.

[17] V. Guillemin and S. Sternberg. Convexity properties of the moment mapping. Invent. Math., 67(3):491–513,

1982.

[18] P. Heinzner. Geometric invariant theory on Stein spaces. Math. Ann., 289(4):631–662, 1991.

[19] P. Heinzner and A. Huckleberry. Kählerian potentials and convexity properties of the moment map. Invent.

Math., 126(1):65–84, 1996.

[20] P. Heinzner and A. Huckleberry. Analytic Hilbert quotients. In Several complex variables (Berkeley, CA,

1995–1996), volume 37 of Math. Sci. Res. Inst. Publ., pages 309–349. Cambridge Univ. Press, Cambridge,

1999.

[21] P. Heinzner, A. T. Huckleberry, and F. Loose. Kählerian extensions of the symplectic reduction. J. Reine

Angew. Math., 455:123–140, 1994.

[22] P. Heinzner and F. Loose. Reduction of complex Hamiltonian G-spaces. Geom. Funct. Anal., 4(3):288–297,

1994.
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