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HOLOMORPHIC DIFFERENTIALS AND LAGUERRE

DEFORMATION OF SURFACES

EMILIO MUSSO AND LORENZO NICOLODI

Abstract. A Laguerre geometric local characterization is given of L-
minimal surfaces and Laguerre deformations (T -transforms) of L-mi-
nimal isothermic surfaces in terms of the holomorphicity of a quartic
and a quadratic differential. This is used to prove that, via their L-
Gauss maps, the T -transforms of L-minimal isothermic surfaces have
constant mean curvature H = r in some translate of hyperbolic 3-space
H3(−r2) ⊂ R4

1, de Sitter 3-space S3
1(r

2) ⊂ R4
1, or have mean curvature

H = 0 in some translate of a time-oriented lightcone in R4
1. As an

application, we show that various instances of the Lawson isometric
correspondence can be viewed as special cases of the T -transformation
of L-isothermic surfaces with holomorphic quartic differential.

1. Introduction

Many features of constant mean curvature (CMC) surfaces in 3-dimen-
sional space forms, viewed as isothermic surfaces in Möbius space S3, can
be interpreted in terms of the transformation theory of isothermic surfaces.1

For instance, the Lawson correspondence between CMC surfaces in space
forms can be viewed as a special case of the classical T -transformation of
isothermic surfaces. More specifically, it is shown that CMC surfaces in
space forms arise in associated 1-parameter families as T -transforms of min-
imal surfaces in space forms [3, 13, 14, 15, 20, 22]. In addition to being
isothermic, minimal surfaces in space forms are Willmore, that is, are crit-
ical points of the Willmore energy

∫
(H2 −K)dA, where H and K are the

mean and (extrinsic) Gauss curvatures, and dA is the induced area element
of the surface [5, 11, 42]. By a classical result of Thomsen [42, 20, 22], a
Willmore surface without umbilics is isothermic if and only if it is locally
Möbius equivalent to a minimal surface in some space form. In [44], K. Voss
obtained a uniform Möbius geometric characterization of Willmore surfaces
and CMC surfaces in space forms using the quartic differential Q introduced
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1We recall that a surface is isothermic if it admits conformal curvature line coordinates
away from umbilic points.
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2 EMILIO MUSSO AND LORENZO NICOLODI

by Bryant [11] for Willmore surfaces (cf. also [9, 10, 22] for more details).
Voss observed that Q, which indeed may be defined for any conformal im-
mersion of a Riemann surfaceM into S3, is holomorphic if and only if, locally
and away from umbilics and isolated points, the immersion is Willmore or
has constant mean curvature in some space form embedded in S3.

The purpose of this paper is to discuss the Laguerre geometric counterpart
of the Möbius situation described above. One should consider that, already
in the fundamental work of Blaschke and Thomsen [5], Möbius and Laguerre
surface geometries were developed in parallel, as subgeometries of Lie sphere
geometry. Another motivation is that several classical topics in Laguerre ge-
ometry, including Laguerre minimal surfaces and Laguerre isothermic sur-
faces, have recently received much attention in the theory of integrable sys-
tems, in discrete differential geometry, and in the applications to geometric
computing and architectural geometry [6, 7, 8, 26, 27, 28, 29, 32, 37, 38, 40].

Let us begin by recalling some facts about the Laguerre geometry of sur-
faces in R3 to better illustrate our results. The group of Laguerre geometry
consists of those transformations that map oriented planes in R3 to oriented
planes, oriented spheres (including points) to oriented spheres (including
points), and preserve oriented contact. As such, the Laguerre group is a
subgroup of the group of Lie sphere transformations and is isomorphic to
the 10-dimensional restricted Poincaré group [5, 17]. Any smooth immersion
of an oriented surface into R3 has a Legendre (contact) lift to the space of
contact elements Λ = R3 × S2. The Laguerre group acts on the Legendre
lifts rather than on the immersions themselves, since it does not act by
point-transformations. The Laguerre space is Λ as homogeneous space of
the Laguerre group. The principal aim of Laguerre geometry is to study
the properties of an immersion which are invariant under the action of the
Laguerre group on Legendre surfaces. Locally and up to Laguerre transfor-
mation, any Legendre immersion arises as a Legendre lift.

A smooth immersed surface in R3 with no parabolic points is Laguerre
minimal (L-minimal) if it is an extremal of the Weingarten functional∫

(H2/K − 1)dA,

where H and K are the mean and Gauss curvatures of the immersion, and
dA is the induced area element of the surface [4, 5, 28, 35]. The functional
and so its critical points are preserved by the Laguerre group. A surface in
R3 is L-isothermic if, away from parabolic and umbilic points, it admits a
conformal curvature line parametrization with respect to the third funda-
mental form [5, 29]. L-isothermic surfaces are invariant under the Laguerre
group. See [29, 32] for a recent study on L-isotermic surfaces and their
transformations, including the analogues of the T -transformation and of the
Darboux transformation in Möbius geometry.
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In our discussion we will adopt the cyclographic model of Laguerre ge-
ometry [5, 17]. Accordingly, the space of oriented spheres and points in R3

is naturally identified with Minkowski 4-space R4
1 and the Laguerre space

Λ is described as the space of isotropic (null) lines in R4
1. For a Legendre

immersion F = (f, n) : M → Λ, the Laguerre Gauss (L-Gauss) map of F ,
σF :M → R4

1, assigns to each p ∈M the point of R4
1 representing the middle

sphere, that is, the oriented sphere of R3 of radius H/K which is in oriented
contact with the tangent plane of f at f(p). Away from umbilics and par-
abolic points, σF is a spacelike immersion with isotropic mean curvature
vector; moreover, σF has zero mean curvature vector in R4

1 if and only if F
is L-minimal [5, 28].

In [28], for a Legendre immersion F = (f, n) :M → Λ which is L-minimal,
we introduced a Laguerre invariant holomorphic quartic differential QF on
M viewed as a Riemann surface with the conformal structure induced by
dn · dn. This quartic differential QF may be naturally defined for arbitrary
nondegenerate2 Legendre surfaces together with an invariant quadratic dif-
ferential PF . The quadratic differential PF is holomorphic when QF is
holomorphic and vanishes if F is L-minimal (cf. Section 3).

The first main result of this paper provides a Laguerre geometric charac-
terization of Legendre surfaces with holomorphic quartic differential.

Theorem A. The quartic differential QF of a nondegenerate Legendre im-
mersion F : M → Λ is holomorphic if and only if the immersion F is
L-minimal, in which case PF is zero, or is locally the T -transform of an
L-minimal isothermic surface.

The T -transforms in the statement of Theorem A can be seen as sec-
ond order Laguerre deformations [29, 33] in the sense of Cartan’s general
deformation theory [16, 18, 21]. Using Theorem A we then characterize
L-minimal isothermic surfaces and their T -transforms in terms of the differ-
ential geometry of their L-Gauss maps. We shall prove the following.

Theorem B. Let F : M → Λ be a nondegenerate Legendre immersion.
Then:

(1) F is L-minimal and L-isothermic if and only if its L-Gauss map
σF : M → R4

1 has zero mean curvature in some spacelike, timelike,
or (degenerate) isotropic hyperplane of R4

1.
(2) F has holomorphic QF and non-zero PF if and only if its L-Gauss

map σF : M → R4
1 has constant mean curvature H = r in some

translate of hyperbolic 3-space H3(−r2) ⊂ R4
1, de Sitter 3-space

S31(r2) ⊂ R4
1, or has zero mean curvature in some translate of a

time-oriented lightcone L3
± ⊂ R4

1.

In addition, if the L-Gauss map of F takes values in a spacelike (respectively,
timelike, isotropic) hyperplane, then the L-Gauss maps of the T -transforms

2cf. Section 2.4 for the right definition.
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of F take values in a translate of a hyperbolic 3-space (respectively, de Sitter
3-space, time-oriented lightcone).

As an application of the two theorems above, we show that the Law-
son correspondence [24] between certain isometric CMC surfaces in differ-
ent hyperbolic 3-spaces and, in particular, the Umehara–Yamada isometric
perturbation [43] of minimal surfaces of R3 into CMC surfaces in hyper-
bolic 3-space, can be viewed as a special case of the T -transformation of
L-isothermic surfaces with holomorphic quartic differential. (For a Möbius
geometric interpretation of the Umehara–Yamada perturbation see [19, 34]).
This interpretation also applies to the generalizations of Lawson’s corre-
spondence in the Lorentzian [36] and the (degenerate) isotropic situations,
namely to the perturbation of maximal surfaces in Minkowski 3-space into
CMC spacelike surfaces in de Sitter 3-space [1, 2, 23, 25], and that of zero
mean curvature spacelike surfaces in a (degenerate) isotropic 3-space into
zero mean curvature spacelike surfaces in a time-oriented lightcone of R4

1.

The paper is organized as follows. Section 2 recalls some background
material about Laguerre geometry, develops the method of moving frames for
Legendre surfaces, and briefly discusses L-isothermic surfaces and their T -
transforms. Section 3 proves Theorem A. It constructs a quartic differential
QF and a quadratic differential PF on M from a nondegenerate Legendre
immersion F : M → Λ, and proves that QF is holomorphic if and only
if F is L-minimal or is L-isothermic of a special type (cf. Proposition 3.5
and Section 3.2). Section 4 proves Theorem B. In particular, L-minimal
isothermic surfaces and their T -transforms are characterized in terms of the
differential geometry of their L-Gauss maps (cf. Propositions 4.1 and 4.4).
Section 5 discusses the Laguerre deformation of surfaces with holomorphic
Q in relation with various instances of the Lawson isometric correspondence
for CMC spacelike surfaces.

2. Preliminaries and definitions

2.1. The Laguerre space. Let R4
1 denote Minkowski 4-space with its struc-

ture of affine vector space and a translation invariant Lorentzian scalar prod-
uct ⟨ , ⟩ which takes the form

⟨v, w⟩ = −(v1w4 + v4w1) + v2w2 + v3w3 = gijv
iwj ,

with respect to the standard basis ϵ1, . . . , ϵ4. We use the summation con-
vention over repeated indices. A vector v ∈ R4

1 is spacelike if ⟨v, v⟩ > 0,
timelike if ⟨v, v⟩ < 0, lightlike (or null or isotropic) if ⟨v, v⟩ = 0 and v ̸= 0.
We fix a space orientation by requiring that the standard basis is positive,
and fix a time-orientation by saying that a timelike or lightlike vector v is
positive if ⟨v, ϵ1 + ϵ4⟩ < 0. The corresponding positive lightcone is given by

(2.1) L3
+ =

{
v ∈ R4

1 : ⟨v, v⟩ = 0, ⟨v, ϵ1 + ϵ4⟩ < 0
}
.
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The Laguerre group L is the group of isometries of R4
1 which preserve the

given space and time orientations. It is isomorphic to the semidirect product
R4 oG, where G consists of elements a = (aij) ∈ GL(4,R) such that

(2.2) det a = 1, ghka
h
i a

k
j = gij , aϵ1, aϵ4 ∈ L3

+.

L is isomorphic to the (restricted) Poincaré group R4 o SOo(3, 1).
By a Laguerre frame (x; a1, . . . , a4) is meant a position vector x of R4

1 and
an oriented basis (a1, . . . , a4) of R4

1, such that

(2.3) ⟨ai, aj⟩ = gij , a1, a4 ∈ L3
+.

L acts simply transitively on Laguerre frames and the manifold of all such
frames may be identified, up to the choice of a reference frame, with L. For
any (x, a) ∈ L, we regard x and ai = aϵi as R4-valued functions. There are
unique 1-forms ωi

0 and ωi
j such that

dx = ωi
0ai,(2.4)

dai = ωj
i aj .(2.5)

Exterior differentiation of (2.3), (2.4) and (2.5) yields the structure equa-
tions:

0 = ωk
i gkj + ωk

j gki,(2.6)

dωi
0 = −ωi

j ∧ ω
j
0,(2.7)

dωi
j = −ωi

k ∧ ωk
j .(2.8)

Any time-oriented isotropic line in R4
1 may be realized as x+tv where x ∈ R4

1,
v ∈ L3

+ and t ranges over R, and will be denoted by [x, v]. The set of all
isotropic lines

Λ =
{
[x, v] : x ∈ R4

1, v ∈ L3
+

}
is called the Laguerre space. The group L acts transitively on Λ by

L× Λ → Λ, ((x, a), [y, v]) 7→ (x, a) · [y, v] = [x+ ay, av].

If we choose [0, ϵ1] ∈ Λ as an origin, and let L0 be the isotropy subgroup of
L at [0, ϵ1], the smooth map

πL : L→ Λ, πL(A) = A · [0, ϵ1] = [x, a1]

is the projection map of a principal L0-bundle over Λ ∼= L/L0. The elements
of L0 are matrices of the form

X(d; b;x) =



d1
0
0
0

 ,


d2 x̃1 x̃2 d2

2
txx

0 b11 b12 x1

0 b21 b22 x2

0 0 0 1
d2


 ,

where b = (bij) ∈ SO(2), d = (d1, d2), d2 > 0, x = t(x1, x2) ∈ R2, (x̃1, x̃2) =

d2
txb.
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2.2. The cyclographic model of Laguerre geometry ([5, 17, 37]). The
fundamental objects of Laguerre geometry in Euclidean space are oriented
planes and L-spheres (or cycles). By an L-sphere is meant an oriented
sphere or a point (a sphere of radius zero). The orientation is determined
by specifying a unit normal vector for planes and a signed radius in the case
of a sphere.

In the cyclographic model of Laguerre geometry, an L-sphere σ(p, r), with
center p = t(p1, p2, p3) and signed radius r ∈ R, is represented as the point
of R4

1 given by

x(p, r) = t
(r + p1√

2
, p2, p3,

r − p1√
2

)
.

An oriented plane π(n, p) through p orthogonal to n = (n1, n2, n3) ∈ S2 ⊂
R3 is identified with the isotropic hyperplane through x(p) ∈ R4

1 with
isotropic normal vector

v(n, p) = t
(1 + n1

2
,
n2√
2
,
n3√
2
,
1− n1

2

)
.

The oriented contact of L-spheres and oriented planes corresponds in R4
1

to the incidence of points and isotropic hyperplanes. Two oriented L-spheres
represented by points x and y in R4

1 are in oriented contact if and only if

⟨x− y, x− y⟩ = 0.

In this case, x − y is the normal vector of the isotropic hyperplane in R4
1

corresponding to the common tangent plane of the L-spheres represented by
x and y.

This implies that to any time-oriented isotropic line ℓ corresponds a pencil
of oriented spheres which are in oriented contact at p(ℓ) ∈ R3 with a fixed
plane π, where p(ℓ) represents the unique x on ℓ such that ⟨x, ϵ1+ϵ4⟩ = 0. In
other words, Λ can be identified with the space R3 × S2 of oriented contact
elements of R3 by the correspondence

(2.9) (p, n) ∈ R3 × S2 7→ [x(p), v(n, p)] ∈ Λ.

By the structure equations of L, we see that the 1-form −⟨dx, a1⟩ defines
an L-invariant contact distribution on the Laguerre space Λ. By (2.9),
such a contact structure coincides with the standard contact structure on
R3 × S2. In this way L can be seen as a 10-dimensional group of contact
transformations acting on R3 × S2.

The points on a spacelike line ℓ in R4
1 represent L-spheres in Euclidean

space which envelope a circular cone. For two points x and y on ℓ, we have

⟨x− y, x− y⟩ = d2,

where d is the tangential distance, that is, the Euclidean distance between
the points where any common oriented tangent plane touches the L-spheres
corresponding to x and y. The tangential distance is zero precisely when
the two L-spheres are in oriented contact.
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The points on a timelike line ℓ in R4
1 represent L-spheres without any

common oriented tangent plane. For two points x and y on ℓ,

⟨x− y, x− y⟩ = −d2,
where d is the parallel distance, that is, the distance between the equally
oriented parallel tangent planes to the two corresponding L-spheres.

The spherical system of L-spheres determined by a point z ∈ R4
1 and a

constant c ∈ R is the set of all L-spheres represented by points x ∈ R4
1

satisfying the equation of the pseudo-hypersphere

(2.10) ⟨x− z, x− z⟩ = c.

The system consists of all L-spheres which have constant tangential or par-
allel distance

√
|c| from the fixed L-sphere represented by z. For c = 0,

the system consists of all L-spheres which are in oriented contact with the
fixed L-sphere represented by z. The spherical system (pseudo-hypersphere)
defined by (2.10) is isotropic if c = 0, timelike if c > 0, and spacelike if c < 0.

The planar system of L-spheres determined by a point z ∈ R4
1 and a vector

v ∈ R4
1 is the set of all L-spheres represented by points x ∈ R4

1 satisfying the
equation of the hyperplane

(2.11) ⟨x− z, v⟩ = 0.

The planar system (hyperplane) is called isotropic (respectively, timelike,
spacelike) if the vector v is isotropic (respectively, spacelike, timelike).

2.3. Laguerre surface geometry: the middle frame. An immersed
surface f : M → R3, oriented by a unit normal field n : M → S2, induces
a lift F = (f, n) to Λ which is a Legendre (contact) immersion with respect
to the canonical contact structure of Λ. More generally, a Legendre surface
is an immersed surface F = (f, n) : M → Λ such that df · n = 0. The
additional condition dn · dn > 0 will be assumed throughout. Moreover,
we say that F is nondegenerate if the quadratic forms df · dn and dn · dn
are everywhere linearly independent on M . We recall that two Legendrian
immersions (M,F ) and (M ′, F ′) are said to be L-equivalent if there exists
a diffeomorphism ϕ : M → M ′ and A ∈ L such that F ′ ◦ ϕ = AF . Locally
and up to L-equivalence, any Legendre surface arises as a Legendre lift. In
particular, two immersed surfaces in R3 are L-equivalent if their Legendre
lifts are L-equivalent.

Definition 2.1. A (local) Laguerre frame field along a Legendre immersion
F :M → Λ is a smooth map A = (a0, a) : U → L defined on an open subset
U ⊂M , such that πL(a0, a) = [a0, a1] = F .

For any Laguerre frame field A : U → L we let

α =
(
(αi

0), (α
i
j)
)
=
(
(A∗ωi

0), (A
∗ωi

j)
)
.

We then have

α4
0 = 0, α2

1 ∧ α3
1 ̸= 0.
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Any other Laguerre frame field Â on U is given by Â = AX(d; b;x), where
X = X(d; b;x) : U → L0 is a smooth map, and α̂ and α are related by
α̂ = X−1αX +X−1dX.

A Laguerre frame field A along F is called a middle frame field if there
exist smooth functions p1, p2, p3, q1, q2 : U → R such that α = ((αi

0), (α
i
j))

takes the form

(2.12)

( 0
α2
0

α3
0
0

)
,

2q2α2
0−2q1α3

0 p1α2
0+p2α3

0 p2α2
0+p3α3

0 0

α2
0 0 −q1α2

0−q2α3
0 p1α2

0+p2α3
0

−α3
0 q1α2

0+q2α3
0 0 p2α2

0+p3α3
0

0 α2
0 −α3

0 −2q2α2
0+2q1α3

0

,
with α2

0 ∧ α3
0 > 0; (α2

0, α
3
0) is called the middle coframe of F . The existence

of a middle frame field along F was proved in [28], under the nondegeneracy
assumption. The smooth functions q1, q2, p1, p2, p3 form a complete system
of Laguerre invariants for F and satisfy the following structure equations:

dα2
0 = q1α

2
0 ∧ α3

0, dα3
0 = q2α

2
0 ∧ α3

0,(2.13)

dq1 ∧ α2
0 + dq2 ∧ α3

0 = (p3 − p1 − q1
2 − q2

2)α2
0 ∧ α3

0,(2.14)

dq1 ∧ α3
0 − dq2 ∧ α2

0 = −p2α2
0 ∧ α3

0,(2.15)

dp1 ∧ α2
0 + dp2 ∧ α3

0 = (−3q1p1 − 4q2p2 + q1p3)α
2
0 ∧ α3

0,(2.16)

dp2 ∧ α2
0 + dp3 ∧ α3

0 = (−3q2p3 − 4q1p2 + q2p1)α
2
0 ∧ α3

0.(2.17)

The vector a0 is independent of the middle frame field A = (a0, a) and is
therefore globally defined on M .

Definition 2.2. The Laguerre Gauss map (L-Gauss map) of the nondegen-
erate Legendre immersion F :M → Λ is the smooth map

σF :M → R4
1

defined locally by σF := a0 : U → R4
1, where A = (a0, a) : U → L is a middle

frame field along F .

Remark 2.3. If A = (a0, a) is a middle frame field along F and U is con-
nected, the only other middle frame field on U is given by

Ã = (a0, a1,−a2,−a3, a4).

Under this frame change, the invariants p1, p2, p3, q1, q2 transform by

q̃1 = −q1, q̃2 = −q2, p̃1 = p1, p̃2 = p2, p̃3 = p3.

Thus, there are well defined global functions j, w :M → R such that locally

j =
1

2
(p1 − p3), w =

1

2
(p1 + p3).

We recall that a nondegenerate Legendrian immersion F : M → Λ is
L-minimal if and only if p1 + p3 = 0 on M (cf. [28]).
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2.4. L-isothermic surfaces. We recall that a nondegenerate Legendrian
immersion F :M → Λ is L-isothermic if there exist local coordinates which
simultaneously diagonalize the definite pair of quadratic forms ⟨da0, da0⟩ =
(α2

0)
2 + (α3

0)
2 and ⟨da0, da1⟩ = (α2

0)
2 − (α3

0)
2 and which are isothermal with

respect to ⟨da0, da0⟩. If f :M → R3 is an immersed surface without umbilic
and parabolic points, oriented by the unit normal field n, the L-isothermic
condition amounts to the existence of isothermal (conformal) curvature line
coordinates for the pair of quadratic forms III = dn ·dn and II = df ·dn. In
[29], it is shown that F is L-isothermic if and only if p2 vanishes identically on
M . In this case, there exist isothermal curvature line coordinates z = x+ iy
such that the middle coframe (α2

0, α
3
0) takes the form

α2
0 = eudx, α3

0 = eudy,

for a smooth function u on M . The function Φ = eu is called the Blaschke
potential of F .

Accordingly, from (2.13), (2.14) and (2.15) it follows that

q1 = −e−uuy, q2 = e−uux,(2.18)

p1 − p3 = −e−2u∆u.(2.19)

Moreover, using (2.16) and (2.17) yields

d
(
e2u(p1 + p3)

)
= −e2u

{(
e−2u∆u

)
x
+ 4ux(e

−2u∆u)
}
dx

+ e2u
{
(e−2u∆u)y + 4uy(e

−2u∆u)
}
dy.

(2.20)

The integrability condition of (2.20) is the so-called Blaschke equation,

(2.21) ∆
(
e−u(eu)xy

)
= 0,

which can be viewed as the completely integrable (soliton) equation of L-
isothermic surfaces [30, 31].

Conversely, let U be a simply connected domain in C, and let Φ = eu be
a solution to the Blaschke equation (2.21). It follows that the right hand
side of (2.20) is a closed 1-form, say ηΦ. Thus, ηΦ = dK, for some function
K determined up to an additive constant. If we let

(2.22) w = Ke−2u, j = −1

2
e−2u∆u,

the 1-form defined by

α =

(( 0
eudx
eudy
0

)
,

( 2du (w+j)eudx (w−j)eudy 0
eudx 0 uydx−uxdy (w+j)eudx
−eudy −uydx+uxdy 0 (w−j)eudy

0 eudx −eudy −2du

))
satisfies the Maurer–Cartan integrability condition

dα+ α ∧ α = 0

and then integrates to a map A = (x, a) : U → L, such that dA = Aα. The
map F : U → Λ defined by

F = [x, a1]
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is a smooth Legendre immersion and A is a middle frame field along F .
Thus, F is an L-isothermic immersion (unique up to Laguerre equivalence)
and Φ is its Blaschke potential.

If, for any m ∈ R, we let

(2.23) wm = w+me−2u, jm = j = −1

2
e−2u∆u,

then the 1-form defined by

α(m) =

(( 0
eudx
eudy
0

)
,

( 2du (wm+jm)eudx (wm−jm)eudy 0
eudx 0 uydx−uxdy (wm+jm)eudx
−eudy −uydx+uxdy 0 (wm−jm)eudy

0 eudx −eudy −2du

))
satisfies the Maurer–Cartan integrability condition

dα(m) + α(m) ∧ α(m) = 0,

so that there exists a smooth map A(m) = (x(m), a(m)) : U → L, such that

dA(m) = A(m)α(m). The map Fm : U → Λ, given by Fm = [x(m), a
(m)
1 ], is

a smooth Legendre immersion and A(m) is a middle frame field along Fm.
Thus, Fm is an L-isothermic immersion (unique up to Laguerre equivalence)
with the same Blaschke potential Φ as F = F0. Then there exist a 1-
parameter family of non-equivalent L-isothermic immersions Fm, all of which
have the same Blaschke potential Φ.

Actually, any other nondegenerate L-isothermic immersion having Φ as
Blaschke potential is Laguerre equivalent to Fm, for some m ∈ R.

Definition 2.4. Two L-isothermic immersions F, F̃ which are not Laguerre
equivalent are said to be T -transforms (spectral deformations) of each other
if they have the same Blaschke potential.

Remark 2.5. The spectral family Fm constructed above describes all T -
fransforms of F = F0. In fact, any nondegenerate T -transform of F is
Laguerre equivalent to Fm, for some m ∈ R. Such a 1-parameter family
of L-isothermic surfaces amounts to the family of second order Laguerre
deformations of F in the sense of Cartan ([28, 29]).

2.5. The geometry of the L-Gauss map. Given the identification of the
space of L-spheres with Minkowski 4-space R4

1, an immersion σ : M → R4
1

of a surface M into R4
1 is called a sphere congruence. A Legendre immersion

F = (f, n) is said to envelope the sphere congruence σ if, for each p ∈ M ,
the L-sphere represented by σ(p) and the oriented plane π(n(p), f(p)) are
in oriented contact at f(p). If σ is a spacelike immersion, there exist two
enveloping surfaces [5].

For a nondegenerate Legendre immersion F :M → Λ, the L-Gauss map

σF :M → R4
1, p 7→ σF (p) := a0(p)

defines a spacelike immersion (cf. [28]) which corresponds to the classical
middle sphere congruence of F (cf. [5, 28]).
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The middle frame field A along F is adapted to the L-Gauss map σF . In
fact, if TR4

1 denotes the tangent bundle of R4
1, then the bundle induced by

σF over M splits into the direct sum

σ∗F (TR4
1) = T (σF )⊕N(σF ),

where T (σF ) = span {a2, a3} is the tangent bundle of σF and N(σF ) =
span {a1, a4} its normal bundle.

The first fundamental form of σF , i.e., the metric induced by σF on M ,
has the expression

gσ = ⟨dσF , dσF ⟩ = (α2
0)

2 + (α3
0)

2,

and α2
0, α

3
0 defines an orthonormal coframe field on M .

As dσF (TM) = span {a2, a3}, it follows from (2.4) that

α1
0 = 0 = α4

0.

From the exterior derivative of these equations, we have

0 = dα1
0 = −α1

2 ∧ α2
0 − α1

3 ∧ α3
0,

0 = dα4
0 = −α4

2 ∧ α2
0 − α4

3 ∧ α3
0

and then, by Cartan’s Lemma,

αν
i = hνi2α

2
0 + hνi3α

3
0, hνij = hνji ν = 1, 4; i, j = 2, 3,

where the functions hνij are the components of the second fundamental form
of σF ,

Π =
∑

i,j=2,3

h1ijα
i
0α

j
0 ⊗ a4 +

∑
i,j=2,3

h4ijα
i
0α

j
0 ⊗ a1.

From (2.12), it follows that

(h1ij) =

(
1 0
0 −1

)
, (h4ij) =

(
p1 p2
p2 p3

)
.

The mean curvature vector of σF is half the trace of Π with respect to gσ,

2H = (p1 + p3)a1.

Remark 2.6. Note that H is a null section of the normal bundle N(σF ), i.e.,
⟨H,H⟩ = 0. Moreover, H ≡ 0 onM if and only if p1+p3 vanishes identically
on M if and only if the Legendrian immersion F :M → Λ is L-minimal (cf.
[28]).

With respect to the null frame field {a1, a4}, the normal connection ∇⊥

in the normal bundle N(σ) of σ is given by

∇⊥a1 = α1
1 ⊗ a1, ∇⊥a4 = −α1

1 ⊗ a4.

In particular, we have

(2.24) 2∇⊥H =
[
d(p1 + p3) + (p1 + p3)α

1
1

]
a1,

so that the parallel condition ∇⊥H = 0 takes the form

(2.25) d(p1 + p3) + 2(p1 + p3)(q2α
2
0 − q1α

3
0) = 0.
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3. The proof of Theorem A

In this section, for any nondegenerate Legendre immersion F : M → Λ,
we introduce a quartic differential QF and a quadratic differential PF . The-
orem A will be proved using some results about Legendre immersions with
holomorphic QF (cf. Section 3.1) and the interpretation of such immersions
as T -transforms of L-minimal isothermic surfaces (cf. Section 3.2).

3.1. Holomorphic differentials for Legendre immersions. Let M be
an oriented surface and let F : M → Λ be a nondegenerate Legendrian
immersion into the Laguerre space. Let A : M → L be the middle frame
field along F and let α = A−1dA denote its Maurer–Cartan form. The metric
(α2

0)
2 + (α3

0)
2 and the area element α2

0 ∧ α3
0 induced by A determine on M

an oriented conformal structure and hence, by the existence of isothermal
coordinates, a unique compatible complex structure which makes M into
a Riemann surface. In terms of the middle frame field A, the complex
structure is characterized by the property that the complex-valued 1-form

(3.1) φ = α2
0 + iα3

0

is of type (1, 0).

Definition 3.1. Let F :M → Λ be a nondegenerate Legendrian immersion.
The complex-valued quartic differential form given by

(3.2) QF = Qφ4, Q :=
1

2
(p1 − p3)− ip2,

and the complex-valued quadratic differential form given by

(3.3) PF = Pφ2, P := p1 + p3

are globally defined on the Riemann surface M .

Remark 3.2. The quartic differential QF was considered by the authors for
L-minimal surfaces [28]. For L-minimal surfaces, QF is holomorphic. The
quadratic differential PF vanishes exactly for L-minimal surfaces.

We now collect some useful facts about these differentials. We begin with
a simple observation.

Lemma 3.3. The quartic differential QF is holomorphic if and only if

(3.4) dQ ∧ φ = −4(q2α
2
0 − q1α

3
0)Q ∧ φ.

Proof. Taking the exterior derivative of (3.1) and using the structure equa-
tions give

(3.5) dφ = (q2α
2
0 − q1α

3
0) ∧ φ.

Let z be a local complex coordinate on M , so that

(3.6) φ = λdz, λ ̸= 0.

Then, locally,
QF = Qλ4(dz)4.
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Exterior differentiation of (3.6) and use of (3.5) give

(3.7)
(
dλ− λ(q2α

2
0 − q1α

3
0)
)
∧ φ = 0.

By (3.7), it is easily seen that condition (3.4) holds if and only if

d(Qλ4) ∧ φ = λ4
[
dQ+ 4(q2α

2
0 − q1α

3
0)Q

]
∧ φ = 0,

that is, if and only if ∂
∂z̄ (Qλ

4) = 0.
�

Next, we prove the following.

Proposition 3.4. Let F : M → Λ be a nondegenerate Legendrian immer-
sion. Then:

(1) QF is holomorphic if and only if the L-Gauss map of F has parallel
mean curvature vector.

(2) If QF is holomorphic, then PF is holomorphic.
(3) If QF is holomorphic and PF is non-zero, then F is L-isothermic.
(4) If QF = Qφ4 is holomorphic and PF = Pφ2 ̸= 0, then

Q = cP 2,

for a real constant c.

Proof. (1) It suffices to prove that (3.4) is equivalent to the parallel condition
equation (2.25). Writing out the left and right hand side of (3.4) using the
structure equations, we get

dQ ∧ φ = −1

2
(dp1 + dp3) ∧ α2

0 +
i

2
(dp1 + dp3) ∧ α3

0

+ (q1p3 − 3q1p1 − 4q2p2)α
2
0 ∧ α3

0 + i(3q2p3 + 4q1p2 − q2p1)α
2
0 ∧ α3

0

and

−4(q2α
2
0 − q1α

3
0)Q ∧ φ = [2q1p3 − 2q1p1 − 4q2p2]α

2
0 ∧ α3

0

+ i [2q2p3 + 4q1p2 − 2q2p1)]α
2
0 ∧ α3

0.

Thus, (3.4) is equivalent to

−1

2
(dp1 + dp3) ∧ α2

0 − (q1p1 + q1p3)α
2
0 ∧ α3

0 = 0,

1

2
(dp1 + dp3) ∧ α3

0 + (q2p3 + q2p1)α
2
0 ∧ α3

0 = 0,

which in turn is equivalent to the parallel condition

d(p1 + p3) + 2(p1 + p3)(q2α
2
0 − q1α

3
0) = 0,

as claimed.
(2) Observe that the exterior derivative of φ can be written as

(3.8) dφ = (q2α
2
0 − q1α

3
0) ∧ φ.

By reasoning as above, PF is holomorphic if and only if

(3.9) dP ∧ φ = −2(q2α
2
0 − q1α

3
0)P ∧ φ.
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The claim follows from the condition dP + 2P (q2α
2
0 − q1α

3
0) = 0, which

amounts to the condition that QF be holomorphic.
(3) If PF is non-zero, i.e., F is not L-minimal, it follows from (2.25) that

dα1
1 = 0. On the other hand, the structure equations give

dα1
1 = 2p2α

2
0 ∧ α3

0,

which implies p2 = 0. Thus F is L-isothermic.
(4) Under the given hypotheses, it follows from assertion (3) that p2 = 0

and then that condition (3.4) can be written

dQ+ 4µQ ≡ 0, mod φ,

where µ = q2α
2
0 − q1α

3
0 and dφ = µ ∧ φ. Moreover, condition (3.9) that PF

be holomorphic can be written

dP + 2µP ≡ 0, mod φ.

Actually, dP + 2µP = 0. It then follows that

d

(
Q

P 2

)
≡ 0, mod φ.

This proves that the real-valued function Q/P 2 is holomorphic, and hence
a constant function, as claimed. �

We are now ready to prove our next result.

Proposition 3.5. The quartic differential QF of a nondegenerate Legendre
immersion F : M → Λ is holomorphic if and only if the immersion is
L-minimal, in which case the quadratic differential PF vanishes on M , or
is L-isothermic with Blaschke potential Φ = eu satisfying the second order
partial differential equation

(3.10) ∆u = ce−2u,

where c is a real constant.

Proof. If QF is holomorphic and the holomorphic quartic differential PF

vanishes, then F is L-minimal. If instead PF is nowhere vanishing, then F
is L-isothermic by Proposition 3.4 (3). Let z = x + iy : U ⊂ M → C be
an isothermic chart, so that the middle coframing (α2

0, α
3
0) takes the form

α2
0 = eudx and α3

0 = eudy, where Φ = eu is the Blaschke potential (cf.
Section 2.4).

From (2.18) and (2.19) we get

QF =
1

2
(p1 − p3)ω

4 = je4u(dz)4 = −1

2
(e−2u∆u)e4u(dz)4.

Since QF is holomorphic,

(e−2u∆u)e4u = c,

for a constant c ∈ R, that is
∆u = ce−2u.
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Conversely, if we assume that Φ = eu satisfy the equation (3.10), then the
right hand side of (2.20) vanishes identically, which implies that p1 + p3 =
ke−2u, for a constant k ∈ R. A direct computation shows that p1 + p3 =
ke−2u satisfies the equation

d(p1 + p3) + 2(p1 + p3)(q2α
2
0 − q1α

3
0) = 0.

This expresses the fact that the L-Gauss map of F , σF = a0, has parallel
mean curvature vector, or equivalently, that the quartic differential QF is
holomorphic. �

3.2. Special L-isothermic surfaces and Laguerre deformation.

Definition 3.6. A nondegenerate L-isothermic immersion F : M → Λ is
called special if its Blaschke potential Φ = eu satisfies the second order
partial differential equation (3.10) of Theorem 3.5, i.e.,

∆u = ce−2u, c ∈ R.

The constant c is called the character of the special L-isothermic surface F .

Example 3.7 (L-minimal isothermic surfaces). In terms of the Laguerre
invariants, L-minimal surfaces are characterized by the condition p1+p3 = 0
(cf. [28]). Therefore, if a nondegenerate L-isothermic immersion F :M → Λ
is also L-minimal, the right hand side of (2.20) is identically zero. This
implies

d
(
e2u∆u

)
= 0,

and hence the following.

Proposition 3.8. Any nondegenerate L-minimal isothermic immersion F :
M → Λ is special L-isothermic.

Other examples of L-minimal isothermic surfaces include L-minimal canal
surfaces [27, 31].

3.2.1. Special L-isothermic surfaces as T -transforms. Let F : M → Λ be a
special L-isothermic immersion. From the proof of Theorem 3.5, we have
that the invariants j and w of F are given by

(3.11) w = ke−2u, j = −1

2
e−2u∆u,

where k is a real constant.

Definition 3.9. The constant k will be referred to as the deformation (or
spectral) parameter of the special L-isothermic immersion F .

We have the following.

Proposition 3.10. Any special L-isothermic immersion in Laguerre space
is the T -transform of an L-minimal isothermic immersion.
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Proof. According to Section 2.4, there exists, up to Laguerre equivalence, a
unique L-isothermic immersion F with Blaschke potential Φ = eu satisfying
(3.10) and with invariant functions

w = 0, j = −1

2
e−2u∆u = − c

2
e−4u.

Since w = 0, we have that F is L-minimal. Next, let F̃ be a special L-
isothermic immersion with the same Blaschke potential Φ as F and with
deformation parameter k. The discussion in Section 2.4 implies that F̃ is a
Tm-transform of F . The invariants of F̃ are then given by

(3.12) wm = me−2u, jm = j = − c
2
e−4u.

From (3.11) and (3.12), it follows that m = k. �

From Proposition 3.5, Proposition 3.8, and Proposition 3.10, we get the
first main results of the paper.

Theorem A. The quartic differential QF of a nondegenerate Legendre im-
mersion F : M → Λ is holomorphic if and only if the immersion F is
L-minimal, in which case PF vanishes, or is locally the T -transform of an
L-minimal isothermic surface.

In particular, if F has holomorphicQF and zero PF , then F is L-isothermic
if and only if it is L-minimal isothermic.

4. The proof of Theorem B

In this section we characterize L-minimal isothermic surfaces and their
T -transforms (i.e., special L-isothermic surfaces with non-zero deformation
parameter) in terms of the geometry of their L-Gauss maps. Theorem B
will be proved using these characterizations, which are given, respectively,
in Proposition 4.1 and Proposition 4.4.

4.1. The geometry of L-minimal isothermic surfaces. The property
of being L-minimal and L-isothermic is reflected in the differential geometry
of the L-Gauss map of F . In the following result, the terminology used for
hyperplanes of R4

1 is that introduced in Section 2.2.

Proposition 4.1. A nondegenerate L-minimal immersion F : M → Λ is
L-isothermic if and only if its L-Gauss map σF : M → R4

1 is restricted to
lie in the hyperplane of R4

1 defined by the equation

⟨σF −O, v⟩ = 0,

for some point O and some constant vector v. In particular, the L-Gauss
map σF of a nondegenerate L-minimal isothermic immersion F has zero
mean curvature in some spacelike, timelike, or (degenerate) isotropic hyper-
plane of R4

1.
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Proof. Let A = (a0, a) be a middle frame field along F and let z = x + iy
be an isothermic chart, so that α2

0 = eudx, α3
0 = eudy, where Φ = eu is the

Blaschke potential. Since p1 + p3 = 0 and p2 = 0, by (2.16) and (2.17), we
have

(4.1) dp1 + 2p1α
1
1 = 0.

Next, define

v := e2u (−p1a1 + a4) .

By exterior differentiation of v and use of (4.1), it is easily verified that
dv = 0, i.e., v is a constant vector. This, combined with the fact that
dσF = α2

0a2 + α3
0a3, gives

d⟨σF , v⟩ = ⟨dσF , v⟩ = 0,

that is,

⟨σF −O, v⟩ = 0,

for some point O ∈ R4
1, which implies that σF actually lies in the hyper-

plane of R4
1 defined by O and the vector v. Depending on whether v is

timelike, spacelike, or isotropic, σF lies in a spacelike, timelike, or (degener-
ate) isotropic hyperplane of R4

1.
Conversely, if ⟨σF −O, v⟩ = 0, for some point O ∈ R4

1 and some constant
vector v, then ⟨dσF , v⟩ = 0, which implies v = ℓ1a1 + ℓ4a4, for some smooth
functions ℓ1, ℓ4. Exterior differentiation of v = const and use of the structure
equations yields

dℓ1 + ℓ1α
1
1 = 0, (ℓ1 + ℓ4p1)α

2
0 + ℓ4p2α

3
0 = 0,

ℓ4p2α
2
0 − (ℓ1 + ℓ4p1)α

3
0 = 0, dℓ4 − ℓ4α

1
1 = 0,

from which follows that dα1
1 = 0. On the other hand, by (2.12) and (2.15),

dα1
1 = 2p2α

2
0 ∧ α3

0,

which implies p2 = 0, and hence F is L-isothermic.
The last claim follows from the fact that σF lies in a hyperplane, a totally

geodesic submanifold, and from the fact that, being F L-minimal, σF has
zero mean curvature vector, that is, H = 0 (cf. also [2], Remark 3). �

Remark 4.2. From the previous proof, it follows that

⟨v, v⟩ = 2p1e
4u,

and that the equation (3.10) satisfied by the Blaschke potential Φ = eu

becomes

(4.2) ∆u = −⟨v, v⟩e−2u.

Thus, according to whether p1 is negative, positive, or zero, σF lies in some
spacelike, timelike, or isotropic hyperplane of R4

1.
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Remark 4.3. In the language of Section 2.2, Proposition 4.1 says that the L-
spheres represented by the L-Gauss map of an L-minimal isothermic surface
are restricted to lie in a planar system of L-spheres. The description of
L-minimal isothermic surfaces goes back to the work of Blaschke (cf. [4]
(1925) and [5], § 81), where it is proved that, up to L-equivalence, they
either correspond to minimal surfaces in Euclidean space, surfaces whose
middle sphere congruence is tangent to a fixed plane in Euclidean space, or
surfaces whose middle spheres have centers lying on a fixed plane. More
recently, it has been proved (cf. [41]) that L-minimal isothermic surfaces
are locally Laguerre equivalent to surfaces with vanishing mean curvature in
R3, R3

1, or a (degenerate) isotropic 3-space R3
0 of signature (2, 0). See also

[39] for other results on L-minimal isothermic surfaces.

4.2. The geometry of special L-isothermic surfaces. We now charac-
terize special L-isothermic surfaces with non-zero deformation parameter in
terms of their L-Gauss maps. This is given by the following result.

Proposition 4.4. Let F :M → Λ be a nondegenerate Legendre immersion.
The following two statements are equivalent:

(1) F has holomorphic QF and non-zero PF .
(2) F is L-isothermic and its L-Gauss map σF is restricted to lie on the

hypersurface of R4
1 defined by the equation

(4.3) ⟨σF −O, σF −O⟩ = costant,

for some point O of R4
1.

Proof. Let us show that (2) implies (1). Let A = (a0, a) be a middle frame
field along F . Differentiation of (4.3) yields

⟨dσF , σF −O⟩ = 0,

which implies

(4.4) σF −O = ℓ1a1 + ℓ4a4,

for smooth functions ℓ1, ℓ2. Differentiation of (4.4) and use of the structure
equations, taking into account that p2 = 0, yields

α2
0 a2 + α3

0 a3 = dℓ1a1 + dℓ4a4 + ℓ1da1 + ℓ4da4

=
(
dℓ1 + ℓ1α

1
1

)
a1 + (ℓ1 + ℓ4p1)α

2
0 a2

+ (−ℓ1 + ℓ4p3)α
3
0 a3 +

(
dℓ4 − ℓ4α

1
1

)
a4,

which amounts to

ℓ1 + ℓ4p1 = 1, −ℓ1 + ℓ4p3 = 1,(4.5)

dℓ1 + ℓ1α
1
1 = 0, dℓ4 − ℓ4α

1
1 = 0.(4.6)

The consistency condition of (4.5), p1+p3 ̸= 0, implies PF non-zero. Solving
(4.5) for ℓ1, ℓ4, we get

ℓ1 =
p3 − p1
p1 + p3

, ℓ4 =
2

p1 + p3
.
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Now, it is readily seen that equation dℓ4 − ℓ4α
1
1 = 0 amounts the condition

that QF be holomorphic. Using this and Proposition 3.4 (4), one checks
that equation dℓ1 + ℓ1α

1
1 = 0 is identically satisfied.

Conversely, if (1) holds, by Proposition 3.4 (3), F is L-isothermic. Now,
since PF is non-zero, equations (4.5) are consistent and

ℓ1 =
p3 − p1
p1 + p3

, ℓ4 =
2

p1 + p3
.

By Proposition 3.4 (4), we have (p3 − p1) = c(p1 + p3)
2, for a constant c, so

that
dℓ1 + ℓ1α

1
1 = c

[
d(p1 + p3) + (p1 + p3)α

1
1

]
= 0.

We also have

dℓ4 − ℓ4α
1
1 =

−2

(p1 + p3)2
[
d(p1 + p3) + (p1 + p3)α

1
1

]
= 0,

which implies that equations (4.6) are identically satisfied. There exist then
functions ℓ1, ℓ4 such that

d(σF − ℓ1a1 − ℓ4a4) = 0.

Thus,
σF −O = ℓ1a1 + ℓ4a4,

for some pointO ∈ R4
1, which is equivalent to the condition (4.3), as required.

�
Remark 4.5. Observe that, with the notation used above,

(4.7) ⟨σF −O, σF −O⟩ = costant =
4(p1 − p3)

(p1 + p3)2
=

2j

w2
.

Remark 4.6. In the language of Section 2.2, the previous proposition says
that the L-spheres represented by the L-Gauss map of a nondegenerate
Legendre immersion F with holomorphic QF and non-zero PF are restricted
to lie in a spherical system of L-spheres.

For r > 0 and some point O ∈ R4
1, we let

S31(O, r2) =
{
x ∈ R4

1 : ⟨x−O, x−O⟩ = 1/r2
}

denote the timelike pseudo-hypersphere centered at O, a translate of de Sitter
3-space S31(r2) ⊂ R4

1. The Lorentzian metric on R4
1 restricts to a Lorentzian

metric on S31(O, r2) having constant sectional curvature r2.

In the same way, for r > 0 and some point O ∈ R4
1, we let

H3
0(O,−r2) =

{
x ∈ R4

1 : ⟨x−O, x−O⟩ = −1/r2
}

denote the spacelike pseudo-hypersphere centered at O. The Lorentzian met-
ric on R4

1 restricts to a Riemannian metric on H3
0(O,−r2) of constant sec-

tional curvature −r2. The hyperquadric H3
0(O,−r2) consists of two com-

ponents congruent to each other under an isometry of R4
1: the component

H3
+(O,−r2) through O + t

(
1√
2r
, 0, 0, 1√

2r

)
, and the component H3

−(O,−r2)
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through O+t
(

−1√
2r
, 0, 0, −1√

2r

)
. The components H3

+(O,−r2) and H3
−(O,−r2)

are translates, respectively, of the future and past embeddings of hyperbolic
3-space H3(−r2) in R4

1.

The isotropic pseudo-hypersphere centered at O is the affine lightcone at
O defined by

L3(O) =
{
x ∈ R4

1 : ⟨x−O, x−O⟩ = 0
}
.

Equivalently, L3(O) = O + L3, where L3 =
{
x ∈ R4

1 : ⟨x, x⟩ = 0
}
. The

Lorentzian metric on R4
1 restricts to a degenerate metric of signature (2, 0)

on L3(O)\{O}. The two components L3
+(O) and L3

−(O) of the hypersurface
L3(O)\{O} are translates of the time-oriended lightcones L3

+ and L3
− of R4

1

(cf. (2.1)).

We are now in a position to prove our second main result.

Theorem B. Let F : M → Λ be a nondegenerate Legendre immersion.
Then:

(1) F is L-minimal and L-isothermic if and only if its L-Gauss map
σF : M → R4

1 has zero mean curvature in some spacelike, timelike,
or (degenerate) isotropic hyperplane of R4

1.
(2) F has holomorphic QF and non-zero PF if and only if its L-Gauss

map σF : M → R4
1 has constant mean curvature H = r in some

H3
±(O,−r2) ⊂ R4

1, S31(O, r2) ⊂ R4
1, or has zero mean curvature in

some L3
±(O) ⊂ R4

1.

In addition, if the L-Gauss map of F takes values in a spacelike (respectively,
timelike, isotropic) hyperplane, then the L-Gauss maps of the T -transforms
of F take values in a translate of a hyperbolic 3-space (respectively, de Sitter
3-space, time-oriented lightcone).

Proof. (1) is a consequence of Proposition 4.1. (2) From the preceding dis-
cussion and by Proposition 4.4, the L-Gauss map σF takes values in a com-
ponent of some H3

0(O,−r2), in some S31(O, r2), or in a component of some
L3(O) \ {O}, that is, σF lies in some (translate of) H3(−r2), S31(r2), or in
some translate of a time-oriented lightcone of R4

1. From this and the fact
that σF has isotropic mean curvature vector field, i.e., ⟨H,H⟩ = 0, it fol-
lows that the mean curvature of σF is constant, of values H = r or zero, as
indicated (cf. also [2], Remark 3).

The last claim is a consequence of (3.12), (4.2) and (4.7). �

5. Laguerre deformation and Lawson correspondence

In [24], Lawson proved that there is an isometric correspondence between
certain constant mean curvature surfaces in space forms. Let M3(κ) denote
the simply-connected, 3-dimensional space form of constant curvature κ.
Let M be a simply-connected surface and let f1 : M → M3(κ1) be an
immersion of constant mean curvature H1, with induced metric I and shape
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operator S1. Then, for each constant κ2 ≤ H2
1 + κ1, the pair I, S2 :=

S1+(H2−H1)Id satisfies the Gauss and Codazzi equations for an immersion

f2 :M → M3(κ2) of constant mean curvature H2 =
√
H2

1 + κ1 − κ2, which
is isometric to f1.

3 The isometric immersions f1, f2 are said to be related
by the Lawson correspondence. When f1 is a minimal immersion, f2 is also
referred to as a constant mean curvature cousin of f1. In particular, minimal
surfaces in R3 (respectively, S3) correspond to constant mean curvature one
surfaces in H3(−1) (respectively, R3). For κ1 = κ2 and H1 = H2 we get the
family of associated constant mean curvature H1 surfaces. See [12, 43] for
special cases of the Lawson correspondence.

In [36], Palmer proved that there exists a Lawson correspondence be-
tween certain constant mean curvature spacelike surfaces in Lorentzian space
forms. In particular, there is a correspondence between maximal (H = 0)
spacelike surfaces in Minkowski 3-space R3

1 and spacelike surfaces of con-
stant mean curvature ±1 in de Sitter 3-space S31(1). See [1, 2, 25] for the
discussion of special cases of this correspondence.

Example 5.1 (Deformation of special L-isotermic surfaces with c > 0). Let
F : M → Λ be a nondegenerate special L-isothermic surface with Blaschke
potential Φ = eu satisfying the equation

∆u = ce−2u,

with character c > 0, and deformation (spectral) parameter k > 0. This
implies

w = ke−2u, j = −1

2
e−2u∆u.

According to Proposition 4.4 and (4.7), the L-Gauss map σ of F has constant
mean curvature H = k√

c
into (a translate of) the hyperbolic 3-space of

constant curvature κ = −k2

c . For each m ∈ R+, consider the Tm-transform
Fm of F . Again by Proposition 4.4 and (4.7), the L-Gauss map σm of Fm

is restricted to lie on the hyperquadric centered at O given by

⟨σm −O, σm −O⟩ = 2jm
w2

m

= − c

(m+ k)2
,

for some O ∈ R4
1. Thus, σm has constant mean curvature Hm = m+k√

c
in (a

translate of) the hyperbolic 3-space of curvature κm = − (m+k)2

c . Note that

κm +H2
m = κ+H2 = 0

does not depend on m. We have then established that the L-Gauss maps
of the T -transforms of special L-isothermic surfaces with positive character
and positive deformation parameter all have constant mean curvature in (a
translate of) some hyperbolic 3-space. Moreover, since the metrics induced
by σm do not depend on m, i.e., gσm = gσ, we may conclude that the

3Actually, there exists a 2π-periodic family of isometric immersions f2,θ : M →
M3(κ2), the classical associated family.
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T -transformation of such special L-isothermic surfaces can be viewed, via
their L-Gauss maps, as the Lawson correspondence between certain constant
mean curvature surfaces in different hyperbolic 3-spaces.

If F = F0 is L-minimal isothermic, its L-Gauss map σ0 is minimal in
(a translate of) Euclidean space R3. In this case, for each m ∈ R∗, the
L-Gauss map σm has constant mean curvature m/

√
c in hyperbolic 3-space

H3(−m2/c). The family {σm}m∈R∗ can be viewed as the 1-parameter family
of isometric immersions associated with the minimal immersion σ0 consid-
ered by Umehara–Yamada [43]. This provides a Laguerre geometric inter-
pretation of the Umehara–Yamada isometric perturbation of minimal sur-
faces in Euclidean space into constant mean curvature surfaces in hyperbolic
3-space. A Möbius geometric interpretation of the Umehara–Yamada iso-
metric perturbation was given in [19].

Example 5.2 (Deformation of special L-isotermic surfaces with c < 0). If
F : M → Λ is a nondegenerate special L-isothermic surface with Blaschke
potential Φ = eu satisfying the equation

∆u = ce−2u,

with character c < 0, and deformation (spectral) parameter k > 0, then

w = ke−2u, j = −1

2
e−2u∆u.

By Proposition 4.4 and (4.7), the L-Gauss map σ has constant mean cur-
vature H = k√

−c
into (a translate of) the de Sitter 3-space of constant

curvature κ = −k2

c . For each m ∈ R+, the L-Gauss map σm of the Tm-
transform Fm is restricted to lie on the hyperquadric centered at O given
by

⟨σm −O, σm −O⟩ = 2jm
w2

m

= − c

(m+ k)2
,

for some O ∈ R4
1. Thus, σm has constant mean curvature Hm = m+k√

−c
in (a

translate of) the de Sitter 3-space of curvature κm = − (m+k)2

c . Note that

κm +H2
m = κ+H2

does not depend on m. We have then established that the L-Gauss maps
of the T -transforms of special L-isothermic surfaces with negative charac-
ter and positive deformation parameter all have constant mean curvature
in (a translate of) some de Sitter 3-space. As above, the metrics induced
by σm do not depend on m, i.e., gσm = gσ. Thus, the T -transformation
of special L-isothermic surfaces with negative character and positive defor-
mation parameter can be viewed, via their L-Gauss maps, as the Lawson
correspondence between certain constant mean curvature spacelike surfaces
in different de Sitter 3-spaces.

If F = F0 is L-minimal isothermic, σ0 is maximal (H0 = 0) in (a translate
of) Minkowski 3-space R3

1. In this case, for each m ∈ R∗, the L-Gauss map
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σm has constant mean curvature m/
√
−c in de Sitter 3-space S3(−m2/c).

This provides a Laguerre geometric interpretation of the Lawson correspon-
dence between maximal spacelike surfaces in Minkowski 3-space and con-
stant mean curvature spacelike surfaces in de Sitter 3-space (cf. Remark 5.4
below).

Example 5.3 (Deformation of special L-isotermic surfaces with c = 0).
Similar considerations hold for special L-isothermic surfaces with charac-
ter c = 0. By considering the L-Gauss maps, the T -transforms of a zero
mean curvature spacelike surface in (a translate of) a time-oriented light-
cone L3

± ⊂ R4
1 all have zero mean curvature in (a translate of) L3

±. In
particular, if σ0 is a zero mean curvature spacelike surface in a (degener-
ate) isotropic hyperplane, then, for each m ∈ R∗, the L-Gauss map σm
has zero mean curvature in some translate of L3

±. As a by-product, the T -
transformation establishes an isometric correspondence between zero mean
curvature spacelike surfaces in a (degenerate) isotropic 3-space and zero
mean curvature spacelike surfaces in a time-oriented lightcone of R4

1. For a
brief introduction to isotropic geometry we refer to [38, 40].

Remark 5.4. The L-Gauss maps of special L-isothermic surfaces are exam-
ples of the so-called surfaces of Bryant type in R4

1 (cf. [2]): a spacelike immer-
sion ψ :M → R4

1 with isotropic mean curvature vector H, i.e., ⟨H,H⟩ = 0,4

and flat normal bundle is called a surface of Bryant type in R4
1 ifM is locally

isometric to some minimal surface in R3 or to some maximal surface in R3
1.

In the context of surfaces of Bryant type, [2] describes an isometric pertur-
bation of constant mean curvature H = r surfaces in H3(−r2) (respectively,
S31(r2)) to minimal (respectively, maximal) surfaces in R3 (respectively, R3

1),
which generalizes that of Umehara-Yamada [43]. By the above discussion,
these isometric deformations can be viewed as special cases of the Laguerre
deformation of L-isothermic surfaces.
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Studi di Parma, Parco Area delle Scienze 53/A, Campus Universitario, I-43124
Parma, Italy

E-mail address: lorenzo.nicolodi@unipr.it


