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Abstract

Excess of uric acid is mainly treated with xanthine oxidase (XO) inhibitors, also called urico-
statics because they block the conversion of hypoxanthine and xanthine into urate. Normally,
accumulation of upstream metabolites is prevented by the hypoxanthine-guanine phosphori-
bosyltransferase (HPRT) enzyme. The recycling pathway, however, is impaired in the pres-
ence of HPRT deficiency, as observed in Lesch-Nyhan disease. To gain insights into the
consequences of purine accumulation with HPRT deficiency, we investigated the effects of
the XO inhibitor allopurinol in Hprt-lacking (HPRT™") mice. Allopurinol was administered in the
drinking water of E12-E14 pregnant mothers at dosages of 150 or 75 pg/ml, and mice sacti-
ficed after weaning. The drug was well tolerated by wild-type animals and heterozygous
HPRT*" mice. Instead, a profound alteration of the renal function was observed in the
HPRT”" model. Increased hypoxanthine and xanthine concentrations were found in the
blood. The kidneys showed a yellowish appearance, diffuse interstitial nephritis, with dilated
tubules, inflammatory and fibrotic changes of the interstitium. There were numerous xanthine
tubular crystals, as determined by HPLC analysis. Oil red O staining demonstrated lipid accu-
mulation in the same location of xanthine deposits. mRNA analysis showed increased
expression of adipogenesis-related molecules as well as profibrotic and proinflammatory
pathways. Immunostaining showed numerous monocyte-macrophages and overexpression
of alpha-smooth muscle actin in the tubulointerstitium. In vitro, addition of xanthine to tubular
cells caused diffuse oil red O positivity and modification of the cell phenotype, with loss of epi-
thelial features and appearance of mesenchymal characteristics, similarly to what was
observed in vivo. Our results indicate that in the absence of HPRT, blockade of XO by allopu-
rinol causes rapidly developing renal failure due to xanthine deposition within the mouse kid-
ney. Xanthine seems to be directly involved in promoting lipid accumulation and subsequent
phenotype changes of tubular cells, with activation of inflammation and fibrosis.
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Introduction

Lesch-Nyhan disease (LND) is a rare X-linked monogenic disorder caused by an inborn error
of nucleotide metabolism. The mutations are localized on the gene HPRT1, which encodes the
enzyme hypoxanthine-guanine phosphoribosyltransferase, a key molecule in recycling purine
bases. Being an X-linked recessive disorder, the disease occurs almost entirely in males; occur-
rence in females is extremely rare [1]. A direct consequence of HPRT deficiency is the aug-
mented degradation of free purines and results in overproduction of the end-product uric
acid, which accumulates in plasma (hyperuricemia) and urine (hyperuricosuria).

Hyperuricemia leads to precipitation of uric acid crystals in certain areas of the body, par-
ticularly in the joints. Hyperuricosuria leads to formation of sandy sludge or stones in the uri-
nary collecting system, causing renal failure if not promptly treated [1]. Though some
advances have been made in recent years, the treatment of choice remains allopurinol, which
has demonstrated efficacy in controlling the overproduction of uric acid in LND patients.
However, the drug blocks the enzyme xanthine oxidase (XDH), thereby increasing the
upstream formation of oxypurines, i.e. xanthine and hypoxanthine, which can be harmful to
cell metabolism [2].

In addition, LND patients exhibit characteristic neurological disorders; they suffer from a
severe motor handicap associated with generalized dystonia. Most of them have cognitive dis-
ability, often not severe. Patients also show an unusual tendency towards pathologic behavior,
including self-injury, with self-biting being particularly prominent [1]. Despite many research
efforts, the pathogenesis of this neurobehavioral syndrome remains poorly understood. In
these patients, the brain appears structurally normal. A dysfunction of the basal ganglia has
been suggested, with dopamine neurons adversely affected and a significant reduction of dopa-
mine secretion [3, 4].

Mouse studies have mainly profited from the generation of HPRT-deficient mice (HPRT ")
[5], which exhibit some of the metabolic abnormalities of LND, including loss of Hprt enzyme
activity, failure in purine recycling, and consequently accelerated synthesis of purines. How-
ever, these mice do not have hyperuricemia and obvious neurobehavioral abnormalities [1].
One possible explanation for the absence of a clear LND phenotype in HPRT”" animals has
been ascribed to the presence of enzyme urate oxidase (UOX), which converts uric acid to the
soluble allantoin that is absent in humans due to evolutionary inactivation [6]. However, sev-
eral clinical studies point to a potential neuroprotective role of uric acid and have demon-
strated a robust inverse correlation between uric acid levels and the clinical progression of
neurological disorders, such as Parkinson’s disease [7, 8]. Also, allopurinol treatment in
humans is not successful against the neurological symptoms of LND patients, despite the
return to normal uricemic levels [9].

Some in vitro analyses support the hypothesis that HPRT deficiency per se alters the tran-
scriptional activity of dopaminergic neurons, resulting in loss of dopamine and functional
damage of the basal ganglia [10], but the absence of neurobehavioral symptoms in HPRT "
mice seems to contradict this possibility.

As allopurinol is administered to LND patients as soon as possible after birth, we hypothe-
sized that allopurinol treated HPRT "~ mice could represent a better model of the human dis-
ease and provide insights into the consequences of free purine accumulation in the presence of
HPRT-deficiency.

Therefore, we decided to administer allopurinol to HPRT™", HPRT""", and wild type
mice. The drug was added to the drinking water of pregnant mothers at E12-E14 at dosages
based on those utilized in UOX”" mice [6] to prevent uric acid deposition and death by renal
failure.
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Materials and methods
Animals and allopurinol treatment

The HPRT-deficient strain (B6.129P2-Hprtb-m3/]) was purchased from The Jackson Labora-
tory (Sacramento, CA, US) and maintained according to the Animal Welfare Guidelines.

This study was carried out in strict accordance with the recommendations in the Guide for
the Care and Use of Laboratory Animals of the National Institutes of Health. The animal pro-
tocol was approved by the Italian Ministry of Health (authorization number 625/2015, released
on July 3, 2015) in compliance with Italian regulation (D.L. vo 26/2014). All efforts were made
to minimize suffering in all procedures and the sacrifice was performed by cervical dislocation.

Breeding conditions were the following: temperature 22-25°C; relative humidity 45-55%;
ventilation 10-15 complete air changes per hour; light/dark cycle 12h/12h; pellet food (Envigo
Teklad 2018, Envigo Rms s.r.], San Pietro al Natisone, Italy) and water ad libitum.

Mice were treated starting from embryonic day 12-14 with allopurinol (Sigma-Aldrich Co.,
St Louis, MO, USA) or vehicle administered continuously in the drinking water to pregnant
females[6], and was continued after birth until sacrifice. Allopurinol was dissolved in 1 N
NaOH at 100 mg/ml concentration and then diluted in the drinking water to the final concen-
tration of 75 pg/ml.

Mice were sacrificed at 1 or 2 months of age. Urine samples were collected from the bladder
and examined by phase contrast and/or stereo microscopy (Leica Microsystems, Wetzlar, Ger-
many). After blood collection, serum was separated and stored at -80°C.

Blood values

Blood urea nitrogen (BUN) and xanthine oxidase activity were determined using commercial
kits according to the manufacturer indications (Sigma-Aldrich Co.). Serum creatinine was
measured by HPLC method. Briefly 12.5 pl of sera were deproteinized by adding 1 ml of 100%
acetonitrile. Samples were then vortexed and centrifuged twice for 20 minutes at 4°C, 16000 g.
After vacuum evaporation of the supernatant fraction, dried samples were suspended in

12.5 ul of 5 mM NaH,PO,, pH 6.4 (mobile phase) and stored at -20°C. Samples were manually
injected by a 10 pl loop on a Prominence HPLC system (Shimadzu, Kyoto, Japan). Analytes
were separated on a SCX column (Zorbax SCX-300 4.6 x 250, Agilent Technologies, Santa
Clara, CA, US) with an isocratic run and revealed at 234 nm and 240 nm. Data were collected
and analyzed by LabSolutions software. The output peaks where identified and quantified by
comparison with chromatographic runs of creatinine standards (Sigma-Aldrich).

Purine HPLC analysis of mouse sera

Mouse sera obtained by centrifugation of the whole blood were stored at -80°C until needed.
Deproteinization was performed by adding 0.4 M perchloric acid at the ratio 1:1.67 (v/v) [11].
Deproteinized samples were incubated on ice overnight and then centrifuged twice for 20 min-
utes at 4°C, 16000 g. The supernatants were transferred in new tubes, and finally stored at
-20°C. Samples (10 pl) were injected on a HPLC system (Prominence Shimadzu, Kyoto,
Japan). Analytes were separated on a reversed phase C18 column (Microsorb-MV 100-5 C18
150x4.6 mm, Agilent Technologies, Santa Clara, CA, US) and revealed at 254 nm and 270 nm.
Chromatographic runs were carried out with a dual mobile phases gradient [11]. The mobile
phase A contained 0.5 mM sodium pentanesulfonate and 10 mM KH,PO,, pH 3.5 and the
mobile phase B has the same composition of phase A in 10% acetonitrile (v/v). The output
peaks where identified and quantified by comparison with chromatographic runs of purine
standards (Sigma Aldrich Co).
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Renal examination

Kidneys were taken and immediately dissected for differential processing. Formalin-fixed sam-
ples were dehydrated and paraffin-embedded. 2-3 yum thick sections were cut using a Microm
HM450 sliding microtome and stained with hematoxylin&eosin, PASand reticulin fibers
impregnation (Gordon Sweet, GW), using commercial kits (Bio Optica Milano S.p.A, Italy).

The presence of collagen fibers was detected applying the Picrosirus-Red (PR) and Masson’s
Trichrome (MT) methods. Briefly, paraffin-embedded sections were dehydrated and stained
with Sirius Red (BDH Chemical Ltd Poole England) 1 mg/ml dissolved in Picric Acid-Satu-
rated Solution 1.3% (Sigma-Aldrich Co.), then rehydrated and mounted with aqueous mount-
ing medium. For the Masson’s Trichrome staining we used a commercial kit (DAKO Italia S.r.
1, Italy).

Quantification of interstitial fibrosis was performed on GW, MT and PR sections from 5
animals per genotype by calculating the percentage of area occupied by the specific staining in
10 fields/section, examined at 200X magnification. Images were recorded by a high-resolution
video camera (Q-Imaging Fast 1394), and quantified by the image analysis software Image-
Pro™Plus (vers.6.3, Media-Cybernetics; Silver Spring, MD, USA).

For crystals evaluation, a piece of the kidney was fixed in absolute ethanol, then diaphanized
with xylene, and paraffin-embedded.

To observe lipid deposits Oil Red O stain was conducted on tissue embedded within OCT
(Bio Optica), then frozen and stored at -80°C. 5 to 8 um thick cryo-sections were then fixed in
10% formalin, briefly washed with running tap water, immersed in 60% isopropanol, and
stained with Oil Red O (Sigma-Aldrich Co.) 3 mg/ml dissolved in isopropanol, followed by
alum haematoxylin. Slides were mounted with glycerol for microscope examination.

Transmission electron microscopy (TEM) was performed on 1 mm® pieces of tissue fixed
in a mixture of paraformaldehyde and glutaraldehyde in 120 mM phosphate buffer, post-fixed
in 1% osmium tetroxide in 120 mM cacodylate buffer, dehydrated, and embedded in Epon-
Araldite resin. Ultra-thin sections were cut and placed on grids, stained by uranyl-acetate and
lead-citrate, and observed under an Energy Filter Transmission Electron Microscope
(EFTEM, ZEISS LIBRA™ 120) equipped with YAG scintillator slow-scan CCD camera.

Kidney stone analysis

Birefringent crystals were isolated from kidney slices using crystallization tools and solubilized
in phosphate-buffered saline (PBS). The solution was treated with 0.4 M perchloric acid over-
night to precipitate protein traces, centrifuged and concentrated before HPLC separation.

Gene analysis

Total RNA from kidneys was extracted using Trizol (Invitrogen Molecular Probes, Carlsbad,
CA, US). RNA concentrations were determined using Nanodrop ND 1000 (Euroclone S.p.A.,
Milan, Italy). One microgram of total RNA was reverse transcribed using MMLV reverse tran-
scriptase (Applied Biosystems, Foster City, CA, USA). The analyses were performed by quanti-
tative Real Time RT-PCR (QRT-PCR) utilizing SYBRGreen Master Mix buffer (Applied
Biosystems). The primers utilized, according to Ohtsubo et al [12] are listed in S1 Table;
GAPDH was used as house-keeping gene.

For the QRT-PCR the amplification steps were: pre-denaturation at 95°C for 10 min, 40
cycles of amplification with denaturation at 95°C for 15 s, annealing at proper temperature for
60s and extension at 72°C for 30 s. A final extension at 72°C for 10 min and a dissociation
stage (95/60/95°C for 15 s each) were then added.
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Immunohistochemistry and immunofluorescence of kidney section

Immunostaining was performed on paraffin or frozen sections. Kidney sections were incu-
bated with mouse anti-human o-SMA (1:75; DAKO, Agilent Technologies) and rat anti-
mouse CD68 (1:50; SEROTEC, Bio-Rad, Hercules, CA, US), then with biotinylated (VECTOR
Laboratories, Burlingame, CA, US) or FITC-conjugated (Invitrogen Molecular Probes) sec-
ondary antibodies. After immunohistochemistry, sections were counterstained with
hematoxylin.

For quantitative analysis, 10 fields per section were digitally acquired at 200X magnification
by a high-resolution video camera (Q-Imaging Fast 1394), and the percentage of a-SMA posi-
tive areas or the number of macrophages per field were calculated by the image analysis soft-
ware Image-Pro ™ Plus (vers.6.3, Media-Cybernetics). Five animals per genotype were
analyzed.

Cell cultures

The MDCK (Madin-Darby canine kidney) cell line was cultured in MEM medium (Euroclone
S.p.A.) supplemented with 10% heat inactivated Fetal Bovine Serum (Gibco, Thermo-Fisher
Scientific, Waltham, MA, USA), 100 U/ml penicillin, 100 pg/ml streptomycin and 20 mM L-
glutamine (Euroclone S.p.A.). The cell line was grown at 37°C in a humidified atmosphere at
5% CO,, seeded at densities of 1.7-10%/cm? (96 hours of incubation) or 3.4-10*/cm?* (48 hours
of incubation) in 6-well plates, and treated with 1mg/ml xanthine or 0.06 mg/ml uric acid
(Sigma-Aldrich Co.) for 48 and 96 hours, then collected for western blot analysis or fixed with
4% paraformaldehyde for immunostaining.

Cell counting and vitality assay

To evaluate the viability and number of cells that had to be sown, the Trypan blue exclusion
assay was performed. This test allows direct identification and enumeration of live blue cells
and, unstained dead cells in a given population. To this purpose, a cell aliquot was diluted in
an equal volume of 0.04% solution of Trypan blue in 1X Phosphate-buffer saline (PBS). Then,
cell counting was performed by loading 15 ul of cell re-suspension diluted 1:1 with 0.04% Try-
pan blu in Thoma’s counting chamber. The preparation was examined by optical microscope
(Nikon Eclipse TS100; Nikon Corporation, Tokyo, Japan). After several independent cell
counts, the number of live cells in 1 milliliter of medium was determined by applying the fol-
lowing formula: X,, = n,, * 2 * 10*, where X, represent the cell number in 1 milliliter of
medium, 2 is the dilution’s factor of Trypan blue solution and 10* represent the conversion’s
factor of Thoma’s counting chamber.

Protein extraction and western blot analysis

MDCK cells were collected and lysed with the extraction buffer consisting of 45mM Tris HCI
pH 6.8 (Sigma-Aldrich Co.), 0.2% N-Laurosylsarcosine (Fluka, Sigma-Aldrich Co.), 0.2 mM
Phenylmethansulfonyl fluoride (PMSF, Sigma-Aldrich Co.), 1 mM 1,4-Dithiothreitol (DTT,
Sigma-Aldrich Co.), protease inhibitors (2 pg/ml Aprotinin and Pepstatin; Sigma-Aldrich Co.)
and phosphatase inhibitors (0.1mM Sodium Orthovanadate and Sodium Fluoride; Sigma-
Aldrich Co.). Protein extracts were then quantified by the Bicinchoninic (BCA) protein assay
kit (Thermo-Fisher Scientific) and 40 ug of each protein extract were loaded into a 10%
SDS-PAGE gel. The primary antibodies were o-SMA (Abcam, Cambridge, UK) and GAPDH
(Santa Cruz Biotechnology Inc., Dallas, TX, USA). HRP-labeled IgGs were used as secondary
antibodies (Santa Cruz Biotechnology Inc.).
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MTT and cytotoxicity assay

MDCK cells were seeded at a density of 1.47x10° cells/cm? in 96-well plates. Cellular viability
and cytotoxicity were evaluated at 48 and 96 hours after xanthine or uric acid treatments.
MTT was given to cells at the final concentration of 0.5 mg/ml. After 4 hours of incubation at
37°C, cell medium was removed and the salt crystals formed inside the cells were solubilized
with dimethyl sulfoxide (DMSO). Absorbance was then read at 570 nm using a spectropho-
tometer (Spectra Max Plus 384, Molecular Devices, Sunnyvale, CA, USA). Cellular cytotoxicity
was evaluated by Lactate Dehydrogenase (LDH) assay (Bio Vision Inc., Milpitas, CA). MDCK
cells were seeded as in MTT assay protocol and, at the end of the appropriate treatment, 100 pl
of cellular supernatant were transferred to corresponding wells in an optical clear 96-well
plate. 100 pl of reaction solution, consisting of catalyst solution and dye solution in a ratio

1:45, were then added to each well and incubated for 30 minutes at room temperature, protect-
ing the plate from light. Absorbance was finally measured at 500 nm using a spectrophotome-
ter (Spectra Max Plus 384, Molecular Devices). As positive control, Triton X-100 (1% final
concentration) treated cells were considered, whereas free medium was used as negative
control.

Cell immunostaining

Cells were fixed in 4% paraformaldehyde/0.15% picric acid for 20 minutes at room tempera-
ture. Afterwards, cells were washed thrice with PBS and incubated with 0.5% Triton X-100 for
5 minutes, then with 6% FBS/PBS for 1 hour at room temperature and finally exposed to the
primary antibody (E-cadherin 1:3200, Sigma Aldrich Co.) overnight at 4°C in a humid cham-
ber. After three quick washes, cells were incubated with the secondary anti-rat Alexa Fluor 488
(Molecular probes) diluted 1:400, for 1 hour at room temperature in the dark. After washing,
slides were mounted by Moviol Mounting solution (Fluka, Sigma-Aldrich Co.). Images were
acquired with a Leica DM-2000 microscope.

Statistical analysis

Data are presented as mean + SEM or mean = standard deviation and statistical significance (P
value) was calculated by using Instat 2.0 and Graphpad 6.1 software applying ANOVA and T-
test as appropriate. P values <0.05 were considered to be statistically significant.

Results
Survival and renal morphology

Treatment with allopurinol had highly toxic effects in HPRT™" mice, as compared to the same
drug dosages administered to HPRT* and wild type (WT) animals. All mice survived during
the experimental procedures. Nonetheless, HPRT "~ animals were smaller (Fig 1a and 1b) and
feebler than HPRT"" and WT at age of 1 month and were sacrificed.

As compared to the other groups, allopurinol treated HPRT ™ mice had increased kidney
weight/body weight ratio (Fig 1b). Macroscopically, kidneys of allopurinol-treated HPRT*'"
and WT mice were indistinguishable from vehicle-treated animals. Instead, allopurinol-treated
HPRT"" kidneys had a yellowish appearance, more evident in the cortex, but extending to the
renal medulla with yellow streaks (Fig 1c and 1d). Analysis of the fresh renal tissue by polarized
light microscopy demonstrated a diffuse presence of a crystalloid component (Fig le).

Histological analysis conducted on ethanol-fixed eosin-stained renal sections permitted to
localize these deposits in profoundly altered tubules and the exam by polarized light
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Fig 1. Body and kidney parameters and renal morphology. Allopurinol 75 pg/ml causes a reduction of
body weight (a) and an increase of kidney/body weight ratio (b) only in KO mice. Representative macroscopic
images of dissected fresh renal tissue after treatment with allopurinol 75 pg/ml or vehicle (c). Allopurinol does
not cause macroscopic changes in HPRT*~ and WT mice. The vehicle-treated HPRT™" kidneys have a normal
appearance as well. Instead, allopurinol administered to HPRT” animals produces profound modifications of
the renal structure, with pale and yellowish appearance. This is shown in more details in panel (d), where
yellow deposits can be observed in the cortex (black arrows) and yellow streaks in the medulla (white arrows).
Analysis of the fresh tissue by polarized light microscopy demonstrates that the deposits are of crystalloid
nature (e). *p<0.05 as compared to vehicle-treated HPRT™". Scale bars: 1 mm.

doi:10.1371/journal.pone.0173512.9001

demonstrated the crystalline nature of the deposits, which were diffusely distributed. Both
tubular changes and crystals were completely absent in HPRT*'~ and WT animals (Fig 2a).

The crystals, isolated and dissolved from frozen renal sections, were analyzed by absor-
bance spectroscopy and HPLC and were demonstrated to be constituted by xanthine
(Fig 2b).

Light microscopy examination showed completely normal morphology of allopurinol-
treated HPRT*'" (data non shown) and WT mice, whereas extensive renal damage was found
in allopurinol-treated HPRT”" mice (Fig 3). Tubuli were dilated, with signs of tubular cell
necrosis and atrophy. Inflammatory cells were present in multiple locations, sparsely distrib-
uted in the tubulointerstitium and present in the tubular lumens surrounding the crystals.
Masson’s thrichrome, Gordon Sweet and Picrosirius Red staining highlighted the severe
degree of interstitial fibrosis due to diffuse collagen deposition (Fig 3a-3d). Though the
severity of lesions mainly affected the tubulointerstitium, glomeruli were not spared and
showed signs of glomerulosclerosis and increased thickness of the Bowman’s capsule
(Fig 3a).

Severe damage of tubular cells was confirmed at the subcellular level by transmission
electron microscopy, with mitochondrial swelling, shrinkage of the tubular basement
membrane, numerous lysosomes, and loss of the brush border of proximal tubular cells (Fig 4a
and 4b).
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Fig 2. Location of crystals. (a) Representative images of ethanol-fixed eosin-stained kidney sections
observed by light (left panels) and polarized microscopy (right panels). Independent of the drug dosage, renal
morphology is preserved and analysis by polarized microscopy is completely negative in sections from
allopurinol-treated HPRT*~ and WT animals, whereas HPRT™" kidneys have altered structure with numerous
crystals filling the tubular lumens. Scale bars = 50 pm. (b) Reversed-phase HPLC analysis of solubilized
crystals collected from the tubular lumina of a HPRT” kidney section showing a main peak (upper panel)
identified as xanthine by comparison with a commercial standard (lower panel).

doi:10.1371/journal.pone.0173512.g002

Urine and blood analyses

As compared to the yellow color of urine collected from vehicle-treated mice and allopurinol-
treated HPRT"" and WT animals, the urine of allopurinol-treated HPRT ™~ mice appeared
transparent (Fig 5a) and microscopic examination of the urinary sediment revealed the pres-
ence of numerous cells and crystals (Fig 5b).

High levels of BUN and serum creatinine were found in all HPRT”~ mice treated with allo-
purinol (S1 Fig), confirming that these animals were affected by severe renal failure, whereas
vehicle-treated mice, as well as allopurinol-treated HPRT*~ and WT animals, had normal
renal function.
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Fig 3. Renal histology. Histological images of kidney sections from mice treated with 75 ug/ml allopurinol (a). Normal
renal morphology is detected in WT-treated mice (upper panels), whereas profound changes can be seenin HPRT”
animals (lower line of each panel), where tubules look dilated and filled by casts and cells, and abundant matrix
deposition can be observed in the interstitium, where reticulin fibers are highlighted by Gordon and Sweet GW staining
and collagen I/11l is demonstrated PR staining. Matrix deposition affects also the glomerular structures. Scale

bars = 50 um.A statistically higher percentage of positively stained interstitial areas was observed in allopurinol-treated
HPRT” mice than WT animals, as shown in panels b (GW), ¢ (MT), and d (PR). Data are presented as box plots, where
the boxes represent the 25th to 75th percentiles, the lines within the boxes represent the median, and the lines outside
the boxes represent the 10th and 90th percentiles. Results are expressed as mean + SE. ***p<0.001 versus HPRT**.
Abbreviations: EE, hematoxylin eosin; PAS, periodic acid-schiff; GW, Gordon and Sweetstaining; MT, Masson’s
Trichrome, PR, Picrosirus-red.

doi:10.1371/journal.pone.0173512.g003

Analysis of blood samples of allopurinol-treated HPRT " mice by HPLC showed the accu-
mulation of increasing concentration of xanthine, hypoxanthine, and inosine along with
decreased concentration of uric acid (Fig 5c, left panel). Conversely, WT mice showed no sig-
nificant changes (Fig 5¢, right panel).

The involvement of lipids

The yellow appearance of the kidneys of allopurinol-treated HPRT " mice strongly suggested
the presence of lipid deposits, which were confirmed by Oil Red O staining (Fig 6a). While the
staining was completely negative in allopurinol-treated HPRT*'" (data not shown) and WT
animals, the kidneys of allopurinol-treated HPRT™~ mice showed numerous red oil positive
areas, mainly filling the lumen of crystal-containing tubules.

Expression analysis conducted on the mRNA extracted from the whole renal tissue showed
a statistically significant activation of the C/EBPa/f pathway and a significantly decreased
expression of PPARa in allopurinol-treated HPRT " mice as compared to allopurinol-treated
HPRT*" and WT mice. No changes of these molecules were observed in the kidneys of
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Fig 4. Transmission electron microscopy. Tubules from allopurinol-treated HPRT” animals appear
altered at the subcellular level, showing mitochondrial swelling (yellow arrows, a, b), numerous lysosomes
(red arrow, a), shrinking of the tubular basement membrane (blue arrow, b), and loss of the brush border
(white arrow, b). Scale bar =2 ym.

doi:10.1371/journal.pone.0173512.g004

vehicle-treated animals. Moreover, no changes were observed in the expression of PPARy
among allopurinol-treated mice (Fig 6b).

Tubulointerstitial damage

Immunostaining with the macrophage marker CD68, which was almost negative in allopuri-
nol-treated heterozygous and WT mice as well as in all vehicle-treated animals, demonstrated
numerous positive cells in the allopurinol-treated HPRT”~ kidneys. Macrophages were found
not only in the cortex, where they surrounded the dilated tubuli, but also in the renal medulla
(Fig 6¢ and 6d).

Confirming the contribution of pro-inflammatory stimuli to renal damage of allopurinol-
treated HPRT " mice, significantly higher amounts of gp91phox (a subunit of NAPDH oxi-
dase), monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor o (TNF-ar)
mRNA were detected in HPRT™~ kidneys than in allopurinol-treated HPRT*~ and WT ani-
mals and all vehicle-treated mice (Fig 6e).

In addition, changes of the tubular cell phenotype were observed in these animals, i.e. loss
of the epithelial marker E-cadherin (Fig 7a and 7c). Correspondingly, the immunostaining for
0-SMA, which was limited to the vessel wall in all vehicle-treated animals and allopurinol-
treated HPRT"" and WT mice, demonstrated a diffuse tubular and peritubular positivity in
allopurinol-treated HPRT”" mice (Fig 7b and 7d). These results were confirmed by mRNA
changes, showing significantly increased expression of TGFp, PAI-1, and a-SMA (Fig 7e).

In vitro studies

When the tubular MDCK cell line was exposed to xanthine, crystals were found diffusely
deposited after 48 hours, as observed by brightfield and polarized microscopy (Fig 8a). At this
time point, Oil Red O staining was diffusely positive, as compared with medium or uric acid
incubation (Fig 8b). These features were accompanied by a change of morphology that was
already present at 48 hours (Fig 8c) and persisted at 96 hours (Fig 8d), with elongated spindle-
shaped cells instead of the typical cobblestone appearance. The effect was more diffuse than
that obtained by uric acid, utilized as a positive control [13], as confirmed by a more severe
loss of the epithelial marker E-cadherin (Fig 8d and 8g) and increased levels of the mesenchy-
mal marker a-SMA (Fig 8e and 8f). Confirming the in vivo observed tubular damage, xanthine
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bars = 50 um. (c) Reversed phase HPLC analysis of blood concentration of hypoxanthine (black), xanthine
(gray), urate (light gray), and inosine (white) in HPRT" (left panel) and WT (right panel) mice. Error bars are
standard deviation of the mean. *p < 0.05; **p<0.01 versus vehicle.

doi:10.1371/journal.pone.0173512.9005

exposure resulted also in reduced cell viability and increased LDH release (Fig 8i and 8j), as
compared to medium or uric acid exposure.

Discussion

Our results indicate that allopurinol, when administered to mice lacking HPRT, causes early
death by acute renal failure due to xanthine deposition in the renal tissue and diffuse tubuloin-
terstitial fibrosis. The same dosages of the drug are instead not harmful to both wild type and
HPRT heterozygous mice, which look healthy and have preserved renal function and
completely normal kidney tissue.

The rapid development of renal failure impaired the possibility to examine any behavioral
effects of allopurinol in the knockout animals, because mice were obviously suffering even at
lower dosages and had to be sacrificed soon after weaning to avoid sudden death by renal
insufficiency.
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doi:10.1371/journal.pone.0173512.9006

Xanthine is the least soluble product of purine degradation and is produced by xanthine
dehydrogenase, that catalyzes the conversion of hypoxanthine to xanthine and xanthine to
uric acid. The enzyme is the product of a single gene, and it is present in cells as two intercon-
vertible forms, xanthine dehydrogenase (XDH) and xanthine oxidase (XO) [14].

In humans, xanthine urolithiasis is a rare entity, which may lead to acute renal failure[15-
18], and is due to genetic or iatrogenic causes.

Inherited xanthinuria, an autosomal recessive condition [19-23] can be caused by defi-
ciency of the (XDH), or by double deficiency of XDH and aldehyde oxidase [21, 24] or by lack
of molybdenum cofactor [20], which is an essential cofactor for the function of several
enzymes.

Tatrogenic xanthinuria, instead, results from treatment with allopurinol, a stereoisomer of
hypoxanthine, which acts as a competitive inhibitor of XDH. This medication is used as a com-
mon treatment for gout and other hyperuricemic states. Allopurinol reduces uric acid
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cadherin (c) and a-SMA (d) shows a statistically significant difference in allopurinol-treated WT and HPRT”
animals Data are presented as box plots, where the boxes represent the 25th to 75th percentiles, the lines
within the boxes represent the median, and the lines outside the boxes represent the 10th and 90th
percentiles. *** p < 0.001 versus WT. (e) Gene expression analysis of pro-fibrotic molecules TGF-$ a-SMA
and PAI-1 shows no differences based on the genotype in mice administered vehicle (white bars), whereas a
statistically significant increase of all three molecules is present in allopurinol HPRT™" kidneys (gray bars).
mRNA level normalized to the value of HPRT** mice treated with vehicle alone. Results are expressed as
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doi:10.1371/journal.pone.0173512.g007

production and increases the concentration of precursor oxypurines, which are either excreted
in the urine or recycled by HPRT. Stone formation may occur in those in whom urine is super-
saturated with xanthine, which is ten times less soluble in water than hypoxanthine. Patients
with Lesch-Nyhan syndrome, who lack completely HPRT, or patients with partial HPRT defi-
ciency have been reported to develop xanthine nephropathy, acute kidney failure, and stones
following treatment with allopurinol [25, 26]. A few incidents of xanthine nephropathy and
renal fajlure have been also described in patients treated with allopurinol during chemotherapy
for malignancy [27]. The latter occurred either when large doses of allopurinol were used or
during aggressive chemotherapy for a large tumor cell burden with concomitant allopurinol
therapy.

In higher animals other than primates, xanthinuria is lethal due to kidney damage resulting
from xanthine stones in the urinary tract [28-30], and this is explained by an acquired toler-
ance to oxypurines by primates that followed the loss of uricase during evolution [31].
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doi:10.1371/journal.pone.0173512.g008

Blockade of XDH by allopurinol in the HPRT-deficient mouse resulted in increased serum
concentration of xanthine, hypoxanthine, and inosine. Excess of this latter metabolite may be
related to the effect of increased hypoxanthine on the reversible reaction catalyzed by purine
nucleoside phosphorylase [32]. The lack of oxypurine accumulation in untreated HPRT-defi-
cient mice can be explained by the strong basal activity of mouse XDH [33]. No substantial dif-
ferences in XDH expression and activity were observed between HPRT*'* and HPRT~ mice
(S2 Fig).
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Xanthine crystals and nephropathy have been described in rats treated with XDH inhibitors
[34] Mice lacking XDH were described in 2009 by Ohtsubo T and co-workers [12]. Similarly
to our findings, these animals display xanthine crystals in the renal tubules, and develop renal
failure due to diffuse tubulointerstitial lesions. The finding of fat rich deposition and the acti-
vation of adipogenetic pathways led the authors to suggest that absence of the enzyme, which
is implicated in regulating lipid production, could be ascribed as the main culprit for these
changes in gene expression. However, our data suggest a direct role for xanthine in the activa-
tion of these pathways. First, we observed renal lesions only when the inhibition of XDH by
allopurinol was associated with HPRT-deficiency and serum accumulation of xanthine. Sec-
ond, the addition of xanthine in vitro to cells with functional XDH was enough to generate
tubular changes. Based on this evidence, we conclude that xanthine excess rather than XDH
blockade/absence promotes the lipid deposition and the tubular damage observed in the
kidneys.

Increased lipid deposition has been demonstrated to have a role in progression of renal
damage by several lines of evidence; first, there are a number of genetic abnormalities of lipid
metabolism directly involving the kidney, such as Fabry’s disease [35], lecithin cholesterol acyl-
transferase deficiency [36], genetic and acquired lipodystrophy [37]. Second, increases in
serum lipids and obesity have been associated with a faster decline of renal function [38], and
conversely, treatment with statins or other lipid-controlling agents protect the kidney not only
by regulating systemic lipid levels, but also by directly acting on renal cells [39].

In our animals, the kidneys macroscopically showed a yellowish appearance, and Oil Red O
staining was particularly intense in proximity of xanthine crystals. Around these tubular struc-
tures and around the intratubular deposits, inflammatory cells were particularly numerous,
supporting the concept that crystals and lipids promote the recruitment of inflammatory cells
within the interstitium.

In vivo and in vitro, xanthine caused lipid accumulation and tubular damage with rapid
modification of the epithelial phenotype towards a mesenchymal pattern, with change of
shape, loss of E-cadherin, and increase of a-SMA expression by tubular cells. These changes
are always observed in association with progression of renal diseases, both in rodent models
[40] and in humans [41], in a progressive sequence of events that represent what is currently
known as partial epithelial to mesenchymal transition [42] and eventually lead to diffuse renal
fibrosis and renal failure, if not promptly treated.

Thus, the results described in this work highlight the different consequences of an urico-
static treatment with allopurinol in the presence and in the absence of a functional HPRT
activity. Allopurinol is the treatment of choice for both idiopathic hyperuricemia and urate
overproduction due to HPRT deficiency. However, in the latter case the management of
hyperuricemia is complicated by the accumulation of oxypurines and the risk of xanthine
nephropathy [43]. These considerations motivate the research of other therapeutic options for
the hyperuricemia induced by HPRT deficiency. Alternative urate lowering strategies that
could avoid oxypurine accumulation are the inhibition of upstream enzymes in the urate bio-
synthetic pathway [44], and the administration of uricolytic enzymes [45, 46].

Our results also have implications for the development of a better animal model of LND. As
the lack of urate degradation is a determinant of the hyperuricemic phenotype, it has been sug-
gested that the double inactivation of HPRT and UOX genes in mouse could better reproduce
the alteration of purine metabolism observed in human HPRT deficiency. Experiments are
underway in our laboratories to generate double HPRT/UOX mutants by crossing single-KO
mice. The UOX-KO mouse is affected by hyperuricemia and requires antenatal administration
of allopurinol to avoid urate nephropathy [6]. The renal phenotype of the allopurinol-treated
HPRT-deficient mouse indicates that excessive accumulation of xanthine and xanthine
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nephropathy must be also taken into account in the generation of the double HPRT/UOX-KO
mouse.

Supporting information

S1 Table. Primer pairs used in gene expression studies.
(DOCX)

S1 Fig. Blood urea nitrogen and serum creatinine. (a) Blood urea nitrogen (BUN) and
serum creatinine (b) display high levels in allopurinol-treated HPRT”~ mice, whereas are
within the normal range in HPRT*'* animals. Results are expressed as mean + standard devia-
tion. **p < 0.01 versus HPRT*'*,

(TIF)

$2 Fig. XO expression in kidney and serum activity in WT and HPRT mutant mice.
(TIF)
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