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Abstract

We develop envelope theorems for optimization problems in which the value function

takes values in a general Banach lattice. We consider both the special case of a convex

choice set and a concave objective function and the more general case case of an

arbitrary choice set and a general objective function. We apply our results to discuss

the existence of a well-de�ned notion of marginal utility of wealth in optimal discrete-

time, �nite-horizon consumption-portfolio problems with an unrestricted information

structure and preferences allowed to display habit formation and state dependency.

Key words: Envelope theorem, Banach lattice, state-dependent utility, value func-

tion, Gateaux di¤erential, Fréchet di¤erential.

1 Introduction

Envelope theorems constitute one of the genuine workhorses of economics, and their ap-

plications are ubiquitous. Several extensions of the traditional Envelope theorems have

emerged over the years, as a response to the necessity of analyzing the behavior of the

value function of optimization problems lacking the assumptions for the applicability of

the standard Envelope results from graduate textbooks. In concave dynamic program-

ming, a seminal paper is due to Benveniste and Scheinkman [3] who assume the choice set
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to be convex and the objective function to be concave (see also [14], footnote 5, for more

references). More recently, Rincón-Zapatero and Santos [18] considered a dynamic frame-

work where the information structure is generated by an exogenous stochastic process, and

proved an Envelope theorem that allows the choice set to depend on the parameters of the

problem and the optimal solution to lie on the boundary of the feasible set. Cruz-Suárez

and Montes-de Oca [8] established Envelope theorems for optimization problems on Euclid-

ean spaces for both the concave and the unrestricted case. The paper which is closer to the

spirit of our contribution is the one by Milgrom and Segal [14]. Their Envelope results do

not make any assumption on the choice set of the optimization problem nor they require

the concavity of the objective functions. In particular, Milgrom and Segal �rst show that

the traditional Envelope formula holds at any di¤erentiability point of the value function,

and then they establish conditions for the (left, right or full) di¤erentiability of the value

function. Other interesting recent developments can be found in Morand et alii. [15].

The �rst contribution of this paper is to supply Envelope results for the general case

of optimization problems in which the objective function takes its values in a Banach

lattice. To start our analysis we extend to this Banach lattice setting the results for

concave programming supplied by Benveniste and Scheinkman [3]. Next we maintain the

assumption that the objective function takes values in a Banach lattice, and we allow the

choice set to be arbitrary and the parameters of the problem to belong to a general Banach

space. In this more general case we supply Envelope results that extend to the Banach

lattice setting those supplied by Milgrom and Segal [14] for the real-valued case. To develop

our general Envelope formulae we replace the standard notion of di¤erentiability for real-

valued functions with the more general notion of di¤erentiability in Banach lattices, namely

Gateaux and Fréchet di¤erentiability.

The second contribution of this paper comes from applying our general Envelope re-

sults for Banach lattices to asset pricing. We consider a security market with a gen-

eral information �ltration. In this framework, we analyze the discrete-time, �nite-horizon

consumption-portfolio problem for an agent with utility function that can display habit

formation and is allowed to be state-dependent. At any time t, the maximum remaining

utility (continuation utility) for an agent with wealth W is represented by a value function
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of the form:

H(t;W ) = ess sup
(c;�)2Bt(W )

Ut(c; �)

where Ut(c; �) is the expected utility from the consumption plan c and the dynamic port-

folio strategy � conditional on information available at time t, and Bt(W ) is the set of

consumption plans and portfolio strategies that are budget feasible from time t onwards.

It is well-known that the essential supremum of an arbitrary family of random variables

is well-de�ned and it is a random variable itself ([11], Theorem A.18), so the problem is

well-posed. If the information structure was restricted to be the one generated by a �nite

number of random variables, as, for instance, when the model posits the existence of some

Markov process of state variables, then the value function would be a real-valued function

of these state variables and of wealth. In that case, classical Envelope results would guaran-

tee that, under standard assumptions, the marginal utility of wealth would be well de�ned

and, at the optimum, it would coincide with the marginal utility from consumption. In our

general case of a completely unrestricted information structure, however, the value function

can no longer be assumed to be real-valued, rather it is a map from the Banach space of

current level of wealth to the Banach lattice of integrable random variables. This is where

our Envelope theorem for Banach lattices comes into play: we can employ it to show that,

under a certain set of assumptions, the marginal utility of wealth is still well de�ned and,

most importantly, at the optimum it still equates the marginal utility of consumption.

The remainder of this paper is as follows. In the next section, we set up the Banach

lattice-valued optimization problem and prove our extension of the Envelope theorem to

Banach lattices �rst for a concave objective function and then in the general case. In

Section 3 we introduce the optimal consumption-portfolio problem with a general informa-

tion structure and apply our results from Section 2 to discuss the conditions under which

the marginal utility of wealth is well de�ned and coincides with the marginal utility from

consumption. Section 4 concludes, while the Appendix reviews the notions of di¤erentia-

bility in Banach spaces and collects some fundamental results on the relationship between

concavity and di¤erentiability in this framework.
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2 The general results

Let X be a Banach space and Y a order complete Banach lattice. We refer essentially to

Aliprantis and Border [1] and Birkho¤ [4] for the main de�nition and results on Banach

lattices. As usual, we adjoin to Y the abstract maximal and minimal elements f�1g and

denote by �Y the enlarged space.

We take an open set U in X as the set of parameters and an arbitrary choice set �.

Let F : � � U ! Y be the objective function. For each parameter u 2 U , we de�ne the

value function as:

V (u) = sup
�2�

F (�; u): (2.1)

We set V (u) = �1 if � = ;. When � is not empty, V (u) belongs to Y if and only if

the set (F (�; u))�2� is bounded from above. Otherwise, V (u) may be well-de�ned (and

not necessarily +1), even though (F (�; u))�2� is not bounded from above1 but in this

case V (u) does not belong to Y .

We denote with F 0(�; u�;x) (resp. V 0(u�;x)) the directional derivative of F (�; � ) (resp. V )

at u� in the direction x 2 X. Since Fréchet di¤erentiability implies Gateaux di¤erentia-

bility, and since the two di¤erentials coincide when they both exist, we use the nota-

tion DF (�; u�) (resp. DV (u�)) for the di¤erential of F (�; � ) (resp. V ) at u�; and we

specify the type of di¤erential only when it is not apparent from the context.

2.1 A preliminary result

Our �rst result, which in fact extends Theorem 2 in [14], shows that the Envelope formula

holds at any di¤erentiability point of the value function, provided that both the objective

and the value functions are di¤erentiable.2. For any parameter u 2 U we denote with,

��(u) = f� 2 � : F (�; u) = V (u)g the set of optimal choices.

Theorem 2.1 Let u� 2 U and assume that there exists some r > 0 such that V (x) 2 Y

for every x 2 B(u�; r)3. Let ��(u�) 6= ;. Then for all � 2 ��(u�):
1One can for instance take Y = Lp for some p � 1. If the set (F (�; u))�2� is bounded from above in Lq

with q < p but not in Lp, then V (u) 2 Lq but it does not belong to Lp.
2Weaker de�nitions of di¤erentiability can also be given (see, for instance, Papageorgiou [17]) and bounds

derived for the di¤erential of the value function as is done by Morand, Re¤et, Tarafdar [15] for the real-

valued case, when the value function is not su¢ ciently smooth.
3B(u�; r) denotes as usual the open ball with center u� and radius r
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1. if both F (�; � ) and V ( � ) admits directional derivative at u� in some direction x 2 X,

then F 0(�; u�;x) � V 0(u�;x);

2. if both F (�; � ) and V ( � ) are Gateaux-di¤erentiable at u�, then their Gateaux-di¤erentials

coincide, i.e. DF (�; u�) = DV (u�);

3. if both F (�; � ) and V ( � ) are Fréchet-di¤erentiable at u�, then their Fréchet-di¤erentials

coincide, i.e. DF (�; u�) = DV (u�):

Proof.

1. Let h 2 < and x 2 X such that khxkX < r. Then:

F (�; u� + hx)� F (�; u�) � V (u� + hx)� V (u�):

In particular, taking hn in <+, which decreases to 0 as n! +1, and dividing both

sides of the inequalities by hn, we obtain

F (�; u� + hnx)� F (�; u�)
hn

� V (u� + hnx)� V (u�)
hn

: (2.2)

If F (�; � ) admits directional derivative at u� along x, then according to the de�nition

of directional derivative, we have that (F (�; u�+hnx)�F (�; u�))=hn converges in Y -

norm to F 0(�; u�;x). Then there exists a subsequence which converges in order to

the same limit4.

Analogously, if V has a derivative at u� along x, then (V (u�+hnx)�V (u�))=hn will

converge in Y -norm, and, up to a subsequence, in order, to V 0(u�;x): Hence

F 0(�; u�;x) � V 0(u�;x): (2.3)

2. If the two functions are Gateaux-di¤erentiable, they admit directional derivatives

along all directions. In particular, given x 2 X, they admit directional derivatives

along x and �x. The previous result implies that

DF (�; u�)(x) = F 0(�; u�;x) � V 0(u�;x) = DV (u�)(x)
4 In an order complete Banach lattice, the norm convergence is equivalent to relative uniform star con-

vergence, which in turn implies order convergence. As a consequence, if a sequence xn converges in norm

to x, then there exist a subsequence which is order convergent to x (see Birkho¤ [4], Chapter 15, Theorems

19 and 20).
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and

DF (�; u�)(�x) = F 0(�; u�;�x) � V 0(u�;�x) = DV (u�)(�x):

Moreover, since the Gateaux di¤erential is homogeneous,DF (�; u�)(�x) = �DF (�; u�)(x)

and DV (u�)(�x) = �DV (u�)(x). Therefore, DF (�; u�)(x) = DV (u�)(x):

3. If F (�; � ) and V are Fréchet di¤erentiable at u�, then they are a fortiori Gateuax

di¤erentiable and the di¤erentials coincide. �

2.2 The concave case

In the framework of dynamic optimization models of economics, Benveniste and Scheinkman [3]

determined a set of su¢ cient conditions for the value function to be di¤erentiable under the

assumption that the set of parameters and the set of possible choices are convex, and the

objective function is concave with respect to both variables. In this subsection we extend

their results to the case where the objective function takes values in a Banach lattice. We

make the following assumption:

Assumption 2.1 The sets � and U are convex and the objective function F is concave

with respect to both � and u.

The next result is an immediate implication of this assumption:

Lemma 2.1 The value function V is concave.

Proof. For any � 2 [0; 1], u1; u2 2 X, �1; �2 2 �, we have the following inequalities:

V (�u1 + (1� �)u2) � F (�1 + (1� �)�2; �u1 + (1� �)u2)

� �F (�1; u1) + (1� �)F (�2; u2):

As a consequence,

V (�u1 + (1� �)u2) � � sup
�12�

F (�1; u1)+(1��) sup
�22�

F (�2; u2) = �V (u1)+(1��)V (u2): �

We show that, as in the real-valued case, concavity is still a su¢ cient condition for the

di¤erentiability of the value function and, as a consequence, an Envelope formula holds at

any di¤erentiability point of the objective function given an optimal choice.
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Theorem 2.2 Let u� 2 U and ��(u�) 6= ;. Then for all � 2 ��(u�):

1. if F (�; � ) is continuous and Gateaux di¤erentiable at u�, then V is continuous and

Gateaux di¤erentiable at u� as well, and DV (u�) = DF (�; u�);

2. if F (�; � ) is Fréchet di¤erentiable at u�, then V is Fréchet di¤erentiable at u� as well,

and DV (u�) = DF (�; u�):

Proof.

1. By Lemma 2.1, we know that V is concave. Moreover, V (u) � F (�; u) for all u 2

U . Therefore V is continuous at u� thanks to Proposition A.1. Proposition A.3

implies that @V (u�) is non-empty, where @V (u�) denotes the superdi¤erential set

of V at u�. Take L 2 @V (u�): then, Lx � V (u�+x)�V (u�) � F (�; u�+x)�F (�; u�);

namely L 2 @F (�; u�). This means that @V (u�) � @F (�; u�) = fDF (�; u�)g, where

the last equality is a consequence of Proposition A.4. Since @V (u�) is non-empty, it

must be necessarily @V (u�) = fDF (�; u�)g; hence by Proposition A.4, V is Gateaux-

di¤erentiable at u� and DV (u�) = DF (�; u�).

2. If F (�) is Fréchet di¤erentiable at u�, then it is continuous and Gateaux di¤erentiable

at u�. In virtue of the previous theorem, V is continuous and Gateaux-di¤erentiable

at u� and DV (u�) = DF (�; u�): Moreover, since V is concave, the di¤erential is a

superdi¤erential, hence the following inequalities hold for all x 2 X:

DV (u�)(x) � V (u� + x)� V (u�) � F (�; u� + x)� F (�; u�)

or, equivalently,

0 � V (u� + x)� V (u�)�DV (u�)(x) � F (�; u� + x)� F (�; u�)�DF (�; u�)(x):

The inequalities are clearly reversed when taking the absolute values, that is:

0 � jV (u� + x)� V (u�)�DV (u�)(x)j � jF (�; u� + x)� F (�; u�)�DF (�; u�)(x)j

Passing to the norms and dividing by kxkX one obtains:

0 � kV (u� + x)� V (u�)�DV (u�)(x)kY
kxkX

� kF (�; u� + x)� F (�; u�)�DF (�; u�)kY
kxkX

:
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One can then take the limit as kxkX goes to 0: the right-hand term goes to 0 because

of the Fréchet di¤erentiability of F (�). As a consequence, the middle term goes to 0,

which implies that V is Fréchet di¤erentiable. �

2.3 The general case

We deal now with the case in which the objective function is not required to be concave,

and the choice set is arbitrary. We �rst present two alternative sets of conditions on the

objective function that guarantee that the value function in (2:1) is continuous. We then

discuss conditions under which the value function is either Gateaux or Fréchet di¤erentiable

and we state our Envelope results.

2.3.1 Continuity

Given a parameter u� 2 U; we present two alternative sets of conditions for the continuity

of the value function at u�: The �rst set is based on a suitable extension of the standard

notion of Lipschitz-continuity to the case in which the function takes values in a Banach

lattice. We recall that in Banach lattices jyj = y _ (�y) ; where _ denotes the lattice

operation of supremum.

Assumption 2.2 The objective function F (�; � ) is o-Lipschitz-continuous5 at u� uniformly

in �, namely, there exists r > 0 such that for all w; v 2 B(u�; r), for some lu� 2 Y ,

sup
�2�

jF (�; w)� F (�; v)j � lu�kw � vkX

Proposition 2.1 Assume that there exists r > 0 such that V (w) 2 Y for all w 2 B(u�; r).

If F satis�es Assumption 2.2, then the value function V is continuous in a neighborhood

of u�.

Proof. Let v; w 2 B(u�; r). Then,

jV (w)� V (v)j =

����sup
�1

F (�1; w)� sup
�2

F (�2; v)

���� � sup
�
jF (�; w)� F (�; v)j :

5For the notion of o-Lipschitz function see also Papageorgiou [16, 17].
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If Assumption 2.2 holds, it follows immediately that

kV (w)� V (v)kY � klu�kY kw � vkX

hence V is continuous on B(u�; r): �

An alternative set of su¢ cient conditions for the continuity of the value function is

based on di¤erentiability properties of the objective function. It is an established fact

that Lipschitz-continuity implies Gateaux-di¤erentiability outside of a null set (see for

instance Lindenstrauss and Preiss [12]). On the other hand, it is well known that Gateaux

di¤erentiability in general does not imply continuity. The Gateaux di¤erentiability of

the objective function at a given point, therefore, does not even guarantee the continuity

of the objective function itself, let alone the continuity of the value function. For this

reason, our di¤erentiability-based conditions for the continuity of the value function start

from requiring the objective function to be Fréchet di¤erentiable at u� uniformly in �:

Assumption 2.3 The objective function F (�; � ) is Fréchet di¤erentiable at u� for every

� 2 �. Moreover, we require that

F (�; u� + x)� F (�; u�) = DF (�; u�)(x) + �(�; u�; x) � kxkX

where j�(�; u�; x)j � � kxkX ; for � 2 Y , for all � 2 �, for x 2 X such that u� + x 2 U .

Intuitively, Assumption 2.3 requires that each member of the family of functions (F (�; � ))�2�
admits a �rst-order expansion at u�, with the error term uniformly bounded in the choice

variable �: In particular, Assumption 2.3 implies that the ratio

kF (�; u� + x)� F (�; u�)�DF (�; u�)(x)kY
kxkX

goes to 0 uniformly in � as kxkX tends to 0, that is the objective function F is Fréchet

equi-di¤erentiable at u�: To control the variation of the value function, the next assumption

requires the di¤erential of F to be bounded uniformly in the choice variable � as well.

Assumption 2.4 For every x 2 X there exists a vector yx 2 Y such that for all � 2 �.

jDF (�; u�)(x)j � yx kxkX

9



Exploiting these two assumptions6 we can establish the following result on the continuity

of the value function.

Proposition 2.2 Assume that there exists r > 0 such that V (w) 2 Y for all w 2 B(u�; r):

If F satis�es Assumptions 2.3 and 2.4, then the value function V is continuous at u�:

Proof. Let w 2 B(u�; r); and x = w � u�. Then exploiting Assumption 2.3 and Assump-

tion 2.4 we have

F (�; w)� F (�; u�) = F (�; u� + x)� F (�; u�) = DF (�; u�)(x) + �(�; u�; x) � kxkX :

As a consequence

jV (w)� V (u�)j � sup
�
jF (�; w)� F (�; u�)j

� sup
�
jF (�; w)� F (�; u�)�DF (�; u�)(x)j+ sup

�
jDF (�; u�)(x)j

� sup
�
j�(�; u�; x)j � kxkX + sup

�
jDF (�; u�)(x)j

� � kxk2X + yxkxkX

We can then take the Y -norms of both sides. Assumption 2.4 implies that kDF (�; u�)(x)kY �

Mx for all � 2 �, where Mx = kyxkY kxkX , that is, the family of operators (DF (�; u�))�2�
is pointwise bounded. The Banach-Steinhaus theorem implies that there exists a constant

� such that kDF (�; u�)(x)kY � � kxkX for all � 2 �: As a consequence,

kV (w)� V (u�)kY � � kw � u
�k2X + � kw � u�kX ;

which shows that V is continuous at u�. �

Remark Our results on the continuity of the value function do not require the existence

of an optimal choice for u�. In other words, while we ask for the supremum de�ning the

value function to be well de�ned in Y in a neighborhood of u�; we do not require such

supremum to be attained for some optimal choice parameter.

6Similar requirements of equi-di¤erentiability with respect to the choice parameter and of boundedness

of the derivative of F are made by Milgrom and Segal [14] to obtain the continuity and the di¤erentiability

of the value function for the case in which the objective function takes values in <.
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2.3.2 Di¤erentiability

We consider now the di¤erentiability issue. We �rst present conditions under which an

Envelope formula holds in terms of Gateaux di¤erentials. We then move to Fréchet di¤er-

entiability, and present a set of conditions that guarantee that an Envelope formula holds

in terms of Fréchet di¤erentials.

Assumption 2.5 (i) There exists some r > 0, such that V (w) 2 Y and the set ��(w)

is non-empty for all w 2 B(u�; r);

(ii) the objective function F (�; � ) is Gateaux di¤erentiable at u� for every � 2 �. More-

over, for every direction x 2 X and for every su¢ ciently small h 2 <+

sup
�2�

����F (�; u� + hx)� F (�; u�)h
�DF (�; u�)(x)

���� � �(u�; x; h)
for some �(u�; x; h) 2 Y such that limh!0 k�(u�; x; h)kY = 0;

(iii) for every direction x and h 2 <+ such that khxkX < r, for every �� 2 ��(u�), the

Gateaux di¤erential of F at u� satis�es:

lim
h!0

sup
�hx2��(u�+hx)

kDF (�hx; u�)(x)�DF (��; u�)(x)kY = 0:

We are now ready to state our �rst main result.

Theorem 2.3 If Assumption 2.5 holds, then the value function V is Gateaux-di¤erentiable

at u� and DV (u�) = DF (�; u�) for � 2 ��(u�).

To prove this result we need the following lemma:

Lemma 2.2 Suppose that Assumption 2.5 holds. Let � 2 ��(u�). Moreover, for a �xed

direction x 2 X and h 2 <+ such that khxkX < r, let �hx 2 ��(u� + hx). Then

lim
h!0

F (�hx; u� + hx)� F (�hx; u�)h
�DF (�; u�)(x)


Y

= 0

Proof of Lemma. We have, thanks to Assumption 2.5 (ii), that:����F (�hx; u� + hx)� F (�hx; u�)h
�DF (�hx; u�)(x)

���� � �(u�; h; x):
11



Hence, the following inequalities hold:F (�hx; u� + hx)� F (�hx; u�)h
�DF (�; u�)(x)


Y

�
F (�hx; u� + hx)� F (�hx; u�)h

�DF (�hx; u�)(x)

Y

+ kDF (�hx; u�)(x)�DF (�; u�)(x)kY

� k�(u�; h; x)kY + kDF (�hx; u
�)(x)�DF (�; u�)(x)kY

� k�(u�; h; x)kY + sup
�hx2��(u�+hx)

kDF (�hx; u�)(x)�DF (�; u�)(x)kY

Assumption 2.5 ((ii) and (iii)) implies that the right-hand term in the previous inequal-

ity goes to 0 as h! 0: Hence the claim follows. �

Proof of Theorem 2.3. Let �u� 2 ��(u�). Then, V (u�) = F (�u� ; u�) � F (�; u�) for any � 2

�: Now, for a given direction x, let h 2 <+ be such that khxkX < r and take �hx in

��(u� + hx), which is not empty by Assumption 2.5 (i). Then

V (u� + hx) = F (�hx; u
� + hx) � F (�; u� + hx) for any � 2 �:

In particular, V (u�) � F (�hx; u�) and V (u� + hx) � F (�u� ; u�+ hx). Thus, we can write:

F (�u� ; u
� + hx)� F (�u� ; u�) � V (u� + hx)� V (u�) � F (�hx; u� + hx)� F (�hx; u�) :

Dividing by h and subtracting the di¤erential DF (�u� ; u�)(x), we obtain the following

inequalities:

F (�u� ; u
� + hx)� F (�u� ; u�)

h
�DF (�u� ; u�)(x) � V (u� + hx)� V (u�)

h
�DF (�u� ; u�)(x)

� F (�hx; u
� + hx)� F (�hx; u�)

h
�DF (�u� ; u�)(x)

Take now the limit as h! 0+. Since the �rst and the last term converge to 0 in Y -norm,

the middle term must converge to 0 as well. This implies that V is di¤erentiable at u� along

the direction x and V 0(u�;x) = F 0(�u� ; u�;x) = DF (�u� ; u�)(x): The same argument can

be repeated for every x 2 X, hence V is directionally di¤erentiable along every direction x

and V 0(u�; � ) = DF (�u� ; u�). Since this is a linear and continuous operator, we can �nally

say that V is Gateaux-di¤erentiable at u� and DV (u�) = DF (�u� ; u�): �

To conclude we address the issue of Fréchet-di¤erentiability. To this end, by suitably

readjusting Assumption 2.5 we state:
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Assumption 2.6 (i) There exists some r > 0, such that V (w) 2 Y and the set ��(w)

is non-empty for all w 2 B(u�; r);

(ii) assumption 2.3 holds, namely, the objective function F (�; � ) is Fréchet di¤erentiable

at u� for every � 2 �. Moreover,

F (�; u� + x)� F (�; u�) = DF (�; u�)(x) + �(�; u�; x) � kxkX

where j�(�; u�; x)j � � kxkX ; for � 2 Y , for all � 2 �, for x 2 X such that u�+x 2 U ;

(iii) for w 2 B(u�; r), for every � 2 ��(u�), the Fréchet di¤erential of F at u� satis�es:

lim
kw�u�kX!0

sup
�w2��(w)

sup
kvkX�1

kDF (�w; u�)(v)�DF (�; u�)(v)kY = 0:

Assumption 2.6 (ii) implies Assumption 2.5 (ii), where, in addition, the error term goes to

zero uniformly in x; namely limh!0 supkxkX�1 k�(u
�; x; h)kY = 0: An argument similar to

that employed in the proof of Theorem 2.3 establishes now the Fréchet-di¤erentiability of

the value function. Formally, we have:

Theorem 2.4 Let Assumption 2.6 hold. Then the value function V is Fréchet-di¤erentiable

at u� and DV (u�) = DF (�; u�) for � 2 ��(u�).

Remark. Our results can be strenghtened by requiring Assumptions 2.5, respectively 2.6,

to hold for a given selection of optimal choices, instead of imposing them on the whole set of

optimal choices. This stronger version would be particularly useful when the optimization

problem has enough structure so that an optimal selection on which to test our assumptions

can be readily identi�ed.

3 Envelope results for asset pricing models with a general
information �ltration

In this section we focus on security markets with a general information �ltration. In this

framework, the �rst-order conditions for optimality of an agent maximizing a smooth utility

can be formulated as the martingale property of prices, after normalizing by a state-price
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process. Such state-price process can be characterized in terms of the agent�s utility gradi-

ent (see for instance Du¢ e [9]). For a wide class of state-dependent utilities, the Envelope

theorems of the previous section enable us to extend the link between the di¤erential of

the optimal utility of consumption and the di¤erential of the maximum remaining utility

of wealth to this case of a general information �ltration.

3.1 The model

We consider a frictionless security market in which J assets are traded over the investment

horizon T = f0; 1; : : : ; Tg. We take as given a �ltered probability space (
;F ; P; fFtgTt=0).

As usual, we assume that F is augmented with all the P�null sets, F0 is the trivial sigma-

algebra f?;
g and FT = F . All the processes are adapted to F : We denote by dj (t)

(resp. Sj (t)) the cash �ow distributed by (resp. the ex-dividend price of ) asset j at date

t; with j = 1; :::; J . Given p 2 [1;+1[, we assume that Sj (t) ; dj (t) 2 Lp(Ft) for all t.

Without loss of generality, we assume that the assets distribute no cash �ow at date 0 and

a liquidating one at date T , that is dj (0) = Sj (T ) = 0 almost surely.

A dynamic investment strategy � = f� (t)gT�1t=0 is a J-dimensional process where �j (t)

represents the position (in number of units) in assets j taken at date t and liquidated at

date t+ 1. We denote by V� = fV� (t)gTt=0 the value process of �, given by

V� (t) =

8<: �(t) � S(t) t < T

�(T � 1) � d(T ) t = T .

The cash �ow x� (t) generated by the strategy � at t is

x� (t) =

8>>><>>>:
�V�(0) t = 0

� (t� 1) � [S(t) + d(t)]� V�(t) t = 1; : : : ; T � 1

V� (T ) t = T .

(3.1)

Henceforth, we call the sequence x� = fx� (t)gTt=0 the cash-�ow process of �. We call

admissible any dynamic investment strategy � such that V�(t), x�(t) 2 Lp(Ft) for t =

0; 1; : : : ; T . We denote with � the set of all admissible dynamic investment strategies.

An agent in this market is identi�ed by an initial endowment e0 � 0 and a complete

and transitive preference relation on the set C =
TQ
t=0
Lp(Ft) of consumption sequences

c = (c(0); c(1); : : : ; c(T )); with c(t) 2 Lp(Ft) for all t. In choosing the optimal intertemporal
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consumption and asset allocation, each agent (e0;�) in A faces the budget constraint

B(e0) = fc 2 C j c(0) � x�(0) + e0; c(t) � x�(t) 8 t > 0 for some � 2 �g :

We consider the class of agents whose preferences have a time-additive von Neumann-

Morgenstern representation, such that the period-utilities are allowed to depend on the

state ! and on both the individual�s past and present consumptions. In this way our

model is able to accomodate habit formation models of both the internal and exter-

nal type (see for instance [7]). For sake of notation, we denote with ct;s the stream

of consumption from time t to time s, that is ct;s = (c(t); : : : ; c(s)): Analogously, we

let xt;s(�) = (x�(t); : : : ; x�(s)) denote the cash-�ow generated by a dynamic trading strat-

egy � from t to s. We assume that the preference U(c) of an agent over consumption

sequences c 2 C takes the form

U(c) =
TX
t=0

Z


ut(c0;t(!); !)dP (!) =

TX
t=0

E [ut (c0;t)] (3.2)

where, for all t � T , the period utilities ut : <t+1�
! < satisfy the following conditions:

(i) for all t, the function ut(; !) : <t+1 � 
 ! < is measurable with respect to the

product �-algebra B(<t+1)
Ft (where B(<) denotes the Borel �-algebra);

(ii) for all c 2 B(e0), the integrals
R

 ut(c0;t(!); !)dP (!) are well de�ned and they are

either �nite or they take the value �1 so that U(c) < +1 for all c 2 B(e0);

(iii) for every t, the function ut( � ; !) : <t+1 ! < is real-valued and strictly increasing7

for almost every !.

An optimal consumption-portfolio choice for such an agent is a couple (c�; ��) 2 C��

such that c�(0) � x��(0)+ e0, c�(t) � x��(t) for t = 1; : : : ; T and U(c�) � U(c) for all c 2 C

such that c(0) � x�(0) + e0, c(t) � x�(t) for t = 1; : : : ; T for some � 2 �. We make the

following assumption:

Assumption 3.1 There exists an optimal solution to the consumption-portfolio problem

for an agent with preferences as in (3.2) and initial endowment e0.

7The function u : <t+1 ! < is strictly increasing if u(c0; : : : ; ct) > u(~c0; � � � ; ~ct) for every pair
(cs)0�s�t; (~cs)0�s�t such that cs � ~cs for all s and c�s > ~c�s for at least one �s.
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As a consequence of the strict monotonicity of the period-utilities, the budget constraint

is binding at the optimum, namely c�(0) = x��(0) + e0 and c�(t) = x��(t) for t = 1; : : : ; T:

To any optimal consumption-portfolio choice (c�; ��) for an agent with preferences as

in (3:2) and initial endowment e0, we associate the optimal intertemporal wealth W � =

fW �(t)gTt=0 generated by ��, that is

W �(t) =

8<: e0 t = 0

��(t� 1) � [S(t) + d(t)]; t = 1; : : : ; T:

Note that W �(t) = x��(t) + V��(t) = c
�(t) + V��(t) for t = 1; : : : ; T � 1.

Fix now t 2 f0; 1; : : : ; T � 1g; a sequence of past consumptions c0;t�1 and a Ft-

measurable random variable W . An agent who, at time t, has a level of wealth W , can

choose among the in�nitely many consumption-portfolio pairs such that c(t) + V�(t) � W

and c(s) � x�(s) for s > t. Every pair determines a �remaining utility�(conditionally to

the information available at time t) which is a Ft-measurable random variable. The proper

notion of supremum to employ is therefore the one of essential supremum. We recall here

that for any set � of random variables, there exists a random variable '�, called the es-

sential supremum of � and denoted as '� = ess sup
'2�

', such that: (i) '� � ' P -a.s for all

' 2 �; (ii) any other random variable ~' such that ~' � ' for all ' 2 � satis�es ~' � '�

P -a.s. ([11], Theorem A.18). The maximum remaining utility (or continuation utility) at

time t for an agent whose current level of wealth is W , is the random variable de�ned as

follows

H(t; c0;t�1;W ) � ess sup
(c;�)2C��

TP
s=t
Et [us(c0;t�1; ct;s)]

s:t:

8<: c(t) + V�(t) �W

c(s) � x�(s) s = t+ 1; : : : ; T

(3.3)

for t = 0; 1; : : : ; T , where Et[ � ] denotes the conditional expectation with respect to

Ft. We assume that the integrals E [us(c0;t�1; ct;s)] (and hence the conditional expec-

tations in (3:3)) are well de�ned and, for all consumption levels satisfying the budget

constraint at time t; they are either �nite or take the value �1 (in which case we

set Et [us(c0;t�1; ct;s)] = �1). In particular, when c0;t�1 = c�0;t�1 = (c�0; : : : ; c
�
t�1) and

W = W �(t), then H(t; c�0;t�1;W
�(t)) represents the maximum remaining utility given the

optimal past consumptions and the optimal wealth. Battauz et al. [2] in Proposition 1 prove
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that, in this framework, the value function H is well-de�ned and �nite at the optimum,

and it satis�es the Dynamic Programming Principle, that is

H(t; c�0;t�1;W
�(t)) =

TP
s=t
Et
�
us(c

�
0;s)
�

= ut(c
�
0;t) + Et

�
H(t+ 1; c�0;t;W

�(t+ 1))
�
:

(3.4)

3.2 The Envelope results

In what follows, we consider the time t as �xed and we let H(c0;t�1;W ) � H(t; c0;t�1;W ) to

streamline the notation. Given the stream of past-optimal consumptions c�0;t�1, a strategy

� and a level of wealth W , we de�ne the map F (c�0;t�1; �;W ) as follows:

F (c�0;t�1; �;W ) = ut(c
�
0;t�1;W � V�(t)) + Et

"
TX

s=t+1

us
�
c�0;t�1;W � V�(t); xt+1;s(�)

�#
(3.5)

The strict monotonicity of the period-utilities forces the constraints to be binding, which

implies that problem (3.3) is equivalent to

H(c�0;t�1;W ) � ess sup
�2�t

F (c�0;t�1; �;W ): (3.6)

where �t is the linear space of strategies that are admissible from time t on, that is the

set of sequences � = f� (s)gT�1s=t of J-dimensional, Fs�measurable random variables such

that V�(s), x�(s) 2 Lp(Fs) for s = t; : : : ; T . From now on we assume W 2 Lp(Ft) and

that F (c�0;t�1; �;W ) takes values in L
1(Ft) in a neighborhood of the optimal wealth W �(t);

so that our initial problem takes the form (2.1), with the parameter W lying in the Banach

space Lp(Ft) and the objective function taking values in the Banach lattice L1(Ft).

We are interested in the �rst place to relate the di¤erentiability of F with respect to

wealth and the di¤erentiability of the period utilities with respect to consumption. In

particular, we observe that, since all future period utilities depend on current consump-

tion, the di¤erentiability (and the di¤erential) of F with respect to current wealth, will

depend not only on the di¤erentiability (and di¤erential) of the current period utility with

respect to current consumption, but on those of all future period-utilities. To see this more

precisely, let

~us;�( � ) � us(c�0;t�1; � ; xt+1;s(�)) s = t; : : : ; T; (3.7)
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take any strategy � 2 �t; any two wealth levels W1;W2 2 Lp(Ft); let ci(t) = Wi � V�(t)

for i = 1; 2 and exploit (3.5) to see that

F (c�0;t�1; �;W1)� F (c�0;t�1; �;W2) = ~ut;�(W1 � V�(t))� ~ut;�(W2 � V�(t))

+Et

nPT
s=t+1 [~us;�(W1 � V�(t))� ~us;�(W2 � V�(t))]

o
= ~ut;�(c1(t))� ~ut;�(c2(t))

+Et

nPT
s=t+1 [~us;�(c1(t))� ~us;�(c2(t))]

o
which shows that, since in this case all future period utilities from time t on depend in

general also on time t consumption, the increment of F corresponds now to the sum of the

conditional expected increments in all future period utilities. The correct relation is stated

in the next proposition:

Proposition 3.1 Assume that the functions ~us;�( � ) = us(c�0;t�1; � ; xt+1;s(�)) are Gateaux

(Fréchet) di¤erentiable at some point W � V�(t) for all s = t; : : : ; T . Then the function

F (c�0;t�1; �; � ) is Gateaux (Fréchet) di¤erentiable at W and, in this case,

DF (c�0;t�1; �;W )(X) =
TX
s=t

Et [D~us;�(W � V�(t))(X)] : (3.8)

This proposition is an immediate consequence of the following lemma.

Lemma 3.1 Let g : Lp ! L1 be Gateaux (resp. Fréchet di¤erentiable) at some point

W 2 Lp. Then the function G(W ) = Et [g(W )] is Gateaux (resp. Fréchet di¤erentiable

at W ) and DG(W )(X) = Et [Dg(W )(X)].

Proof. The arguments for the Gateaux and Fréchet di¤erential case are the same. There-

fore, we will prove the result only for the case of Fréchet di¤erentiability. Since g is Fréchet

di¤erentiable at W , we have that

lim
kXkLp!0

E [jg(W +X)� g(W )�Dg(W )(X)j]
kXkLp

= 0:

On the other hand, exploiting the properties of conditional expectation and, in particular,

Jensen�s inequality, we obtain that:

E [jG(W +X)�G(W )� Et [Dg(W )(X)]j] = E [jEt [g(W +X)� g(W )�Dg(W )(X)]j]

� E [Et [jg(W +X)� g(W )�Dg(W )(X)j]]

= E [jg(W +X)� g(W )�Dg(W )(X)j] :

18



It follows immediately that

lim
kXkLp!0

E [jG(W +X)�G(W )� Et [Dg(W )(X)]j]
kXkLp

= 0

which implies that G is Fréchet di¤erentiable at W and DG(W ) = Et [Dg(W )] : �
We are now ready to show, as a �rst result, that the Envelope condition holds when

the value function and the period utilities are di¤erentiable.

Proposition 3.2 Let (c�; ��) be an optimal consumption-portfolio pair. Assume that all

the time s-period utilities ~us;��(�) = us(c�0;t�1; � ; c�t+1;s) are Gateaux (Fréchet)-di¤erentiable

at the optimal consumption c�(t) and the time t value function H(c�0;t�1; � ) is Gateaux

(Fréchet)-di¤erentiable at the optimal wealth W �(t) = c�(t) + V��(t). Then

DH(c�0;t�1;W
�(t))(X) =

TX
s=t

Et
�
D~us;��(c

�(t))(X)
�
: (3.9)

Proof. An immediate consequence of the Dynamic Programming Principle (3.4) is that

the optimal strategy �� sati�es F (c�0;t�1; �
�;W �(t)) = H(c�0;t�1; W

�(t)). Proposition 3.1

implies that F (c�0;t�1; �
�;W ) is di¤erentiable at W �(t) and

DF (c�0;t�1; �
�;W �(t))(X) =

TX
s=t

Et [D~us;�(W
�(t)� V �� (t))(X)] :

Theorem 2.1 yields the claim. �

Remark. In the special case where the period-utilities do not depend on past consump-

tions, but only on current consumption, that is ut(c(0); : : : ; c(t)) � ut(c(t)), the di¤eren-

tiability of F with respect to current wealth is equivalent to the di¤erentiability uniquely

of the current period-utility ut with respect to current consumption. In particular, in this

case, formula (3.8) becomes DF (�;W ) = Dut(W � V�(t)) = Dut(c(t)) and the Envelope

formula (3.9) reduces to DH(W �(t)) = Dut(c�(t)):

A �rst set of conditions on the primitives of the optimal consumption-portfolio problem

which guarantees that the value function is di¤erentiable consists in requiring the period

utilities to be concave. If all the period utilities from t on are concave then F (c0;t�1; �;W )

is manifestly concave with respect to both � and W . The following result is then an

immediate consequence of Theorem 2.2 in Section 2.
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Proposition 3.3 If the period utilities us are concave, and Gateaux (resp. Fréchet)-

di¤erentiable at the optimal consumption c�(t), for all s = t : : : ; T , then the value function

is concave, continuous and Gateaux (resp. Fréchet)-di¤erentiable at the optimal wealthW �(t)

and equality (3.9) holds.

Consider now the general case in which concavity of the period utilities is not required.

To apply our general Envelope results to this asset pricing setting, we rephrase the as-

sumptions of Section 2.3 in terms of the period utilities us or, equivalently, in terms of the

transformed period utilities ~us;� de�ned in (3.7).

Remark. To see why imposing conditions on us is tantamount to imposing them on ~us;�,

let

C�(W �(t)) =

(
c 2

TY
s=t

Lp(Fs) :
c(t) =W �(t)� V�(t)
c(s) = x�(s) for s = t : : : ; T;

for some � 2 �t

)
be the set of consumption streams admissible from t onward, given the optimal wealth

W �(t); and observe that ~us;� is in fact the restriction of us to C�(W �(t)). Let now c(t) =

W �(t)�V�(t); c(s) = x�(s) for s = t : : : ; T; � 2 �t and consider a perturbation X 2 Lp(Ft)

of c(t). Then

us(c
�
0;t�1; c(t) +X; ct+1;s)� us(c�0;t�1; c(t); ct+1;s) = ~us;�(c(t) +X)� ~us;�(c(t))

from which, taking the proper limits, one sees that the period-utility us(c�0;t�1; � ; ct+1;s) is

di¤erentiable at c(t) if and only if ~us;� is di¤erentiable at c(t), and Dus(c(t)) = D~us;�(c(t)).

Assumptions 2.3 and 2.4 become then a sort of equidi¤erentiability and uniform bounded-

ness, respectively, of the transformed period utilities ~us;� over the set of these admissible

consumptions levels produced by deviations from the optimal strategy.

Assumption 3.2 (i) For every � 2 �t, the function ~us;� is Fréchet-di¤erentiable at

c(t) =W �(t)� V�(t) and for every X 2 Lp(Ft) with a su¢ ciently small norm

~us;�(c(t) +X)� ~us;�(c(t)) = D~us;�(c(t))(X) + �s(c(t); X)

where j�s(c(t); X)j � �skXkLp and �s 2 L1(Ft).

(ii) For every X 2 Lp(Ft) there exists an integrable random variable �X such that for

all � 2 �t; c(t) =W �(t)� V�(t)

jD~us;�(c(t))(X)j < �X kXkLp :
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If this assumption is satis�ed, the continuity of the value function follows from our general

Proposition 2.2.

Proposition 3.4 If for all s = t : : : ; T the period utilities us satisfy Assumption 3.2, then

the value function is �nite in a neighborhood of the optimal wealth and continuous atW �(t).

Proof. Assumption 3.2 (i) implies the equidi¤erentiability of F (c�0;t�1; �;W
�(t)) (Assump-

tion 2.3). Indeed, let c(t) = W �(t)� V�(t) 2 C�(W �(t)). Then, exploiting Assumption 3.2

(i) and Proposition 3.1 we get

F (c�0;t�1; �;W
�(t) +X)� F (c�0;t�1; �;W �(t)) = Et

(
TX
s=t

[~us;�(c(t) +X)� ~us;�(c(t))]
)

=

TX
s=t

Et [D~us;�(W
�(t)� V�(t))(X)) + �s(c(t); X)]

= DF (c�0;t�1; �
�;W �(t))(X) +

TX
s=t

Et [�s(c(t); X)] :

Moreover, Jensen�s inequality and Assumption 3.2 (i) imply that

jEt [�s(c(t); X)] j � Et [j�s(c(t); X)j] � �skXkLp

hence Assumption 2.3 is ful�lled. The above equality also shows that Assumption 2.3 (ii)

is equivalent to Assumption 2.4. Then we can apply Proposition 2.2 to get the claim

proved. �
To obtain the di¤erentiability of the value function (and, as a consequence, the Envelope

formula) we reformulate Assumptions 2.5 and 2.6 in terms of the Gateaux and the Fréchet

di¤erentials, respectively, of the transformed period utilities ~us;� .

Let ��(W ) denote the set of the optimal strategies from time t on, given the wealth

level W and the optimal past consumption stream c�0;t�1, that is:

��(W ) =
�
� 2 �t : F (c�0;t�1; �;W ) = H(t; c�0;t�1;W )

	
:

An immediate consequence of the Dynamic Programming Principle (3.4) is that ��(W ) is

non-empty when W = W �(t); where W �(t) is the time t wealth generated by the optimal

consumption-portfolio strategy (c�; ��).

Assumption 3.3 (i) There exists r > 0 such that for each W 2 B(W �(t); r) the

set ��(W ) is not empty.
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(ii) For every � 2 �t, the function ~us;� is Gateaux di¤erentiable at c(t) = W �(t)� V�(t)

and ���� ~us;�(c(t) + hX)� ~us;�(c(t))h
�D~us;�(c(t))(X)

���� � �t(W �; X; h)

for every X 2 Lp(Ft), for very su¢ ciently small h 2 <+, for some �t(W �; X; h) 2

L1(Ft) such that limh!0 k�t(W �; X; h)kL1 = 0.

(iii) Let X 2 Lp(Ft) and h 2 <+ such that W =W � + hX 2 B(W �(t); r); for every �� 2

��(W �);

lim
h!0

sup
�W2��(W )

D~us;�(W � � V�W (t))(X)�D~us;��(W � � V �� (t))(X)

L1
= 0

Assumption 3.4

(i) There exists r > 0 such that for each W 2 B(W �(t); r) the set ��(W ) is not empty.

(ii) For every � 2 �t, the function ~us;� is Fréchet-di¤erentiable at c(t) =W �(t)� V�(t) and

~us;�(c+X)� ~us;�(c) = D~us;�(c)(X) + �t(c;X)

where j�t(c;X)j � �kXkLp and � 2 L1(Ft).

(iii) Let W 2 B(W �(t); r); for every �� 2 ��(W �);

lim
kW�W �kLp!0

sup
�W2��(W )

sup
kXkLp�1

D~us;�(W � � V�W (t))(X)�D~us;��(W � � V �� (t))(X)

L1
= 0

Theorems 2.3 and 2.4 imply immediately the following Envelope theorem for state-

dependent utilities and for a general information structure.

Proposition 3.5 1. If for all s = t : : : ; T the period utilities us satisfy Assumption 3.3,

then the value function is Gateaux -di¤erentiable at the optimal wealth W �(t).

2. If for all s = t : : : ; T the period utilities us satisfy Assumption 3.4, then the value

function is Fréchet-di¤erentiable at the optimal wealth W �(t).

3. In both cases (3.9) holds.
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An important application of this general result consists in giving a precise de�nition

of marginal utility of wealth for this general framework, and in showing how the intuitive

meaning of Envelope condition as the equality between marginal utility of consumption

and wealth extends to this general framework. Given the di¤erential of H, we de�ne a

linear and continuous functional EH : Lp(Ft)! < via

EH(Y ) = E
�
DH(c�0;t�1;W

�(t))(Y )
�

for all Y 2 Lp(Ft):

De�nition 3.1 We call marginal utility of optimal time t-wealth the unique random vari-

able8 �Ht 2 Lq(Ft) such that E
�
�Ht Y

�
= E

�
DH(c�0;t�1;W

�(t))(Y )
�
for all Y 2 Lp(Ft)

To de�ne the marginal utility of time t-consumption, we �rst de�ne the marginal time s-

utility of optimal time t-consumption:

De�nition 3.2 We call marginal time s-utility of optimal time t-consumption the unique

random variable �uts 2 Lq(Ft) such that E
�
D~us;��(c

�(t))(Y )
�
= E [�utsY ] for all Y 2

Lp(Ft):

In words, �uts measures the impact of a marginal change in the time t optimal consump-

tion on the time s � t period utility. The total impact of a marginal change in the time t

optimal consumption is then measured by the quantity �ut de�ned implicitly by summing

up the impacts on each of the future period utilities, that is:

E [�ut Y ] =
TX
s=t

E
�
D~us;��(c

�(t))(Y )
�
=

TX
s=t

E [�utsY ] = E

"
TX
s=t

�utsY

#

Therefore, exploiting the uniqueness of the Riesz decomposition, we give the following

de�nition:

De�nition 3.3 We call marginal utility of optimal time t-consumption the random vari-

able

�ut =
TX
s=t

�uts:

8Existence and uniqueness of such a random variable are guaranteed by Riesz representation theorem (see

also Du¢ e and Skiadas [10] for the de�nition of state-price densities by the Riesz representation property

of the utility gradient).
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Remark. In the special case in which ut is state-independent and depend only on current

consumption (i.e. ut : < ! <) and di¤erentiable, then Dut(c�(t))(Y ) = u0t(c�(t))Y , which

shows how in that special case �ut = u
0
t(c

�(t)) coincides with the standard notion of marginal

utility.

Since, by the law of iterated expectation, E
�
Et
�
D~us;��(c

�(t))(Y )
��
= E

�
D~us;��(c

�(t))(Y )
�
=

E [�utsY ], Proposition 3.2 and, once again, the uniqueness of the Riesz decomposition, to-

gether imply the classical Envelope condition for marginal utilities.

Corollary 3.1 Under the assumptions of Proposition 3.2, �Ht = �
u
t , namely, the marginal

utility of optimal time t-wealth equals the marginal utility of optimal time t-consumption.

The Dynamic Programming Principle allows to relate marginal utilities of today with

marginal utilities of tomorrow. In [2], we showed (Proposition 2 and Corollary 1) that when

the value function is di¤erentiable at the optimum wealth and there exists a numeraire with

bounded returns, the Dynamic Programming Principle holds and the marginal utilities of

optimal wealth are state-price densities. We recall that a numeraire with bounded returns9

is a strictly positive self �nancing portfolio VBN such that V�BN (t + 1)=V�BN (t) 2 L1 for

all t. We can use that result to state a Euler�s equation in terms of the marginal utility of

consumptions.

Corollary 3.2 Under the assumptions of Proposition 3.2, assume that there exists a nu-

meraire with bounded returns. Then (�Ht )0�t�T , or equivalently (�
u
t )0�t�T , are state-price

densities, namely

(i) �Ht 2 Lq(Ft) and P (�Ht > 0) = 1

(ii) Sj(t) =
1

�Ht
Et
�
�Ht+1 (Sj(t+ 1) + (dj(t+ 1))

�
=
1

�ut
Et
�
�ut+1 (Sj(t+ 1) + (dj(t+ 1))

�
for j = 1; : : : ; J; t = 0 : : : ; T � 1:

9An example is the standard money market account

24



4 Conclusions

In this paper we have extended a general class of Envelope results, due to Benveniste and

Scheinkman [3] and Milgrom and Segal [14], to the case in which the objective function

takes values in a general Banach lattice, and not necessarily the real line. Employing the

concept of di¤erentiability in Banach spaces, our main results consist in identifying a set of

assumptions under which the value function is di¤erentiable, and its di¤erential coincides

with the di¤erential of the objective function, seen as a function of the parameters. We

then apply our general result to the consumption-portfolio problem of an agent with time

additive but possibly state-dependent utility, in a context in which a general information

structure is considered. In this setting, at any time t the value function (maximum remain-

ing utility) is in fact a random variable itself, and not just a real-valued function de�ned

on a set of state variables. To investigate if the value function for this problem has a well-

de�ned marginal utility of wealth, de�ned as the di¤erential of the value seen as a function

of wealth levels accumulated up to time t, we recognize that the value function takes values

in L1; the space of integrable random variables, and that L1 is indeed a Banach lattice.

This allows us to bring to full bearing our general results to identify a set of conditions

under which the marginal utility of wealth is well de�ned and coincides with the marginal

utility of consumption, when the last one exists.

A Di¤erentiability and concavity in normed vector spaces

In this section we summarize the main de�nition and results for cone-concave functions

on vector spaces and, in particular, on the relation between concavity and di¤erentiability.

Let X, Y be normed vector spaces and G a mapping de�ned on an open domain U � X,

with values in Y .

De�nition A.1 We say that G admits derivative at a point u 2 U in a direction x 2 X

if the limit:

G0(u;x) := lim
h!0+

G(u+ hx)�G(u)
h

(A.1)

exists, where the limit is meant in Y -norm.

The function G is said to be Gateaux di¤ erentiable at u if it is directional di¤eren-

tiable at u in every direction x 2 X and the directional derivative G0(u; � ) : X ! Y is a
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continuous and linear operator. In this case, we denote this operator with DG(u) (namely,

DG(u)(x) = G0(u;x)) and call it the Gateaux di¤ erential of G at u.

De�nition A.2 We say that G is Fréchet-di¤ erentiable at u if there exists a continuous

and linear operator DG(u) : X ! Y such that

lim
kxkX!0

kG(u+ x)�G(u)�DG(u)(x)kY
kxkX

= 0 (A.2)

The operator DG(u) is called the Fréchet di¤ erential of G at u.

The results which follow can be found in [21, 6, 16]. Usually, de�nition and results are

stated for convex function. Since we work under a concavity assumption, we reformulated

them in the appropriate form for concave functions with values in the order complete

Banach lattice (Y;C;�); where C is the positive cone of Y .

De�nition A.3 A function F : X ! Y is C-concave (or simply concave) if for all

x; y 2 X, � 2 [0; 1]

F (�x+ (1� �)y) � �F (x) + (1� �)F (y);

namely, F (�x+ (1� �)y)� �F (x) + (1� �)F (y) 2 C.

The sets of points at which F is �nite is called the essential domain of F and denoted

by domF . The algebraic interior of F is denoted coreF .

Proposition A.1 (Borwein [6], Proposition 2.3) Let G : X ! �Y be concave. Assume

that there exists a function F : X ! �Y such that G(x) � F (x) for all x 2 X. If F is

continuous at some point x0 2 X, then G is continuous at x0.

Let now L(X;Y ) denote the set of continous and linear operators between X and Y

and let F be a concave function from X to �Y .

De�nition A.4 An operator L 2 L(X;Y ) is called a superdi¤ erential for F at x0 if for

all x 2 X

L(x) � F (x0 + x)� F (x0):

The superdi¤ erential set is denoted by @F (x0).
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Proposition A.2 (Borwein [6], Proposition 3.2 (a) and Proposition 3.7 (a)) If F : X !
�Y is concave, with x0 2 coreF , then

F>(x0; x) = sup
h>0

F (x0 + hx)� F (x0)
h

exists and is everywhere �nite and superlinear.

Proposition A.3 (Valadier [21], Proposition 4 and Théorème 6) If F : X ! �Y is concave

and x0 2 coreF then:

(i) L 2 L(X;Y ) is a superdi¤erential for F at x0 if and only if L(x) � F>(x0; x) for all

x 2 X;

(ii) if in addition F is continuous at x0, then @F (x0) is non-empty, convex and equicon-

tinuous in L(X;Y ) and

F>(x0; x) = minfL(x) : L 2 @F (x0)g:

Proposition A.4 (Papageorgiou [16], Theorem 4.6) Let F : X ! �Y be a concave function.

If F is continuous at x0, then F is Gateaux-di¤erentiable at x0 if and only if @F (x0) is a

singleton.
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