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Constraint preserving boundary conditions for the Z4c formulation of general

relativity

Milton Ruiz,∗ David Hilditch,† and Sebastiano Bernuzzi‡

Theoretical Physics Institute, University of Jena, 07743 Jena, Germany

We discuss high order absorbing constraint preserving boundary conditions for the Z4c formu-
lation of general relativity coupled to the moving puncture family of gauges. We are primarily
concerned with the constraint preservation and absorption properties of these conditions. In the
frozen coefficient approximation, with an appropriate first order pseudo-differential reduction, we
show that the constraint subsystem is boundary stable on a four dimensional compact manifold.
We analyze the remainder of the initial boundary value problem for a spherical reduction of the Z4c
formulation with a particular choice of the puncture gauge. Numerical evidence for the efficacy of
the conditions is presented in spherical symmetry.

PACS numbers: 04.25.D-, 95.30.Sf, 97.60.Jd
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I. INTRODUCTION

Numerical simulations of general relativity typically
introduce an artificial time-like outer boundary. This
boundary requires conditions which ought to render the
initial boundary value problem (IBVP) well-posed. Well-
posedness is the requirement that a unique solution of the
IBVP exists and depends continuously upon given initial
and boundary data.

The most important approaches to demonstrate well-
posedness of the IBVP are the energy and Laplace-
Fourier transform methods [1–4]. The energy method is
straightforward. In this approach one constructs a suit-
able norm for the solutions of the dynamical system. Us-
ing the equations of motion one can estimate the growth
of this norm in time. However, this technique in general
cannot be used if the system is not symmetric hyper-
bolic or if the boundary conditions are not maximally
dissipative. Recently, Kreiss et al. introduced in [5] a
non-standard energy norm to prove that the IBVP for the
second order systems of wave equations with Sommerfeld-
like boundary conditions is well-posed. The key idea
in [5] is to choose a particular time-like direction in a
way that the boundary conditions are maximally dissi-
pative ones. A different method is based on the frozen
coefficient approximation. In this approach one freezes
the coefficients of the equations of motion and the bound-
ary operators. The IBVP is thus simplified to a linear,
constant coefficient problem which can be solved using a
Laplace-Fourier transformation. Sufficient conditions for
the well-posedness of the frozen coefficient problem were
developed by Kreiss in [6] if the system is strictly hy-
perbolic. Using that theory, a smooth symmetrizer can
be constructed with which well-posedness can be shown
using an energy estimate in the frequency domain. Agra-
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novich [7] extended that theory to the case in which the
system is strongly hyperbolic and the eigenvalues have
constant multiplicity. It is expected that, by using the
theory of pseudo-differential operators [8], one can show
well-posedness of the general problem. In what follows
we use the Laplace-Fourier approach to prove the well-
posedness of the IBVP for the constraint subsystem of
Z4 with high order constraint preserving boundary con-
ditions. The order of a boundary condition refers to the
highest derivative of the metric or of the gauge variables
contained therein.

Once the continuum boundary conditions (BCs) are
understood, one needs a strategy for their implementa-
tion in a numerical code. The numerical implementation
is required to be stable and to converge to the contin-
uum solution at a certain rate. If the system is sym-
metric hyperbolic one can use, for instance, difference
operators which satisfy summation by parts schemes and
penalty techniques to transfer information through the
outer boundary condition [9–12]. This allows the deriva-
tion of semi-discrete energy estimates which can guaran-
tee the stability of the numerical implementation. Nev-
ertheless, in the general cases, even for a linear system,
demonstrating that a numerical approach to BCs will re-
sult in a stable scheme is difficult. In the absence of a
proof of numerical stability one must rely on calculations
for similar toy problems and on thorough numerical tests
with simple data, in which problems can be identified
locally at the boundary. Unfortunately naive discrete
approaches are often numerically unstable. One issue is
that a code usually requires more conditions than are
given at the continuum level.

The two most popular choices of formulation of general
relativity (GR, hereafter) in use in numerical relativity
today are the generalized harmonic gauge (GHG) and
the BSSN formulations [13–16]. Significant progress has
been made in the construction of both continuum and
discrete BCs for the GHG formulation, see e.g. [17–24]
and references therein. For GHG the task is made rela-
tively easy because the system has a very simple wave-
equation structure in the principal part and furthermore
because the constraints may be expressed as time deriva-
tives of metric fields. The BSSN formulation is used to
evolve both vacuum and matter space-times by a num-
ber of numerical relativity groups, see e.g. [25–32] and
references therein. This The system is taken in combina-
tion with the so-called moving puncture-gauge [27]. BCs
for the BSSN formulation have received relatively little
attention, although recently, Núñez and Sarbach have
proposed [33] constraint preserving boundary conditions
(CPBCs) for this system. Recasting the dynamical sys-
tem into a first order symmetric hyperbolic system, they
are able to prove that the corresponding IBVP is well-
posed through a standard energy method, at least in the
linearized case. These boundary conditions have not yet
been implemented numerically. Currently Sommerfeld
BCs are the most common in use in applications, despite
the fact that they are certainly not constraint preserv-

ing and it is not known whether or not they result in
a well-posed IBVP. The problem is that the character-
istic structure of puncture-gauge BSSN is more compli-
cated than that of the GHG formulation, which makes
the analysis difficult. Despite the fact that with Sommer-
feld conditions the constraints do not properly converge,
in applications they are robust and are currently not the
dominant source of error in numerical simulations.

Another version of GR is the Z4 formulation [34, 35].
When coupled to the generalized harmonic gauge Z4 is
formally equivalent to GHG [36]. Additionally it is possi-
ble to recover the BSSN formulation from Z4 by freezing
one of the constraint variables. In this sense Z4 may
be thought of as a generalization of both BSSN and
GHG. Z4 has the advantage over GHG that it main-
tains sufficient gauge freedom that it may be coupled to
the puncture-gauge, potentially allowing the evolution
of puncture initial data as is standard with BSSN. To
that end a conformal decomposition of the Z4 formula-
tion (hereafter Z4c) was recently presented [37]. Unlike
BSSN, the Z4 formulation has a constraint subsystem in
which every constraint propagates with the speed of light,
which may be useful in avoiding constraint violation in
numerical applications. It was shown that, at least in
the context of spherical symmetry, numerical simulations
performed with puncture-gauge Z4c have smaller errors
than those performed with BSSN [37]. However it was
also found that Z4c is rather more sensitive than BSSN
with regards to boundary conditions. BCs compatible
with the constraints for a symmetric hyperbolic first or-
der reduction of Z4 were specified and tested numerically
in [38, 39]. Those conditions are of the maximally dis-
sipative type and, therefore, the well-posedness of the
resulting IBVP was shown by using a standard energy
estimation. Nevertheless, Bona et al. used in [38, 39]
harmonic slicing and normal coordinates to rewrite Z4
as a symmetric hyperbolic formulation. Therefore, it is
not clear if their results can be easily extended to the
general case.

In this work we therefore specify BCs in combination
with puncture-gauge Z4c and we show that the resulting
IBVP is well-posed at least in spherical scenarios. How-
ever, since we are interested in specifying CPBCs which
can be used in 3D evolutions, the well-posedness of IBVP
for the constraint subsystem is established in the general
case. In addition, we study the effectiveness of these con-
ditions by performing numerical evolutions in spherical
symmetry.

We begin in section II with a summary of the Z4 formu-
lation, and identify the BCs we would like to consider in
our analysis. We present the analytic setup for our well-
posedness analysis in section III. Section IV contains our
analytic results on BCs for Z4. We present our numeri-
cal results in section V. We conclude in section VI. The
principal ideas of the Kreiss theory are summarized in
appendix A and applied to the wave equation with high
order BCs in appendix B. We describe the numerical im-
plementation of the second-order CPBCs in Appendix C.
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II. THE Z4C FORMULATION

In this section we present the Z4c formulation and the
general expressions for our BCs in detail. We also intro-
duce notation for a 2 + 1 decomposition in space, which
we will use in the calculations in the following sections.

A. Evolution equations and constraints

Following [37], in which the conformal Z4 formulation
was presented, we replace the Einstein equations with the
expanded set of equations

∂tγij = − 2αKij + Lβγij , (1)

∂tKij = −DiDjα+ α
[

Rij − 2KikK
k
j +KijK

+2 ∂(iZj)

]

+ 4π α [γij(S − ρ)− 2Sij ]

+LβKij , (2)

∂tΘ = α

[

1

2
H + ∂kZ

k

]

+ βi Θ,i , (3)

∂tZi = αMi + αΘ,i + βj Zi,j , (4)

where Θ and Zi are constraints. The ADM equations are
recovered when the constraints Θ and Zi vanish. The
Hamiltonian and momentum constraints

H = R−Kij K
ij +K2 − 16 π ρ = 0 , (5)

M i = Dj

(

Kij − γij K
)

− 8 π Si = 0 , (6)

evolve according to

∂0H ≃ −2 ∂iM
i , (7)

∂0Mi ≃ −1

2
∂iH + ∂j∂jZi − ∂i∂

jZj , (8)

in the principal part, where we have used

∂0 =
1

α

(

∂t − βi∂i
)

. (9)

Since we are concerned in this work only with the behav-
ior of the BCs on the constraints, we have discarded the
constraint damping scheme of [36].

B. Conformal decomposition

In our numerical applications we evolve the Z4c system
in the conformal variables χ, γ̃ij , K̂, Ãij and Γ̃i, defined
by

γ̃ij = γ−
1

3 γij , K̂ = γijKij − 2Θ , (10)

χ = γ−
1

3 , Ãij = γ−
1

3 (Kij − 1
3γijK) , (11)

and finally

Γ̃i = 2 γ̃ijZj + γ̃ij γ̃klγ̃jk,l . (12)

The choice of conformal variables allows us to evolve
puncture initial data whilst altering the underlying PDE

properties of the formulation. In what follows we will use
the shorthand

Γ̃d
i = γ̃ij γ̃klγ̃jk,l = γ

1

3 γijγkl
(

γjk,l −
1

3
γkl,j

)

. (13)

In terms of the conformal variables the evolution equa-
tions for the Z4c formulation become

∂tχ =
2

3
χ[α(K̂ + 2Θ)−Diβ

i] , (14)

∂tγ̃ij = −2αÃij + βkγ̃ij,k + 2γ̃(i|kβ
k
,|j) −

2

3
γ̃ijβ

k
,k , (15)

∂tK̂ = −DiDiα+ α[ÃijÃ
ij +

1

3
(K̂ + 2Θ)2]

+ 4πα[S + ρADM] + βiK,i , (16)

the trace-free extrinsic curvature evolves with

∂tÃij = χ[−DiDjα+ α(Rij − 8πSij)]
tf

+ α[(K̂ + 2Θ)Ãij − 2Ãk
iÃkj ]

+ βkÃij,k + 2Ã(i|kβ
k
,|j) −

2

3
Ãijβ

k
,k , (17)

and finally we have

∂tΓ̃
i = −2Ãijα,j + 2α[Γ̃i

jkÃ
jk − 3

2
Ãij ln(χ),j

− 1

3
γ̃ij(2K̂ +Θ),j − 8πγ̃ijSj ] + γ̃jkβi

,jk

+
1

3
γ̃ijβk

,kj + βj Γ̃i
,j − Γ̃d

jβi
,j +

2

3
Γ̃d

iβj
,j . (18)

The Θ variable evolves according to Eqn. (3) with the

appropriate substitutions Eqns. (22-25). In the ∂tÃij

equations we write

Rij = Rχ
ij + R̃ij , (19)

R̃χ
ij =

1

2χ
D̃iD̃jχ+

1

2χ
γ̃ijD̃

lD̃lχ

− 1

4χ2
D̃iχD̃jχ− 3

4χ2
γ̃ijD̃

lχD̃lχ , (20)

R̃ij = −1

2
γ̃lmγ̃ij,lm + γ̃k(i|Γ̃

k
|,j) + Γ̃d

kΓ̃(ij)k+

γ̃lm
(

2Γ̃k
l(iΓ̃j)km + Γ̃k

imΓ̃klj

)

. (21)

The complete set of constraints are given by

Θ , 2Zi = γ̃ij Γ̃
j − γ̃jkγ̃ij,k , (22)

H = R− ÃijÃij +
2

3
(K̂ + 2Θ)2 − 16πρADM , (23)

M̃ i = ∂jÃ
ij + Γ̃i

jkÃ
jk − 2

3
γ̃ij∂j(K̂ + 2Θ)

− 3

2
Ãij(logχ),j , (24)

D ≡ ln(det γ̃) = 0 , T ≡ γ̃ijÃij = 0 . (25)

In our numerical evolutions the algebraic constraints D
and T are imposed continuously during the numerical
calculations. It seems to improve the stability of the
simulations significantly [40].
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C. Puncture gauge conditions

The most popular gauge choice in the numerical evo-
lution of dynamical spacetimes is the puncture gauge. In
introducing scalar functions (µL, µS , ǫα, ǫχ) the general
form of the gauge (without introducing the additional
field Bi) is

∂tα = βiα,i − µL α
2 K̂ , (26)

∂tβ
i = βjβi

,j + µS Γ̃i − η βi − ǫα αα
,i

+ ǫχ γ̃
ij∂jχ . (27)

Note that in this condition we have included a new term
proportional to the spatial derivative of χ. As we will
show in Sec. IV, the inclusion of that term allows us
to prove the well-posedness of the IBVP for Z4 in the
frozen coefficient approximation. We refer to the choice
of shift (µS , ǫα, ǫχ) = (1, 1, 1/2) as the asymptotically
harmonic shift condition because in preferred coordinates
in asymptotically flat spacetimes near infinity the condi-
tion asymptotes to the harmonic shift.
In evolutions of equal mass black holes the gauge

damping parameter η is usually taken as 2/M , where
M is the ADM mass of the spacetime. Recently it has
been shown that a spatially varying η parameter may be
helpful in the evolution of unequal mass binaries [41, 42].

D. Fully second order form

The principal part of the Z4c formulation in fully sec-
ond order form is given by

(

∂20 − µL∂i∂
i
)

α ≃ 0 , (28)

(

∂20 − γ
1

3

µS

α2
∂j∂

j
)

βi ≃
(

γ
1

3µS

α2µL
− ǫα

)

∂0∂
iα

+
1

3α

(

γ
1

3µS

2
− ǫχ

)

γjk∂0∂
iγjk , (29)

(

∂20 − ∂l∂
l
)

γij ≃
1

3
γkl
(

1− 2 ǫχ

γ
1

3 µS

)

∂i∂jγkl

+
2

α

(

1− α2ǫα

γ
1

3µS

)

∂i∂jα (30)

+
2

α

(

1− α2

γ
1

3µS

)

γk(i∂j)∂0β
k .

One may view the constraints Θ and Zi as being defined
by the gauge choice (26-27),

2Θ =
1

αµL
∂0α− 1

2
γij∂0γij +

1

α
∂iβ

i , (31)

2Zi =
1

µS γ1/3

(

α γij ∂0β
j + η βi + ǫα αα,i

− ǫχ γ
1/3 ∂iχ

)

− (Γ̃d)i . (32)

The principal parts of the constraint subsystem are just
wave equations

�Θ ≃ 0 , �Zi ≃ 0 , (33)

�H ≃ 0 , �Mi ≃ 0 . (34)

Following the approach of [43] we will analyze the system
starting in fully second order form. The equations of
motion can be 2+ 1 decomposed against the spatial unit
vector si. We define the projection operator qij = δij −
sisj . The equations of motion split into scalar, vector
and tensor parts. The decomposed variables are written

γss = sisjγij , γqq = qijγij , (35)

γsA = siqjAγij , (36)

γTF
AB =

(

qiAq
j
B − 1

2
qABq

ij

)

γij , (37)

βs = siβi , βA = qiAβi . (38)

The metric and shift are reconstructed from the decom-
posed quantities by

γij =
(

qA(iq
B
j) −

1

2
qABqij

)

γTF
AB + qA(isj)γsA

sisjγss + qijγqq, (39)

βi = siβs + qAi βA. (40)

Here and in what follows we use upper case Latin indices
to denote projected quantities.

E. Characteristic variables

The standard parameters choice in the gauge condi-
tions is µL = 2/α, µS = 3/4 and ǫα = ǫχ = 0. When Z4
is coupled to the puncture gauge it is typically strongly
hyperbolic (necessary and sufficient for well-posedness of
the initial value problem, see e.g. [40, 44]) except in a
handful of special cases which for brevity we do not dis-
cuss here. The fully second order characteristic variables
with ǫα = ǫχ = 0 were presented in [37]. Here we present
them with the additional parameters. In the scalar sector
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the characteristic variables are

U
±√

µL = ∂0α±√
µL ∂sα , (41)

U
±λ = ∂0Λ± α2λ

γ1/3 µS
∂sΛ

− 2
α2 − γ1/3 µS

(λ2 α2 − γ1/3 µS)α

(

∂sβs ±
α2 λ

γ1/3 µS
∂0βs

)

− 2 (λ2 α2 + γ1/3 µL µS)

(λ2 − µL)(λ2 α2 − γ1/3 µL µS)αµL

(

∂0α± α2 µLλ ǫα

γ1/3 µS
∂sα

)

+
2 (ǫα − 1)αλ

(λ2 − µL)(λ2 α2 − γ1/3 µS)
(∂sα∓ λ ∂0α)

+
2 (λ2 γ1/3 µS + α2 ǫαµL)

(λ2 − µL)(λ2 α2 − γ1/3 µS)αµL

(

∂0α± α2 µLλ

γ1/3 µS
∂sα

)

,

(42)

U
±1 = ∂0γqq ± ∂sγqq , (43)

U
′±1 = ∂0βs ±

γ1/3

α
∂sβs + ǫα ∂sα± γ1/3 µS

α2 µL
∂sα

∓ γ1/3 µS

2α
∂0Λ +

ǫχ − 2 γ1/3 µS

3α
∂sΛ . (44)

with geometric speeds ±(
√
µL, λ, 1, 1) respectively, and

where we have defined

Λ = γss + γqq , (45)

λ =

√

2
(

2 γ1/3 µS − ǫχ
)

3α2
. (46)

Note that if λ vanishes the system is only weakly hy-
perbolic. In the vector sector the characteristic variables
are

U
±√

µS

A = ∂0βA ±
√
µS γ

1/3

α
∂sβA , (47)

U±1
A = ∂0γsA ± ∂sγsA − α2

γ1/3µS
(∂0βA ± ∂sβA) ,

(48)

with speeds ±(
√
µS , 1). Finally in the tensor sector we

have simply

U±1
AB = ∂0γ

TF
AB ± ∂sγ

TF
AB, (49)

with speeds ±1.
Since the constraints (Θ, Zi, H,Mi) satisfy wave equa-

tions in the principal part their characteristic variables
are simply

U±
Θ = ∂0Θ± ∂sΘ , U±

s = ∂0Zs ± ∂sZs , (50)

U±
A = ∂0ZA ± ∂sZA , U±

H = ∂0H ± ∂sH , (51)

U ′±
s = ∂0Ms ± ∂sMs , U ′±

A = ∂0MA ± ∂sMA , (52)

each with speeds ±1.

F. High order absorbing constraint preserving

boundary conditions

Following the notation of [23] we investigate the Z4c
evolution equations on a manifold M = [0, T ] × Σ.

The three dimensional compact manifold Σ has smooth
boundary ∂Σ. The boundary of the full manifold T =
[0, T ] × ∂Σ is timelike and the three dimensional slices
Σt = {t} × Σ are spacelike. The boundary of a spatial
slice is denoted St = {t} × ∂Σ.

We define a background metric (α̊, β̊i, γ̊ij),

d̊s2 = g̊ab dx
a dxb =

− α̊2dt2 + γ̊ij(dx
i + β̊idt)(dxj + β̊jdt) . (53)

We assume the background 3-metric to be conformally
flat for later convenience. It can be written as

γ̊ij dx
i dxj = ψ̊4

(

dr2 + r2dΩ2
)

, (54)

which defines the background isotropic radial coordinate
r and the metric on the two-sphere is dΩ2. We further-
more define n̊a, the background future pointing unit nor-
mal to the slices Σt, and s̊a, the unit background nor-
mal to the two-surface {t} × ∂Σ as embedded in Σt.
We are primarily concerned with absorbing conditions
for the Z4c formulation as a PDE system. Construct-
ing BCs explicitly related to the incoming gravitational
radiation is left for future work. For simplicity our time-
like and outgoing normal vectors (̊na, s̊a) are therefore
defined against the background metric. Therefore,

g̊ab n̊
a n̊b = −1 , g̊ab s̊

a s̊b = 1 , g̊ab n̊
a s̊b = 0 . (55)

To finish formulating the BCs we define the back-
ground outgoing characteristic vectors

l̊a =
1√
2
(̊na + s̊a) , (56)

k̊a =
1√
2
(̊na +

√
νs s̊

a) , (57)

j̊a =
1√
2
(̊na +

√
νT s̊

a) , (58)

m̊a =
1√
2
(̊na +

√
µL s̊

a) , (59)

where νs and νT are the characteristic speeds associated
with equation (29) in the scalar and vector sector, respec-
tively. Since the constraints Θ, Zi satisfy wave equations,
constraint preserving, absorbing BCs in the linear regime
around the background are given by

(

r2 l̊a∂a

)L

Θ =̂ 0 ,
(

r2 l̊a∂a

)L

Zi =̂ 0 , (60)

where L ≥ 0 is an integer and =̂ denotes equality in
the boundary T . Note that the above conditions can be
considered a generalization those recently proposed by
Bona et.al. in [38, 39] which correspond to L = 0 (see
also [45, 46]).
We assume that both the physical and background

metrics are sufficiently close to flat so that the full system
has ten incoming characteristic variables at the bound-
ary, which determines the number of BCs we may specify.
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The boundary conditions (60) give four of the total. We
take for the remainder

(

r2 m̊a∂a
)L+1

α =̂ hα , (61)
(

r2 k̊a∂a

)L+1

βs =̂ hs , (62)

(

r2 j̊a∂a

)L+1

βA =̂ hA , (63)

(

r2 l̊a∂a

)L+1

γTF
AB =̂ hTF

AB , (64)

where hα, hi , h
TF
AB are given boundary data. Since the

above conditions are not tailored to the characteristic
structure of the puncture gauge Z4c system there is
no guarantee that they will absorb all outgoing fields.
We leave detailed examination of the absorption proper-
ties, and possible important modifications, of the condi-
tions (61-64) to future work and focus in the following
discussion on well-posedness of the constraint subsector.
In the following sections conditions (61-64) are consid-
ered only in a spherical reduction of the system. The
constraint absorption properties of conditions (60) are
studied in our numerical tests.

III. ANALYTICAL SETUP

In this section we discuss the strategy adopted to prove
well-posedness, namely the frozen coefficient approxima-
tion. This simplification is necessary since one can show
that our system is not symmetric hyperbolic and our BCs
are not maximally dissipative. We also outline the cas-
cade method which can be used for general proofs, pro-
vided that the equations of motion of the system have a
special structure.

A. Frozen coefficient approximation

Once the BCs are specified, one should determine
whether or not the resulting IBVP from (28-30) with (60-
64) is well-posed. This can be done by using the
frozen coefficient technique, where one considers a high-
frequency perturbation of a smooth background solution.
This regime is the relevant limit for analyzing the con-
tinuous dependence of the solution on the initial data.
By considering such a perturbation one can detect the
appearance of high frequency modes with exponential
growth. Therefore, if the IBVP is well-posed in the frozen
coefficient approximation, it is expected that the prob-
lem is well-posed in the non-linear case. In this limit, the
coefficients of the equations of motion and the bound-
ary operators can be frozen to their value at an arbi-
trary point. So, the problem is simplified to a linear,
constant coefficient problem on the half-space which can
be solved explicitly by using a Fourier-Laplace transfor-
mation [2, 47]. This method yields a simple algebraic
condition (see appendix A) which is necessary for the
well-posedness of the IBVP.

Following [23], we perform a coordinate transformation
which leaves Σt invariant, such that one can rewrite the
background metric (53) at the point p in the form

d̊s2
∣

∣

p
= − dt2 +

(

β̊ dt+ dx
)2

+ dy2 + dz2 , (65)

where β̊ corresponds to the normal component of the
shift vector at p. According with this approximation,
one can assume that the BC is a plane. Therefore, the
spatial manifold becomes Σ = {(x, y, z) ∈ R3 : x > 0}.
We denote the flat spatial metric at p by ηij . Regard-
ing the above metric, the time-like and outgoing normal
vectors (̊na, s̊a) are

n̊a∂a = ∂t − β̊ ∂x , s̊a∂a = −β̊ ∂x . (66)

Besides, by using (65) and choosing 1+log slicing µL =
2/α and fixing µS = 1 in the shift condition one can
rewrite the equations of motion (28-30) in the frozen co-
efficient approximation at a point p in the form

(

∂20 − 2 ∂l∂l
)

α = 0 , (67)

(

∂20 − ∂l∂l
)

βi =

(

1

2
− ǫα

)

∂i∂0α

+
1

3

(

1

2
− ǫχ

)

ηjk∂0∂
iγjk , (68)

(

∂20 − ∂l∂l
)

γij =
1

3
(1− 2 ǫχ)η

kl∂i∂jγkl

+ 2(1− ǫα)∂i∂jα . (69)

Note that with the additional choice of asymptotically
harmonic shift (ǫα, ǫχ) = (1, 1/2) the resulting IBVP for
the above system with boundary conditions (60-64) has
a cascade property; the gauge sector (α, βi) is coupled
with the metric only through the BCs. One can analyze
the resulting IBVP for the gauge sector and then use it
as a source in the remaining system. Nevertheless, with
the standard choices (ǫα, ǫχ) = (0, 0), all the variables
are coupled to each other in the bulk as well as at the
boundary. In this case, one should analyze the full system
simultaneously. We will present the analytical results for
arbitrary value of these parameters in [48].

B. 2+1 decomposition

To rewrite the above system with BCs (60-64) as a set
of cascade of wave problems, we perform a 2 + 1 decom-
position against the spatial unit vector si = −êx. Thus,
the lapse satisfies

[

∂2t − 2 β̊ ∂t∂x − (2− β̊2) ∂2x − 2 ∂A∂A

]

α = 0 , (70)

[

∂t −
(√

2 + β̊
)

∂x

]L+1

α =̂ hα . (71)
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The wave problem for βs and βA is obtained once we
project the system
[

∂2t − 2 β̊ ∂t∂x − (1− β̊2)∂2x − ∂C∂C

]

βi =

−1

2
∂0∂iα , (72)

[

∂t −
(

1 + β̊
)

∂x

]L+1

βi =̂ hi , (73)

along si or along the transverse directions, respectively.
Note that the lapse is only coupled with the equation (72)
in the bulk. One could naively think in to analyze the
lapse subsystem independently and use it as a source
in (72). Therefore, the resulting global estimate for the
gauge sector will contain more derivatives of the lapse
than of the shift. In general, it can spoil the estimate
when one considers lower order terms which appear in
the nonlinear case. In order to prevent it one should
consider the wave problems for the lapse and the shift
simultaneously.
The system for the γTF

AB is
[

∂2t − 2 β̊ ∂t∂x − (1 − β̊2)∂2x − ∂C∂C

]

γTF
AB = 0 , (74)

[

∂t −
(

1 + β̊
)

∂x

]L+1

γTF
AB =̂ hTF

AB . (75)

According to the results presented in the appendix B,
it is straightforward to prove this problem is well-posed.
Since the above subsystem is decoupled completely from
the rest of the system, it can be considered as a given
function in the remaining wave problems. On the other
hand, by introducing the trace variable Λ and considering
the equation (31) as a definition of the constraint Θ, we
obtain
[

∂2t − 2 β̊ ∂t∂x −
(

1− β̊2
)

∂2x − ∂A∂A

]

Λ = 0 , (76)

[

∂t −
(

1 + β̊
)

∂x

]L [

(∂t − β̊ ∂x)(α − Λ)−

2 ∂xβs + 2 ∂AβA

]

=̂ 0 . (77)

Since this system is also decoupled from the rest of the
metric sector, one can analyze the resulting IBVP and af-
ter that, use it as a given source for the other problems.
Finally, the remaining equation of motions are again ob-
tained through the projection of the wave equation

[

∂2t − 2 β̊ ∂t∂x − (1− β̊2) ∂2x − ∂C∂C

]

γis = 0 , (78)

along si or along the transverse directions respectively.
By virtue of Eqn. (32) the BC for γss is
[

∂t −
(

1 + β̊
)

∂x

]L [

(∂t − β̊ ∂x)βs − ∂AγsA −

∂x (α− γss + Λ/6)
]

=̂ 0 , (79)

and finally, the BC for γsA is
[

∂t −
(

1 + β̊
)

∂x

]L [

(∂t − β̊ ∂x)βA − ∂BγTF
AB +

∂xγsA + ∂A (α− Λ/3 + γss/2)
]

=̂ 0 . (80)

This subsector does not have the cascade property. The
equation of motion for γss and γsA are decoupled, but
their BCs are coupled to each other. Therefore, one
should consider the mutually coupled wave problems (78-
80) simultaneously.
In the following section, we consider the case with

trivial initial data. Notice that this is not a real re-
striction. One can always treat the case of general ini-
tial data by considering, for instance, the transformation
ū(t, x) = u(t, x)− g(t) f(x), where g(t) is a smooth func-
tion with compact support such that g(0) = 1. Therefore,
ū(t, x) satisfies the same IBVP as u(t, x) with modified
sources and trivial initial data [2].

IV. WELL-POSEDNESS RESULTS

This section contains our analysis of well-posedness for
different BCs. As we have mentioned before, we consider
the IBVP for the constraint subsystem on the manifold
M = [0, T ] × Σ and we just analyze the correspond-
ing IBVP for the dynamical Z4c variables on a spheri-
cal scenario. To do this, we explicitly solve the bound-
ary problem using the Laplace-Fourier transformation.
Kreiss presented in [6] sufficient conditions for the well-
posedness in the frozen coefficient approximation. The
key result in [6] is the construction of a smooth sym-
metrizer for the problem for which well-posedness can be
shown using an energy estimate in the frequency domain.
We summarize the principal ideas of the Kreiss theory in
the appendix A.

A. Constraint subsystem

Consider the IBVP for Θ with first order BCs (L=0)
and, for a moment, let us assume inhomogeneous BCs,
i.e. Θ =̂ q, where q is a given boundary data. One can
show that the equation of motion (33) and the boundary
for this variable can be rewritten in the form

[

(s2 + ω2)− 2 β̊ s ∂x − (1− β̊2) ∂2x

]

Θ̃ = 0 , Θ̃ =̂ q̃ ,

where Θ̃ and q̃ denote the Laplace-Fourier transforma-
tion of Θ and q with respect to the directions t and xA

respectively and ω =
√

ω2
y + ω2

z . Following [19, 23] we

rewrite the above system in the form (B6-B7) by intro-
ducing the variable

DΘ̃ =
1

κ

(

∂xΘ̃ + γ2µ β̊ s Θ̃
)

, (81)

with W̃ =
(

Θ̃, DΘ̃
)T

, L(s, ω) = (1, 0) and

M(s, ω) = κ

(

−γ2 β̊ s′ 1

γ4 λ2 −γ2 β̊ s′
)

, (82)
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where we have defined γ = 1/

√

1− β̊2, κ =
√

|s|2 + ω2,

s′ = s/κ, ω′ = ω/κ and λ2 = s′2 + γ−2 ω′2. The corre-
sponding eigenvalues and eigenvectors of M = M(s, ω)
are

τ± = −κ γ2 (s′ β̊ ∓ λ) , ê± = (1,±γ2 λ)T . (83)

Using this, it can be shown that the L2 solution of the
system(B7) is given by

W̃ (s, x, ω) = σ ê− exp(τ− x) (84)

where σ is a complex integration constant which is de-
termined by introducing (84) into the boundary, i.e. this
constant satisfies σ = q̃. Therefore, it follows immedi-
ately that

|W̃ (s, 0, ω)| ≤ C |q̃| , (85)

where C is a strictly positive constant. Provided that the
eigenvectors in the solution (84) are normalized in such
a way that they remain finite as ω → 0, as ω → ±∞ and
as |s| → ∞ then we conclude that the resulting IBVP
for (33) with the first order boundary condition (60)
is well-posed for trivial initial data. By inverting the
Laplace transformation and using the Parseval’s identity,
we obtain an L2 estimate of the form

∫ T

0

‖W (·, t)‖2Σ dt ≤ CT

∫ T

0

‖q‖2∂Σ dt , (86)

in the interval 0 ≤ t ≤ T for some strictly positive con-
stant CT > 0. Note that if the constraint Θ is satisfied
initially and we consider trivial boundary data q = 0,
the above inequality implies that the constraint is satis-
fied everywhere and at each time. An equivalent estimate
for Zi holds.

We generalize our previous analysis to consider BCs
which depend on second or higher order derivatives of
the constraints. Recently, it has been shown that those
conditions reduce the amount of spurious reflections at
the boundary [24, 49]. In fact, the BCs (60) are Dirich-
let conditions for the constraint subsystem (33), which
means that the constraint violations that leave the bulk
are reflected at the boundary. Therefore, Let us consider
the wave problem for the Θ with high order BCs (L ≥ 1).
Note that according to the appendix B, it is possible to
rewrite the boundary matrix L = L(s, ω) in the form

L(s, ω) =
1

2

(

aL+ + aL−,−
aL+ − aL−
λγ2

)

, (87)

where a± = s′±λ. The L2 solution of this system is given
by (84) but now the integration constant σ satisfies

aL+ σ = q̃ . (88)

According to appendix B, one can show that there is
a strictly positive constant δ > 0 such that |a+|L =
|s′ + λ| > δ. Therefore, it follows that the system sat-
isfies the estimate (85). We conclude that the solution
of the system (33) with high order constraint preserving
BCs (60) is well-posed and it satisfies (86). The IBVP
for Zi with these BCs can be treated in a similar manner.

B. Gauge subsystem

Consider now the spherical reduction of the wave prob-
lems (70-73) for the lapse and the shift with first order
BCs, i.e. conditions (71) and (73) with L = 0. By intro-
ducing the first order reduction variables

Dα̃ =
1

κ

(

∂x + γ2α β̊ s
)

α̃ , (89)

Dβ̃s =
1

κ

(

∂x + γ2 β̊ s
)

β̃s , (90)

it can be possible to rewrite those wave problems in the
form (B7) with

W̃ =









α̃
Dα̃

β̃s
Dβ̃s









, M(s) = κ









−γ2α β̊ s′ 1 0 0

γ4α s
′2
α −γ2α β̊ s′ 0 0

0 0 −γ2 β̊ s′ 1

−2 s′2 β̊ γ2 γ4α s′ (2 + β̊2) γ2 γ2α/2 γ4 s′2 −γ2 β̊ s′









,

L(s) =

( √
2 s′ −γ−2

α 0 0
0 0 s′ −γ−2

)

, g̃ =

(

g̃α
g̃s

)

=
1

κ

(

(
√
2− β̊) h̃α

(1− β̊) h̃s

)

.

Here we have defined s′ = s/κ, κ = |s| and

γ−2
α = 2− β̊2 , γ−2 = 1− β̊2 . (91)

The L2 solution of the above system is given by

W̃ (s, x, ω) =

2
∑

i=1

σi ê
−
i exp

(

τ−i x
)

, (92)
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where σi are the complex integration constants and τ−i
and e−i the negative eigenvalues of M and e−i the corre-
sponding eigenvectors. By replacing the solution into the
boundary condition, it is possible to show that σi satisfy

σα =
g̃α

2
√
2 s′

(93)

σs =
g̃s
2 s′

−
g̃α

[

(1 − β̊) (2 +
√
2 + β̊ (1 +

√
2)
]

γ2α

8 s′
.

(94)

By the same argument as above, it is straightforward by
using the triangle inequality that the system is boundary
stable and therefore an equivalent estimate as (86) holds
for the gauge subsystem with first order BCs.

Next, let us consider high order BCs for this subsys-
tem. To give an estimate for the solution of the gauge

subsystem with high order conditions we rewrite them
in an algebraic form. Therefore, by using the procedure
presented in appendix B and by virtue of the equations
of motion (67-68), one can rewrite the boundaries (72-73)

with L = 0 in the form LW̃ = AW̃ where

A =









√
2 s′ −γ−2

α 0 0
−2 s′2γ2α

√
2 s′ 0 0

0 0 s′ γ−2

2 s′2 β̊ γ4α s′(2 + β̊2) γ2α/2 −γ2 s2 s′









.

We have defined the boundary operator by L =
(L√

2,L1)
T with

Lµ = (µ− β̊) s′ − 1

κ γ2µ
∂x . (95)

By iteration, explicitly one obtains LL+1W̃ = AL+1 W̃ .
Here we have defined

AL+1 =
1

2









aL+1
+ −aL+1

+ /(
√
2 s′ γ2α) 0 0

−
√
2 s′ γ2α a

L+1
+ aL+1

+ 0 0

−F (β̊) γ4α aL+1
+ /γ2 G(β̊) γ2α a

L+1/(s′ γ2) bL+1
+ −bL+1

+ /(s′ γ2)
H(β̊) s′ γ4α a

L+1
+ −J(β̊) γ2α aL+1

+ −s′ γ2 bL+1
+ bL+1

+









,

where a+ = 2
√
2 s′ and b+ = 2 s′ are the eigenvalues

of the matrix A = A(s′) and F (β̊), · · · , J(β̊) are certain

shorthands for combinations of β̊ only. Thus, the high
order BCs for the gauge subsystem can be rewritten in
the form (B7) with the boundary matrix given by

L(s, ω) =
1

2

(

aL+1
+ −aL+1

+ /(
√
2 s′ γ2α) 0 0

−F (β̊) γ4α aL+1
+ /γ2 G(β̊) γ2α a

L+1/(s′ γ2) bL+1
+ −bL+1

+ /(s′ γ2)

)

, (96)

and the given data

(

g̃α
g̃s

)

=
1

κL+1

(

(
√
2− β̊)L+1 h̃α

(1 − β̊)L+1 h̃s

)

. (97)

The L2 solution of the system is given by (92). Never-
theless, the complex integration constants now satisfy

σα =
g̃α

2 aL+1
, (98)

σs = g̃α

[

F (β̊) +
√
2G(β̊) γ4a

4 bL+1 γ2
− 2 (1 +

√
2) (1− β̊)

8 (2−
√
2β̊) aL+1

]

+

g̃s
2 bL+1

. (99)

Since Re(s′) > 0, aL+1 and bL+1 are proportional to s′

and the remain coefficient are constants, it follows that
the system is boundary stable and therefore well-posed.

Similar arguments apply to the wave problem of the met-
ric components.

V. NUMERICAL APPLICATIONS

The necessity of CPBCs for the Z4c system is not only
motivated by the fundamental requirement of having a
mathematically well-posed system, but also by the nu-
merical evidence of artifacts related to the implementa-
tion of inadequate BCs. The property of full propagation
of the constraints is both a strength and a weakness of
the Z4 evolution system. On one hand, by a compari-
son with BSSN it was shown in [37] that this property
reduces constraint violations on the grid. On the other
it makes the BCs a more important issue, because if the
numerical boundary condition introduces large constraint
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FIG. 1. Radial oscillations of the central rest-mass density
of a compact star in time. When Sommerfeld conditions are
used a perturbation from the boundary (at rout = 20) hits
the center of the star (at t = 20) and further perturbs it.

violations, perhaps as spurious reflections, then the vio-
lation may propagate inside the domain and swamp the
numerical solution.

As an example of numerical artifact, pointed out but
only briefly discussed in [37], we show in Fig. 1 the time
evolution of the central rest-mass density of a equilib-
rium model of spherical compact star obtained with the
Z4c formulation (coupled to general relativistic hydrody-
namics equations) and two different BCs: Sommerfeld
and CPBCs [50]. The central density is expected to re-
main constant in time but the truncation error of the
numerical scheme causes small oscillations around the
initial value that converge away with resolution. This is
clearly visible when CPBCs are used. The frequency of
these oscillations corresponds to the proper radial mode
of the star. When Sommerfeld conditions are used how-
ever the constraint violation at the boundary propagates
into the domain and perturbs the star as soon as it be-
comes causally connected with the outer boundary. The
perturbation from the boundary alters the mean value of
the central density. The “boundary” perturbation does
not converge (or converges much slower than the inte-
rior, see Sec. VB) so becomes the dominant error when
the grid is refined. At later times the oscillations are
damped by the hydrodynamical interaction between the
fluid and artificial vacuum, but the mean value of the
central density is forever modified from the initial one.
Such boundary artifacts can thus dramatically move the
solution far away from the initial configuration in phase
space, despite the fact that at late times the constraint
violation is very small. Preliminary 3D simulations with
the Jena BAM code [27] of single neutron stars, single
puncture and binary black holes showed features very
similar to the spherical results and in some cases insta-
bilities triggered by the boundary.

In the following sections we discuss numerical results in
spherical symmetry focusing only on the boundary con-
ditions (60). Since the practical implementation of BCs
in a code is also an issue, in Sec. VA we summarize the
method we used as well as other standard approaches.
We use the code of [37]. For more information on our
numerical method, spherical reduction of the equations
please refer to appendix A of that reference. We per-
form several tests, in each case with Sommerfeld and con-
straint preserving conditions. To examine stability and
the effect of the BCs we consider simulations with a very
close outer boundary (rout ≃ 20M) and compare the re-
sults with a reference simulation [23, 51], in which the
outer boundary is placed far away (r′out ≃ 1000M) from
the origin. Since the boundary of the reference solution
is causally disconnected on the time scale of the simula-
tions with closer boundary, the BCs in the reference run
have no importance. Results are presented for moderate
resolution, about ∆r ∼ 0.12; but higher resolution runs
as well as very long-term (hundreds of thousands of cross-
ing times) simulations were performed showing the same
behavior and no numerical instabilities. To monitor the
global constraint violation we define the quantity:

C ≡
√

H2 +M iMi +Θ2 + ZiZi , (100)

and we will refer to it as the constraint monitor. We will
often make use of 2-norms of quantities:

||C(·, t)||2 ≡
√

∫

dr r2C(r, t)2 , (101)

where in practical computations the integral is performed
on the grid by the trapezium rule. For a fair comparison
with the “near-boundary” solution, the norm of the ref-
erence solution is taken only on the domain, r ∈ (0, rout).
Since most of the analytical results were obtained with

the new asymptotically harmonic shift condition, we ex-
amine this gauge as well as the standard puncture gauge.
In all cases we have found comparable results (see e.g.

Fig. 4) and therefore we will focus primarily on the stan-
dard puncture gauge. We therefore aim to give at least
some numerical evidence of well-posedness in those cases
where we are unable to demonstrate strong mathematical
results.
A brief description of the tests performed and their

aim follows below.
Perturbed flat spacetime. Evolution of constraint vi-

olating initial data on flat space. Here we focus on con-
vergence and constraint absorption. We find near-perfect
constraint transmission of the constraints when using the
second order CPBCs. We devote the most attention to
this test because the effect of the BCs are clearest in the
absence of other sources of error.
Star spacetime. Evolution of a stable compact star.

In the Sommerfeld case, non convergent reflections from
the boundary effect the dynamics of the star. The ab-
sorbing CPBCs completely solve this problem.
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Black hole spacetime. Evolution of black hole initial
data. The robustness and performance of CPBCs are
tested against black hole spacetimes with different ini-
tial data and gauges. In particular we evolve a single
puncture and Schwarzschild with a Kerr-Schild slicing.
We use geometrical units c = G = 1 everywhere, in

case of matter spacetime dimensionless units are adopted
setting M⊙ = 1, in case of black hole spacetime Mbh =
1, while in case of flat spacetime a mass scale remains
arbitrary.

A. Numerical implementation of boundary

conditions

The literature contains many suggestions for the im-
plementation of BCs, of which we highlight a small subset
here.
Populate ghostzones. One example is the recipe

of [52], under which numerical stability of the shifted
wave equation was proven. The idea is to write the BCs
on the first order in time second order in space char-
acteristic variables (which only implicitly contain time
derivatives) and populate ghostzones so that the desired
continuum boundary condition is satisfied. Ghostzones
not determined by the BCs are simply populated by ex-
trapolation. Since this method relies in an essential way
on altering spatial derivatives locally, it is not clear how
to apply the approach if one is computing spatial deriva-
tives pseudo-spectrally. Furthermore the recipe may not
give a unique prescription when one is given a system of
equations.
Summation by parts. As we have mentioned before,

with the summation by parts schemes and penalty tech-
niques a quantity that mirrors the continuum energy for
a symmetric hyperbolic system is constructed on the dis-
crete system. Since we do not rely on an energy (sym-
metric hyperbolicity) method in our well-posedness anal-
ysis we are not able to construct a summation by parts
finite difference scheme that guarantees stability. Analy-
sis and applications in numerical relativity can be found
in [9, 53–57].
BCs as time derivatives of evolved fields. The remain-

ing approach we consider assumes that one may take
spatial derivatives everywhere in a spatial slice. Inside
a pseudo-spectral method spatial derivatives are natu-
rally defined everywhere. On the other hand when ap-
proximating derivatives by finite differences, one may ei-
ther use extrapolation to populate ghostzones, or take
lop/one-sided differences near the boundary. The two
methods are equivalent. To express the BCs on time
derivatives of the metric one starts by substituting the
definitions of the time-reduction variables (for example
Θ, Zi and Kij) into the BCs. Then, if higher than first
order time derivatives are still required, one may define
a set of auxiliary reduction variables. One may use the
equations of motion of the auxiliary variables in combi-
nation with the boundary conditions to eliminate spatial
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FIG. 2. Constraint violation in flat spacetime test. The
2-norm of the constraint monitor is showed in time for differ-
ent BCs implemented. The same quantity for the reference
simulation is showed.

derivatives of auxiliary variables so that they may be con-
fined to the boundary [45, 58]. This approach was tested
in the Caltech-Cornell SpEC code [24], but it is currently
not used for binary black hole simulations. Here we per-
form evolutions only up to second order, and so do not
need to use auxiliary variables in the boundary.
Our numerical tests are performed with a spherical re-

duction of the Z4c system. The numerical implementa-
tion of the boundary conditions in spherical symmetry is
described in appendix C.

B. Perturbed flat spacetime

In this test an initial constraint violating Gaussian per-
turbation is prescribed in variable χ. During the evo-
lution it propagates, reaches the boundary and if com-
pletely absorbed, the system relaxes to the Minkowski
solution. This does not happen in practice because re-
flections are always present. Here we investigate the mag-
nitude of these reflections and compare CPBCs of 1st and
2nd order with standard Sommerfeld conditions.
Figure 2 shows the 2-norm of the constraint monitor

in time, results from the reference simulation are also re-
ported. All the data agree up to around t = 20, i.e. when
the solution is traveling through the grid. After that time
the following happens: (i) the constraint violation re-
mains almost constant for 1st order CPBCs (green dotted
line) and eventually causes the simulation to crash; (ii)
the constraint violation decreases for Sommerfeld (blue
dashed line) initially not monotonically (notice the four
plateaus) then, after t = 180, reaching a monotonic be-
havior; (iii) the constraint violation for 2nd order CP-
BCs (continuous red line) is smaller than Sommerfeld,
plateaus are less clear but a monotonic behavior is also
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reached after t = 180; (iv) the reference solutions (black
dotted line) agree among themselves (remember that on
the plotted timescale the boundary of the reference solu-
tion is disconnected from the spatial domain under con-
sideration) and decrease monotonically but in absolute
value less than 2nd order CPBCs.
The interpretation of these observation is quite obvi-

ous, at least for points (i)-(iii): 1st order CPBCs sim-
ply do not absorb the perturbation, which is entirely re-
flected back; Sommerfeld BCs are affected by partial re-
flections and at each crossing time a smaller portion of
the wave comes back into the domain until an almost
complete absorption; 2nd order CPBCs immediately ab-
sorb the largest portion of the outgoing wave. These
statements are quantified below.
Let us briefly discuss point (iv). A close look at the

evolution of the constraint monitor in space shows a sys-
tematic drift from zero due to a back-scattering effect
of the perturbation leaving the grid. This is responsible
for the larger values of the constraint violation. Such
an effect can not be simulated in the closer domain case
because the CPBCs cut completely the incoming modes
of the solution, and, effectively, two different numerical
spacetimes are simulated in the two cases.
An important point is to quantify the absorption prop-

erties of the BCs under consideration. To this end we
consider the characteristic fields associated to the Θ given
by:

U±
Θ = ∂0Θ±Θ,s . (102)

They can be regarded as incoming and outcoming modes
of the solution. Thus we define an experimental reflec-
tion coefficient (inspired by [46, 49]) defined as the ratio
of the Fourier modes of the characteristic fields at the
boundary:

R ≡ |Ũ−
Θ (k)|

|Ũ+
Θ (k)|

. (103)

Figure 3 shows that R ∼ 1 for 1st order CPBCs, while
the behavior of 2nd order CPBCs is qualitatively similar
to Sommerfeld. Since they do not absorb the constraint
violation, in what follows, we discard the 1st order CP-
BCs.
The results presented so far refer to the puncture

gauge. As stated at the beginning of the section, basically
no significant differences are found when the asymptoti-
cally harmonic shift is employed. Figure 4 shows clearly
this fact, we do not further comment on the asymptoti-
cally harmonic gauge until Sec. VD.
Finally, we present convergence results. In figure 5 the

experimental self-convergence factor is plotted in time.
While the physical solution is traveling on grid, t < 20,
the scheme is fourth order convergent as expected. After-
wards the numerical solution consists of the boundary re-
flections only and, while in case of Sommerfeld reflections
are first order accurate, in case of CPBCs they maintain
fourth order convergence up to t ∼ 100. For later times

10
-2

10
-1

10
0

10
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

R

Wave number

Sommerfeld
2nd CP
1st CP

FIG. 3. Experimental reflection coefficient in flat space-
time test. The experimental reflection coefficient, defined in
Eq. (103), is plotted versus the wave number for different BCs
implemented.
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FIG. 4. Constraint violation in flat spacetime test. Compar-
ison of 2nd order CPBCs with puncture and asymptotically
harmonic shift.

(not shown in the plot) the absolute value of the solution
(and of the reflections) is so small that only noise is seen.
We remark that the order of extrapolation used to fill
the ghosts points and the finite difference operators in
the two approaches are the same, so the differences are
really due only to BCs. In order to obtain these conver-
gence results, a non-staggered grid must be used because
the staggered grid converges to the continuum domain at
only first order in the grid spacing. In the following ap-
plications we use staggered grids, since this is commonly
done in 3D codes.
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FIG. 5. Convergence factor in flat spacetime test. The self-
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ulations at different resolutions and showed in time for 2nd
order CPBCs and Sommerfeld BCs.

C. Star spacetime

In this test we evolve stable spherical star initial data
(see [37] for detail). At the beginning of the section we
already discussed one of the main drawback of the use
of Sommerfeld BCs with Z4c. As it is evident from Fig-
ure 1, the use of CPBCs is not optional but absolutely
necessary to obtain reliable results. In a more compli-
cated/dynamical scenario in fact such artifacts could be
hidden or erroneously interpreted as real physics.

In this paper we are presenting results obtained with-
out the Z4 constraint damping scheme [36]. One may
however consider using the constraint damping scheme
with a sufficiently large computational domain to sup-
press perturbations from the boundary. In our experi-
ence this is not only a inefficient cure (especially in 3D
simulations) but an ineffective one. Our simulations in-
dicate that the required damping coefficients are quite
large, possibly because the perturbation from the bound-
ary is typically not a high-frequency perturbation, and
the damping scheme is most effective on high frequency
perturbations. Constraint damping is analytically under-
stood in the linear regime and high frequency approxima-
tion, in a more general situation the indiscriminate use of
constraint damping may lead to undesirable effects (e.g.
qualitatively similar to large artificial dissipation).

In the upper panel of Figure 6 we show the 2-norm of
the constraint monitor for Sommerfeld, 2nd order CPBCs
and the reference solution. It is evident that CPBCs are
closer to the reference solution. In the bottom panel the
distance from the reference solution is plotted showing
that CPBCs lead to an improvement of approximately 2
to 4 orders of magnitude.
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FIG. 6. Constraint violation in star spacetime test. Upper
panel: The 2-norm of the constraint monitor is plotted in time
for different BCs implemented. The same quantity for the ref-
erence simulation is shown (black dotted line). Bottom panel:
The 2-distance of the constraint monitor with the reference
simulation is showed in time for different BCs implemented.

D. Black hole spacetime

In this test we consider different black hole space-
times. A spherical black hole was evolved with punc-
ture and Kerr-Schild initial data; evolutions were per-
formed with both the gamma driver and asymptotically
harmonic shift.
We focus first on the evolution of a single puncture.

Figure 7 shows that the behavior of the constraint mon-
itor, computed outside the apparent horizon, is analo-
gous to what we found in the flat and star spacetime
tests. As the solution asymptotes to the stationary trum-
pet slice [59] we find more constraint violation than in
the evolution of the star. The resolution employed in
the simulations for the figure is quite moderate and the
outer boundary very close, even compared with a 3D
code. Nonetheless the CPBCs perform quite well and
significantly improve the numerical solution with respect
Sommerfeld. No big differences were found when adopt-
ing either the gamma driver shift or the asymptotically
harmonic one. As shown in Figure 8 the puncture shift
(red solid line) does even better than the asymptotically
harmonic (red dashed line) after t ∼ 60. To the best
knowledge of the authors this is the first time that the
asymptotically harmonic shift has been used in the evo-
lution of puncture data.
To further assess the robustness of our BCs we evolve

the spherical black hole with Kerr-Schild initial data:

ds2 = −
(

1− 2M

r

)

dt2 +
4M

r
dt dr +

(

1 +
2M

r

)

dr2

+ r2 dΩ2 . (104)

The excision surface is at r = 1.9M and simple extrapo-
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FIG. 7. Constraint violation in black hole spacetime test.
Upper panel: The 2-norm of the constraint monitor is showed
in time for different BCs implemented. The same quantity for
the reference simulation is showed (black dotted line). Bot-
tom panel: The 2-distance of the constraint monitor with the
reference simulation is showed in time for different BCs im-
plemented.

lation is used at the inner boundary. We stress that this
test is initially more demanding for the gamma driver
shift. Since the line-element is not written in a manifestly
conformally flat form, the shift immediately evolves ev-
erywhere in space, which is not the case with the gamma
driver shift and puncture data. Figure 8 shows that the
results for the constraint monitor obtained with our CP-
BCs are comparable to the puncture case with both the
puncture shift (orange thick solid line) and the asymp-
totically harmonic (orange thick dashed line). In this
case the latter perform better. Moreover, at this resolu-
tion, the bigger spurious reflections produced by Som-
merfeld conditions combined with the close boundary
used (rout = 20) cause the simulations to crash. To
achieve stable evolutions with the Sommerfeld conditions
we find it necessary to use a higher resolution and a more
distant outer boundary.

VI. CONCLUSION

For numerical applications of free-evolution schemes
in general relativity there is a strong motivation to con-
struct constraint preserving boundary conditions. With-
out such conditions, constraint violations may appear at
the boundary of the numerical domain and swamp the
numerical solution. In the worst case such errors could
be interpreted as real physics. In this study we have
constructed constraint preserving conditions for the Z4c
formulation of the Einstein equations with variations of
the popular puncture gauge.

We demonstrated well-posedness of the resulting ini-
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FIG. 8. Constraint violation in black hole spacetime test,
comparison of different initial data and gauges. The 2-norm
of the constraint monitor is showed in time for 2nd order CP-
BCs. The evolutions refer to puncture initial data showed
with puncture shift (red solid line) and asymptotically har-
monic shift (red dashed line) and to Kerr-Schild initial data
(evolved with excision) with puncture shift (thick orange solid
line) and asymptotically harmonic shift (thick orange dashed
line).

tial boundary value problem for the constraint subsys-
tem on a four dimensional compact manifold in the high-
frequency approximation. Since we are only interested
in the constraint absorption properties of our boundary
conditions we just analyzed the initial boundary value
problem of the a spherical reduction of the Z4c system
for a special choice of free parameters of the gauge con-
dition. One may be able to expand our calculations for
the asymptotically harmonic shift condition by verifying
the existence of a suitable symmetrizer in a neighbor-
hood of the point p about which we perturb to reach the
high-frequency limit. Unfortunately there is not a clear
method for extending our calculations beyond the high-
frequency limit with the standard gauge choice. Even
in the high-frequency approximation we find that the
Laplace-Fourier method becomes cumbersome. The key
problem is that the cascade approach of Kreiss and Wini-
cour fails with the puncture gauge.
In order to build a body of evidence for the well-

posedness of the initial-boundary value problem with
the standard puncture gauge we therefore performed nu-
merical evolutions of various spherical initial data sets.
Roughly speaking our approach for the implementation
of the boundary conditions is to rewrite them as closely as
possible to Sommerfeld conditions most commonly used
in BSSN evolutions. We will report our method in detail
elsewhere. Since the underlying formulation is not sym-
metric hyperbolic we are not able to make a summation-
by-parts approach to the implementation. Therefore nu-
merical stability is most straightforwardly established by
studying toy problems mathematically and performing
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existence numerical tests on the numerical system. We
compared the behavior of the system with the standard
puncture gauge and the asymptotically harmonic gauge.
We find very similar features in all tests. We demon-
strated that with our approach to the numerical imple-
mentation we can achieve clean pointwise convergence
even in reflected constraint violation. We also found, in
agreement with previous studies, that high-order bound-
ary conditions are able to absorb outgoing constraint vi-
olation much more effectively than first order conditions.
There are two obvious places in which we would like to

strengthen our results. Firstly it is desirable to extend
our well-posedness results, especially in the case of the
standard puncture gauge. However in order to do this a
different mathematical approach will probably be neces-
sary. Secondly, that the numerical tests were performed
in spherical symmetry is an obvious drawback which we
aim to address shortly. Preliminary tests in 3D with the
BAM code indicate that additional tangential terms in
the boundary conditions, which we have discarded in this
paper, are required in order to get a stable evolution.
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Appendix A: Well-Posed problems

The well-posedness of the IBVP is the requirement
that for given initial and boundary data an unique so-
lution should exist and it should depend continuously on
the data (see e.g. [60]). In this section we present a short
review of the theory for first order systems to prove well-
posedness This theory developed by Kreiss [6] gives us
necessary and sufficient conditions for well-posedness of
the IBVP for strictly hyperbolic systems. The theory was
extended to hyperbolic systems of constant multiplicity
by Agranovich [7]. The discussion presented here follows
closely that of in [6, 19, 22].
Consider a strongly hyperbolic system of equations of

motion

∂tu = B ∂x1u+

n
∑

A=2

CA ∂Au , (A1)

with constant coefficients on the half-space t ≥ 0, x1 ≥ 0
and −∞ < x2, . . . , xn < ∞. Here u is a n-dimensional

vector and B and Ci are n × n constant matrices. By
assuming that B is non-singular, it can be rewritten as

B =

(

−ΛI 0
0 ΛII

)

, (A2)

with ΛI and ΛII real and positive definite diagonal ma-
trices of order m and n−m respectively. We imposed m
BCs at x1 = 0 in the form

LuI(t, x)
∣

∣

x1=0
=̂ g(t, x) , (A3)

where L is a m × m constant matrix and g =
g(t, x2, . . . , xn) is a given boundary data vector. For sim-
plicity, we consider trivial initial data u(0, x) = 0. In the
following we solve the IBVP (A1-A3) by performing a
Laplace-Fourier transformation with respect to the di-
rections t and xA tangential to the boundary x1 = 0.
Let ũ = ũ(s, x1, ωA) denote the Laplace-Fourier trans-

formation of u(t, x). Then, ũ satisfies the ordinary dif-
ferential system

∂xũ =M(s, ω) ũ , onx ∈ (0,∞) , (A4)

LũI =̂ g̃ , atx =̂ 0 , (A5)

where g̃ denotes the Laplace-Fourier transformation of g
and

M(s, ω) = B−1 (s In×n + i ωAC
A) . (A6)

If λi and ei(s, ω) are the corresponding eigenvalues and
eigenvectors ofM then the general L2 solution (functions
which are quadratically integrable) of (A4) is given by

ũ =
m
∑

i=1

σi ei(s, ω) exp(λi x
1) , (A7)

where σi are complex integration constants [61]. These
constants are determined by the boundary conditions.
By substituting (A7) into the expression (A5) we obtain
a system of m linear equations for the unknown σi. This
system can be written in the form

D(s, ω)σ =̂ g̃ , (A8)

where D(s, ω) is a m ×m matrix. Let us consider for a
moment homogeneous BCs g̃ = 0 and suppose that there
is s with Re(s) = η > 0 such that DetD = 0. It means
that (A8) has a non-trivial solution and therefore, the
solution of the IBVP (A1-A3) is

u(t, xi) = ũ(x1) exp
(

s t+ i ωA x
A
)

. (A9)

This implies, by homogeneity of the system (A4-A5), that

u(t, xi) = ũ(θ x1) exp
(

ζ s t+ i ζ ωA x
A
)

. (A10)

is also a solution for any constant ζ > 0. By increasing
that constant arbitrarily one can find a solution which
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grows exponentially. Therefore, the IBVP is not well-
posed. We conclude that the so-called determinant con-

dition

DetD 6= 0 , for η > 0 ,

is a necessary condition for well-posedness.
Next, let us consider the inhomogeneous BCs. Since

the determinant condition is satisfied we can solve (A8)
for the integration constants. What remains to be shown
is that solution (A7) can be bounded in terms of the data
given at the boundary,

|ũ(s, 0, ω)| ≤ C |g̃(s, ω)| , (A11)

where C > 0 is an independent constant of s and ω.
Using (A11) and by inverting the Laplace-Fourier trans-
formation it is possible to show that the estimate

∫ T

0

‖u(t, ·)‖2 dt ≤ δ

∫ T

0

‖g(t, ·)‖2
∣

∣

x1=0
dt , (A12)

holds, i.e. we can estimate the L2 norm of the solution
in terms of the L2 norm of the given boundary data.
Here the constant δ is independent of the boundary data.
Systems whose solution (A12) satisfies this estimate are
called boundary stable [2, 6, 47].
Kreiss has shown in [6, 19] that if the system (A1)

is strictly hyperbolic, the condition (A11) implies that
there is a symmetrizer H = H(s′, ω′) such that

I. H(s′, ω′) is a smooth bounded function that de-
pends of (s′, ω′),

II. there exists a constant δ > 0 such that

HM +M∗H ≥ δ η I ,

for all η > 0 and all ω ∈ R,

III. there are constants δ2 > 0 and C > 0 such that

〈ũ, H ũ〉 ≥ δ2|ũ|2 − C|g̃|2 ,

for all ũ satisfying the boundary condition (A8),

where s′ = s/κ, ω′ = ω/κ and κ =
√

|s|2 + ω2 and
ω2 = ω2

y + ω2
z . We have denoted the standard scalar

product by 〈, · , 〉 and | · | its corresponding norm. This
symmetrizer allows us obtain an estimate of the solution
of the system for which we add a source term F (t, x) in
the right of (A1). In particular, according to [19], we
obtain an estimate of the form
∫ T

0

‖u(t, ·)‖2 dt+
∫ T

0

∥

∥u(t, ·)‖2
∣

∣

x1=0
dt ≤

δ

(

∫ T

0

‖F (t, ·)‖2 dt +
∫ T

0

‖g(t, ·)‖2
∣

∣

x1=0
dt

)

, (A13)

where the constant δ > 0 is independent of the boundary
data g or the source term F .

Appendix B: Toy Model

Consider the wave equation
[

∂20 − µ2 ∂l∂l
]

U
(

t, xi
)

= F
(

t, xi
)

, (B1)

on the half-space t ≥ 0, x ≥ 0 and y and z ∈ (−∞,∞)
with trivial initial data. We impose BCs at x =̂ 0 of the
form

[∂0 − µ∂x] U(t, xi) =̂ h , (B2)

where h are given boundary data and ∂0 is the time
derivative along the coordinate time in the linear regime.
According to [23], let us denote to Ũ as the Laplace-

Fourier transformation of U(t, xi) with respect to the di-
rections t, y and z tangential to the boundary then in
the background (65), Ũ satisfies
[(

µ2 − β̊2
)

∂2x + 2 β̊ s ∂x − (s2 + µ2 ω2)
]

Ũ = F̃ , (B3)
[

s−
(

µ+ β̊
)

∂x

]

Ũ =̂ h̃ , (B4)

where F̃ and h̃ denote the Laplace-Fourier transforma-
tions of F and h respectively. In order to apply the the-
ory presented in the appendix A, one can rewrite the
above system as a first order one by introducing the vari-
able [19, 23]

DŨ =
1

κ

(

∂xŨ + γ2µ β̊ s Ũ
)

, (B5)

where γµ = 1/

√

µ2 − β̊2. Therefore, the system (B3) can

be rewritten in the form

∂xW̃ =M(s, ω) W̃ + f̃ , (B6)

L(s, ω)W̃ = g̃ , (B7)

where we have defined

W̃ =

(

Ũ

DŨ

)

, f̃ =
γ2µ
κ

(

0

F̃

)

,

and

M(s, ω) = κ

(

−γ2µ β̊ s′ 1

µ2 γ4µ λ
2 −γ2µ β̊ s′

)

, (B8)

L(s, ω) = (µ s′,−γ−2
µ ) , (B9)

with λ2 = s′2 + γ−2
µ ω′2. The L2 solution of the homoge-

neous system (B6) is given by

W̃ (s, x, ω) = σ e(τ
−x) e− . (B10)

where τ− is the eigenvalue of M with Re(τ−) < 0 and
e− its corresponding eigenvector. Introducing (B10) into
the boundary we have

µ

(

s′ +
√

s′2 + γ−2
µ ω′2

)

σ = g̃ . (B11)
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According to [19, 23], one can show that there is a con-
stant δ > 0 such that

∣

∣

∣

∣

s′ +
√

s′2 + γ−2
µ ω′2

∣

∣

∣

∣

≥ δ . (B12)

Provided that the eigenvector e− in the solution (B10) is
normalized in a way that it remains finite as ω or |s| goes
to zero or infinity, there is a constant C > 0 such that

|W̃ (s, 0, ω, )| ≤ C |g̃| , (B13)

for all s ∈ C with η > 0, and ω ∈ R. Therefore, the
system is boundary stable. So, we should consider the
existence of a symmetrizer H = H(s′, ω′) and use it to
get an energy estimate for the full problem. According
to [23], it can be shown that the following estimate

η

∞
∫

0

(

|κ Ũ |2 + |∂xŨ |2
)

dx+
(

|κ Ũ |2 + |∂xŨ |2
)∣

∣

∣

x=0

≤ C′





1

η

∞
∫

0

∣

∣

∣F̃
∣

∣

∣

2

dx+
∣

∣

∣h̃
∣

∣

∣

2



 , (B14)

holds for some constant C′ > 0. Therefore, by inverting
the Laplace-Fourier transformation and using the Par-
seval’s relation, one obtain the estimate (A13) for the
solution in terms of the L2 norm of the boundary data.
One can generalize the boundary condition (B2) to

higher order BCs. It has been shown that such conditions
reduce the amount of reflections at the boundary [24, 49].
Thus, we impose high order BCs of the form

[∂0 − µ∂x]
m+1

U(t, xi) =̂ h , (B15)

with m ≥ 1. Following [23] it is possible rewrite the
previous conditions as

Lm+1Ũ =̂

[

µ− β̊

κ

]L+1

h , (B16)

where the linear operator L is defined by L = (µ− β̊) s′−
∂x/κ γ

2
µ. Using the equation of motion (B6), we can

rewrite the above condition in algebraic form. Note that

L
(

Ũ

DŨ

)

= A

(

Ũ

DŨ

)

− 1

κ2

(

0

F̃

)

, (B17)

where the matrix A is given by

A =

(

µ s′ −γ−2
µ

−µ2 γ2µ λ
2 µ s′

)

. (B18)

It has been shown in [23] that by iteration the boundary
condition (B16) can be rewritten in the form

L(s, ω) =
1

2

(

am+1
+ + am+1

− ,− am+1
+ − am+1

−
µλγ2µ

)

, (B19)

where a± = µ (s′ ± λ) are the eigenvalues of A. The L2

solution of the homogeneous wave equation (B6) is given
by (B10). Nevertheless, the integration constant σ satis-
fies am+1

+ σ = g̃. It can be shown that the system (B6)
with BCs (B19) is boundary stable and, according to [23],
the solution satisfies the following estimate

η

∞
∫

0

m+1
∑

j=0

∣

∣

∣κ(m+1)−j ∂jxŨ
∣

∣

∣

2

dx+

m+1
∑

j=0

∣

∣

∣κ(m+1)−j ∂jxŨ
∣

∣

∣

2

∣

∣

∣

∣

∣

∣

x=0

≤ C





1

η

∞
∫

0

m−1
∑

j=0

∣

∣

∣κm−j∂jxF̃
∣

∣

∣

2

dx

+

m−1
∑

j=0

∣

∣

∣κ(m−1)−j∂jxF̃
∣

∣

∣

2

∣

∣

∣

∣

∣

∣

x=0

+
∣

∣

∣h̃
∣

∣

∣

2



 , (B20)

for some strictly positive constant C > 0. Thus, by in-
verting the Laplace-Fourier transformation we can esti-
mate the L2 norm of higher derivatives of the solution in
terms of given data.

Appendix C: Implementation of boundary

conditions in spherical symmetry

In this appendix we describe the numerical implemen-
tation of the second order constraint preserving boundary
conditions (60-62) in spherical symmetry.
We write the spherical line-element as

ds2 = χ−1γ̃rrdr
2 + χ−1γ̃T r

2dΩ2, (C1)

where dΩ2 = dθ2 + sin2 θdφ2. Similarly we evolve
(K̂, Ãrr, ÃT ) for the extrinsic curvature. In spherical
symmetry the algebraic constraints (25) are

D = log
(

γ̃rrγ̃
2
T

)

= 0, T =
Ãrr

γ̃rr
+ 2

ÃT

γ̃T
= 0. (C2)

Using the linearized equations of motion for the system,
we rewrite the the boundary conditions as

∂tΘ =̂ − ∂rΘ− 1

r
Θ, (C3)

∂tΓ̃
r =̂ − 2√

3
∂rΓ̃

r − 2√
3r

Γ̃r − 4

3r2
βr

− 1

3
∂rΘ− 2

3
∂rK̂, (C4)

∂tK̂ =̂ −
√
2 ∂rK̂ −

√
2

r
K̂ +

1

r
∂rα, (C5)

Ãrr =̂ − 2∂rÃrr −
6

r
Ãrr − ∂r∂rγ̃T − 1

2
∂rΓ̃

r

− 2

3
(−2 +

√
2)∂rK̂ +

1

3
∂rΘ− 2

r2
(γ̃rr − γ̃T )

+
1

r

(5

2
∂rγ̃rr + 2∂rα− 1

3
Θ− 2

√
2

3
K̂ − 2Γ̃r

− ∂rγ̃T − ∂rχ
)

, (C6)
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where here, for brevity, we have linearized around flat
space. The boundary condition for ÃT can be obtained
by using the algebraic constraints. Note the similarity
with the Sommerfeld boundary condition. For the nu-
merical implementation we populate ghostzones for each
gridfunction fi by sixth order extrapolation

fN+i = 6fN+i−1 − 15fN+i−2 + 20fN+i−3 − 15fN+i−4

+ 6fN+i−5 − fN+i−6, (C7)

in order to approximate derivatives and compute Kreiss-
Oliger artificial dissipation at the boundary. Here
N denotes the boundary point. For the variables
(Θ, Γ̃r, K̂, Ãrr, ÃT ) we simply replace the standard evo-
lution equations with (C3-C6) at the boundary. The re-
maining variables are evolved according to their standard
equation of motion at the boundary.
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